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Abstract
This paper investigates the use of Convolutional Neural Networks (CNN) to classify images encoded

in compressible form using Discrete Cosine Tranform (DCT) as an alternative to raw image format. We
show experimentally that DCT features, that are directly available from JPEG format for instance, can be
processed as ef®ciently as raw image data using the same CNN architectures.
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1 Introduction

Figure 1: Separability of high level features learned
on a datasets of raw RGB images capturing 10 object
classes (CIFAR-10).

In the past decade, convolutional neural networks
(CNN) have grown in popularity for performing
image processing tasks. In CNNs, convolutional
®lters are trained to extract relevant features and
shapes from images to perform classi®cation for
instance (c.f. Figure 1). Convolutions by small
size ®lters have already been widely adopted for in-
stance in VGG [Simonyan and Zisserman, 2014] or
ResNet [He et al., 2015]. A small ®lter covers only
a small part of an image and thus has to be applied
numerous times. In early stages of convolutional net-
works learning from large images, the spatial resolu-
tion of the feature space is rather large and the neural
network has to perform a vast amount of operations.
This paper harnesses the idea to exploit broadly used
image compression techniques, in particular JPEG
compression format for classi®cation (see Section 3).
Standard image classi®cation techniques use CNNs
on spatial representation of data, for example RGB pixel intensities, in contrast images in JPEG format are
mapped to the frequency domain, which applicability for CNNs is explored in the paper. Section 2 introduces
®rst related research works, Section 3 gives detailed explanation of the proposed approach, and we show several
experimental results in Section 4 that con®rms that Convolutional Neural Networks can be applied ef®ciently
to image data in frequency domain.

2 Related Work

Several papers addressed learning from frequency data. Zou et al. applied DCT on images of handwritten digits
and used restricted number of frequency coef®cients to train a deep belief network [Zou et al., 2014]. Er et al.
used DCT features to train Radial Basis Function network for face recognition [Er et al., 2005].
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In contrast, our approach works with frequency information of the image subregions, preserving their global
localization. Under such setting, approaches that exploit spatial dependencies of the data, can be used, and in
particular convolutional neural networks. CNNs have been successful for processing data that have underlying
Euclidean or a regular grid-like structure (e.g. pixel grid) and, the size and structure of input data is expected
to be ®xed to feed into the networks used [Bronstein et al., 2017]. We present next our approach that takes
advantage of JPEG compressed image format for creating CNN compliant input data to feed into CNN based
classi®ers.

3 Method

Our method is motivated by reusing well performing and broadly used JPEG image compression. Firstly we will
brie¯y illustrate how the compression works. JPEG uses YCbCr color scheme, consisting of luma component
(Y), representing luminance, and two chroma components, (Cb and Cr), capturing the blue and the red color
difference. Color channels are sometimes subsampled for larger compression ratio. Each image channel is split
into 8x8 pixel regions, 128 is subtracted from each pixel value, and ®nally the regions are transformed by 2
dimensional Discrete Cosine Transform (DCT).

Discrete Cosine Transform (DCT): 2-dimensional DCT transform on an inputX with dimensionN to the
outputY is de®ned as

Y ÆCN ¢X ¢(CN )T (1)

where coef®cient of the transform matrix is de®ned by:
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given®j Æ1 for j Æ0, and®j Æ2 if j È 0.
Result of the DCT transform is mapping of the sub-region to the frequency domain. Upper-left corner of

the sub-region contains low frequencies while the high frequencies occur in lower-right part. If the compression
is lossy, the sub-regions are factorized by 8x8 matrix to discard high frequencies.

Finally, transformed and quantized sub-regions are converted into one dimensional Huffman code (entropy
encoding), ordering pixels in an antidiagonal order starting from top-left corner (the lowest frequency). Given
the non-homogeneous structure of the Huffman code, its variable length output is causing a challenge to ®t
the data to a ®xed-sized input network such as CNN based architectures. Our experiments are focused here on
using ®xed size outputs of the DCT transform as inputs for our classi®er as shown on the Figure 2.
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Image reassembled from 
blocks
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Figure 2: Flowchart showing JPEG (de)compression steps: Red dashed arrows indicate where CNN classi®er
is plugged-in.

We consider an image split to sub-regions or windows de®ned by the window sizet . Hence windows of
arbitrary size are considered, given JPEG compression splits image only to windows of size 8, the compressed
data is not used, but original image data of each window is transformed into DCT space. Alternatively, if
t Æ8 is desired, entropy coded images can be decoded and dequantized, a process already performed when
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extracting RGB infromation from JPEG images, avoiding aditional computational costs. The output of DCT
transform is a set of frequency coef®cients, each connected to a particular DCT basis function. A set of these
coef®cients represents a feature space of an image window. The ®lter of the proposed approach is designed to
cover 2 adjacent windows in each image direction, forming a2t £ 2t kernel. A weight of the ®lter is responsible
for a particular frequency in the feature space. To avoid application of weights to coef®cients with different
frequencies, the convolutional ®lter slides along the image with a stride of one region widtht . For a window
sizet Æ8, a ®lter of16£ 16 is used. Note that for inference purpose, the window does not need to have a square
size, it can have an arbitrary shape composed oft 2 values (e.g. a 1 dimensional vector1£ t 2 as long as relative
position of the windows stays intact). The approach outline is depicted on Figure 3.

PredictionsCNN

CNN Predictions

RGB to YCbCr DCT Preprocessing

Preprocessing

Proposed

Baseline

Figure 3: Flowchart of the proposed approach compared to the baseline, ®rst converting RGB to YCbCr, then
slicing image to windows and transforming each window separately.

4 Experimental Results

To evaluate the suitability of frequency data representation for training a CNN, experiments are performed on
2 well-known public datasets: CIFAR10 [Krizhevsky, 2009] and MNIST [LeCun et al., 1998].

4.1 CIFAR10

The dataset CIFAR10 of colored images of size32£ 32 is used to compare low level features learned from
frequency in contrast with original raw image intensity. This experiment is conducted for two values oft : 4
and 8. For each window size a different shallow network is used, further referred to as CNN-A (t Æ4) and CNN-
B (t Æ8) with architectural details in Table 1. CNN-A and CNN-B are trained on the output of window-based
DCT of the train set consisting of 50000 images. Features learned by convolutional layers are transformed
by batch normalization [Ioffe and Szegedy, 2015] and activated by ReLU [Nair and Hinton, 2010]. CNN-A
further performs average pooling to downsample the feature space, while CNN-B uses dropout technique to
reduce over®tting [Srivastava et al., 2014].

In all our experiments we use weight decay¸ Æ0.0001, and batch size 256 except for MNIST experiments
where the batch size is 128. Both shallow architectures (CNN-A, CNN-B) are trained on the original raw
RGB data, raw YCbCr data representation and on its compressed DCT transform. Stochastic gradient descent
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4x4 (CNN-A) 8x8 (CNN-B)
layer name kernel type output size layer name kernel type output size

conv [8x8, 4x4] 7x7, 64 conv [16x16, 8x8] 3x3, 64
avg-pool [3x3, 2x2] 3x3, 64 dropout p=0.25 3x3, 64
softmax 1, 10 softmax 1, 10

Table 1: The speci®cation of CNN-A and CNN-B, a shallow convolutional networks for learning low level
CIFAR10 features. A kernel de®nition of [8x8, 4x4] denotes a ®lter with spatial size8£ 8 with stride4£ 4.
Output size of3£ 3,64 represent 64 feature maps with size3£ 3. Dropout layer probability is de®ned by p.

with momentum is used to train the network, with learning rate starting at 0.1, reduced by factor 10 after 40
and 60 epochs for a total length of 80 epochs. Different input preprocessing techniques are tested and two well
performing ones are reported: per feature normalization, noted asmean/std(for frequency data after performing
DCT on non-centered data) and thecenter/maxpreprocessing by subtraction of 128 from the image pixel values
and division by the original maximum value (255 for colors,t ¢256 for frequency data after performing DCT on
centered images). Using the whole test set of 10000 images, the highest classi®cation accuracy was observed
for models trained on DCT data withcenter/maxpreprocessing. The results of 20 runs for each setting, depicted
in Table 2 demonstrate, the window based DCT transform facilitates learning of more discriminative low-level
features.

window size 4x4 (CNN-A) 8x8 (CNN-B)
preprocessing mean/std center/max mean/std center/max

RGB 66.82§ 0.39 66.96§ 0.36 60.36§ 0.37 60.20§ 0.31
YCbCr 65.57§ 0.36 67.07§ 0.24 59.60§ 0.34 60.25§ 0.27
DCT 66.84§ 0.23 67.24 § 0.26 60.25§ 0.28 60.87 § 0.26

Table 2: Classi®cation scores (mean§ std %) of shallow CNN-A and CNN-B networks over 20 runs on
CIFAR10.

Empiric results indicate the standardmean/stdpreprocessing technique for RGB data is not well suited for
data in YCbCr format. We suspect the imbalance between standard deviations of luma and chroma channels
scales down the more important luma channel that is then not exploited suf®ciently by a layer normalized with
L2 norm.

The low level features show encouraging results, motivating experiments on a deeper network. A network
CNN-C with details in Table 3 is trained with both previously mentioned preprocessing approaches for all 3
tested data formats. Each layer with trainable parameters (except for the softmax layer) is batch normalized
and activated by ReLU. Excluding the ®rst layer, all convolutional layers preserve spatial dimensionality of the
features. Due to a low resolution of the dataset, window sizet is set to 2 to prevent drastic downsampling after
the ®rst convolutional layer. We use the same training method as for the shallow network with difference in
the learning rate scheduler: the network is trained for a length of 300 epochs, having initial learning rate 0.1
reduced by factor 5 after 90, 180 and 240 epochs.

The Table 4 contains median and mean accuracy on the test set after 300 epochs, trained both without
augmentation and with simple augmentation. The images are augmented by random horizontal ¯ipping and
random shifting by multiples oft , at most by2t , ®lling missing pixels by zeros. When augmentation is not
used, the network trained on DCT achieves slightly higher accuracy, however, RGB representation bene®ts
from augmentation more than other representations.

We conduct a visual evaluation of CNN-C network features learned on RGB and DCT data. Firstly, low
level ®rst layer activations of the model (mean/stdandcenter/maxpreprocessing for RGB and DCT data respec-
tively) are rendered on Figure 4 that con®rms both networks learned similarly looking features. Furthermore,
discriminating properties of the high level features of CNN-C model trained on DCT is demonstrated by map-
ping activations of the dense layer (ªdense1º in Table 3) to the 2D space (Figure 5) via t-distributed stochastic
neighbor embedding (t-SNE) [van der Maaten and Hinton, 2008]. Class compactness in the 2D projection is
visually similar to the projection of features of the same network trained on raw RGB data (Figure 1).
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layer name kernel type output size
conv1 [4x4, 2x2] 15x15, 64
conv2 [3x3, 1x1] 15x15, 64

dropout1 p = 0.25 15x15, 64
conv3 [3x3, 1x1] 15x15, 64

max-pool1 [3x3, 2x2] 7x7, 64
conv4 [3x3, 1x1] 7x7, 128

max-pool2 [3x3, 2x2] 3x3, 128
dropout2 p = 0.25 3x3, 128
dense1 1, 512

dropout3 p = 0.5 1, 512
softmax 1, 10

Table 3: Convolutional network architecture (CNN-C) used on CIFAR10.

augmentation no augmentation real-time augmentation
preprocessing mean/std center/max mean/std center/max

RGB 86.11(86.22§ 0.25) 86.13(86.21§ 0.29) 90.49(90.49 § 0.21) 90.35(90.30§ 0.12)
YCbCr 85.77(85.47§ 0.41) 85.96(86.13§ 0.49) 89.98(90.08§ 0.31) 90.28(90.18§ 0.27)
DCT 86.35(86.25 § 0.42) 86.30(86.27§ 0.19) 89.97(90.07§ 0.27) 90.27(90.28§ 0.13)

Table 4: Classi®cation scores computed by median and (mean§ std %) in brackets over 5 runs on CIFAR10
dataset for CNN-C.

(a) (b)

Figure 4: First layer activations of a median score CNN-C model trained with augmentation on RGB data (a)
and DCT representation (b), created by inferring the image from Figure 3.

A comparison of common mistakes made by models trained on RGB and DCT data points out that both
networks are making similar mistakes. Figure 6 presents the confusion matrices for both networks, showing the
most common mistake for both models was confusing a dog for a cat. The ®ndings further support the claim
that both networks learn similar representations.

4.2 MNIST

We perform a similar experiment on MNIST dataset, training a CNN-D network similar (see Table 5) to the one
used on CIFAR10 data. Unlike CIFAR10, MNIST contains only 1 color channel with dimension 28x28. Here
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Figure 5: Mapping of high-level features of a network trained on DCT CIFAR10 representation into 2D plane.

Figure 6: A confusion matrix of predictions by CNN-C network trained on RGB (left) and DCT representation
(right ) of CIFAR10.

we uset Æ2 and train the network on the whole 60000 image large train set for 30 epochs (the whole dataset
passes) with stochastic gradient descent. The initial learning rate is 0.1, which is every 10 epochs reduced by
factor 10, and we use momentum of 0.9.

layer name kernel type output size
conv1 [4x4, 2x2] 13x13, 64
conv2 [3x3, 1x1] 13x13, 64

max-pool1 [3x3, 2x2] 6x6, 64
conv3 [3x3, 1x1] 6x6, 128

max-pool2 [2x2, 2x2] 3x3, 128
dropout1 p = 0.25 3x3, 128
dense1 1, 512

dropout2 p = 0.5 1, 512
softmax 1, 10

Table 5: Convolutional network architecture (CNN-D) used on MNIST.
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Multiple preprocessing approaches are used for original intensity values and for DCT transform of the data.
Table 6 lists average errors over 20 runs on the whole test set of 10000 images for each preprocessing method.
The most successful preprocessing technique for raw data was subtraction of mean value and scaling down by

preprocessing Orig. error (%) preprocessing DCT error (%)
/255 0.4455§ 0.0499 DCT/512 0.4245§ 0.0332

-128/128 0.4415§ 0.0273 -128 DCT/256 0.4405§ 0.0458
-128/255 0.4355§ 0.0213 -128 DCT/512 0.4105 § 0.0383
-mean/std 0.4445§ 0.0407 DCT-mean/std 0.4320§ 0.0499
-mean/128 0.4245 § 0.0322 DCT-mean/256 0.4360§ 0.0306
-mean/255 0.4425§ 0.0360 DCT-mean/512 0.4385§ 0.0432

-mean DCT/std 0.4390§ 0.0391
-mean DCT/256 0.4460§ 0.0434
-mean DCT/512 0.4300§ 0.0453

Table 6: Classi®cation scores as the mean§ std % over 20 runs on MNIST dataset. Original raw data is
compared to its DCT transform for different preprocessing techniques: ª-º a constant or ªmeanº value repre-
sents subtraction of speci®ed value from every image pixel, ªDCTº stands for a performing a discrete cosine
transform at the particular step, and ª/º by a constant or ªstdº refer to scaling the image by speci®ed value.

128 with error0.4245%, followed by method that was reported in previous subsection on CIFAR10, subtracting
128 from pixels and scaling by 255, achieving0.4355%error. The lowest average error of0.4105% is obtained
with DCT representation when subtracting 128 from the original image before performing the DCT and scaling
the transformed data with a constant 512 depicted ascenter/maxpreprocessing in Section 4.1. The difference
in error in favor of DCT representation is not signi®cant however, given noticeably well performing baseline
network. There is therefore not much space to observe an improvement.

4.3 Implementation details

All networks used in the experiments are modeled and trained in Keras deep learning framework that uses
TensorFlow backend. Models were trained on NVIDIA GTX770 GPU with 2GB of memory. The CNN-C
network with roughly 750 thousand parameters with training time of 20 seconds per epoch is fully trainined
in less than 2 hours regardless of input representation, which is passed to the graphic card in form of 32bit
precision ¯oating point tensor. DCT transform is computed via provided implementation in opencv library.
Time to transform the whole train set is platform dependent, on Intel processor with 3.7GHz frequency the
transform with window size 2 applied to nearly 50 million sub-windows takes around 4 minutes, while using
sizes 4 and 8, substantially less windows are processed leading to roughly 1 minute and 20 seconds long
execution time respectively.

5 Conclusion & Future work

In this paper we presented an approach for adopting convolutional networks to learn on frequency representa-
tions of the data, with motivation to deploy this approach to compressed image data. Empirically, we showed
that low level features learned from window based discrete cosine transform coef®cients are comparably or
more discriminative than those learned from raw data. High level feature analysis shows deeper networks
trained on data transformed by DCT learn similar representations and make similar mistakes as their raw data
counterparts. Our study encourages further experiments on high resolution images and videos in compressed
format.
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