1. Define intrinsic stationarity.

2. Define weak stationarity.

3. The standard Brownian motion is a diffusion process \(s(t) \), \(t \geq 0 \) satisfying the following:

 - \(s(0) = 0 \).
 - \(s(t) \) has independent increments.
 - For \(t_1 > t_2 \), \(s(t_1) - s(t_2) \sim \mathcal{N}(0, \sigma^2(t_1 - t_2)) \).

 Show that

 (a) a standard Brownian motion is intrinsically stationary,

 (b) a standard Brownian motion is not weakly stationary.

4. The Ornstein-Uhlenbeck process \(V(t) \) is defined using the standard Brownian process \(X(t) \):

 \[
 V(t) = e^{-t} s(e^{2t})
 \]

 (a) Show that Ornstein-Uhlenbeck process \(V(t) \) is weakly stationary.

 (b) Is \(V(t) \) intrinsically stationary? Explain.

5. What are the assumptions of stationarity made about a stochastic process when using the different kriging methods?