Numerical Differentiation

We assume that we can compute a function \(f \), but that we have no information about how to compute \(f' \). We want ways of estimating \(f'(x) \), given what we know about \(f \).

Reminder: definition of differentiation:

\[
\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}
\]

For second derivatives, we have the definition:

\[
\frac{d^2f}{dx^2} = \lim_{\Delta x \to 0} \frac{f(x + 2\Delta x) - 2f(x + \Delta x) + f(x)}{\Delta x^2}
\]

Error Estimation in Differentiation II

We don’t know the value of either \(f'' \) or \(\xi \), but we can say that the error is order \(h \):

\[
R_T \text{ for } D_x(h) \text{ is } O(h)
\]

so the error is proportional to the step size — as one might naively expect.

For \(D_- (h) \) we get a similar result for the truncation error — also \(O(h) \).

First Derivative

We can use this formula, by taking \(\Delta x \) equal to some small value \(h \), to get the following approximation,

- known as the Forward Difference \((D_x(h)) \):

\[
f'(x) = D_x(h) = \frac{f(x + h) - f(x)}{h}
\]

- Alternatively we could use the interval on the other side of \(x \), to get the Backward Difference \((D_- (h)) \):

\[
f'(x) = D_- (h) = \frac{f(x) - f(x - h)}{h}
\]

- A more symmetric form, the Central Difference \((D_0 (h)) \), uses intervals on either side of \(x \):

\[
f'(x) \approx D_0 (h) = \frac{f(x + h) - f(x - h)}{2h}
\]

All of these give (different) approximations to \(f'(x) \).

Second Derivative

The simplest way is to get a symmetrical equation about \(x \) by using both the forward and backward differences to estimate \(f''(x + \Delta x) \) and \(f''(x) \) respectively:

\[
f''(x) \approx \frac{D_+(h) - D_-(h)}{h} = \frac{f(x + h) - 2f(x) + f(x - h)}{h^2}
\]

Error Estimation in Differentiation I

We shall see that the error involved in using these differences is a form of truncation error \((R_T) \):

\[
R_T = D_x(h) - f'(x)
\]

Using Taylor’s Theorem:

\[
f(x + h) = f(x) + f'(x)h + f''(x)h^2/2! + f'''(x)h^3/3! + \cdots
\]

\[
R_T = \frac{1}{2} f''(x)h + \frac{f''(x)h^2}{2!} + \frac{f'''(x)h^3}{3!} + \cdots - f'(x)
\]

\[
= \frac{1}{2} f''(x)h + \frac{1}{2} f'''(x)h^2/2! + f'''(x)h^3/3! + \cdots)
\]

Using the Mean Value Theorem, for some \(\xi \) within \(h \) of \(x \):

\[
R_T = \frac{f''(\xi)h}{2}
\]

Exercise: differentiation I

Limit of the Difference Quotient. Consider the function \(f(x) = e^x \).

- compute \(f'(1) \) using the sequence of approximation for the derivative:

\[
D_{x^k} = \frac{f(x + (x^k) - f(x)}{x^k}
\]

with \(x_k = 10^{-k}, \ k \geq 1 \)

- for which value \(k \) do you have the best precision (knowing \(e^1 = 2.71828182845905 \)), Why?
Exercise: differentiation II

We evaluate

Let try again the example:

Example.

Numerical values: xls/Lect13.xls

Central Difference

- we have looked at approximating \(f'(x) \) with the backward \(D_{-1}(h) \) and forward difference \(D_{+1}(h) \).
- Now we just check out the approximation with the central difference:

\[
 f'(x) \approx D_0(h) = \frac{f(x + h) - f(x - h)}{2h}
\]

- Richardson extrapolation

Error analysis of Central Difference I

We consider the error in the central difference estimate \(D_0(h) \) of \(f'(x) \):

\[
 D_0(h) = \frac{f(x + h) - f(x - h)}{2h}
\]

We apply Taylor’s Theorem,

\[
 f(x + h) = f(x) + f'(x)h + \frac{f''(x)h^2}{2!} + \frac{f'''(x)h^3}{3!} + \frac{f^{(4)}(x)h^4}{4!} + \cdots \tag{A}
\]

\[
 f(x - h) = f(x) - f'(x)h + \frac{f''(x)h^2}{2!} - \frac{f'''(x)h^3}{3!} + \frac{f^{(4)}(x)h^4}{4!} + \cdots \tag{B}
\]

\[
 \frac{(A) - (B)}{2h} = f'(x) + \frac{f''(x)h^2}{3!} + \frac{f^{(3)}(x)h^3}{5!} + \cdots
\]

Error analysis of Central Difference II

We see that the difference can be written as

\[
 D_0(h) = f'(x) + f''(x)xh^2 + \frac{f^{(4)}(x)}{24} + \cdots
\]

or alternatively, as

\[
 D_0(h) = f'(x) + b_1 h^2 + b_2 h^4 + \cdots
\]

where we know how to compute \(b_1, b_2, \) etc.

We see that the error \(R_T = D_0(h) - f'(x) \) is \(O(h^2) \).

Remark. Remember: for \(D_{-1} \) and \(D_{+1} \), the error is \(O(h) \).

Error analysis of Central Difference III

Example.

Let try again the example:

\[
 f(x) = e^x \quad f'(x) = e^x
\]

We evaluate \(f'(1) = e^1 \approx 2.71828 \ldots \) with

\[
 D_0(h) = \frac{f(1 + h) - f(1 - h)}{2h}
\]

for \(h = 10^{-k}, \ k \geq 1 \).

Numerical values: xls/Lect13.xls

Rounding Error in Difference Equations I

- When presenting the iterative techniques for root-finding, we ignored rounding errors, and paid no attention to the potential error problems with performing subtraction. This did not matter for such techniques because:
 - the techniques are self-correcting, and tend to cancel out the accumulation of rounding errors
 - the iterative equation \(x_{n+1} = \xi_n - \kappa_n x_n \) where \(\kappa_n \) is some form of correction factor has a subtraction which is safe because we are subtracting a small quantity \(\kappa_n \) from a large one (e.g. for Newton-Raphson, \(\kappa_n = \frac{f(x)}{f'(x)} \)).
Rounding Error in Difference Equations II

- However, when using a difference equation like
 \[D_0(h) = \frac{f(x+h) - f(x-h)}{2h} \]
 we seek a situation where \(h \) is small compared to everything else, in order to get a good approximation to the derivative. This means that \(x + h \) and \(x - h \) are very similar in magnitude, and this means that for most \(f \) (well-behaved) that \(f(x + h) \) will be very close to \(f(x - h) \). So we have the worst possible case for subtraction: the difference between two large quantities whose values are very similar.

- We cannot re-arrange the equation to get rid of the subtraction, as this difference is inherent in what it means to compute an approximation to a derivative (differentiation uses the concept of difference in a deeply intrinsic way).

Rounding Error in Difference Equations III

- We see now that the total error in using \(D_0(h) \) to estimate \(f'(x) \) has two components:
 - the truncation error \(R_T \) which we have already calculated,
 - and a function calculation error \(R_{\text{calc}} \) which we now examine.

- When calculating \(D_0(h) \), we are not using totally accurate computations of \(f \), but instead we actually compute an approximation \(\tilde{f} \) to get
 \[D_0(h) = \frac{\tilde{f}(x + h) - \tilde{f}(x - h)}{2h} \]

- We shall assume that the error in computing \(f \) near to \(x \) is bounded in magnitude by \(c \):
 \[|f(x) - \tilde{f}(x)| \leq c \]

Rounding Error in Difference Equations IV

- The calculation error is then given as
 \[R_{\text{calc}} = D_0(h) - D_0(h) \]
 \[= \frac{\tilde{f}(x + h) - \tilde{f}(x - h) - f(x + h) - f(x - h)}{2h} \]
 \[= \frac{\tilde{f}(x + h) - f(x + h) + f(x - h) - \tilde{f}(x - h)}{2h} \]

- However, we have already calculated
 \[|R_{\text{calc}}| \leq \frac{c^2}{2h} \]
 \[\leq \frac{c}{h} \]

- So we see that \(R_{\text{calc}} \) is proportional to \(1/h \), so as \(h \) shrinks, this error grows, unlike \(R_T \) which shrinks quadratically as \(h \) does.

Rounding Error in Difference Equations V

- We see that the total error \(R \) is bounded by \(|R_T| + |R_{\text{calc}}| \), which expands out to
 \[|R| \leq \frac{f'''(\xi)}{6} h^2 + c \]

So we see that to minimise the overall error we need to find the value of \(h = b_{\text{opt}} \) which minimises the following expression:
\[\frac{f'''(\xi)}{6} h^2 + c \]

Unfortunately, we do not know \(f''' \) or \(\xi \)!

Many techniques exist to get a good estimate of \(b_{\text{opt}} \), most of which estimate \(f''' \) numerically somehow. These are complex and not discussed here.

Richardson Extrapolation I

- The trick is to compute \(D_0(h) \) for 2 different values of \(h \), and combine the results in some appropriate manner, as guided by our knowledge of the error behaviour.

In this case we have already established that
\[D_0(h) = \frac{f(x+h) - f(x-h)}{2h} = f'(x) + b_1 h^2 + O(h^4) \]

We now consider using twice the value of \(h \):
\[D_0(2h) = \frac{f(x+2h) - f(x-2h)}{4h} = f'(x) + b_2 4h^2 + O(h^4) \]

We can subtract these to get:
\[D_0(2h) - D_0(h) = 3b_2 h^2 + O(h^4) \]

We divide across by 3 to get:
\[\frac{D_0(2h) - D_0(h)}{3} = b_2 h^2 + O(h^4) \]

Richardson Extrapolation II

- The righthand side of this equation is simply \(D_0(h) - f'(x) \), so we can substitute to get
 \[\frac{D_0(2h) - D_0(h)}{3} = D_0(h) - f'(x) + O(h^4) \]

This re-arranges (carefully) to obtain
\[f'(x) = D_0(h) + \frac{D_0(2h) - D_0(h)}{3} + O(h^4) \]

\[= \frac{4D_0(h) - D_0(2h)}{3} + O(h^4) \]
Richardson Extrapolation III

- It is an estimate for \(f'(x) \) whose truncation error is \(O(h^4) \), and so is an improvement over \(D_0 \) used alone.
- This technique of using calculations with different \(h \) values to get a better estimate is known as Richardson Extrapolation.

Richardson’s Extrapolation. Suppose that we have the two approximations \(D_0(h) \) and \(D_0(2h) \) for \(f'(x) \), then an improved approximation has the form:

\[
f'(x) = \frac{4D_0(h) - D_0(2h)}{3} + O(h^4)
\]

Summary

- Approximation for numerical differentiation:

<table>
<thead>
<tr>
<th>Approximation for (f'(x))</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward/backward difference (D_0, D)</td>
<td>(O(h))</td>
</tr>
<tr>
<td>Central difference (D_0)</td>
<td>(O(h^2))</td>
</tr>
<tr>
<td>Richardson Extrapolation</td>
<td>(O(h^4))</td>
</tr>
</tbody>
</table>

- Considering the total error (approximation error + calculation error):

\[
|R| \leq \left| \frac{f''''(\xi)}{6!} \right| h^4 + \left| \frac{\epsilon}{2} \right|
\]

remember that \(h \) should not be chosen too small.

Solving Differential Equations Numerically

Definition.
The Initial value Problem deals with finding the solution \(y(x) \) of

\[
y' = f(x, y) \quad \text{with the initial condition} \quad y(x_0) = y_0
\]

- It is a 1st order differential equations (D.E.s).
- Alternative ways of writing \(y' = f(x, y) \) are:

\[
\begin{align*}
y'(x) &= f(x, y) \\
\frac{dy}{dx} &= f(x, y)
\end{align*}
\]

Working Example

- We shall take the following D.E. as an example:

\[
f(x, y) = y
\]

or \(y' = y \) (or \(y'(x) = y(x) \)).
- This has an infinite number of solutions:

\[
y(x) = C \cdot e^x \quad \forall C \in \mathbb{R}
\]
- We can single out one solution by supplying an initial condition \(y(x_0) = y_0 \).
- So, in our example, if we say that \(y(0) = 1 \), then we find that \(C = 1 \) and our solution is

\[
y = e^x
\]

The Lipschitz Condition I

We can give a condition that determines when the initial condition is sufficient to ensure a unique solution, known as the Lipschitz Condition.

Lipschitz Condition:
For \(a \leq x \leq b \), for all \(-\infty < y, y' < \infty \), if there is an \(L \) such that

\[
|f(x, y) - f(x, y')| \leq L |y - y'|
\]

Then the solution to \(y' = f(x, y) \) is unique, given an initial condition.
- \(L \) is often referred to as the Lipschitz Constant.
- A useful estimate for \(L \) is to take \(\frac{\| f \|}{\| y \|} < L \), for \(x \) in \((a, b) \).
The Lipschitz Condition II

Example.

Given our example of \(y' = f(x,y) \), then we can see do we get a suitable \(L \).

\[
\frac{\partial f}{\partial y} = \frac{\partial (y)}{\partial (x)} = 1
\]

So we shall try \(L = 1 \)

\[
|f(x,y) - f(x',y')| = |y - y'|
\leq 1 \cdot |y - y'|
\]

So we see that we satisfy the Lipschitz Condition with a Constant \(L = 1 \).

Euler’s Method

- The technique works by using applying \(f \) at the current point \((x_n,y_n)\) to get an estimate of \(y' \) at that point.

This technique for solving D.E.'s is known as Euler’s Method.

- It is simple, slow and inaccurate, with experimentation showing that the error is \(O(h) \).

Truncation Errors I

Definitions.

- The error introduced at each step is called the Local Truncation Error.
- The error introduced at any given point, as a result of accumulating all the local truncation errors up to that point, is called the Global Truncation Error.

In the diagram above, the local truncation error is \(y(x_{n+1}) - y_{n+1} \).

Numerically solving \(y' = f(x,y) \)

- We assume we are trying to find values of \(y \) for \(x \) ranging over the interval \([a,b]\).
- We start with the one point where we have the exact answer, namely the initial condition \(y_0 = y(x_0) \).
- We generate a series of \(x \)-points from \(a = x_0 \) to \(b \), separated by a small step-interval \(h \):

\[
\begin{align*}
x_0 &= a \\
x_i &= a + i \cdot h \\
h &= \frac{b-a}{N} \\
x_N &= b
\end{align*}
\]

- We want to compute \(\{y_i\} \), the approximations to \(\{y(x_i)\} \), the true values.

Euler’s Method

Example.

In our example, we have

\[
y' = y \\
y(x,y) = y \\
y_{n+1} = y_n - h \cdot y_n
\]

At each point after \(x_0 \), we accumulate an error, because we are using the slope at \(x_n \) to estimate \(y_{n+1} \), which assumes that the slope doesn’t change over interval \([x_n, x_{n+1}]\).

Truncation Errors II

We can estimate the local truncation error \(y(x_{n+1}) - y_{n+1} \), by assuming the value \(y_n \) for \(x_n \) is exact as follows: as follows:

\[
y(x_{n+1}) = y(x_n) + h
\]

Using Taylor Expansion about \(x = x_n \)

\[
y(x_{n+1}) = y(x_n) + h y'(x_n) + \frac{h^2}{2} y''(\xi)
\]

Assuming \(y_0 \) is exact \((y(x_n) = y(x_n)) \), so \(y'(x_n) = f(x_n,y_n) \)

\[
y(x_{n+1}) = y_n + h f(x_n,y_n) + \frac{h^2}{2} y''(\xi)
\]

Now looking at \(y_{n+1} \) by definition of the Euler method:

\[
y_{n+1} = y_n + h f(x_n,y_n)
\]

We subtract the two results:

\[
y(x_{n+1}) - y_{n+1} = \frac{h^2}{2} y''(\xi)
\]
Improved Differentiation Techniques II

- Using the slope \(y'(x_n, y_n) = f(x_n, y_n) \) at \(x_n \), the Euler approximation is:

\[
\frac{y_{n+1} - y_n}{h} \approx f(x_n, y_n)
\]

- Considering the slope \(y'(x_{n+1}, y_{n+1}) = f(x_{n+1}, y_{n+1}) \) at \(x_{n+1} \), we can propose this new approximation:

\[
\frac{y_{n+1} - y_n}{h} \approx f(x_{n+1}, y_{n+1})
\]

- The trouble is: we don’t know \(y_{n+1} \) in \(f \) (because this is what we are looking for!).
- So instead we use \(y_n^{(k)} \), the Euler’s approximation of \(y_{n+1} \):

\[
\frac{y_{n+1} - y_n}{h} \approx f(x_{n+1}, y_n^{(k)})
\]

Runge-Kutta Techniques I

- We can repeat the Heun’s approach by considering the approximations of slopes in the interval \([x_n, x_{n+1}]\).
- This leads to a large class of improved differentiation techniques which evaluate \(f \) many times at each \(h \)-step, in order to get better error performance.
- This class of techniques is referred to collectively as Runge-Kutta techniques, of which Heun’s Method is the simplest example.
- The classical Runge-Kutta technique evaluates \(f \) four times to get a method with global truncation error of \(O(h^4) \).
Runge-Kutta Techniques II

Runge-Kutta's technique using 4 approximations. It is computed using approximations of the slope at x_n, x_{n+1} and also two approximations at mid interval $x_n + \frac{h}{2}$:

$$\frac{y_{n+1} - y_n}{h} = \frac{1}{6} (f_1 + 2f_2 + 2f_3 + f_4)$$

with

$$f_1 = f(x_n, y_n)$$
$$f_2 = f \left(x_n + \frac{h}{2}, y_n + \frac{h}{2} f_1 \right)$$
$$f_3 = f \left(x_n + \frac{h}{2}, y_n + \frac{h}{2} f_2 \right)$$
$$f_4 = f \left(x_n + h, y_n + h \cdot f_3 \right)$$

It can be shown that the global truncation error is $O(h^4)$.