Numerical Differentiation

We assume that we can compute a function f, but that we have no information about
how to compute f’. We want ways of estimating f’(x), given what we know about f.

Reminder: definition of differentiation:

A _ o F A ()
dx  Ax—0 Ax
For second derivatives, we have the definition:
d*f .+ Dx) —f(x)
— = lim ———~——~~
dx2  Ax—0 Ax

First Derivative

We can use this formula, by taking Ax equal to some small value £, to get the following
approximation,

@ known as the Forward Difference (D (h)):
fe+h) —f&)
h

@ Alternatively we could use the interval on the other side of x, to get the Backward
Difference (D_ (h)) :

f'x) Dy (h) =

‘(x) =f(x—nh
#9 =p-(ty = ==
@ A more symmetric form, the Central Difference (Dy(h)), uses intervals on either

side of x: Feh) — e )
F@) & Do) = P

All of these give (different) approximations to f”(x).

Second Derivative

The simplest way is to get a symmetrical equation about x by using both the forward
and backward differences to estimate ' (x + Ax) and f/(x) respectively:

Dy (h) =D-(h) _ flx+h) =2f(x) +f(x—h)

f” (x) ~ h 02

Error Estimation in Differentiation |
We shall see that the error involved in using these differences is a form of truncation
error (Rr):
Ry =D4(h)—f'(x)
= 5+ h) =) —f' ()
Using Taylor's Theorem: f(x + h) = f(x) +f' (x)h -+ f" (x)i? /2L + ) (x)h3 /30 + - - -

Rr = b @b+ " (R /204 " ()R /30 + ) = f(x)
= W WDh+ F R /2L 41 (R /34 ) = f (%)

=f"(x)h/2! + " (X)W /3
Using the Mean Value Theorem, for some ¢ within / of x:
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Error Estimation in Differentiation Il

We don’t know the value of either £’ or &, but we can say that the error is order i:
Ry for Dy (h) is O(h)

so the error is proportional to the step size — as one might naively expect.
For D_(h) we get a similar result for the truncation error — also O(h).

Exercise: differentiation |

Limit of the Difference Quotient. Consider the function f(x) = ¢*.
@ compute f/(1) using the sequence of approximation for the derivative:

D [t ) —f(x)
= L) I
i

with by = 107K, k>1

@ for which value k do you have the best precision (knowing e! = 2.71828182845905).
Why?




Exercise: differentiation Il

@ xls/Lectl3.xls

@ Best precision at k = 8. When / is too small, f(1) and f(1 + i) are very close
together. The difference f(1 + k) — f(1) can exhibit the problem of loss of
significance due to the substraction of quantities that are nearly equal.

Central Difference

@ we have looked at approximating f’(x) with the backward D_ (k) and forward
difference D (h).

@ Now we just check out the approximation with the central difference:

F0) = Dy(h) = LEFM S = 1)

2h
@ Richardson extrapolation
Error analysis of Central Difference | Error analysis of Central Difference Il
We see that the difference can be written as
We consider the error in the Central Difference estimate (Do (%)) of f/(x):
Do() = () + 7 1 S0
f(x+h)7f(x7h) 0 6 24

Dy(h) =

2h
We apply Taylor's Theorem,
S = 0 +r Con+ T SR @R
T Oy T A L i LA L AU
(A)—(B) = A+ 2f”’(;)h3 . 2f<5>§;'c)h5
(A);h(B) _ . f,,,g)hz' X f(s)g,;)m- N

or alternatively, as
Do(h) =f'(x) + bih* + byh* 4 - -

where be know how to compute by, b,, etc.
We see that the error Ry = Dy(h) — f'(x) is O(h?).

Remark. Remember: for D_ and D, the error is O(h).

Error analysis of Central Difference llI

Example.
Let try again the example:

f)=¢  fr)=¢
We evaluate /(1) = e! ~2.71828... with

_f(+m) —f(1-n)

Dy(h) o

forh=10"%, k>1.
Numerical values: x1s/Lect13.x1ls

Rounding Error in Difference Equations |

@ When presenting the iterative techniques for root-finding, we ignored rounding
errors, and paid no attention to the potential error problems with performing
subtraction. This did not matter for such techniques because:

@ the techniques are self-correcting, and tend to cancel out the accumulation of rounding
errors

@ the iterative equation x,.; = x, — ¢, where ¢, is some form of correction factor has a
subtraction which is safe because we are subtracting a small quantity (c,) from a large
one (e.g. for Newton-Raphson, ¢, =

()
)




Rounding Error in Difference Equations Il

@ However, when using a difference equation like

Dyl = LN =1G =1
we seek a situation where / is small compared to everything else, in order to get a
good approximation to the derivative. This means that x + i and x — & are very
similar in magnitude, and this means that for most f (well-behaved) that f(x + &)
will be very close to f(x — /). So we have the worst possible case for subtraction:
the difference between two large quantities whose values are very similar.

@ We cannot re-arrange the equation to get rid of the subtraction, as this difference
is inherent in what it means to compute an approximation to a derivative
(differentiation uses the concept of difference in a deeply intrinsic way).

Rounding Error in Difference Equations IlI

@ We see now that the total error in using Dy (k) to estimate f/(x) has two
components

@ the truncation error R which we have already calculated,
@ and a function calculation error Ry which we now examine.
@ When calculating Dy (h), we are not using totally accurate computations of f, but
instead we actually compute an approximation £, to get

flr+h) —Flx—h)

Dy(h) =" 2

@ We shall assume that the error in computing f near to x is bounded in magnitude
by e:

[Fx) =f(x)| <e

Rounding Error in Difference Equations IV

@ The calculation error is then given as

Rxr = Do(h) —Do(h)
_ fth) —Fx—h)  flx+h) —flx—h)
2h 2h
_ fth) —Flx—h) = (fx+h) —f(x—h))
2h
_ fth) —flxt+h) = (Fx—h) —f(x—h))
2h
[fr+h) —flx+h)| +|f(x—h) —flx—h)|
[Rxr] < 7
< €+e
- 2h
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So we see that Rxr is proportional to 1/h, so as & shrinks, this error grows, unlike
Rt which shrinks quadratically as # does.

Rounding Error in Difference Equations V

@ We see that the total error R is bounded by |R7| + [Rxr|, which expands out to

@
IR < ’Th

+Jil
h

So we see that to minimise the overall error we need to find the value of & = h,,, which
minimises the following expression:
" €
g
Unfortunately, we do not know " or & !
Many techniques exist to get a good estimate of /,,, most of which estimate /"
numerically somehow. These are complex and not discussed here.

Richardson Extrapolation |

@ The trick is to compute Dy (k) for 2 different values of , and combine the results in
some appropriate manner, as guided by our knowledge of the error behaviour.

In this case we have already established that

fa+h) —f—h)

o0 =f'(x) + by h% + O(h*)

Do(h) =

We now consider using twice the value of A:

f(c+2h) —f(x —2h)

m = f'(x) + b14h* + O(h*)

Do(2h) =
We can subtract these to get:
Dy(2h) — Do(h) = 3bh* + O(K*)

We divide across by 3 to get:

D0<2h) — D() (h)

3 = bR +0(h*)

Richardson Extrapolation Il

The righthand side of this equation is simply Do(%) — f’(x), so we can substitute to get

DU (211) - Do(h>

T2 = Dyl =)+ O(0)

This re-arranges (carefully) to obtain
S'@) = Do(h) + 2BPEY 1 o)

_ 4Du(h)gDo(2h) + O(h4)




Richardson Extrapolation IlI

@ Itis an estimate for f/(x) whose truncation error is O(h*), and so is an
improvement over D, used alone.

@ This technique of using calculations with different & values to get a better estimate
is known as Richardson Extrapolation.

Richardson’s Extrapolation.
Suppose that we have the two approximations Dy (k) and Dy(2h) for f'(x), then an
improved approximation has the form:

f’(x) = w + 0(;,4)

Summary

@ Approximation for numerical differentiation:

Approximation for £/ (x) Error
Forward/backward difference D ,D_  O(h)
Central difference Dy o(h?)
Richardson Extrapolation o(h*)

@ Considering the total error (approximation error + calculation error):

@ o e
IRl < ’T”z + [l

remember that 4 should not be chosen too small.

Solving Differential Equations Numerically

Definition.
The Initial value Problem deals with finding the solution y(x) of

y =f(x,y) with the initial condition y(xy) = yo

@ ltis a 1st order differential equations (D.E.s).

@ Alternative ways of writing y/ = f(x,y) are:

') = flxy)

y
d)id(;) = flxy)

Working Example

@ We shall take the following D.E. as an example:
floy) =y
ory =y (ory(x) = y(x)).
@ This has an infinite number of solutions:
y(x)=C-¢e" vC e R
@ We can single out one solution by supplying an initial condition y(x) = yo.

@ So, in our example, if we say that y(0) = 1, then we find that C = 1 and out

solution is
y=¢'

Working Example

30 1

@® - Initial Condition [

The dashed lines show the many solutions for different values of C. The solid line
shows the solution singled out by the initial condition that y(0) = 1.

The Lipschitz Condition |

We can give a condition that determines when the initial condition is sufficient to
ensure a unique solution, known as the Lipschitz Condition.

Lipschitz Condition:
Fora < x < b, forall —co < y,y* < oo, if there is an L such that

[f(x,y) =f(xy*)| < Lly—y*|

Then the solution to y’ = f(x,) is unique, given an initial condition.

@ L is often referred to as the Lipschitz Constant.

@ A useful estimate for L is to take ‘%‘ <L, forxin (a,b).




The Lipschitz Condition Il

Example.

given our example of y/ = y = f(x,y), then we can see do we get a suitable L.
o _ )
oy a(y)

= |
Sowe shalltry L =1

IfCoy) =fCeoy)| =

y ="

IA

Ly =y

So we see that we satisfy the Lipschitz Condition with a Constant L = 1.

Numerically solving y' = f(x,y)

@ We assume we are trying to find values of y for x ranging over the interval [q, b].

@ We start with the one point where we have the exact answer, namely the initial
condition yp = y(xo).

@ We generate a series of x-points from a = x to b, separated by a small
step-interval A:

Xo=a
Xi = a-+i-h
. b—a
h - N
xy=b

@ we want to compute {y; }, the approximations to {y(x;) }, the true values.

Euler's Method

@ The technique works by using applying f at the current point (x,,y,) to get an
estimate of y’ at that point.

Euler's Method.
This is then used to compute y, . as follows:

Y+t = Yn + R f(Xn, yn)

This technique for solving D.E’s is known as Euler’'s Method.

@ ltis simple, slow and inaccurate, with experimentation showing that the error is
o(h).

Euler's Method

Example.
In our example, we have

Y=y f&y)=y wri=dathwm

At each point after xy, we accumulate an error, because we are using the slope at x, to
estimate y,;1, which assumes that the slope doesn’t change over interval [x,, x,+1].

Truncation Errors |
Definitions.

@ The error introduced at each step is called the Local Truncation Error.

@ The error introduced at any given point, as a result of accumulating all the local
truncation errors up to that point, is called the Global Truncation Error.

Xn+l

In the diagram above, the local truncation error is y(x,41) — Yn+1-

Truncation Errors Il
We can estimate the local truncation error y(x,+1) — ya+1, by assuming the value y, for
x,, is exact as follows: as follows:

Y(nt1) = ¥ +h)

Using Taylor Expansion about x = x,

2
$osn) = (o) ' (xn) + 2 (0)

Assuming y, is exact (y, = y(xn)), 80 ¥’ (xu) = f (xn, yn)

W2
Y(Xnt1) = Yn + hf (Xn, y0) + 7y//(@

Now looking at y, | by definition of the Euler method:
Ynt+1 =Yn+ hf(xn/yn)

We subtract the two results:

h "
Y(41) = Va1 = *7)' (©)




Truncation Errors 1lI

So
y(xn+1) —Ynt1 & 0(h2>

@ We saw that the local truncation error for Euler's Method is O(h?).

@ By integration (accumulation of error when starting from x;), we see that global
erroris O(h).

As a general principle, we find that if the Local Truncation Error is O(h’*!), then the
Global Truncation Error is O(h”).

Introduction

Considering the problem of solving differential equations with one initial condition, we
learnt about:

@ Lipschitz Condition (unicity of the solution)

e finding numerically the solution : Euler method

Today is about how to improve the Euler’s algorithm:
@ Heun’s method

@ and more generally Runge-Kutta’s techniques.

Improved Differentiation Techniques |

We can improve on Euler’s technique to get better estimates for y, ;. The idea is to
use the equation y’ = f(x,y) to estimate the slope at x,.; as well, and then average
these two slopes to get a better result.

k2

N

(e)
Yn+l

0.8k1+k2) Xn Xn+1

Improved Differentiation Techniques Il

@ Using the slope y' (xu, yx) = f(xn,yx) at x, the Euler approximation is:

e )

@ Considering the slope ' (x,+1,Yn+1) =f(Xus1,Yn+1) @t x,41 , We can propose this
new approximation:
Yn+1 = Yn
B e N
() -
@ The trouble is: we dont know y, | in f (because this is what we are looking for!).
(e)

n+l

=~ f(Xns1,Yns1)

@ So instead we use y,/, the Euler’s approximation of y,:

Yn+1 = Yn
B) I )

Improved Differentiation Techniques IlI

So considering the two approximations of % with expressions (A) and (B), we get
a better approximation by averaging (ie. by computing A+B/2):

Yl —yn 1

h 2 (f(xmyn) +f<xn+lr)),(,(21)

Heun’s Method.
The approximation:

Yn+1 ZYn+%' <f(xn/)’n) +f(xn+l/y£ﬁ21)

=+ % . (f(xn/)’n) +f(xn+1r}’n +h 'f(xnr}’n))

is known as Heun’s Method.
It can be shown to have a global truncation error that is O(h?). The cost of this
improvement in error behaviour is that we evaluate f twice on each h-step.

Runge-Kutta Techniques |
@ We can repeat the Heun’s approach by considering the approximations of slopes
in the interval [x,; x,41].

@ This leads to a large class of improved differentiation techniques which evaluate f
many times at each k-step, in order to get better error performance.

@ This class of techniques is referred to collectively as Runge-Kutta techniques, of
which Heun’s Method is the simplest example.

@ The classical Runge-Kutta technique evaluates f four times to get a method with
global truncation error of O(h*).




Runge-Kutta Techniques Il

Runge-Kutta’s technique using 4 approximations.
It is computed using approximations of the slope at x;,, x,+; and also two
approximations at mid interval x,, + %:

Yn+1 — Yn

7 :é(fl+2'f2+2'f3+f4)

with
h :f(xn/yn)
R=f (Xn + 4+ %fl)
A= (5+ 5w+ 5p)

Ja=f (Cnt1, 90+ 1-f3)

It can be shown that the global truncation error is O(h*).




