
A Context Information Service using Ontology-Based
Queries

Ruaidhri Power, Dave Lewis, Declan O’Sullivan, Owen Conlan, Vincent Wade
Knowledge and Data Engineering Group

Department of Computer Science, Trinity College Dublin
Dublin 2, Ireland
+353 1 608 2158

{ Ruaidhri.Power, Dave.Lewis, Declan.OSullivan, Owen.Conlan,
Vincent.Wade} @cs.tcd.ie

ABSTRACT
Ubiquitous computing environments have the potential to
provide rich sources of information about a user and their
surroundings. However, the nature of context information
means that it must be gathered in an ad-hoc and
distributed manner with many devices and sensors storing
potentially relevant data. In an ad-hoc ubiquitous
computing environment, retrieval of context information
cannot rely on a fixed meta-data schema. This works
shows how an ontology driven context service architecture
may perform distributed open schema queries over
heterogeneous context sources in a potentially
decentralised manner.

Keywords
Ontologies, context information service

INTRODUCTION
The vision of ubiquitous computing is that computers will
be integrated seamlessly into our daily lives. We already
make much use of computers, however we can gain the
most value from them when they are no longer things we
interact with explicitly, rather are blended into the
background and assist us when needed [1]. In order to do
this, ubiquitous computing environments must be able to
collect a wide range of information and use this
information to work with the user in order to achieve the
user's goals. This information is termed context
information, and its collection and management is termed
context management.

Our context management architecture uses an ontology-
driven approach to bridge the heterogeneity of context
information sources in ubiquitous computing systems.
Ontologies are a technique for formally representing
domain knowledge in an application independent way.
Ontologies feature heavily in the Semantic Web initiative
[7], which aims to provide ways of defining information so

that it can be understood and processed by computers more
easily. Examples of ontology languages are W3C's OWL ,
the Web ontology language and DARPA's DAML+OIL.
The Semantic Web initiative has encouraged research into
how ontology-based queries can be resolved in a
distributed peer-to-peer manner between agents holding
information with heterogeneous RDF-based semantics that
are distributed over the web [9, 10, 11], though to date
these have not been applied to context management. Our
approach is driven by the dynamic ad hoc nature of
ubiquitous computing environments and the resulting
heterogeneity and lack of a priori schema knowledge for
the context information that may be available to a context-
aware application at any one time.

This paper describes a context information service that
serves ontology-based context queries. It discusses the
basic architecture, which is currently being prototyped,
and the various issues of query analysis, decomposition
and routing that effect the feasibility and scaleabilty of the
proposed service.

CONTEXT IN UBIQUITOUS COMPUTING
ENVIRONMENTS
One of the realities that must be faced in context
management is that there will not be a globally standard
model for representing context information. Many current
approaches [8] to context management advocate
predefined models for context information, which
applications interact with using middleware platforms for
querying and manipulation. However, context data will
come in many different forms, from many different
sources. Any attempt to formally structure all potential
context information would be difficult at best in a
controlled situation, within one organization for example,
but almost impossible in roaming scenarios where
applications encounter an array of different context
information sources implemented in different technologies
from different vendors.

Context information for ubiquitous computing
environments has particular characteristics, which provide
challenges in undertaking context management. Firstly,
the information that can compose the context of these

LEAVE BLANK THE LAST 2.5 cm (1”) OF THE LEFT
COLUMN ON THE FIRST PAGE FOR THE

COPYRIGHT NOTICE.

environments is very broad, and can come from a variety
of heterogeneous sources. Considering a ubiquitous,
elearning scenario, a user's name, age, address, native
language, current location and learning style could
compose part of his context. Similarly, the people sharing
a room with him or working in his office could be
considered to be part of this context information, as could
the current temperature and lighting conditions. Any
system for context management must therefore be able to
cope with information from a large variety of
heterogeneous sources that will provide this information.
Because almost any information could be considered
context information from the point of view of some entity
in a ubiquitous computing environment, there is very little
information that we can discard as being irrelevant.
Perhaps the most important characteristic of context
information is that we cannot be entirely certain what
information will be relevant in advance of constructing a
system to manage this information. A useful solution to the
problem of context management will therefore have a low
impact on existing infrastructure, and cope well with
heterogeneity. Such a system should also cope well with
new forms of context information.

The second challenging characteristic of context
information in ubiquitous computing environments arises
from the fact that the environment will consist of a highly
dynamic collection of users and computing devices. These
devices must seamlessly integrate with whatever
computing environment they are presented with, so that
their users can make most efficient use of them. In this
environment a roaming user or device is the norm, rather
than the exception. These environments frequently make
use of temporary, ad hoc connections between devices to
accomplish tasks. Therefore, context information systems
must be able to dynamically discover and connect to
information sources in order to extract data and
manipulate it into relevant context knowledge. This
frequently changing environment can lead to uncertainty:
where gathered information can quickly become stale;
services and devices can also suddenly become available or
unavailable due to changes in connectivity.

Finally, context information should be expressed in terms
useful to the individual user and their application. This fits
with the likelihood that the sheer volume of data that will
compose context will make a global view of all context
information impossible, so that mechanisms are required
for interoperability between heterogeneous context sources.
This is particularly the case for roaming applications,
where context information must be supplied and received
for a roaming user or application to avail of foreign
services that are encountered. Privacy and security
concerns will also prompt people to manage their own
context information. A characteristic of a good solution
will be that this information will be merged into each

user's own view of the world, and redefined in terms that
the user can understand.

CONTEXT INFORMATION SERVICE ARCHITECTURE
One of the driving forces behind the design for a context
system proposed in this paper is to minimize the effort
required to make a piece of software context aware. These
software components will come in many forms, from the e-
mail clients and office tools that are prevalent today, to
tiny embedded operating systems with minimal processing
power, to massive mainframe or cluster computers running
large databases. For the purpose of this paper, any of these
software components are referred to as applications. While
this term may bring to mind today's software which is not
context aware, throughout this paper it refers to any
software component which wishes to make use of context
information. These applications need to have easy access
to more information about the environment in which they
are operating, rather than being limited to the explicit
input or information from hardwired data sources provided
to current applications.

In our architecture, a ‘context service’ is the service
provided to applications to make context information
available to them. One role of a context service is to take
queries from a context-aware client and to resolve those
queries by acting as a mediator between the client and
other information sources that the service has access to. As
well as acting as consumers of context information (by
executing queries), applications can also act as producers
of context information by providing their context service
with a description of the information they have available.
If an application produces context information, a context
service can advertise that information available to it to
other context services.

An application can be designed as context-aware by
defining an ontology that describes the domain of context
information that the application is interested in querying,
and also that it wants to make available to other
applications. This ontology may be written by the
application developer from scratch, or it may be possible to
reuse an existing ontology such as CoBrA-ONT [20]. This
ontology is registered with the context service as belonging
to the application, and is stored in an ontology repository
accessible to the context information service. The
application developer has the option of providing
mappings between concepts in the application’s ontology
and equivalent concepts in other ontologies used within
the system. This is however not a requirement, as this step
may be done at a later stage. If mappings are provided,
they will be stored in an ontology mapping repository, also
accessible to the context information service.

The internal architecture of a network implementing the
context service is shown in Figure 1. Starting from the
bottom of the diagram, applications present queries to the
context service. Each of these query messages contains the

content of the query Q and a reference to the ontology O to
which the query refers. This query is taken by the context
service which examines the query and ontology used. The
context service is implemented by a set of peer context
service nodes (CSN). Combining these with mappings
from the ontology mapping repository, the CSN receiving
the query from an application can then compose a new
query that can be routed to other CSNs, which will attempt
to return a corresponding result.

Application
seeking context

Context
info

source

CSN

CSN CSN

CSN

CSN

Context
info

source

Context
Service
Network

Reg(O3)

Reg(O1,O2) Query(Q1,O1) Resp(R)

Query(Q1,O3) Resp(O3)

Ontology
mapping

respository
Map(O1,O3)

MapReq(O1)

Figure 1: Context Service Network Architecture

Any results that are returned are translated back from the
ontology of the remote CSN into the application's ontology
before they are returned as a query response, R.

CONTEXT QUERYING
The context service offers a query interface, which will
accept a query in a supported query language, such as
SQL, XQuery , RDQL . The terms involved in the query
must be a subset of those in the ontologies understood by
the context service, for the service to be able to understand
the query. Because each context-aware application has
provided its own ontology to the context service, the local
CSN is guaranteed at a minimum to be able to understand
queries posed by its applications.

Associated with each CSN there is a repository of
ontologies that describe the domains of knowledge that
this node currently holds. These ontologies are provided to
the CSN by the applications for which it acts as a source of
context information, and can also be discovered through
communication with other CSNs. The CSN must take each
of these queries and communicate with other CSNs to
resolve them. It does this by sending the query to some
number of CSNs, after translating the query into terms that
they will understand.

We consider an example scenario of a college’s lecture
theatre equipped as a ubiquitous computing environment.
Software in the theatre has been developed for use in any

meeting scenario and provides in its ontology the terms
‘meeting’ and ‘document’ . When the software was
installed, the college provided mappings to the context
service to say that these terms were equivalent to the terms
‘ lecture’ and ‘notes’ (stored on a college context server)
for their purposes. The application's query to its local CSN
is phrased in terms of ‘meeting’ and ‘document’ , allowing
the software to remain unchanged when deployed in this
scenario, but still communicate with a college CSN about
which nothing was known when the application was
designed. The lecture theatre CSN transforms a query for
the lecture document, say, and passes it on to the college
CSN which then returns the notes in question.

These CSNs will be potentially quite large in number and
can be distributed around the network in whatever way
seems most appropriate, most likely based on how devices
are managed. For instance, if all applications on a PDA
are provided by the same vendor, they may be happy to use
a single CSN on the PDA. They are not limited to this
configuration though, as for example some devices may
not have the processing power to host a CSN and will rely
on a remote service that will provide context to them over
a network connection.

Once the client application’s query has been received and
understood, the first CSN must decide to where these
queries should be routed. In the scenario presented above,
the CSN knew of one location where it could find
information to answer its query. However, there will be
many situations in which the set of CSN which will be able
to answer the query is not known a priori.

The CSN can decide where to send the queries based on a
routing algorithm. In the simplest case, this is just to route
the query to one other node that will understand the query
(has equivalent terms in its local ontologies) and is
therefore able to return a meaningful reply. This query can
be understood by any other CSN that have equivalent
terms in their own local ontologies. Because the lecture
theatre's CSN knows that the college context service has
these equivalent terms, it translates the original query into
the new terms and forwards it on. When it receives a reply
to this query, it can then translate it back into the original
terminology and pass it on to the application.

Alternatively, this query could be multicast or sent over a
content-based network to a targeted set of CSNs that will
be able to answer the query. These approaches have
different advantages: queries that are only sent to a small
number of nodes are efficient in terms of bandwidth and
processing costs in routing of queries, but queries sent to a
large number of nodes may have the greatest chance of
being answered satisfactorily. The trade-off is highly
dependent on the accuracy of the current routing tables
possessed by a CSN. A problem arises, for instance, when
a large number of CSNs can understand a query.
Obviously they should not all be sent the query (as a

broadcast), as this would be wasteful of bandwidth. The
CSNs must decide how to route these queries to achieve
the optimal effect. Queries posed by applications should be
routed to those CSNs that can answer them, but should not
be spread any further than is necessary.

Research into content-based networking (CBN) [5][6] has
produced an enhancement to traditional publish/subscribe
mechanisms that may prove useful in the design of a
context system. In a content-based network, rather than
messages being given an explicit destination address, they
are routed to a set of hosts based on predicates applied to
their content. Hosts are assigned `addresses' in the content-
based network based on a function which describes the
type of messages they are interested in. Content-based
routers can then decide which of their neighbouring
routers to send the message to, based on a routing table
composed from these predicates.

Chan et. al. describe in [19] a method of content-based
routing that is specifically tailored to XML documents.
Consideration is again given to the space and efficiency
characteristics of such a solution. Here, XPath is used as
the XML pattern specification language. XML seems an
appropriate choice as an information interchange markup,
and XPath an effective way of querying those XML
documents and specifying patterns of interest.

In [12] we discuss a CBN-based approach to an ontology-
based query service that would be well suited to
monitoring changes in context information over time. The
proposal uses persistent ontology-based queries for
defining the information being sought and shared, so that
the range of supported application domains automatically
reflects the ever-expanding range of domain ontologies
that will be published for use in the Semantic Web.
Internally the service uses Content-Based Networking
techniques to efficiently deliver the meta-data of published
information to interested parties, as well as to support the
autonomic management and knowledge management
needs of the architecture itself. Role based access control
can be applied to advertisements and subscriptions in
CBNs [17], though we favour a more flexible community-
based approach [18] to defining access control policies to
match the less structured and more dynamic organisational
environments that will characterize ubiquitous computing.

Research into CBNs has shown promising scalability in
the number of end systems involved (global CBN are
already operated by companies such a Tibco) and in the
churn of currently connected end systems [25] – an
important feature in ubiquitous computing environments
with mobile context querying clients.

DISCUSSION
We see a number of advantages to the approach outlined in
this paper. Firstly, applications can be designed
independently of the environment in which they are finally

run, because of the encapsulation of their domain
knowledge in an ontology. This is the minimum amount of
work that an application programmer will have to do to
enable his application to be context-aware. In addition,
integration into a context system is done through
mappings between equivalent terms. These mappings can
be set up and also changed at a later stage, all
independently of the original application programmer.
These mappings will either have to be provided by the
application programmer, or (we believe more likely) they
will be provided by the people integrating the software in
the environment. A further benefit is that mappings
between equivalent terms can be stored and reused in
future. In the simple example above, the equivalence
between the lecture theatre's term ‘meeting’ and the
college's term ‘ lecture’ can be stored and deployed
automatically in future, saving effort. Finally, a service
that uses content-based networking for the routing of
queries is potentially much more flexible and efficient than
ones that use centralized architectures, or unfocussed
multicasting of queries

This approach however, leaves many open question related
to the limits of semantic based reasoning in such a content
based network. Currently standardized ontologies are
based on description logic, which is soon to be
complemented with the Semantic Web Rule Language
(SWRL) [14]. Though the latter will obviously aid in the
representation of queries as ontologies it is far from clear
that all form of context queries can be addressed with these
ontological logics. Though a combination of OWL and
SWRL may go some way to being able to reason about the
many classes of queries (and then only with the support of
ontologies for temporal logic), other logics suitable for
feeding optimization algorithms may be also be needed.
This in turn will require an extensible, modular structure
for reasoners embedded in network nodes, similar to
existing semantic application toolkits [15], but which can
be scalably managed. For example within the semantic
query CBN we envisage nodes dynamically subscribing
with queries for logic problems which they encounter in
resolving user queries in order to locate suitable
downloadable code to conduct the required reasoning.
Equally, ontologies capturing mappings between concepts
in separate domain ontologies that appear in user queries
can also be sought and obtained by semantic CBN nodes
from ontology repositories using the CBN service itself.

A CBN-based context information service raises several
further issues that require investigation in order to assess
usability and scalability of this architecture for deployment
on the Internet. We must perform a more detailed
assessment of the performance possible with existing
ontology-based matching algorithms, though in the long
term we expect that optimized software and hardware
support for OWL will emerge driven by its potential

popularity, as has already happened for XML processing.
One possible optimization that will reduce the reasoning
load on semantic routing nodes will be to decompose
context queries based on known routes prior to submitting
them as subscription queries to the service [16].

RELATED WORK
As part of its work on context management, the Aura
Project[21] at Carnegie Mellon University provides
contextual services built on top of a contextual service
framework. These services provide applications with
properties of both physical entities and available resources.
A fixed schema which is used to represent contextual
information in this system. This schema describes classes
of entities which are used within the system: devices,
networks, people and areas. Also represented are
relationships between entities. Aura provides a single
interface to all services to provide a consistent mechanism
for client access and eliminate redundant code. However,
any context-aware applications that wish to interoperate
with Aura must be written so that their queries conform to
the Aura information model (schema). This raises the
barrier of entry for the applications and requires universal
agreement on the Aura schema for universal adoption.

The Semantic Space [22] infrastructure uses the Semantic
Web standards RDF and OWL to define context
ontologies. These technologies are used for representing
knowledge bases, for querying and for inference. Semantic
Space uses ontologies to let web agents exchange and
interpret information based on a common vocabulary. The
context model is composed of an upper-level context
ontology, which provides basic concepts designed to be
common to all context-aware applications. This ontology
can then be extended with further ontologies that cater for
each application's specific requirements. This approach
however requires agreement on the upper-level context
ontology by all applications wishing to make use of
Semantic Space. It is unclear how applications making use
of extended context ontologies can interoperate with each
other. This is because they introduce terms which are not
understood by all context-aware applications, as they are
not part of the upper-level context ontology. In contrast,
the work presented in this paper does not rely on a fixed
upper-level schema which must be agreed on by all
applications, but rather faces the reality that such a schema
will not exist. Hence, mechanisms are explored for
enabling interoperability through mappings between
independently-developed schemas.

The Nexus[23] project manages context using a "world
model" service based on the "Augmented World Model"
(AWM). This model describes real and virtual objects
relevant to location-based applications. Nexus aims to
support all kinds of context-aware applications by
providing a shared global context schema. As part of this
project, the researchers discovered that they had to adapt

their context schema as time progressed, incorporating
additional requirements from other projects which had not
previously been foreseen. These changes to the underlying
schema could invalidate existing applications which relied
on the old model, requiring a considerable amount of effort
to bring them up to date. In contrast, our work can cope
with changes in information models due to the use of
mappings between ontologies, which can be updated as
models change, without requiring the application to be re-
engineered.

The PACE[24] project provides a set of generic modelling
constructs, allowing context modelling using well-defined
programming abstractions. These abstractions allow
mechanisms such as event notification and branching
(context-dependent choice from a number of alternatives).
However, this work does not tackle problems related to
multiple independently-developed models of context
information which need to work together in a context
aware environment.

FURTHER WORK
Experimental work in progress focuses on implementing
the architecture outlined in this paper, and applying it to a
student project meeting scenario. Our initial
implementation uses OWL as the ontology language,
XQuery for the query language and Content-based
networking algorithms for the query routing mechanism.
However, this work will characterize desirable features in
each technology, rather than prescribe particular
technology selections, in order that they can be more easily
be identified as new technologies arise. An initial
experiment to verify the approach presented in this paper
is underway, and is due for completion in September 2004.

Another strand of work is addressing the fact that
responses to context queries may produce a definite
answer, or they may return that the answer to the question
is unknown. This will require application programmers to
be aware that context-aware applications may operate in
an environment where not enough information is available
to answer their queries, and adjust their behaviour
accordingly. A further area of study is the decomposition
of complex queries into parts answered by different
information sources. The field of distributed databases
provides insight into how queries across distributed
information sources as a plan of execution [2], possibly
structured by some cost factor [3] or based on partially pre-
computed plans [4]. These techniques need to be adapted
to the open schema scenario addressed by the context
setting.

In general, further experimentation will be required to
evaluate the scalability and performance of such
knowledge based networking against variations in
numbers of information sources, sinks, advertisements,
subscriptions and client join/leaves. More challenging is
the need to assess scalability against growth in the number

and scope of ontology domains, ontology encoded logics
and ontology mappings. In addition, the potential
sensitivity of context information means access control and
its use in enforcing privacy policies must be
comprehensively addressed.

ACKNOWLEDGMENTS
This work was partially funded by the Irish Higher
Education Authority under the M-Zones programme.

REFERENCES
1. Weiser M., “Some computer science problems in

ubiquitous computing,” Communications of the ACM,
July 1993.

2. A. Ip, W. Rahayu, and S. Singh, “Query optimization
in a non-uniform bandwidth distributed database
system,” in Proc. of the 4th International Conference
on High-Performance Computing in the Asia-Pacific
Region, vol. 2, (Beijing, China), pp. 818--823, May
2000.

3. L. Mackert and G. Lohman, “R* optimizer validation
and performance evaluation for distributed queries,” in
Proceedings of the Conference on Very Large
Databases (VLDB), Kyoto, Japan, 1988.

4. Z. Nie and S. Kambhampati, “Joint optimization of cost
and coverage of query plans in data integration,” in
Proc of the 10th international conference on
Information and knowledge management, (Atlanta,
Georgia, USA), pp. 223-230, ACM Press, 2001.

5. A. Carzaniga and A. L. Wolf, “Content-based
networking: A new communication infrastructure.”
NSF Workshop on an Infrastructure for Mobile and
Wireless Systems, 2001

6. A. Carzaniga and A. L. Wolf, “Forwarding in a
content-based network,” in Proc of ACM SIGCOMM
2003, (Karlsruhe, Germany), pp. 163--174, Aug 2003.

7. Berners-Lee T., Hendler, J. Lassila, O. “The semantic
web.” Scientific American, May 2001.

8. Mitchell K., A Survey of Context-Awarenes Available:
http://www.comp.lancs.ac.uk/~km/papers/ContextAwar
enessSurvey.pdf [2002, Nov. 27]

9. Cai, M., Frank, M., “RDFPeers: A Scaleable
Distributed RDF Repository based on a Structured
Peer-to-Peer Network, in Proc. of World Wide Web
Conference 2004, 17-22 May 2004, New York, NY,
USA

10. Stuckenschmidt, H., Vdovjak, R., Houben, G.J.,
Broekstra, J., “ Index Structures and Algorithms for
Querying Distributed RDF Repositories” , in Proc. of
WWW Conf. 2004, 17-22 May 2004, New York, NY,
USA

11. Tempich, C., Staab, S., Wranik, A., “REMINDIN’ :
Semantic Query Routing in Peer-to-Peer Networks

Based on Social Metaphors” , in Proc. of WWW Conf
2004, 17-22 May 2004, New York, NY, USA

12. Lewis, D., Feeney, K., Tiropanis, T., Courtenage, S.,
“An Active, Ontology-driven Network Service for
Internet Collaboration” , in Proc of Semantic Web for
Web Communities workshop, 2004, Valencia, Spain

13. Belokosztolszki, A., Eyers, D.M., Pietzuch, P.R.,
Bacon, J., Moody, K,. “Role-based access control for
publish/subscribe middleware architectures” . in
International Workshop on Distributed Event-Based
Systems (DEBS03), ACM SIGMOD, San Diego, CA,
USA, 2003. ACM.

14. Horricks, I., Patel-Schneider, P., Boley, H., Tabet, S.,
Grosof, B., Dean, M. (2003), “SWRL: A Semantic Web
Rule Language Combining OWL and RuleML” ,
version 0.5, 19th November 2003,

15. Oberle, D., Staab, S., Volz, R., “An Application Server
for the Semantic Web” , in Proc of WWW’04, May 17-
22, 2004, New York, USA, pp. 220-221.

16. Courtenage, S. “Specifying and Detecting Composite
Events” , In 1st International Workshop on Discrete
Event-Based Systems, Vienna, 2002

17. Belokosztolszki, A., Eyers, D.M., Pietzuch, P.R.,
Bacon, J., Moody, K,. “Role-based access control for
publish/subscribe middleware architectures” . In
International Workshop on Distributed Event-Based
Systems (DEBS03), ACM SIGMOD, San Diego, CA,
USA, 2003. ACM.

18. Feeney, K., Lewis, D., Wade, V. “Policy-based
Management for Internet Communities” , in proc of 5th
IEEE International Workshop on Policies and
Distributed Systems and Networks, 2004, pp 23-34

19. C.-Y. Chan, W. Fan, P. Felber, M. Garofalakis, and R.
Rastogi, “Tree Pattern Aggregation for Scalable XML
Data Dissemination.” Bell Labs Technical
Memorandum, February 2002

20. H. Chen, T. Finin, and A. Joshi, “An ontology for
context-aware pervasive computing environments,”
Special Issue on Ontologies for Distributed Systems,
Knowledge Engineering Review, 2003

21. G. Judd, P. Steenkiste "Providing Contextual
Information to Ubiquitous Computing Applications",
CMU Technical Report CMU-CS-02-154, July 2002

22. X. Wang, J. S. Dong, C. Chin, S. Hettiarachchi, D.
Zhang "Semantic Space: An Infrastructure for Smart
Spaces", IEEE Pervasive Computing, July-September
2004 (Vol. 3, No. 3), pp. 32-39

23. F. Dürr, N. Hönle, D. Nicklas, C. Becker, K.
Rothermel, "Nexus - A Platform for Context-aware
Applications", to appear in Proc GI-Fachgespräch
"Ortsbezogene Dienste", Hagen, Germany

24. K. Henricksen, J. Indulska, "A Software Engineering
Framework for Context-Aware Pervasive Computing",
in Proc. of the 2nd IEEE International Conf. on
Pervasive, Computing and Communications; Orlando,
Florida, March 2004, IEEE Com. Soc., pp. 77-86

25. Chand, R., Felber, P.A., “A Scaleable Protocol for
Content-Based Routing in Overlay Networks, In IEEE
International Symposium on Network Computing and
Applications (NCA'03), Cambridge, MA, April 2003.

