
Resolving Queries in a Heterogeneous Context Rich
Environment

Ruaidhrí Power, Declan O’Sullivan, Owen Conlan,

David Lewis, Vincent Wade
E-mail: Firstname.Surname@cs.tcd.ie
Knowledge and Data Engineering Group,

Department of Computer Science,
Trinity College Dublin,

Ireland.

1 Introduction
The vision of ubiquitous computing[1] is that of many computing devices interacting
in a natural way with humans in the real world. The software running on these devices
is currently limited in how it can provide for users’ needs by the amount and quality
of the information it can retrieve about the environment in which it is operating. This
context information must be provided in a form each software component can
understand, which is a difficult problem given the wide array of heterogeneous
information sources involved in any ubiquitous computing scenario such as
computers, embedded sensors and information appliances.

One of the driving forces behind the design for a context system proposed in this
paper is to minimise the effort required to make a piece of software context aware.
These software components will come in many forms, from the e-mail clients and
office tools that are prevalent today, to tiny embedded operating systems with
minimal processing power, to massive mainframe or cluster computers running large
databases. For the purpose of this paper, any of these software components are
referred to as applications. While this term may bring to mind today's software which
is not context aware, throughout this paper it refers to any software component which
wishes to make use of context information. These applications need to have easy
access to more information about the environment in which they are operating, rather
than being limited to the explicit input or information from hardwired data sources
provided to current applications.

In this architecture the ‘context service’ is the service provided to applications to
make context information available to them. One role of a context service is to take
queries from a context-aware client and to resolve those queries by acting as a
mediator between the client and other information sources that the service has access
to. As well as acting as consumers of context information (by executing queries),
applications can also act as producers of context information by providing their
context service with a description of the information they have available. If an
application produces context information, a context service can advertise that
information available to it to other context services.

This design uses an ontology-driven approach to bridge the heterogeneity of context
information sources in ubiquitous computing systems. Ontologies are a technique for
formally representing domain knowledge in an application independent way.
Ontologies feature heavily in the Semantic Web initiative[2], which aims to provide
ways of defining information so that it can be understood and processed by computers

more easily. Examples of ontology languages are W3C's OWL1, the Web ontology
language and DARPA's DAML2.

In summary, this paper proposes an ontology-driven context system for heterogeneous
context-rich environments that aims to minimise the effort required to make an
application context-aware.

The paper is laid out as follows: Section 2 describes the state of the art with regard to
integration of heterogeneous context information. Section 3 describes the example
context scenario covered in this paper, and section 4 describes the process of
designing a context-aware application. Section 5 describes how a context-aware
device would operate, describing the interactions between applications and the
context service. Section 6 describes the internal structure of a context service, which
consists of query interface and analysis (section 6.1), query decomposition (section
6.2) and query routing (section 6.3). Section 7 describes our experimental work to
date, and section 8 concludes the paper.

An initial experiment to verify the approach presented in this paper is underway, and
is due for completion in September 2004. The full version of this paper will provide
the results of this experiment.

2 Comparison with Existing Context Approaches
Existing context-aware computing research projects take a number of approaches to
resolving queries in heterogeneous environments. Early context-aware applications
such as CyberGuide[3] were individually tailored at design time to the scenario they
were to be deployed into, with hard-coded data sources and formats for their context
information. This is quite an inflexible approach in the long term, as applications must
be redesigned when formats or locations of context information change.

Other approaches such as SIMS[4] use ontological models to integrate heterogeneous
information, but frequently require that applications commit to communicating solely
in terms of a global ontology. This ontology must be agreed by all the participants, or
else they must define at design time a set of mappings from their local ontology to
that global ontology. This causes difficulty when one wants to reuse the applications
in a different scenario, as they must be redesigned to account for different sources of
information.

Ontology-based information integration projects such as KRAFT[5] and
OBSERVER[6] aim to integrate heterogeneous information through the use of
multiple ontologies. We aim to extend work in this area to the field of ubiquitous
computing, and particularly context information.

3 Example Scenario
In this paper the example taken is that of software controlling a college lecture
theatre. The theatre administrators want to use the software to obtain a copy of the
notes for each lecture and automatically display them on an attached projector without

1http://www.w3.org/TR/owl-guide/
2http://www.daml.org/

the lecturer having to intervene to select the notes she wants displayed.

However, the software was actually developed independently of the college and was
originally designed to handle business meetings of companies. The mismatch between
the two domains must be resolved for the software to be able to operate successfully
and avail of context information available in the college environment. A simple
example of a mismatch detailed in this scenario is the mismatch between the theatre
software’s ‘meeting’ and ‘document’ concepts and the college context server’s
‘lecture’ and ‘notes’ concepts.

In this situation, the integration of the software into the college environment is being
performed by people other than those who wrote the software. This will be a frequent
occurrence in a ubiquitous computing scenario where the large number of users,
devices and applications will prohibit any solution that relies on a developer being
involved at every deployment of a context-aware application. Instead, the approach
described in this paper allows applications to be integrated into a context system by
another party. In our simple mismatch example this person can perform the
integration by nominating terms that are functionally equivalent for the purposes of
this application. In this example, the terms ‘meeting’ and ‘lecture’ are equivalent, as
are ‘document’ and ‘notes’.

Once this integration has been completed, the lecture theatre software can query the
college context service for the lecture notes, and display them on the projector.

4 Design and Integration of Context-aware Applications
In a ubiquitous computing environment, a controlling factor over the deployment of
context-aware applications will be the effort required on the part of the application
developer to make use of this context information. Consequently making applications
context-aware should be made as simple as possible, making use of good software
engineering practices such as code reuse and automating repetitive tasks wherever
possible.

In our current architecture, detailed in Section 5, an application can be designed as
context-aware by defining an ontology that describes the domain of context
information that the application is interested in querying, and also that it wants to
make available to other applications. This ontology may be written from scratch, or it
may be possible to reuse an existing ontology such as CoBrA-ONT[7]. This ontology
is registered with the context service as belonging to the application, and is stored in
the ontology repository.

The application developer has the option of providing mappings between concepts in
the application’s ontology and equivalent concepts in other ontologies used within the
system. This is however not a requirement, as this step may be done at a later stage. If
mappings are provided, they will be stored in the ontology mapping repository.

The greater the number of equivalence mappings provided here the more context
information the context service will be able to query. If the application's ontology has
been used by other applications, there may already exist mappings that can be
accessed by the context service and reused. Otherwise, these mappings will have to be
provided by a human, either by hand or through the use of automated tools such as

PROMPT[8] that will help to simplify the process. In the example scenario, the
person integrating the lecture theatre software would record the mapping between
notes and documents.

As well as providing mappings to concepts within a single domain, mappings can be
provided to multiple domains, allowing any applications using those concepts to work
across domain boundaries. Sharing and reuse of mappings is the ideal way for
interoperability to be achieved across these rich sources of context information. If the
application developer chooses not to provide mappings of their own, these can be
provided when the software is integrated into the context system.

A key benefit of this approach is that it allows us to make existing applications
context-aware by simply modelling the domain of context information that they are
interested in as an ontology, reformulating queries to external data sources in terms of
that ontology, and directing those queries to their context service instead of those data
sources. This will give these applications access to their existing data sources, but also
potentially new information that their context service can avail of through
communication with other context services in the environment. Treating all data
sources as context sources has advantages because the applications don't need to
know the precise details needed to access a heterogeneous set of sources, but rather
they are insulated from specific terms, formats and protocols by the abstraction of a
context service.

5 Architecture of a Context-aware device
The internal architecture of a context-aware device is shown in Figure 1. Each box
within the device represents an autonomous piece of software, with their interactions
described by arrows. Starting from the bottom of the diagram, applications present
queries to the context service. Each of these query messages contains the content of
the query Q, a reference to the query language used L, and a reference to the ontology
O that the query refers to. This query is taken by the context service which examines
the query and ontology used. Combining these with mappings from the ontology
mapping repository, the context service can then compose a new query that can be
routed to other context services, which will attempt to return a corresponding result.

Any results that are returned are translated back from the ontology of the remote
context service into the application's ontology before they are returned as a query
response, R.

Figure 1: Context-Aware Device Architecture

6 Anatomy of a Context service
The internal structure of a context service is shown in Figure 2. The first major
functional section of a context service are its query interface/query analysis modules.
The query analysis module also handles query decomposition. The decomposed
queries are then passed to the query routing module. We discuss these modules in the
following subsections.

Figure 2: Context Service Internal Design

6.1 Query Interface and Query Analysis
A context service offers a query interface, which will accept a query in a supported
query language, such as SQL, XQuery3, RDQL4. The terms involved in the query
must be a subset of those in the ontologies understood by the context service, for the
service to be able to understand the query. Because each context-aware application
has provided its own ontology to the context service, the local context service is
guaranteed at a minimum to be able to understand queries posed by its applications.

Associated with each context service there is a repository of ontologies that describe
the domains of knowledge that this service has. These ontologies are provided to the
service by the applications for which it acts as a source of context information, and
can also be discovered through communication with other context services. The
context service must take each of these queries and communicate with other context
services to resolve them. It does this by sending the query to some number of context
services, after translating the query into terms that they will understand.

Considering the example scenario, the lecture theatre software has been developed for
use in any meeting scenario and provides in its ontology the terms ‘meeting’ and
‘document’. When the software was installed, the college provided mappings to the
context service to say that these terms were equivalent to the terms ‘lecture’ and
‘notes’ (stored on a college context server) for their purposes. The application's query
to its local context service is phrased in terms of ‘meeting’ and ‘document’, allowing
the software to remain unchanged when deployed in this scenario, but still
communicate with a college context service about which nothing was known when
the application was designed. The lecture theatre context service transforms the query
for the lecture notes and passes it on to the college context service which then returns
the notes in question.

These context services will be potentially quite large in number and can be distributed
around the network in whatever way seems most appropriate, most likely based on
how devices are managed. For instance, if all applications on a PDA are provided by
the same vendor, they may be happy to use a single context service on the PDA. They
are not limited to this configuration though, as for example some devices may not
have the processing power to host a context service and will rely on a remote service
that will provide context to them over a network connection.

6.2 Query decomposition
The field of distributed databases provides insight into how queries across distributed
information sources can be decomposed and optimized. This research has addressed
the process of taking a query that references data across multiple databases, and
breaking down that query into a set of sub-operations that can be distributed to the
individual databases for processing. The order and location of these sub-operations
form a plan of execution[9]. Plans can be formulated before queries take place, or can
be composed on the fly and therefore tailored for the query at hand at the expense of
some computation.

When evaluating potential plans and breaking them down into sub-plans for the

3http://www.w3.org/XML/Query
4http://www.w3.org/Submission/RDQL/

resolution of a query, a cost factor must be associated with each (sub-) element of the
plan. The classic approach is as described in [10]. These cost factors will include
computational cost, communication cost, storage cost, etc. Ideally, inefficient plans
will be eliminated as early as possible to avoid potential overall plans being
investigated even though they are based on inefficient sub-plans.

One approach to query optimization is to break down a stored query into its sub-parts
and precompute the join order, join methods and access paths before the query is
executed. This approach can save time, but also produces sub-optimal plans for
particular queries, for example when the locality of different pieces of data isn’t taken
into account. Two-step query optimization is described in [11].

Distributed databases do however make use of a global ontology that describes the
structure of the database, which means that these approaches need to be modified to
route context queries in a heterogeneous environment.

6.3 Query routing
Once the client application’s query has been received and understood, the context
service must decide where these queries should be routed to. In the scenario presented
above, the context service knew of one location where it could find information to
answer its query. However, there will be many situations in which the set of context
services which will be able to answer the query is not known.

The context service can decide where to send the queries based on a routing
algorithm. In the simplest case, this is just to route the query to one other service that
will understand the query (has equivalent terms in its local ontologies) and is
therefore able to return a meaningful reply. This query can be understood by any other
context services that have equivalent terms in their own local ontologies. Because the
lecture theatre's context service knows that the college context service has these
equivalent terms, it translates the original query into the new terms and forwards it on.
When it receives a reply to this query, it can then translate it back into the original
terminology and pass it on to the application.

Alternatively, this query could be multicast or sent over a content-based network to a
number of services that will be able to answer the query. These approaches have
different advantages: queries that are only sent to a small number of services are
efficient in terms of bandwidth and processing costs in routing of queries, but queries
sent to a large number of services will have the greatest chance of being answered
satisfactorily.

A problem arises however when a large number of context services can understand a
query. Obviously they should not all be sent the query (as a broadcast), as this would
be wasteful of bandwidth. The context service must decide how to route these queries
to achieve the optimal effect. The most simple methods for query routing (unicast and
broadcast querying) will not scale with the explosion in the numbers of devices
heralded by ubiquitous computing. Queries posed by applications should be routed to
those services that can answer them, but should not be spread any further than is
necessary.

Research in content-based networking has produced an enhancement to traditional

publish/subscribe mechanisms that may prove useful in the design of a context
system. In a content-based network, rather than messages being given an explicit
destination address, they are routed to a set of hosts based on predicates applied to
their content. Hosts are assigned `addresses' in the content-based network based on a
function which describes the type of messages they are interested in. Content-based
routers can then decide which of their neighbouring routers to send the message to,
based on a routing table composed from these predicates. For the purposes of a
context system, the messages are the context queries and the message content is the
set of terms involved in each query.

A good introduction to content-based networking can be found in [12], which
describes a content-based network operating as an overlay network above existing
network technologies such as IP. Comparisons are made between content-based
networking and current (though limited) approaches to this information routing such
as IP multicast in [13]. This document also evaluates approaches that minimize the
time taken to make a routing decision and produces concrete performance evaluations
of these forwarding algorithms, which show promising results.

Chan et. al. describe in [14] a method of content-based routing that is specifically
tailored to XML documents. Consideration is again given to the space and efficiency
characteristics of such a solution. Here, XPath is used as the XML pattern
specification language. XML seems an appropriate choice as an information
interchange markup, and XPath an effective way of querying those XML documents
and specifying patterns of interest.

7 Experimental work
Experimental work in progress focuses on implementing the architecture outlined in
this paper, and applying it to a student project meeting scenario. Particular
technologies are under evaluation for their suitability for use in this architecture.

• OWL is under evaluation as the ontology language.
• XQuery is being used as a query language.
• Content-based networking is being investigated as a routing mechanism for context

queries.

While these technologies are under evaluation, it is not foreseen that one set of
technologies will be prescribed for use in this architecture. However, this work will
characterise desirable features in each, in order that they can be more easily be
identified as new technologies arise.

Another strand of work is addressing the fact that responses to context queries may
produce a definite answer, or they may return that the answer to the question is
unknown. This will require application programmers to be aware that context-aware
applications may operate in an environment where not enough information is
available to answer their queries, and adjust their behaviour accordingly.

An initial experiment to verify the approach presented in this paper is underway, and
is due for completion in September 2004. The full version of this paper will provide
the results of this experiment.

8 Conclusion
We see a number of advantages to the approach outlined in this paper. These
advantages are as follows:

• Applications can be designed independently of the environment in which they are

finally run, because of the encapsulation of their domain knowledge in an
ontology. This is the minimum amount of work that an application programmer
will have to do to enable his application to be context-aware.

• Integration into a context system is done through mappings between equivalent
terms. These mappings can be set up and also changed at a later stage, all
independently of the original application programmer. These mappings will either
have to be provided by the application programmer, or (we believe more likely)
they will be provided by the people integrating the software in the environment.

• Mappings between equivalent terms can be stored and reused in future. In the
simple example above, the equivalence between the lecture theatre's term
‘meeting’ and the college's term ‘lecture’ can be stored and deployed automatically
in future, saving effort.

• A system that uses content-based networking for the routing of queries is much
more powerful and efficient than one that uses unicast queries or a more simple
publish/subscribe architecture.

The use of this architecture will allow context-aware applications to make the most
use of the rich sources of context information available to them in future ubiquitous
computing environments.

References
[1] M. Weiser, “Some computer science problems in ubiquitous computing,”
Communications of the ACM, July 1993.

[2] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web.” Scientific
American, May 2001.

[3] S. Long, R. Kooper, G. D. Abowd, and C. G. Atkeson, “Rapid prototyping of
mobile context-aware applications: the cyberguide case study,” in Proceedings of the
Second Annual International Conference on Mobile Computing and Networking,
(White Plains, NY), pp. 97--107, ACM Press, November 1996.

[4] Y. Arens, C. A. Knoblock, and C.-N. Hsu, “Query processing in the SIMS
information mediator,” Readings in Agents, 1998.

[5] P. R. S. Visser, M. D. Beer, T. J. M. Bench-Capon, B. M. Diaz, and M. J. R.
Shave, “Resolving ontological heterogeneity in the KRAFT project,” in Database and
Expert Systems Applications, pp. 668--677, 1999.

[6] E. Mena, V. Kashyap, A. Sheth, and A. Illarramendi, “OBSERVER: An approach
for query processing in global information systems based on interoperation across
pre-existing ontologies,” in Proc. of the First IFCIS International Conference on
Cooperative Information Systems (CoopIS'96), pp. 14--25, IEEE Computer Society
Press, June 1996.

[7] H. Chen, T. Finin, and A. Joshi, “An ontology for context-aware pervasive
computing environments,” Special Issue on Ontologies for Distributed Systems,
Knowledge Engineering Review, 2003.

[8] N. F. Noy and M. A. Musen, “The PROMPT suite: Interactive tools for ontology
merging and mapping,” International Journal of Human-Computer Studies, vol. 59,
no. 6, pp. 983--1024, 2003.

[9] A. Ip, W. Rahayu, and S. Singh, “Query optimization in a non-uniform bandwidth
distributed database system,” in Proceedings of the Fourth International Conference
on High-Performance Computing in the Asia-Pacific Region, vol. 2, (Beijing, China),
pp. 818--823, May 2000.

[10] L. Mackert and G. Lohman, “R* optimizer validation and performance
evaluation for distributed queries,” in Proceedings of the Conference on Very Large
Databases (VLDB), Kyoto, Japan, 1988.

[11] Z. Nie and S. Kambhampati, “Joint optimization of cost and coverage of query
plans in data integration,” in Proceedings of the tenth international conference on
Information and knowledge management, (Atlanta, Georgia, USA), pp. 223--230,
ACM Press, 2001.

[12] A. Carzaniga and A. L. Wolf, “Content-based networking: A new
communication infrastructure.” NSF Workshop on an Infrastructure for Mobile and
Wireless Systems, 2001.

[13] A. Carzaniga and A. L. Wolf, “Forwarding in a content-based network,” in
Proceedings of ACM SIGCOMM 2003, (Karlsruhe, Germany), pp. 163--174, Aug
2003.

[14] C.-Y. Chan, W. Fan, P. Felber, M. Garofalakis, and R. Rastogi, “Tree Pattern
Aggregation for Scalable XML Data Dissemination.” Bell Labs Technical
Memorandum, February 2002.

