
Applying Adaptive Hypermedia Techniques
to Semantic Web Service Composition
Owen Conlan, David Lewis, Steffen Higel, Declan O’Sullivan, Vincent Wade

Knowledge and Data Engineering Group (KDEG),
Department of Computer Science, Trinity College, Dublin 2, Ireland.

{Owen.Conlan, Dave.Lewis, Steffen.Higel, Declan.OSullivan, Vincent.Wade}@cs.tcd.ie
http://kdeg.cs.tcd.ie

Abstract

The semantic web has the potential to revolutionize the ways in which users search and
manipulate the rapidly expanding amount of information on the web. This expansion, coupled
with the capability of this information to be semantically related in a multitude of different
ways, leads to increased possibilities for the Web user becoming ‘lost in hyperspace’. This
danger stems from the fact that technologies which encourage semantic markup do not
necessarily encourage appropriate vocabulary usage, resulting in inappropriate or misleading
semantic relationships being formed. Users’ expectations from information services on the
Web are also increasing. This will lead to a proliferation of web services in this Semantic
Web. Adaptive techniques, and in particular those used in Adaptive Hypermedia (AH), may
be used to alleviate the semantic overload, while at the same time meeting the raised
expectations of users. This approach leads to a number of research questions: How can Web
Services be (successfully) used in an adaptive environment? and How do adaptive hypermedia
and open hypermedia combine? This paper argues for the integration of semantic web,
semantic interoperability, web services and AH technologies to meet and exceed the
information requirements of users in the emerging Semantic Web.

1. Introduction

A Hypermedia system consists of Hyper-documents. Hyper-documents are nodes which have
links through which the user can navigate to other nodes [3, 6]. This allows the information in
the Hypermedia System to be accessed in a non-linear manner. The user can jump along a link
from one page to another regardless of the physical location of the linked page in Hyperspace
[6]. The content and link structure of a closed hypermedia system should be designed so that
any possible path through the links is logically valid for the user. The World Wide Web,
however, is an open hypermedia system that has not been explicitly designed and as such there
may exist many linked paths that are not obviously valid for the user.

The WWW, as the primary example of an open hypermedia system, is undergoing a
fundamental change as node types are developing from human readable media to web services
that can be invoked directly by automated agents. Simple web services can be combined to
create a more complex and feature rich composite service. Much work in service composition
derives from workflow systems where a centralized server controls the flow of control and
data between services. However, for service composition to scale successfully to the WWW,
the service themselves must be configurable with the conditional links to the services with
which they must communicate within a composition [1]. The services, therefore, become
hyper-document or hyper-services. Service composition therefore involves the discovery,
brokering, intercommunication and monitoring of these hyper-services.



A given service composition will have any number of attributes describing the function it
performs, its input and output information, pre-requisites, required effects and other context
information, and similarly so for the constituent services (which may themselves be composite
services). The end result of a service composition should ensure that some form of input will
be given to any service, operated upon and then given to the next service in the chain. At some
point, the flow of information will reach a service which is an endpoint in the process, and the
result will be passed to a person or device capable of interpreting it.

Some parallels are already visible between this concept and those in hypermedia. There is a
navigation (possibly with multiple branches at different nodes) through a structure in service
composition, just as there is in hypermedia. There are links between different nodes in service
composition which could be statically embedded in the service or dynamically created to suit
a differing set of requirements, as there are in hypermedia. This, however, is not enough to
apply the more advanced and useful techniques in adaptive hypermedia to enable easier and
more automated service composition.

This paper describes the challenges presented by service composition on the WWW and
examines how parallels between service composition and adaptive hypermedia (AH) point to
areas where advances in AH techniques could be exploited in service composition (and vice
versa). The paper examines the potential benefits and challenges from exploiting the semantic
mark up of web services in AH-based service composition techniques.

2. Web Service Composition

Service Composition is the orchestration of a number of existing services to provide a richer
composite service assembled to meet some user requirements. The current major interest in
service composition, however, stems from the emergence of web services and the possibility
of composing them to provide value-added services over the WWW. Service composition
techniques typically involve expressing elemental services and composite services, the latter
being compositions of elemental services and other composite services. The definition of
composite services requires the expression of the flow of control and information between the
elemental services. Techniques for this draw heavily on business process modeling and
languages for enactable work flows.

The recent emergence of web services and their expression in the Web Service Description
Language (WSDL) has resulted in XML based languages being used to define composition
between WSDL service definitions, e.g. BPEL4WS, allowing service composition patterns to
be readily exchanged between tools and thus reused. Such service composition specifications
necessarily need to be expressed at the level of abstraction used for constituent services.
Though techniques for developing business process models from business requirements are
well established, they involve skilled manual activities and are not amenable to the dynamic
service creation needed to meet the needs of average users lacking in business process
modeling skills. A ‘semantic gap’ therefore exists between the model the user possesses of
what they want to do, and the service composition models that simply express how this may
be accomplished. Some work has been performed in reconciling the behavior of a system with
a high level representation of its requirements. However, even these high level requirements
are complex to express and are typically elicited by skilled requirements engineers. Adaptive
hypermedia techniques have been successfully applied in areas such as e-learning, to
dynamically map basic user profile information to adapt hypermedia documents to user’s
knowledge and preferences [4].



3. Adaptive Hypermedia Techniques

Adaptivity is used to tailor a user’s view of a subject to their personal requirements. Adaptive
Hypermedia (AH) technologies are often used to guide a user through a body of digital
material, assisting them in their comprehension of that material. There are several ways in
which AH techniques may be employed to assist the user. These techniques may be classified
along axes of adaptivity. The two axes from which adaptive techniques are most frequently
utilized are the adaptive navigation and the adaptive presentation axes.

3.1 Adaptive Navigation

Adaptive navigation attempts to guide the user through the system by customising the link
structure or format according to a user model. The form of adaptive navigation will determine
the level of guidance and freedom granted to the user within the system. Hypermedia
experienced users are known to be more likely to navigate in a non-linear way. Similarly
users who are familiar with the subject matter are more likely to navigate non-linearly and
therefore reap the benefits of Hypermedia systems [7]. The axis of adaptive navigation
describes techniques that may be used to aid a user’s exploration of a body of material. These
techniques range from methods that restrict the user’s interactions with the content, such as
link hiding, to techniques that aid the user in their understanding of the information space,
such as link annotation. Utilizing these techniques the user’s path through an information
space may be guided by the adaptive technologies. These techniques have generally been
applied to closed corpus information spaces, where the content available is well defined.
Adaptive Navigation techniques require some information about the nature of the resources in
the information space to decide how links to that resource should be adapted for the user’s
requirements. They also require information about the user and their current objectives to
effectively modify the navigation structure of an information space.

3.2 Adaptive Presentation

Adaptive Presentation is the customisation of content to match characteristics specified by the
user model. The granularity may vary from word replacement to the substitution of pages or
the application of different media. Content may be customised to contain additional
information, pre-requisite information or comparative explanations. This form of adaptivity
may be implemented by fragmenting the constituent content components into discrete words,
phrases or paragraphs. These components or pagelets may constitute a discrete unit of
information about a concept. With this approach different pagelets may be displayed for
different users. An example would be a technical term or acronym with which the user is
unfamiliar. The system may substitute the unfamiliar content until the user can be introduced
to the technical term or acronym.

3.3 Abstraction and Candidacy

In APeLS (Adaptive Personalised eLearning Service), based on the multi-model metadata
driven approach [4], the principles of abstraction and candidacy are key to facilitating
effective navigation and presentation adaptivity. To facilitate flexibility in the design and
implementation of new course offerings the multi-model approach was designed to include an
abstraction mechanism. It was envisaged that this mechanism would enable the collaboration
of many people on the development of an adaptive course. For example, the abstraction
enables the course author (knowledge domain expert) to develop a narrative describing the
course sequencing not in terms of the pagelets to be added, but rather using the learning



concepts to be added to realisations of the course. This abstraction allows the course author
and instructional designer to design the course without necessarily being concerned with the
individual pieces of content that will be used to populate the final course. Similarly the
content designer can develop instances of learning content without knowing how or where
that content will be used.

This abstraction is facilitated through candidate groups. Candidate groups are used to group
together like models. For example, a candidate content group concerned with a particular
learning concept may contain several pagelets, each covering the learning concept in different
ways. In the case of pagelets these differences may be pedagogical or technical – some
pagelets may deal with the concept from different perspectives or render the material
differently for different devices.

Each candidate group has associated metadata that describes the role of the group and has the
identifiers of the constituent models within the group. A simple candidate content group may
be visualised as in figure 1.

Fig. 1. Candidate Content Group

In the figure above, the candidate content group has two candidates, pagelet A and pagelet B.
Pagelets in the same candidate content group are equivalent on some axis, usually the learning
concept they cover. Candidate groups can be formed for any set of models in the multi-model
system. For example, there can be candidate narrative groups containing narratives that
produce equivalent courses according to different instructional approaches.

As candidate groups refer to their candidates by identifier it is possible for any single model in
the system to be included in multiple groups. Groups do not have to be homogeneous and may
contain models of different types. For example, a candidate group may have some narrative
and some pagelet candidates.

In the context of an open corpus environment the capacity for creating candidate groups is
limited by the potentially vast number of candidates that may exist. This process, therefore,
must be based on a non-manual mechanism.



4. HyperService Composition

We propose an architecture for a hypermedia composition system which integrates the
composition of services by a domain expert and the adaptive integration service in response to
user needs. The whole process should begin with the Service Composition Toolkit (SCT)
being fed the general task requirements from a domain expert who has some understanding of
how a task can be broken down into smaller tasks which could map onto a composition of
different service types likely to be available. The SCT will generate an abstract service
composition that can fulfill the proposed user task and store this in a candidate repository
made available to the Service Integration Engine (SIE). The SCT also uses input from a
repository of User, Service and Context Classifications, which are used to impose
preconditions on the use of the abstract composite service to aid the SIE in later matching it to
the requirements and context of specific tasks. To improve task to composition mapping over
time, the repository of previously developed services can be analyzed to see if a close match
already exists.

Fig. 2. HyperService Composition System

For any given task required by a user the SIE attempts to match the task requirements to
general requirements and corresponding abstract service compositions contained in the
candidate repository. Once a composition is selected the SIE attempts to resolve the
constituent services onto available running services. The SIE also uses the User Model and
User Context to personalize the composite service to the user. Failures to match the abstract
composite service to concrete services or failure of user model and user context information
matching the preconditions of the abstract service may result in an alternative abstract service
being selected for adaptation. Successful uses of an abstract service composition are recorded
in the candidate repository to aid in future matching by both the SCT and the SIE.



To illuminate this architecture further a mapping of the above concepts to existing concepts in
adaptive e-learning engines is described below -

The list of sub-tasks required to complete the overall task could be mapped onto a list of
learning concepts in a course (typically called a narrative). When transformed from e-learning
to service composition, a sub-task like “pay for the transaction using a credit card before
shipping it” could be mapped onto a learning requirement like “teach the student about regular
expressions before teaching lexical analysis”.

The user model and context model could be combined to map onto the learner model of an
adaptive e-learning engine. Attributes like “the user is walking down Grafton St.” and “the
user would prefer to have an Irish company handle the payment for a transaction” could map
onto attributes in e-learning like “the learner likes content to be explained with examples
rather than theoretical descriptions” or “the learner responds well to visual explanations”.

Finally, there is the conceptual mapping of different, available services onto different,
available pieces of content. In the APeLS system [conlan02], the adaptive engine is presented
a number of pieces of candidate content, each of which would teach the same content but in a
different manner. If the adaptive engine is presented with a candidate service, described in a
vocabulary that can be mapped onto that which describes a candidate piece of content, it
should be possible for the engine to select an appropriate service based on the user's
preferences, as it would select a piece of content based on the same criteria.

To illustrate how this system may work in practice, an example of a course coordinator
wanting to build a peer review system for her students will be used. Already developed and
available services within the college might include:

• Document viewer Service - given a list of capabilities of a device and the file to be
viewed, this service will convert a given document to some form which can
conveniently viewed on said device. It understands that PDF is computationally
intensive, so conversion to a series of JPEGs of a given size and detail can be
generated for easier viewing on a low powered device. For low bandwidth devices, a
text only version could be displayed. 

• Access Control List (ACL) Service - Specifies that a certain entity has the right to
access a certain resource from a given service. This could be built on top of existing
security frameworks like Kerberos [8]. 

• Document Repository Service - Allows retrieval and storage of files. It should be
possible to specify rules which control what can be downloaded by who. It can verify
such operations either from another service or from a local set of rules. 

• Candidate Selector - Very generic service; it is supplied with a group of candidates
(this can be anything from users to documents) and a metric by which to select one or
many of them (e.g. which document has been viewed the least times or which user has
done the least amount of work). 

• Grading Service - A service that accepts a user name, the name of the resource that is
being graded, the scale(s) on which they should be graded and what to do with the
results (typically, they should be stored in a database). 

• Generic Database service - Allows simple access to a persistent relational database.
The service does not perform the storage itself... it simply provides the interface to any
number of databases, including MSSQL, ORACLE, MySQL, Postgresql, Access,
Xindice, etc. Its input will consist of a list of operations and a set of arguments for
each. Output will consist of a return code, and any data that was requested. 



• Results Generator - This will be specifically developed for the task of peer review. It
understands the data stored in the database, how to manipulate it and how to present
results in a manner which is meaningful to both students and course administrators.
The input will consist of a user name, password, operation name and output will be
text displayable in a browser. 

The course admin will contact the service development toolkit and she will supply it with a
task description with loose keywords, along the lines of "Peer review: Project Submission,
grading, limited access, document viewing" The SCT will examine a history of service
compositions, seeing if there is a close match for the given criteria. Assuming there isn't, it
will have to request the input of some person who (or software that) understands the required
outputs.

The resulting abstract service composition will contain a “flow-chart”, outlining the different
sub-tasks, their interaction with one another and various pre-conditions that must be met to
allow this interaction to take place. An example could be forbidding a student to review
another student's work until they themselves have submitted their project.

The list of sub-tasks for this scenario would probably include all of the afore mentioned
services.

The service developer would submit this flow-chart to the SIE, which, using information
based on the course administrator's circumstances and preferences, would fill in the sub-tasks
with actual references to given services. A given lecturer might be very strict on plagiarism, or
very concerned about security, so appropriate services could be invoked in the chain to ensure
that these concerns are dealt with.

This description would be sent back to the service developer for review, to ensure that it
functions correctly. If this is not the case, the flow-chart is refined and sent back to the service
integrator. This process is repeated until a satisfactory result is produced.

Once a successful composition has been completed, the composition will be stored on a server
somewhere, for students to access. Upon contacting the peer review compound service, the
student will be asked to confirm their identity. Any running services under this instance of the
composition will be marked as belonging to this user.

Firstly, the service should ask the top level results service should check to see if this user has
submitted their project. If this is the case, the candidate selector should be provided with
information on where to get a list of candidates (it should use the ACL service to get this
information from the database service) and a metric through which it can choose which
document to return.

The user may be using a PDA to view the document on the bus, so the document viewer
service could convert it into an appropriate file format. Once the document has been read, the
user will be given the option of submitting a review of this document. The grading service
should validate that the inputs are within the correct bounds, and use the database service to
store the results.

The course coordinator should be able to view submitted reviews, interpreted in a useful
manner (to display various averages) with the possibility of saving the results to a spreadsheet
file.



5. Further Work

Ultimately, accurate mapping of user level requirements to service composition requires
modeling of the real world which forms the context in which the user naturally expresses their
usage needs. Ontologies provide a way of capturing and exchanging models of the real world
and making them available to automated agents. The DARPA Agent Mark-up Language
initiative is defining XML-based standards for supporting the development of the Semantic
Web [2], which aims to make the content of the web more amenable to processing by
automated agents. As part of this initiative DAML-S [5] uses the DAML+OIL ontology
language to provide semantic mark-up of web services. This includes modeling the links
between a service and the outside world, by using ontologies for expressing the inputs,
outputs, preconditions and effects of a service and the resources which provides it, in a way
that can be mapped to semantic descriptions of the real world.

DAML-S aims to support the automation of web service discovery, invocation, composition,
interoperation and execution monitoring. The principle element of the language is a Service.
A Service has one or more Service Profiles which describes what the service does and
includes input, output, preconditions and effects. A Service is described by a Service Model,
which captures a Process Model of how the Service works. A Process can be atomic, in which
case it is a single step execution, or composite, in which case it allow simple processes to be
invoked through bindings to control constructs, similar to workflow control constructs, e.g. if-
then-else, sequence, repeat-until, split and join etc. Both atomic and composite processes can
be expressed in an abstract form called a simple process. This allows a more abstract version
of a process to be defined, perhaps hiding specific preconditions or effects not relevant to a
particular application or hiding the control constructs linking sub-processes of a composite
service. A Service may have one or more Groundings which describe how a service may be
accessed. This part of the language is integrated with WSDL, to exploit the latter’s existing
mapping onto communication protocols such as SOAP. WSDL is extended by using
DAML+OIL for expressing the information types used in input and output parameters.
Finally, the language includes the description of Resources, which provide the Service. These
have types related to allocation and capacity of the resource in question, and can be composed
in various forms providing guidance on the sharing of resources between services.

In terms of the proposed application of adaptive hypermedia techniques to service
composition, the formal basis of DAML+OIL in description logic opens the door to the use of
a range of automated reasoning techniques in the Service Development toolkit [9]. This could
range from the use of rule-engines reasoning on simple conditions on service input and output
to perform limited automated service composition [13] to the use of situation calculus to
reason about semantic information in DAML-S specs in tools to aid developers in the
simulation, verification and automated composition of web services [11]. The abstraction of
existing services as DAML-S Simple Processes could be used to populate the repository of
Service Types. Simple Process expressions could also be used to capture the users required
inputs, output, preconditions and effect in terms that they can relate to that may be taken from
the growing population of ontologies about the real world, e.g. the UNSPSC ontology of
commercial product and service codes (www.unspsc.org). Candidate service composition can
therefore be expressed a DAML-S composite processes made up from Simple Processes from
the service type repository. By using an open language such as DAML-S for these service
composition candidates, exchange or purchase of successful candidates from other
organizations could be undertaken, e.g. universities could exchange successful candidate
compositions combining eLearning services and specific administration services, such as
coursework assessment or fee collection.



Our work on the integration of adaptive hypermedia techniques with service composition is
centering on eLearning in a ubiquitous computing environment, or ‘uLearning’. Ubiquitous
computing is seen as a ripe application area for semantic web technologies, since similar
problems in terms of the number of potential services and huge range of potential
compositions exist. Therefore we are actively developing a base ontology for describing
uLearning resources and basic services, including mining existing ontologies on academic
learning. This will provide the semantic definitions of terms use to express user’s uLearning
requirements and atomic services available for composition in this context. 

One potential problem raised by defining service composition candidates at an abstract level is
that when that composition is mapped by the Service Integration Engine onto available
concrete services there is some mismatch between semantics implemented by the concrete
services. In some cases these mismatches will mean the candidate composition is not viable
for the user task at hand and another alternative must be sought. However, we envisage a large
number of cases where the semantics of services that must interoperate within a composition
are close enough that tailored interoperability services may be automatically generated. We
have conducted some research into such semantic interoperability based on the automatic
generation of XSLT scripts for adapting communications between services based on a Topic
Map expression of their semantics [12]. A close analogy between the expression of
composition in hypermedia authoring languages and Architectural Description Languages
(ADLs) is identified in [10], with hypermedia nodes mapping to components in ADLs, which
implement services, and links mapping to the concept of connectors which represent
communication between components. However, ADLs elevate connectors between
components to first class objects, whereas the corresponding links between nodes in
hypermedia models tend not to be so. Connectors are the ideal abstraction for representing the
semantic adaptation functions we describe above. We therefore propose to elevate links in
hypermedia model to the same status as connectors, both to provide support for representing
semantic adaptors with a HyperService composition and to allow such semantic connectors to
be stored as candidates for use on other service compositions. Connectors could also be
defined at a syntactic level, where interlinked services in a composition have different WSDL
protocol and data format bindings in their Service Groundings and thus require a suitable
syntactic connector. Connectors can also represent conditional interactions and n-array
interactions between services, and so could be used as reusable sub-components within
composition candidates.

6. Conclusion

This paper outlines how adaptive hypermedia techniques may be applicable to the analogous
field of service composition of web services in an approach we call Hyper-Service
composition. An architecture is proposed that builds on an existing adaptive hypermedia
engine by introducing a toolkit for developing service compositions to match user task
requirements based on abstract models of existing services and known compositions. The
adaptive hypermedia engine is then used to deploy concrete service composition on demand
for a particular user task, based on a combination of the abstract service composition, the
availability of concrete services and the user’s current context. We then describe how this
approach can be made more open by the use of ontologies and semantic mark-up of service
descriptions, and describe research that directs us towards the use of semantic and syntactic
connectors in HyperService compositions.



References

1. Benatallah, B., Dumas, M., Sheng, Q.Z., Ngu, A.H.H. (2002), ‘Declarative
Composition and Peer-to-Peer Provisioning of Dynamic Web Services’, Proceedings
of the 18th International Conference on Data Engineering (ICDE’02), ISBN: 0-7695-
1531-2, March 2002, pp 297 – 308 

2. Berners-Lee, T., Hendler, K., Lassila, O. (2001), ‘The Semantic Web’, Scientific
American, pp 35-43, Issue 284 (3), 17th May 2001 

3. Brusilovsky, P., “Methods and Techniques of Adaptive Hypermedia” in User
Modeling and User Adapted Interaction, 1996, v6, n2-3. 

4. Conlan, O., Wade, V., Bruen, C., Gargan, M. (2002), ‘Multi-Model, Metadata Driven
Approach to Adaptive Hypermedia Services for Personalized eLearning’, Proceedings
of Second Conference on Adaptive Hypermedia and Adaptive Web-Based Systems,
Eds. De Bra P., Brusilovsky, P., Conejo, R., Springer, LNCS 2347, May 2002, pp 100-
111 

5. ‘DAML-S: Semantic Markup for Web Services’, The DAML Service Coalition,
http://www.daml.org/services/, October 2002. 

6. De Bra, P., “Definition of hypertext and hypermedia”, http://wwwis.win.tue.nl/ah/,
1998.

7. Eklund, J., Brusilovsky, P., “The Value of Adaptivity in Hypermedia Learning
Environments: A Short Review of Empirical Evidence”, http://wwwis.win.tue.nl/ah/,
1998. 

8. Jochheck W., 'KERBEROS: Secure Network Authentication, Myth or Reality',
Published online 

9. McIlraith, S.A., Son, T.C., Honglei Zeng, H. (2001), ‘Semantic Web Services’, IEEE
Intelligent Systems, 16(2), March/April 2001. 

10.Muchaluat-Saade, D.C., Soares, L.F.G. (2001), ‘Towards the Convergence between
Hypermedia Authoring Languages and Architecture Description Languages’,
Proceeding of the ACM Symposium on Document Engineering, Atlanta, Georgia,
USA, ACM Press, pp 48-57. 

11.Narayanan, S., McIlraith, S.A., (2002) “Simulation, Verification and Automated
Composition of Web Services”, Proceedings of 11th World Wide Web Conference,
May 7-11, 2002, Honolulu, Hawaii, pp 77-88. 

12.Conlan, O. (2002), ‘Enabling "Smart Space" Service Mobility Negotiation by Ordinary
Users’, Proceedings of Eurescom Summit 2002 Heidleberg, Germany. 

13.Ponnekanti, S.R., Fox, A. (2002), “SWORD: A Developer Toolkit for Web Service
Composition”, To appear in The Eleventh World Wide Web Conference (Web
Engineering Track), Honolulu, Hawaii, May 7-11, 2002
(http://swig.stanford.edu/public/publications) 


