
University of Dublin
Trinity College

Introduction to
Web Ontology Language (OWL)

Owen.Conlan@scss.tcd.ie
Athanasios.Staikopoulos@scss.tcd.ie

•  Web of documents – processed by humans
•  Currently, users search for data on the Web asking

questions like “which documents contain these words or
phrases”

Today’s Web

doc 1 doc 4

doc 2 doc 5

doc 3 doc 6

Semantic Web
•  Web of things – processed by machines
•  Search in not based on word matching but on related

items and relationships

db1 db 2

doc 2 doc 5

doc 3 doc 6

label

Stack Architecture for Semantic Web

Semantic Web Technologies
•  Set of technologies and frameworks that enable such

integration (the Web of Data) possible

•  Semantic annotation and retrieval: RDF, RDFS
•  Storing the Semantic Web: Repositories
•  Querying the Semantic Web: SPARQL
•  Reasoning on the Semantic Web: OWL, reasoning tools

Representing knowledge
There are a number of options

•  As objects, using the well-accepted techniques of object-oriented
analysis and design to capture a model

•  As clauses, going back to the early days of AI and Lisp
•  As XML, using the industry-standard structured mark-up language
•  As graphs, making use of the things we know about graph theory
•  As some combination of these

We are looking for: extensibility, ease of use, ease of
querying

Which would you choose?

Graphs

We can use the nodes of a graph for facts and the arcs as
(binary) relationships between them

•  Arcs are typically called predicates or relationships in this view
•  The set of arcs intersecting a node tells us the information we

know about that fact or entity

ORI F35

Conlan

Person1234

surname

office

Graphs as knowledge – 1
How do we use graphs to represent knowledge?

ORI F35

Conlan

Owen

x1234

+353 1 896 1234

Student 1

Person1234

surname

firstname

office

phone

extension

Joe

Bloggs

surname

firstname

Knowledge

Engineering

Software
engineering

Student 2

teaches

teaches

takes

takes

A “key” from
which to hang
the different
facts

Graphs as knowledge – 2
Things to note

•  Scaling – the same graph can represent a load
of different knowledge simultaneously

•  Agreement – need to know what the various
predicates “mean”

•  Structure – you need to know what nodes are
related by a predicate

•  Plurality – the same relationship may appear
several times

•  Symmetry – the same predicates can be used
for common information, despite minor changes

•  Asymmetry – relationships are inherently
directed, which sometimes makes things
awkward

For example both
lecturers and
students have names

…and this can be
difficult to keep
straight

So a knowledge
(context) graph is
inherently directed

…and this can get
very tricky

Two ways to view a graph
As nodes and arcs

•  Nodes store facts, edges store relationships between them

As triples

•  A three-place relationship of “subject, predicate, object”
•  The node and edge structure is induced by the triples –

each triple defines an edge, the different subjects/objects
are the population of nodes, one node per individual string

Conlan

Person1234
surname

Resource Description Framework (RDF)

•  RDF is a W3C recommendation that enables encoding,
exchange and reuse of structured metadata

•  Resource: anything we want to talk about
•  RDF is graphical formalism for expressing data models

about “something” using statements expressed as triples
•  RDF Triples: a labelled connection between two

resources, a labelled arc in a graph
•  An RDF model is an unordered collection of statements,

each with a subject, predicate and object
•  RDF describes the semantics of information in a

machine-accessible way

•  Graph representation of a triple

•  This can be read as
•  s has a property p with a value o (left to right)
•  o is the value of p for s (right to left)
•  The p of s is o (as directed relationship)

RDF Triples

statement graph

subject object
predicate

subject predicate object

statement

Owen teaches CS7063

Example RDF Triples as Graphs

•  unv:Person1234 = http://www.scss.tcd.ie/owen.conlan
•  dbpedia:Dublin = http://dbpedia.org/resource/Dublin

unv:Person1234 foaf:Person rdf:type

foaf:name

dbpedia:Dublin

foaf:based_near
Owen Conlan

1110627

dbpedia:populationUrban

•  Triples of assertions can be expressed using XML tags

•  E.g. “Cabernet Sauvignon grape”, “is a type of” ,“Wine grape”
 <rdf:Description rdf:about="Cabernet Sauvignon grape“>
 <rdf:type rdf:resource=“#Wine grape" />
 </rdf:Description>
•  Each resource can be assigned a different Universal Resource Identifier

(URI)
–  Thus different meanings for the same term can be assigned different URIs

•  Reference: RDF Primer. W3C draft technical note, 2002

Example RDF Triples as XML

relationship Value
RDF statement

Subject

Predicate Object

Concept
Concept

URI (Uniform Resource Identifier)
•  URI is used for identifying (naming) resources on the Web
•  URLs (Uniform Resource Locators) are a particular type of

URI, the resources can be accessed on the Web
•  URIs unlike URLs are not limited to identifying thinks that

have network locations
•  In RDF, URIs often have fragment identifiers to point at

specific parts of a document:
•  http://www.somedomain.com/some/path/to/file#fragmentID

•  URIs are unambiguous, Web provides a global namespace
•  Different URI schemas – http, mailto, ftp, urn …

XML to RDF
•  Modify XML to a RDF document

<?xml version="1.0"?>
<River id="Shannon"
 xmlns=“http://www.scss.tcd.ie/rivers">
 <length>360 kilometers</length>
 <startingLocation>Cuilcagh Mountain, County Cavan</startingLocation>
 <endingLocation>Limerick</endingLocation>
</River>

<?xml version="1.0"?>
<rdf:Description rdf:about=" http://www.scss.tcd.ie/rivers/Shannon"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns=“http://www.scss.tcd.ie/rivers#">
 <rdf:type rdf:resource="http://live.dbpedia.org/ontology/River"/>
 <length>360 kilometers</length>
 <startingLocation>Cuilcagh Mountain, County Cavan</startingLocation>
 <endingLocation>Limerick</endingLocation>
</rdf:Description>

XML

RDF

RDF: XML-Based Syntax Elements
 rdf:RDF root element of RDF documents, where a

number of descriptions are defined
rdf:Description element contains the description of the

resource
rdf:type

instance of

rdf:Bag

an unordered container of resources

rdf:Seq

an ordered container of resources

rdf:Alt

Defines a set of alternative resources

RDF: XML-Based Syntax Attributes
rdf:ID

indicating a new resource

rdf:about

referencing an existing resource

rdf:resource allows property elements to be defined as
resources

A cluster of facts
Given a common subject we can build a cluster of facts
using nested predicate elements

<rdf:RDF xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”
 xmlns:s=“http://www.dsg.cs.tcd.ie/xml/demo.html#”>
 <rdf:Description about=“http://www.dsg.cs.tcd.ie/”>
 <s:about>Distributed Systems Group</s:about>
 <s:author>S. Punter</s:author>
 <s:phone>+353 1 123 4567</s:phone>
 </rdf:Description>
</rdf:RDF>

Each of these gives rise to a triple with
the same subject (inherited from the
containing Description element)

As long as we agree what the predicates
mean, we can use whichever we want

RDF Classes & Properties
Classes
•  rdf:XMLLiteral
•  rdf:Property
•  rdf:Alt
•  rdf:Bag
•  rdf:Seq
•  rdf:List
•  rdf:nil
•  rdf:Statement

Properties
•  rdf:type
•  rdf:first
•  rdf:rest
•  rdf:value
•  rdf:subject
•  rdf:predicate
•  rdf:object

Identify the Resource
•  URI references may be either absolute or relative
•  When a (relative) URI reference consists of just a

fragment identifier, it refers to the document that appears
•  An element rdf:Description has

•  rdf:about attribute – references an existing resource
•  rdf:ID attribute – indicating a new resource

–  The value of rdf:ID is a "relative” URI
•  Without a name creating an anonymous resource

Blank Nodes
•  RDF doesn’t require every

resource in a statement to be
identified with a URI

•  Blank nodes are graph nodes
that represent a resource for
which we would like to make
assertions, but have no way to
address with a proper URI

•  these resources are not visible
outside – they are anonymous

•  From a logic point of view, blank
nodes represent an “existential”
statement

Literals
•  Literals are objects that are not URIs but actual content
•  There are two kinds of literals

•  plain (untyped) – have a lexical form and optionally a language
tag

“wellcome”@en
•  Typed – is formed by pairing a string with a particular datatype

(e.g. from XML Schema)
“27”^^http://www.w3.org/2001/XMLSchema#integer
•  RDF has no built-in set of datatypes. RDF uses externally

datatypes that are identifies by a URI

<rdf:Description rdf:about="http://…/isbn/51409X">

 <page_number rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">543

 </page_number>

 <price rdf:datatype="http://www.w3.org/2001/XMLSchema#float">6.99</price>

</rdf:Description>

RDF Serialization Formats
•  There is a variety of data interchange formats

•  RDF/XML – the original (W3C Recommendation)
and most frequently used serialization format

•  N-Triples- simple notation, easy-to-parse, line-
based format that is not as compact as Turtle

•  N3 – similar to N-Triples, additional structures to
reduce repetition

•  Turtle - a compact, human-friendly format.
•  RDFa - a way of annotating XHTML web pages

with RDF data.
•  Json – a JSON based serialisation
•  …

Common Vocabularies
Commonly used vocabulary namespaces in RDF

•  RDF: http://www.w3.org/1999/02/22-rdf-syntax-ns#
•  Dublin Core: http://purl.org/dc/elements/1.1/
•  SKOS: http://www.w3.org/2004/02/skos/core#
•  FOAF: http://xmlns.com/foaf/0.1/

Structuring the knowledge - Limitations
RDF provides a way of building graphs from triples, but
doesn’t constrain the graph too much

•  Nothing stops an application from giving a place a surname, for
example, although this is probably nonsense

The problem is that RDF is an untyped mechanism for
building graphs

•  No knowledge of which triples are “allowed”, or what “thing” must
be the subject/object of an arc

This is a problem in two distinct ways
•  In interpretation – different people may interpret the predicates

subtly differently and use them between values you can’t handle
•  In scaling – hard for an application to get it right

RDF Schemas (RDFS)
•  Officially: “RDF Vocabulary Description Language”
•  RDF is domain independent – there are no

assumptions about a particular domain, concepts etc
•  When compared to XML Schema, RDFS defines the

vocabulary used in RDF data models, where the XML
Schema constrains the structure of XML documents

•  RDFS extends RDF with “schema vocabulary”, e.g.:
•  Class, Property
•  type, subClassOf, subPropertyOf
•  range, domain

RDFS Classes
rdfs:Resource

the class of all resources

rdfs:Class

the class of all classes

rdfs:Literal

the class of all literals (strings)

rdfs:Property the class of all properties

rdfs:Datatype

the class of datatypes

RDFS Properties
rdfs:subClassOf Relates class to one of its superclasses, declare

hierarchies of classes, is transitive by definition
rdfs:subPropertyOf relates a property to one of its superproperties, is

transitive by definition
rdfs:domain declares the class of the subject in a triple
rdfs:range declares the class or datatype of the object in a

triple

rdfs:comment typically provides a longer text description of the
resource

rdfs:label associates the resource with a human-friendly name
rdfs:isDefinedBy relates a resource to the place where its definition,

typically an RDF schema
rdfs:seeAlso relates a resource to another resource that explains it

RDFS Examples

These terms are the RDF Schema building blocks
(constructors) used to create vocabularies:

<Person,type,Class>
<hasColleague,type,Property>
<Professor,subClassOf,Person>
<Carole,type,Professor>
<hasColleague,range,Person>
<hasColleague,domain,Person>

RDFS Example - Graph Model

•  Reference: “A Semantic Web Primer”, G. Antoniou & F. van Harmelen, 2008

RDF/RDFS “Liberality”
No distinction between classes and instances (individuals)

<Species,type,Class>

<Lion,type,Species>

<Leo,type,Lion>

Properties can themselves have properties
<hasDaughter,subPropertyOf,hasChild>

<hasDaughter,type,familyProperty>

No distinction between language constructors and ontology
vocabulary, so constructors can be applied to themselves/
each other

<type,range,Class>

<Property,type,Class>
<type,subPropertyOf,subClassOf>

Problems with RDFS
RDFS too weak to describe resources in sufficient detail

•  No localised range and domain constraints
–  Can’t say that the range of hasChild is person when applied to persons

and elephant when applied to elephants

•  No existence/cardinality constraints
–  Can’t say that all instances of person have a mother that is also a

person, or that persons have exactly 2 parents

•  No transitive, inverse or symmetrical properties
–  Can’t say that isPartOf is a transitive property, that hasPart is the

inverse of isPartOf or that touches is symmetrical
•  …

Difficult to provide reasoning support
•  No “native” reasoners for non-standard semantics

Web Ontology Language (OWL):
Requirements

Desirable features identified for Web Ontology Language:

Extends existing Web standards

•  Such as XML, RDF, RDFS

Easy to understand and use
•  Should be based on familiar KR idioms

Formally specified - describes the meaning of knowledge
 precisely

Of “adequate” expressive power
Possible to provide automated reasoning support

OWL Language

Three species of OWL

•  OWL full is union of OWL syntax and RDF
•  OWL DL restricted to FOL fragment
•  OWL Lite is “easier to implement” subset of OWL DL

OWL DL Benefits from many years of DL research
•  Well defined semantics
•  Formal properties well understood (complexity, decidability)
•  Known reasoning algorithms
•  Implemented systems (highly optimised)

Example of OWL Document
<rdf:RDF

 xmlns:owl =“http://www.w3.org/2002/07/owl#”

 xmlns:rdf =“http://www.w3.org/1999/02/22-rdf-syntax-ns#”

 xmlns:rdfs=“http://www.w3.org/2000/01/rdf-schema#”

 xmlns:xsd =“http://www.w3.org/2001/XMLSchema#">

 <owl:Ontology rdf:about="">

 <rdfs:comment>An example OWL ontology</rdfs:comment>

 <owl:imports rdf:resource="http://www.mydomain.org/persons"/>

 <rdfs:label>University Ontology</rdfs:label>

 </owl:Ontology>

 <owl:Class rdf:ID="academicStaffMember”></owl:Class>

 <owl:Class rdf:ID="associateProfessor">

 <rdfs:subClassOf rdf:resource="#academicStaffMember"/>

</owl:Class>

…

</rdf:RDF>

Example: Defining terms and a
subclass relationship

Define the term “Room”

Define term “Restroom” and state that a Restroom is a
type of Room

Note: owl:Thing is a predefined OWL Class and is the root
of all classes. Similarly, owl:Nothing is the empty class

<owl:Class rdf:ID="Room“/>

 <owl:Class rdf:ID="Restroom">
 <rdfs:subClassOf rdf:resource="#Room"/>
</owl:Class>

Defining Classes
OWL provides several other mechanisms for defining
classes

•  equivalentClass allows you to state that two classes are
synonymous

•  disjointWith allows you to state that an instance of this class cannot
be an instance of another

–  E.g. Man and Woman could be stated as disjoint classes
Boolean combinations
•  unionOf allows you specify that a class contains things that are

from more than one class
–  E.g. Restroom could be defined as a union of MensRoom and LadiesRoom

•  intersectionOf allows you to specify that a class contains things that
are both in one and the other

•  complementOf allows you specify that a class contains things that
are not other things

–  E.g. Children are not SeniorCitizens

Intro to OWL © Declan O’Sullivan 39

Example: equivalentClass and
unionOf

 <owl:Class rdf:ID="AtomicPlaceInBuilding">
 <rdfs:subClassOf>

 <owl:Class rdf:about="#AtomicPlace"/>

 </rdfs:subClassOf>

 <owl:equivalentClass>

 <owl:Class>

 <owl:unionOf rdf:parseType="Collection">

 <owl:Class rdf:about="#Room"/>

 <owl:Class rdf:about="#Hallway"/>

 <owl:Class rdf:about="#Stairway"/>

 <owl:Class rdf:about="#OtherPlaceInBuilding"/>

 </owl:unionOf>

 </owl:Class>

 </owl:equivalentClass>

 </owl:Class>

Example disjointWith
<owl:Class rdf:about="#associateProfessor">

<owl:disjointWith rdf:resource="#professor"/>
<owl:disjointWith rdf:resource="#assistantProfessor"/>

</owl:Class>

Defining Properties
In RDF Schema the rdf:Property is used both to

•  Relate one Resource to another Resource
–  For example, a “accessRestrictedToGender” property can relate a

Restroom to a Gender

•  Relate a resource to a rdfs:Literal or datatype
–  For example, a “latitude” property relates a Room to a xsd:string type

OWL provides different statements for two cases
•  owl:ObjectProperty is used to relate a resource to another

•  owl:DatatypeProperty is used to relate a resource to a rdfs:Literal
or XML schema data type

 <owl:ObjectProperty rdf:ID="accessRestrictedToGender">
 <rdfs:range rdf:resource="#Gender"/>
 <rdfs:domain rdf:resource="#Restroom"/>

 <owl:DatatypeProperty rdf:ID="latitude">
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 <rdfs:domain rdf:resource="#Place"/>

`what
classes is
this
property
associated
with

What range
of values

Characterising Properties
OWL allows use of three of the RDFS statements

•  <rdfs:range> used to indicate the possible value types for a property.
•  <rdfs:domain> use to associate a property with a class.
•  <rdfs:subPropertyOf> use this to specialize a property.

Example

<owl:ObjectProperty rdf:ID="isTaughtBy">
<rdfs:domain rdf:resource="#course"/>
<rdfs:range rdf:resource="#academicStaffMember"/>
<rdfs:subPropertyOf rdf:resource="#involves"/>

</owl:ObjectProperty

Characterising Properties (cont)
owl:equivalentProperty – to define equivalence of properties

owl:inverseOf - to relate inverse properties

<owl:ObjectProperty rdf:ID="lecturesIn">
 <owl:equivalentProperty rdf:resource="#teaches"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="teaches">
<rdfs:range rdf:resource="#course"/>
<rdfs:domain rdf:resource="#academicStaffMember"/>
<owl:inverseOf rdf:resource="#isTaughtBy"/>

</owl:ObjectProperty>

Restricting Properties
Associate the property (defined elsewhere) with the Class by using
combination of <rdfs:subClassOf> <owl:onProperty> and defining local
restrictions on that property using <owl:Restriction>

•  owl:allValuesFrom - all values of the property must come from a

specific class
•  owl:someValuesFrom - at least one value of the property must come

from a specific class
•  owl:hasValue - states a specific value that the property specified

•  owl:minCardinality - it has at least (individuals or data values)
•  owl:maxCardinality – it has at most (individuals or data values)
•  owl:cardinality – it has a specific number of (individuals or data values)

Example - Restricting Properties
 <owl:Class rdf:ID="Restroom">
 <rdfs:subClassOf rdf:resource="#Room" />
 <rdfs:subClassOf>
 <owl:Restriction owl:cardinality="1">
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#accessRestrictedToGender" />
 </owl:onProperty>
 <owl:allValuesFrom>
 <owl:Class rdf:about="#Gender" />
 </owl:allValuesFrom>
 </owl:Restriction>
 </owl:subClassOf>
</owl:class>

Instances
•  Instances of classes are declared as in RDF

<rdf:Description rdf:ID="949352">
 <rdf:type rdf:resource="#academicStaffMember"/>

</rdf:Description>

or equivalently

<academicStaffMember rdf:ID="949352"/>

Summary Example
<?xml version “1.0”?>

<Room rdf:ID=“LargeConferenceRoom”>

 <address rdf:resource=“G.02”/>

 <spatiallySubsumedBy rdf:resource=“O’Reilly Institute”/>

 <adjacentRoom rdf:resource=“SmallConferenceRoom” />

 <coordinates rdf:resource=44,55 />

</Room>

Given the preceding definitions it can be inferred automatically:
1.  The O’Reilly Institute spatially subsumes the Large Conf Room

(since spatiallySubsumedBy is an inverse property)
2.  The Small Conference Room is adjacent to Large Conference

Room (since adjacentRoom is symmetric)
3.  Only the Large Conference Room can be found at coordinates

44,55 (since coordinates is inverse functional)
4.  The Large Conference Room has only one address (since

address is functional)

References
[DARPA 2003]

•  Tutorial by Costello and Jacobs of MITRE funded by DARPA

OWL web site with lots of information

 http://www.w3c.org/2001/sw/WebOnt/

In particular the OWL Guide provides a description of
OWL, with many examples:

•  http://www.w3.org/TR/2004/REC-owl-
guide-20040210/

