
1

University of Dublin
Trinity College

Finding Records

Owen.Conlan@cs.tcd.ie

File Sorting 2

Finding Things in a File:
Sequential Search

Sequential search is one of the simplest forms of file
searching
The file is searched one record at a time, until a record
is found with a particular key
Sequential search is slow:

• If there are n records in the file, you may have to look at all of them
before you find the one you want

• If the key you are looking for is in the file, on average you will need
to look through n/2 records before finding it

Sequential search is said to be O(n), because the time it
takes is proportional to n

File Sorting 3

Finding Things in a File:
Sequential Search

Although sequential search is slow, it is not appalling

Sequential search always looks at the adjacent record
in the file next

• Therefore, it makes good use of the fact that every read of a file
does not result in a disk access

• A big chunk of the file is read into a buffer in main memory
• So most reads of the file will not actually result in disk accesses

File Sorting 4

Motivation for Binary Search
Let’s take an example:

• Suppose we’re looking for a student with id number 76634 in a file
of 10,000 fixed length records

• Assume further than the file has been sorted into ascending order
of student numbers

• We start by comparing 76634 with the student number of the record
in the middle of the file, that is record 5,000

• If record 5000’s student number if greater than 76634, we know
that 76634 will be found in the first half of the file

File Sorting 5

Binary Search
• If it is less than 76634, then we know 76634 can be found in the

second half of the file

• Assuming it we know that 76634 is in the first half, we now compare
this with the student number of the record at position 2,500 to find
out which quarter of the file 76634 is in

• The process is repeated until either 76634 is found or we have
narrowed the number of potential records to zero

• This is called binary search

File Sorting 6

Pseudocode for Binary Search
low = 0
high = number of records −1
while (low <= high)

guess = (low + high) / 2
key_found = read_key_number(guess)
if (key_sought > key_found)

low = guess + 1
else if (key_sought < key_found) high = guess − 1

else
we’ve found it

endwhile

2

File Sorting 7

Binary Search
The difference becomes dramatic if there are a lot of
records in the file

• When we double the number of records, we double the number of
comparisons for sequential search

• When we double the number of records, we add one to the number
of comparisons for binary search

• BUT, even though it might take sequential search 5,000
comparisons, and binary search only 14 comparisons, does not
mean that binary search is 5,000 / 14 = 357 times faster than
sequential search

• Why?

File Sorting 8

Binary Search Limitations
If we have a sorted file we can find a record quickly with
binary search
But binary search is still not ideal:

Problem 1: binary search requires several disk
accesses:

• Although binary search is a tremendous improvement over
sequential search, those disk accesses are still expensive

• Ideally we would be able to find the data in just one or two
accesses

• Ideally, we would be able to work out at which record number the
data is stored from the key. We’ll look at this in the coming lectures.

File Sorting 9

Binary Search Limitations
Problem 2: Keeping a file sorted can be very expensive

• When we add records to the file, we need to resort the file
• This can be very, very expensive (see coming lectures)
• If we add records as often as we search for records, we will spend

most of our time sorting the file
• Even if we can find the position to put the new record into cheaply,

we need to move records to make space for the new record

Better solutions will have at least one of the following
features:

• They will not involve re−ordering the file when a new record is
added

• They will use data structures that allow rapid, efficient re−ordering
of the file

University of Dublin
Trinity College

File Sorting

File Sorting 11

RAMSORT#1 approach

If the entire file fits in
RAM

• Read in all the
records sequentially

• Extract the key
values (in canonical
form)

• Keep a pointer (or
record number) to the
record with each key

• Sort the keys
• Write out the records

in the order of the
sorted keys

BEHAN
BROWNE
FOLK
KELLY
SMITH

3
1
5
2
4

BROWNE
KELLY
BEHAN
SMITH
FOLK

1
2
3
4
5

Browne Robert 3 Park Ave
Kelly Denis 52 Maple Pk
Behan Brendan 27 West PArkway
Smith Peter 102 George Ave
Folk Michael 74 Upper Madison

keynodes records

before sorting

after sorting

File Sorting 12

RAMSORT#2 Approach

Separate the index from the keys
Sort the index based on the key values
Only the keys are needed in RAM while doing the sort
Records are only accessed to get keys and to write out sorted file

BROWNE
KELLY
BEHAN
SMITH
FOLK

1
2
3
4
5

3
1
5
2
4

Browne Robert 3 Park Ave
Kelly Denis 52 Maple Pk
Behan Brendan 27 West PArkway
Smith Peter 102 George Ave
Folk Michael 74 Upper Madison

before sorting

after sorting

index keynodes records

3

File Sorting 13

KEYSORT Approach

If the entire file does not fit in RAM and stored on direct
access device

• Only read the keys from disk
• Sort as for RAMSORT#2
• Write out the sorted file by

– reading the record corresponding to the next index value from disk
– Writing it out to disk in a new position

Limitations - Can be more expensive than first appears
• Applies only to files on disk
• Reads each record twice
• Second read involves reading records in sorted order which may

require a random seek on disk
• Writes are sequential but interleaved with random seeks
• Size of file that can be sorted is limited by the number of

key/pointer pairs that can be contained in RAM

File Sorting 14

KEYSORT

Sometimes you don't actually need to
have the records in order - e.g. for
binary search you can use the sorted
index and keys to find the required key,
and then follow the pointer to the
record. In this case you wouldn't
actually do the last stage of the
KEYSORT.
But for sequential processing (MFU, merge) this would not be a good idea.

File Sorting 15

EXTERNAL SORTING

Suitable for sorting large files stored on disk that do not
fit in RAM, such as most database files
Consists of Sorting and Merging Phases –

During the Sorting Phase runs (portions or pieces) of
the file that can fit into the buffer space are read into
main memory, sorted using internal sorting and written
back to disk as temporary subfiles/runs

During the Merging Phases the sorted runs are merged
during one or more passes

File Sorting 16

EXTERNAL SORTING
Example 40 Way Merge

400,000 unsorted records

40 sorts in RAM

40 runs of 10,000 sorted records

Merge

400,00 sorted records

. . .

. . .

File Sorting 17

Example 2 Way Merge

12453 Green Michael

14765 Dowling Anne

23401 Kelly John

27421 Flood George

31007 Flynn Rita

34531 Howe Mary

41002 Browne Robert

43193 Murphy David

12453 Green Michael

31007 Flynn Rita

41002 Browne Robert

4765 Dowling Anne

3401 Kelly John

7421 Flood George

4531 Howe Mary

3193 Murphy David

File Sorting 18

M-Way Merge
Store one record of each file in a buffer array

Write out smallest buffer element and read in a new
record from the corresponding file

Invalid_Key is used to indicate which files we have
finished. Normally larger than any possible value of the
ordering field

4

File Sorting 19

open N input files and one output file
(* initialize buffers *)
loop from i = 1 to N

if end_of_file (file i)
then buffer[i] <- invalid_key else buffer[i] <- first record of

file i;
(* merge *)
stop <- false
repeat

s <- index of smallest buffer element
if buffer[s] = invalid_key

then stop <- true else write buffer[s]
if end_of_file (file s)

then buffer[s] <- invalid_key
else buffer[s] <- next record from file s

until stop = true
close files

Pseudo code

File Sorting 20

Measuring Performance
The size of a run and number of initial runs (nr) is
dictated by the number of file blocks (b) and the
available buffer space (nb)

• Nr = b/nb
• E.g b = 1024 blocks and nb = 5 blocks then 205 initial runs will be

needed

The degree of merging (dm) is the number of runs that
can be merged together in each pass.

• One buffer block is needed to hold one block from each run being
merged

• One buffer block is needed for containing one block of merged
result

• Dm is the smaller of (nb – 1) and nr
• Number of passes = logdm(nr)

File Sorting 21

Performance Issues
M-Way merges can require a significant amount of
copying of data back and forth, causing significant I/O
activity

The greater the number of initial runs and the lower the
degree (the “M”) of the merge, the greater the I/O
requirements

Other Merge techniques have been introduced to
address this problem

• Balanced Merges
• Polyphase Merges
• Cascade Merges

File Sorting 22

Review

Finding Records
• Sequential Search (Performance)
• Binary Search (Pseudocode, Performance, Limitations)

File Sorting
• RAMSORT
• KEYSORT
• External Sorting
• M-Way Merge (Pseudocode, Performance)

