B⁺-Trees

Owen.Conlan@scss.tcd.ie
B\(^+\)-Trees

most common variant of B-tree index is B\(^+\)-tree
data pointers are stored only at the leaf nodes
structure of leaf nodes differs from internal nodes
leaf nodes have entry for every value of the search field
along with a pointer to the record (or the block that contains the record)
for non-key search field, pointer points to a block containing pointers to the data file records, creating extra level of indirection
leaf nodes generally linked together to provide ordered access on the search field to the records
Structure of internal nodes of a B^+-tree:

each internal node is of the form:

$$< A_1, K_1, A_2, K_2, \ldots, A_{k-1}, K_{k-1}, A_k >$$

where $k \leq m$ and each A_i is a tree pointer

within each internal node, $K_1 < K_2 < \ldots < K_{k-1}$

for all search field values X in the sub-tree pointed at by

A_i, we have

- $K_{i-1} < X < K_i$ for $1 < i < k$,
- $X \leq K_i$ for $i=1$, and
- $K_{i-1} < X$ for $i = k$
Structure of Internal nodes of B⁺-Trees

Internal node of a B⁺ - tree
Structure of Internal nodes of B^+-Trees

each internal node has at most m tree pointers

each internal node, except the root, has at least $\lceil m/2 \rceil$ tree pointers; the root node has at least 2 tree pointers if it is an internal node

an internal node with k pointers, $k \leq m$, has $k-1$ search field (key) values.
Structure of Leaf nodes of B$^+$-Trees

Each leaf node is of the form

\(< <K_1, R_1>, <K_2, R_2>, \ldots, <K_{k-1}, R_{k-1}>, R_{\text{next}} >\>

where \(k \leq m\), each \(R_i\) is a data pointer, and \(R_{\text{next}}\) points to the next leaf node of the B$^+$-tree

within each leaf node, \(K_1 < K_2 < \ldots, K_{k-1}, k \leq m\)

Each \(R_i\) is a data pointer that points to the records whose search field value is \(K_i\) or to a file block containing the record (or a block of record pointers that point to records whose search field value is \(K_i\) if the search field is not a key)

Each leaf node has at least \(\text{CEIL}[m/2] - 1\) values

All leaf nodes are at the same level
Structure of Leaf nodes of B+-Trees

Leaf node of a B+ - tree
B⁺-Trees Legend

Value → 8 ● → Pointer

Leaf Node → 5 ● 8 ● → Leaf Node Pointer

Internal Node → → Node Pointers

A₁ K₁ Kᵢ₋₁ Aᵢ Kᵢ Kᵢ₊₁ Aᵢ₊₁ ...
Insertion into a $\text{B}^+\text{-Tree}$

Insert 8
Insertion into a B^+-Tree

Insert 5
Example 1 - Insertion into a B⁺-Tree

Insert 1

B⁺-Trees
Insertion into a B$^+$-Tree

- Inserting 1 causes overflow
- Create New Level

Insert 7
Insertion into a B\(^+\)-Tree

Insert 3
Insertion into a B⁺-Tree

Insert 12
Insertion into a B⁺-Tree

Insert 9
Insertion into a B⁺-Tree

Insert 6
Insertion into a B+-Tree

Final B+-Tree

B+-Trees
B⁺-Tree Variations

• Many variations
 • B-trees
 • B⁺-trees
 • B*-trees

• Common modifications
 • Change the fillfactor from 0.5 to 1.0
 • Allow a node to become empty before merging
B⁺-Tree is the most common variant of the B-Tree

It has two types of nodes
- Internal nodes
- Leaf nodes

Is more efficient than a B-Tree (see handout)