4D2b - Web Search and Retrieval

Owen.Conlan@scss.tcd.ie
History of Web Search

• The Web is less than 20 years old!
 – In 1992 it was merely a collection of text docs

• Internet Search Engines
 – Archie - McGill University (1990)
 – Veronica - University of Nevada (1993)

• 1993-1996 the web grew from approx. 130 sites to 600,000
 – WWW Wanderer - MIT (1994)
History of Web Search

• The first true Web Search Engines then began to appear

 “Altavista wasn’t the first, but they were the first to do it in a way that was a significant improvement over the state of the art”
 – Dr. Gary Flake, Engineer, Microsoft Corp.
Search share as it stands...
As it stands…

• **224,749,695** web sites at last count! – stats from netcraft.com

• In July 2008 Google claimed to have found 1 Trillion unique URLs on the web.

 – http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html

• **61 Billion** searches monthly worldwide – comscore 2007

• 50% of searches use two or three keywords, 20% use just one
Web Search Challenges

• WWW expanding faster than any current search engine can possibly index
• Many web pages are updated frequently or are dynamically generated which forces search engines to repeatedly revisit them
• Many dynamically generated sites are not indexable by search engines; this phenomenon is known as the invisible web.
Web Search Challenges

• The ordering of results is not always solely by relevance, but sometimes influenced by monetary contributions
 – Difficulty with Business Model

• Some sites use tricks to manipulate the search engine to improve their ranking for certain keywords; This is known as Search engine spamming
Hyperlink Analysis

• Adapted from the concept of Citation Analysis in Academia

• Analyses
 – Hyperlink and Anchor Text
 – Linking Page
 – Linked Page

• Numerous Algorithms Exist
 – HITS
 – PageRank
Enter Google

“Google's complex, automated methods make human tampering with our results extremely difficult. And though we do run relevant ads above and next to our results, Google does not sell placement within the results themselves (i.e., no one can buy a higher PageRank). A Google search is an easy, honest and objective way to find high-quality websites with information relevant to your search.”
Hubs and Authorities

• Assumption
 – If a link exists from Page A → Page B
 • Author of A recommends B

• A Page that is linked to by many other Influential Pages in a subject area is an Authority

• A Page that links to many Influential Pages in a subject area is a Hub

• A good Authority is linked to by many good Hubs

• A good Hub links to many good Authorities
Hubs and Authorities
Hyperlink Algorithms

• Recursive Algorithms which assume....
 – Quality of a Page is directly related to the quality of the Pages that link to it
 – Popularity of a Page is indicated by the number of Pages that link to it
 – Popular Pages are more likely to contain relevant Information than unpopular Pages

• “Link” measures are generated for each page and used in ranking
HITS Algorithm

- Hyperlink Induced Topic Selection – HITS
 - Popular Pages can become Hubs or Authorities
 - Quality of each Hub and Authority is calculated based on Pages that link to them
 - Each Hub and Authority is checked often to ensure that it has maintained its importance
 - Implemented in ask.com and teoma
HITS (Hypertext-Induced Topic Search)

1. Use query terms to retrieve a root set of pages (say 200).
2. Create a base set S by adding all the pages the root set links too (say 1000).
3. Associate non-negative authority weights a_p and hub weights h_p to each page
HITS (contd.)

• These weights can be updated as follows:

\[a_p = \sum_{q \in S | q \rightarrow p} h_q \quad h_p = \sum_{q \in S | q \leftarrow p} a_q \]

• We introduce an adjacency matrix \(A \)

 • \(A(i,j) = 1 \) if page \(i \) links to page \(j \)

 • The authority and hub weight vectors are

 • \(h = A.a \); \(a = A^T.h \)
HITS (contd)

• \[h = (AA^T)^k h; \quad a = (A^T A)^k a \]

• We can initialise \(h \) and \(a \) with random vals.
 - Or \(h_i \leftarrow 1/|h| \)

• According to linear algebra these two equations converge to the principle eigenvectors of \(AA^T \) and \(A^T A \) respectively.
PageRank Algorithm

• The basis of Google’s Ranking System
 – Originally developed as BackRub

• “simulates a random walk across the web and computes the score of a Page as the probability of reaching that Page”

• A Page has a high rank if the sum of the ranks of Pages pointing at it is high
 – Many Pages or Several Highly Ranked Pages
PageRank Algorithm

• Very complex algorithm but essentially...
 – Looks at the links on a Page
 – Analyses the Anchor Text around that link
 – Examines the popularity of Pages that link to that particular Page
 – Generates a PageRank score for every page in the Index
 – Over 100 factors incorporated in total
Hubs & Authorities

• Other things being equal, a web page with a lot of links into it is probably a better authority than one without.
 – A web page with a lot of links into it is an authority
 – A page with a lot of links out is a hub

• Then a web page with a lot of links from a hub is better than a web page with a lot of links from ordinary pages.
“Concept” Search

• Find pages on the topic but do not actually contain the keywords

• If hubs point at a page using a particular term then that page is probably relevant to that term
Google

• Google is HITS + Anchor Text
 – Details on a page can be augmented with text in Anchors of Links pointing to it
 – Font information can influence term weighting
 • Headings, Font Size, Bold,

• Emphasises high precision over recall
 – It might be said that Precision is real-valued rather than binary
Google vital stats (2001)

- 6000 Linux machines
 - 33 die every day
- 500TB of disk storage
- 1 Google day = 16.5 machine years
 - (6,000/365)
- 50 million queries per day
 - 1000 queries/sec
- 3 data replication centres
Google vital stats (2012)
Google vital stats (2012)

• Mostly speculation
 – Search is no longer Google’s only business!
• Highly customised server configuration
• Tailored version of Linux
• 500 and 681 megawatts
• 20 to 100 petaflops in 2008?
Cheats

- Finding new and better ways to scam search engines has long been a popular pastime of webmasters.
 - Traditionally, search engines used keywords found in metatags and the body of html pages to index a web site.
 - So webmasters listed every possible keyword even remotely related to their site in metatags or in invisible text.
 - After a while most search engines became fairly useless because of all the junk sites listed in the search results.
Scamming Google

• First the “dumb m*****-f*****” controversy
For a while the top result for this query on Google

Google's cache is the snapshot that we took of the page as we crawled the web. The page may have changed since that time. Click here for the current page without highlighting.

Google is not affiliated with the authors of this page nor responsible for its content.

These terms only appear in links pointing to this page: dumb motherfucker

Welcome to the George W. Bush for President Political Materials website. You'll find great Bush-Cheney campaign materials, gift items and wearables.

BE SURE TO LOOK FOR OUR SPECIAL VALUE ITEMS! SOME OF OUR FAVORITE PRODUCTS NOW HAVE A NEW LOW PRICE!

This website is proudly presented and independently operated by the Spalding Group. For information on the Spalding Group, call 1-800-366-6755.

All materials have been sanctioned by Bush for President, Inc.
Scamming Google

• First the “dumb m*****-f*****” controversy
 – *Was this orchestrated?*

• Apparenty “more evil than satan” brought back www.microsoft.com for a while so
 – “the engine was tweaked to fix it”
Future Research?

• Hubs, Authorities + Link Text
 – Very powerful indicators for ranking

• Is there room for further improvement?
 – Identify scammers (bogus link structures)
 • Networks of hubs and authorities are subgraphs
 • Are bogus subgraphs distinguishable from real graphs?