Concurrent Signal Assignment Statements are suitable for describing gate-level circuits. Models for higher level abstraction are difficult to express with Concurrent Signal Assignment Statements. Higher level abstraction models are required for multiplexors, decoders ...

VHDL provides Conditional Signal Assignment statements for these situations.
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity mux4 is
 Port (in0, in1, in2, in3: in std_logic_vector (7 downto 0);
 s0, s1: in std_logic;
 z: out std_logic_vector (7 downto 0));
end mux4;

architecture behavioural of mux4 is
begin
 z <= in0 after 5ns when s0 = "0" and s1 = "0" else
 in1 after 5ns when s0 = "0" and s1 = "1" else
 in2 after 5ns when s0 = "1" and s1 = "0" else
 in3 after 5ns when s0 = "1" and s1 = "1" else
 "00000000" after 5ns;
end behavioural;
Conditional Signal Assignment

In the 4to1 - 8bit multiplexor example:

- If S1 or S2 changes the concurrent assignment statement is executed.
 - All four conditions may be checked.
- The order is relevant.
 - The evaluation takes place in the order that they appear.
 - The first true condition determines the output.
- The order should reflect the physical implementation.
Waveform (4 to 1 - 8bit Multiplexer)
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity four_to_two_priority is
 Port (S0, S1, S2, S3 : in std_logic;
 Z : out std_logic_vector(1 downto 0));
end four_to_two_priority;

architecture Behavioral of four_to_two_priority is
begin
Z <= "00" after 5 ns when S0='1' else
 "01" after 5 ns when S1='1' else
 "10" after 5 ns when S2='1' else
 "11" after 5 ns when S3='1' else
 "00" after 5 ns;
end Behavioral;
The order in the conditional signal assignment statement in the 4 to 2-Priority Encoder example is important.

Note in the example:
- The last statement set the output to zero.
- This is necessary because the select signals can have values other than '1' and '0'.
- This is the case because the select signals are declared as std_logic and std_logic_vector.
Waveform (4 to 2 - Priority Encoder)
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity four_to_two_priority is
 Port (S0, S1, S2, S3 : in std_logic;
 Z : out std_logic_vector(1 downto 0));
end four_to_two_priority;

architecture Behavioral of four_to_two_priority is
begin
 Z <= "00" after 5 ns when S0='1' else "01" after 5 ns when S1='1' else
 unaffected when S2='1' else "11" after 5 ns when S3='1' else
 "00" after 5 ns;
end Behavioral;
Waveform (Unaffected)
Selected Signal Assignment Statement

- Signal value is determined by the select expression
- In this example we read from a register file with eight registers (reg0...reg7)
- Read only register file with two read ports

<table>
<thead>
<tr>
<th>Select Value</th>
<th>Register Value</th>
<th>Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>%000</td>
<td>$12345678</td>
<td>reg0</td>
</tr>
<tr>
<td>%001</td>
<td>$ABCDEF00</td>
<td>reg1</td>
</tr>
<tr>
<td>%010</td>
<td>$12345678</td>
<td>reg2</td>
</tr>
<tr>
<td>%011</td>
<td>$ABCDEF00</td>
<td>reg3</td>
</tr>
<tr>
<td>%100</td>
<td>$12345678</td>
<td>reg4</td>
</tr>
<tr>
<td>%101</td>
<td>$ABCDEF00</td>
<td>reg5</td>
</tr>
<tr>
<td>%110</td>
<td>$12345678</td>
<td>reg6</td>
</tr>
<tr>
<td>%111</td>
<td>$ABCDEF00</td>
<td>reg7</td>
</tr>
</tbody>
</table>
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity reg_file is
 Port (addr1, addr2 : in std_logic_vector(2 downto 0);
 reg_out_1, reg_out_2 : out std_logic_vector(31 downto 0));
end reg_file;

architecture Behavioral of reg_file is

signal reg0, reg2, reg4, reg6: std_logic_vector(31 downto 0):= x"12345678";
signal reg1, reg3, reg5, reg7: std_logic_vector(31 downto 0):= x"abcdef00";

begin
 with addr1 select
 begin
 reg_out_1 <= reg0 after 5 ns when "000",
 reg1 after 5 ns when "001",
 reg2 after 5 ns when "010",
 reg3 after 5 ns when "011",
 reg3 after 5 ns when others;
 end with;

 with addr2 (1 downto 0) select
 begin
 reg_out_2 <= reg0 after 5 ns when "00",
 reg1 after 5 ns when "01",
 reg2 after 5 ns when "10",
 reg3 after 5 ns when "11",
 reg3 after 5 ns when others;
 end with;
end Behavioral;
Waveform (Select)
Selected Signal Assignment

- Similar to case statement in conventional languages.
- Choices are not evaluated in sequence.
- Only one must be true.
- The statement must cover all possible combinations.
- The **others** clause must be used in situation were not all possible combinations are covered by the select statement.
In the second select statement operates on a subset of the address range \(\text{addr2 (1 downto 0)} \).

The \textbf{when others} clause is still required because \text{addr2} is declared as \texttt{std_logic_vector} and can therefore take 9 values.

\textbf{unaffected} is may also be used in this type of statement.

```vhdl
with addr2 (1 downto 0) select
reg_out_2 <= reg0 after 5 ns when "00",
            reg1 after 5 ns when "01",
            reg2 after 5 ns when "10",
            reg3 after 5 ns when "11",
            reg3 after 5 ns when others;
end Behavioral;
```