The fundamental operation of the arithmetic is addition.

All others:
- Subtraction
- Multiplication
- Division

are implemented in terms of it.

We need therefore an efficient implementation.
An n-bit ripple-carry-adder is constructed from n full-adders.

\[
S = x \oplus y \oplus C_{\text{in}}
\]

\[
C_{\text{out}} = XY + xC_{\text{in}} + yC_{\text{in}}
\]
4-bit Ripple Carry Adder
RCA Equations

\[S_i = x_i \oplus y_i \oplus C_i \]

\[C_{i+1} = X_i Y_i + xC_i + yC_i \]

- Hence, using an AND+wired-OR and n-bit RCA introduces n gate delays.
- For 64 bit calculations this is too slow
- (64 gate delays)
Carry Lookahead

Boolean Expression

\[C_{i+1} = x_i y_i + C_i (x_i + y_i) \]

\[C_1 = x_0 y_0 + C_0 (x_0 + y_0) \]
\[C_2 = x_1 y_1 + C_1 (x_1 + y_1) \]
\[= x_1 y_1 + [x_0 y_0 + C_0 (x_0 + y_0)](x_1 + y_1) \]

with \(g_i = x_i y_i \) Generate Carry
\(p_i = x_i + y_i \) Carry Propagate

\[C_{i+1} = g_i + p_i C_i \]
CS2022 Carry Lookahead Boolean Expression

\[C_{i+1} = g_i + p_i C_i \]

\[C_1 = x_0 y_0 + C_0(x_0 + y_0) = g_0 + C_0 p_0 \]

\[C_2 = x_1 y_1 + C_1(x_1 + y_1) = x_1 y_1 + [x_0 y_0 + C_0(x_0 + y_0)](x_1 + y_1) = g_1 + p_1 g_0 + p_0 p_1 C_0 \]

\[C_3 = g_2 + p_2 g_1 + p_1 p_2 g_0 + p_0 p_1 p_2 C_0 \]

\[C_4 = g_3 + p_3 g_2 + p_2 p_3 g_1 + p_1 p_2 p_3 g_0 + p_0 p_1 p_2 p_3 C_0 \]
4-bit Carry Lookahead Adder
\[C_4 = g_3 + p_3g_2 + p_2p_3g_1 + p_1p_2p_3g_0 + p_0p_1p_2p_3C_0 \]
Carry Lookahead Adder

\[C_{i+1} = g_i + p_i g_{i-1} + p_i p_{i-1} g_{i-2} + \ldots + p_i p_{i-1} \ldots p_0 C_0 \]

- This requires just two gate delays:
 - One to generate \(g_i \) and \(p_i \)
 - Another to AND them
- Again we can use wired OR
- But, it requires AND gates with a fan in of \(n \)
- In practice we can only efficiently build single gates with a limited fan-in
- We build the lookahead circuit as a multi-level circuit
Groups of Input Bits

For example, let fan-in = 4 and define:

- G_i' A carry out is generated in the i^{th} group of four input bits
- P_i' A carry out is propagated by the i^{th} group of four input bits

\[
\begin{align*}
G_0' &= g_3 + p_3g_2 + p_2p_3g_1 + p_1p_2p_3g_0 \\
P_0' &= p_0p_1p_2p_3 \\
C_4 &= G_0' + C_0P_0' \\
C_8 &= G_1' + P_1'G_0' + P_0'P_1'C_0 \\
C_{12} &= G_2' + P_2'G_1' + P_1'P_2'G_0' + P_0'P_1'P_2'C_0
\end{align*}
\]
\[C_4 = G_0' + C_0P_0' \]
\[C_8 = G_1' + P_1'G_0' + P_0'P_1'C_0 \]
The next level of generate G'' and propagate P'' terms will cover 16 bits.

\[G'' = G_3' + P_3'G_2' + P_3'P_2'G_1' + P_3'P_2'P_1'G_0 \]

\[P'' = P_3'P_2'P_1'P_0 \]
We can implement a 64-bit adder using AND-or logic with a fan-in = 4 and a maximum propagation delay of:

\[t_{p_{\text{max}}} = 3(G_1') + 2(G_1'') + 2(C_{48}) + 2(C_{60}) + 3(S_{63}) \]
\[= 12 \text{ gate delays} \]

Compare this with RCA using AND-wiredOR which requires 64 gate delays.

If we add a third layer \((G''', P''')\) we can construct a 4x64 = 256 bit adder with maximum delay:

\[t_{p_{\text{max}}} = 3 + 2 + 2 + 2 + 2 + 2 + 3 \]
\[= 16 \text{ gate delays} \]