Communicating Transactions

Matthew Hennessy

 ${\sf joint\ work\ with\ Edsko\ de\ Vries,\ Vasileois\ Koutavas}$

FSEN11, Teheran, April 2011

Outline

Introduction

TransCCS

Liveness and safety properties

Compositional semantics

Outline

Introduction

TransCCS

Liveness and safety properties

Compositional semantics

Standard Transactions

► Transactions provide an abstraction for error recovery in a concurrent setting.

Standard Transactions

- ► Transactions provide an abstraction for error recovery in a concurrent setting.
- Guarantees:
 - Atomicity: Each transaction either runs in its entirety (commits) or not at all
 - Consistency: When faults are detected the transaction is automatically rolled-back
 - ▶ Isolation: The effects of a transaction are concealed from the rest of the system until the transaction commits
 - Durability: After a transaction commits, its effects are permanent

Standard Transactions

Transactions provide an abstraction for error recovery in a concurrent setting.

Guarantees:

- Atomicity: Each transaction either runs in its entirety (commits) or not at all
- Consistency: When faults are detected the transaction is automatically rolled-back
- ▶ Isolation: The effects of a transaction are concealed from the rest of the system until the transaction commits
- Durability: After a transaction commits, its effects are permanent
- ▶ Isolation:
 - good: provides coherent semantics
 - bad: limits concurrency
 - bad: limits co-operation between transactions and their environments

Communicating Transactions

- ▶ We drop isolation to increase concurrency
 - ► There is no limit on the communication between a transaction and its environment
- ▶ These new transactional systems guarantee:
 - Atomicity: Each transaction will either run in its entirety or not at all
 - Consistency: When faults are detected the transaction is automatically rolled-back, together with all effects of the transaction on its environment
 - ▶ Durability: After all transactions that have interacted commit, their effects are permanent (coordinated checkpointing)

Outline

Introduction

TransCCS

Liveness and safety properties

Compositional semantics

An extension of CCS with communicating transactions.

- 1. Simple language: 2 additional language constructs and 3 additional reduction rules.
- 2. Intricate concurrent and transactional behaviour:
 - encodes nested, restarting, and non-restarting transactions
 - does not limit communication between transactions
- 3. Simple behavioural theory: based on properties of systems:
 - Safety property: nothing bad happens
 - Liveness property: something good happens

Transaction $[P \triangleright_k Q]$

- execute P to completion (co k)
- subject to random aborts
- if aborted roll back all effects of P and initiate Q

Transaction $[P \triangleright_k Q]$

- ightharpoonup execute P to completion (co k)
- subject to random aborts
- ▶ if aborted roll back all effects of P and initiate Q
- ▶ roll back includes . . . environmental impact of P

Co-operating actions: $a \leftarrow \text{needs co-operation of} \rightarrow \overline{a}$

Co-operating actions: $a \leftarrow \text{needs co-operation of} \rightarrow \overline{a}$

$$T_a \mid T_b \mid T_c \mid P_d \mid P_e$$

where

$$T_{a} = \left[\overline{d}.\overline{b}.(\operatorname{co} k_{1} \mid a) \triangleright_{k_{1}} \mathbf{0} \right]$$

$$T_{b} = \left[\overline{c}.(\operatorname{co} k_{2} \mid b) \triangleright_{k_{2}} \mathbf{0} \right]$$

$$T_{c} = \left[\overline{e}.c.\operatorname{co} k_{3} \triangleright_{k_{3}} \mathbf{0} \right]$$

$$P_{d} = d.R_{d}$$

$$P_{e} = e.R_{e}$$

Co-operating actions: $a \leftarrow \text{needs co-operation of} \rightarrow \overline{a}$

$$T_a \mid T_b \mid T_c \mid P_d \mid P_e$$

where

$$T_{a} = \begin{bmatrix} \overline{d}.\overline{b}.(\operatorname{co} k_{1} \mid a) \triangleright_{k_{1}} \mathbf{0} \end{bmatrix}$$

$$T_{b} = \begin{bmatrix} \overline{c}.(\operatorname{co} k_{2} \mid b) \triangleright_{k_{2}} \mathbf{0} \end{bmatrix}$$

$$T_{c} = \begin{bmatrix} \overline{e}.c.\operatorname{co} k_{3} \triangleright_{k_{3}} \mathbf{0} \end{bmatrix}$$

$$P_{d} = d.R_{d}$$

$$P_{e} = e.R_{e}$$

 \triangleright if T_c aborts, what roll-backs are necessary?

Co-operating actions: $a \leftarrow \text{needs co-operation of} \rightarrow \overline{a}$

$$T_a \mid T_b \mid T_c \mid P_d \mid P_e$$

where

$$T_{a} = \begin{bmatrix} \overline{d}.\overline{b}.(\operatorname{co} k_{1} \mid a) \triangleright_{k_{1}} \mathbf{0} \end{bmatrix}$$

$$T_{b} = \begin{bmatrix} \overline{c}.(\operatorname{co} k_{2} \mid b) \triangleright_{k_{2}} \mathbf{0} \end{bmatrix}$$

$$T_{c} = \begin{bmatrix} \overline{e}.c.\operatorname{co} k_{3} \triangleright_{k_{3}} \mathbf{0} \end{bmatrix}$$

$$P_{d} = d.R_{d}$$

$$P_{e} = e.R_{e}$$

- \triangleright if T_c aborts, what roll-backs are necessary?
- ▶ When can action a be considered permanent?

Co-operating actions: $a \leftarrow \text{needs co-operation of} \rightarrow \overline{a}$

$$T_a \mid T_b \mid T_c \mid P_d \mid P_e$$

where

$$T_{a} = \begin{bmatrix} \overline{d}.\overline{b}.(\operatorname{co} k_{1} \mid a) \triangleright_{k_{1}} \mathbf{0} \end{bmatrix}$$

$$T_{b} = \begin{bmatrix} \overline{c}.(\operatorname{co} k_{2} \mid b) \triangleright_{k_{2}} \mathbf{0} \end{bmatrix}$$

$$T_{c} = \begin{bmatrix} \overline{e}.c.\operatorname{co} k_{3} \triangleright_{k_{3}} \mathbf{0} \end{bmatrix}$$

$$P_{d} = d.R_{d}$$

$$P_{e} = e.R_{e}$$

- \triangleright if T_c aborts, what roll-backs are necessary?
- ▶ When can action a be considered permanent?
- \triangleright When can code R_d be considered permanent?

Reduction semantics main rules

R-Comm

$$\frac{a_i = \overline{b}_j}{\sum_{i \in I} a_i . P_i \mid \sum_{j \in J} b_j . Q_j \to P_i \mid Q_j}$$

R-Co

$$\llbracket P \mid \mathsf{co} \ k \, \triangleright_k \, Q \rrbracket \to P$$

R-AB

$$\boxed{\llbracket P \rhd_k \ Q \rrbracket \ \to Q}$$

Communication

Commit

Random abort

Reduction semantics main rules

R-Comm

$$\frac{a_i = \overline{b}_j}{\sum_{i \in I} a_i.P_i \mid \sum_{j \in J} b_j.Q_j \to P_i \mid Q_j}$$

R-Co

$$\llbracket P \mid \mathsf{co} \ k \, \triangleright_k \, Q \rrbracket \to P$$

R-AB

$$\boxed{\llbracket P \, \triangleright_k \, Q \rrbracket \, \to \, Q}$$

R-Емв

$$k \notin R$$

$$\llbracket P \triangleright_k Q \rrbracket \mid R \to \llbracket P \mid R \triangleright_k Q \mid R \rrbracket$$

Communication

Commit

Random abort

Embed

- $ightharpoonup \omega$: I am happy
- ▶ o: I am sad

- $ightharpoonup \omega$: I am happy
- ▶ o: I am sad

$$a.c.\omega + e.\omega \mid [\overline{a}.\overline{c}.co \ k + \overline{e} \triangleright_k \ r]$$

- $ightharpoonup \omega$: I am happy
- ▶ ത: I am sad

$$a.c.\omega + e.\omega \mid [\overline{a}.\overline{c}.co k + \overline{e} \triangleright_k r]$$

- $\blacktriangleright \omega$: I am happy
- ▶ ຫ: I am sad

$$\begin{array}{c} a.c.\omega + e.\omega \mid \llbracket \overline{a}.\overline{c}.\text{co } k + \overline{e} \triangleright_k r \rrbracket \\ \\ \hline \text{\mathbb{R}-Emb} & \llbracket a.c.\omega + e.\omega \mid \overline{a}.\overline{c}.\text{co } k + \overline{e} \triangleright_k a.c.\omega + e.\omega \mid r \rrbracket \end{array}$$

- $\blacktriangleright \omega$: I am happy
- ▶ m: I am sad

$$\begin{array}{c} a.c.\omega + e.\omega \mid \begin{bmatrix} \overline{a}.\overline{c}.\text{co } k + \overline{e} \triangleright_{k} r \end{bmatrix} \\ \xrightarrow{\text{R-EMB}} & \begin{bmatrix} a.c.\omega + e.\omega \mid \overline{a}.\overline{c}.\text{co } k + \overline{e} \triangleright_{k} a.c.\omega + e.\omega \mid r \end{bmatrix} \\ \xrightarrow{\text{R-COMM}} & \begin{bmatrix} c.\omega \mid \overline{c}.\text{co } k \mapsto_{k} a.c.\omega + e.\omega \mid r \end{bmatrix} \end{array}$$

- $\blacktriangleright \omega$: I am happy
- ▶ ത: I am sad

$$\begin{array}{c} a.c.\omega + e.\omega \mid \llbracket \overline{a}.\overline{c}.\operatorname{co} \; k + \overline{e} \, \triangleright_k \; r \rrbracket \\ \\ \frac{\operatorname{R-EMB}}{} & \llbracket a.c.\omega + e.\omega \mid \overline{a}.\overline{c}.\operatorname{co} \; k + \overline{e} \, \triangleright_k \; a.c.\omega + e.\omega \mid r \rrbracket \\ \\ \frac{\operatorname{R-COMM}}{} & \llbracket \; \; c.\omega \; \mid \; \overline{c}.\operatorname{co} \; k \; \quad \triangleright_k \; a.c.\omega + e.\omega \mid r \rrbracket \\ \\ \frac{\operatorname{R-COMM}}{} & \llbracket \; \; \; \omega \; \mid \; \operatorname{co} \; k \; \quad \triangleright_k \; a.c.\omega + e.\omega \mid r \rrbracket \end{array}$$

- $\blacktriangleright \omega$: I am happy
- ▶ ຫ: I am sad

$$\begin{array}{c} a.c.\omega + e.\omega \mid \begin{bmatrix} \overline{a}.\overline{c}.\operatorname{co}\ k + \overline{e}\ \triangleright_{k}\ r \end{bmatrix} \\ \xrightarrow{\mathrm{R-EMB}} & \begin{bmatrix} a.c.\omega + e.\omega \mid \overline{a}.\overline{c}.\operatorname{co}\ k + \overline{e}\ \triangleright_{k}\ a.c.\omega + e.\omega \mid r \end{bmatrix} \\ \xrightarrow{\mathrm{R-COMM}} & \begin{bmatrix} c.\omega \mid \overline{c}.\operatorname{co}\ k \mid \triangleright_{k}\ a.c.\omega + e.\omega \mid r \end{bmatrix} \\ \xrightarrow{\mathrm{R-COMM}} & \begin{bmatrix} \omega \mid \operatorname{co}\ k \mid \triangleright_{k}\ a.c.\omega + e.\omega \mid r \end{bmatrix} \end{array}$$

- $\blacktriangleright \omega$: I am happy
- ▶ ത: I am sad

$$\begin{array}{c} a.c.\omega + e.\omega \mid \begin{bmatrix} \overline{a}.\overline{c}.\operatorname{co} \ k + \overline{e} \ \triangleright_k \ r \end{bmatrix} \\ \xrightarrow{\text{R-EMB}} & \begin{bmatrix} a.c.\omega + e.\omega \mid \overline{a}.\overline{c}.\operatorname{co} \ k + \overline{e} \ \triangleright_k \ a.c.\omega + e.\omega \mid r \end{bmatrix} \\ \xrightarrow{\text{R-COMM}} & \begin{bmatrix} c.\omega \mid \overline{c}.\operatorname{co} \ k \mid \triangleright_k \ a.c.\omega + e.\omega \mid r \end{bmatrix} \\ \xrightarrow{\text{R-COMM}} & \begin{bmatrix} \omega \mid \operatorname{co} \ k \mid \triangleright_k \ a.c.\omega + e.\omega \mid r \end{bmatrix} \\ \xrightarrow{\text{R-COMM}} & \omega \end{array}$$

$$a.c.\omega + e.\omega \mid [\overline{a}.\overline{c}.co \ k + \overline{e} \triangleright_k \ r]$$

$$a.c.\omega + e.\omega \mid [\overline{a}.\overline{c}.co k + \overline{e} \triangleright_k r]$$

$$[a.c.\omega + e.\omega \mid \overline{a}.\overline{c}.co \mid k + \overline{e} \mid k \mid a.c.\omega + e.\omega \mid r]$$

$$a.c.\omega + e.\omega \mid [\overline{a}.\overline{c}.\operatorname{co} k + \overline{e} \triangleright_{k} r]]$$

$$\xrightarrow{\text{R-EMB}} [a.c.\omega + e.\omega \mid \overline{a}.\overline{c}.\operatorname{co} k + \overline{e} \triangleright_{k} a.c.\omega + e.\omega \mid r]]$$

$$\xrightarrow{\text{R-COMM}} [\omega \mapsto_{k} a.c.\omega + e.\omega \mid r]$$

$$a.c.\omega + e.\omega \mid [\![\overline{a}.\overline{c}.\operatorname{co} k + \overline{e} \triangleright_{k} r]\!]$$

$$\xrightarrow{\text{R-EMB}} [\![a.c.\omega + e.\omega \mid \overline{a}.\overline{c}.\operatorname{co} k + \overline{e} \triangleright_{k} a.c.\omega + e.\omega \mid r]\!]$$

$$\xrightarrow{\text{R-COMM}} \triangleright_{k} a.c.\omega + e.\omega \mid r[\![]\!] \text{ (Deadlocked)}$$

Simple Example (a second trace)

$$a.c.\omega + e.\omega \mid [\![\overline{a}.\overline{c}.\operatorname{co} k + \overline{e} \triangleright_{k} r]\!]$$

$$\xrightarrow{\text{R-EMB}} [\![a.c.\omega + e.\omega \mid \overline{a}.\overline{c}.\operatorname{co} k + \overline{e} \triangleright_{k} a.c.\omega + e.\omega \mid r]\!]$$

$$\xrightarrow{\text{R-COMM}} [\![\omega \qquad \qquad \triangleright_{k} a.c.\omega + e.\omega \mid r]\!]$$

$$\xrightarrow{\text{R-AB}} a.c.\omega + e.\omega \mid r$$

Simple Example (a second trace)

$$\begin{array}{c} a.c.\omega + e.\omega \mid \left[\!\left[\overline{a}.\overline{c}.\text{co} \; k + \overline{e} \; \triangleright_{k} \; r \right]\!\right] \\ \\ \frac{\text{R-EMB}}{\longrightarrow} & \left[\!\left[a.c.\omega + e.\omega \; \middle| \; \overline{a}.\overline{c}.\text{co} \; k + \overline{e} \; \triangleright_{k} \; a.c.\omega + e.\omega \; \middle| \; r \right]\!\right] \\ \\ \frac{\text{R-COMM}}{\longrightarrow} & \left[\!\left[\omega \; \middle| \; \sum_{k} \; a.c.\omega + e.\omega \; \middle| \; r \right]\!\right] \\ \\ \frac{\text{R-AB}}{\longrightarrow} & a.c.\omega + e.\omega \; \middle| \; r \quad \text{(The environment is restored)} \end{array}$$

Simple Example (all traces)

Simple Example (all traces)

Will never be sad:

(f) assuming r does not contain \overline{e}

Aborting transactions

A commit step makes the effects of the transaction permanent (**Durability**)

An abort step:

- restarts the transaction
- rolls-back embedded processes to their state before embedding (Consistency)
- does not roll-back actions that happened before embedding
- does not affect non-embedded processes

The behavioural theory will show the **Atomicity** property.

Restarting transactions

$$a.c.\omega + e.\omega \mid \mu X. \ [\overline{a}.\overline{c}.co \ k + \overline{e} \triangleright_k X]$$

Restarting transactions

(1)

Restarting transactions

Will never be sad:

(n)

 $[a.co k | b \triangleright_k \mathbf{0}] | [\overline{a.co} | c \triangleright_l \mathbf{0}]$


```
[a.co k | b \triangleright_k \mathbf{0}] | [\overline{a}.co l | c \triangleright_l \mathbf{0}]
```


$$\begin{bmatrix}
a.\operatorname{co} k \mid b \triangleright_{k} & \mathbf{0}
\end{bmatrix} \mid \begin{bmatrix}
\bar{a}.\operatorname{co} l \mid c \triangleright_{l} & \mathbf{0}
\end{bmatrix}$$

$$\xrightarrow{\text{R-EMB}} \quad \begin{bmatrix}
a.\operatorname{co} k \mid b \mid \begin{bmatrix} \bar{a}.\operatorname{co} l \mid c \triangleright_{l} & \mathbf{0} \end{bmatrix} \triangleright_{k} & \begin{bmatrix} \bar{a}.\operatorname{co} l \mid c \triangleright_{l} & \mathbf{0} \end{bmatrix}
\end{bmatrix}$$

$$\begin{bmatrix}
a.\operatorname{co} k \mid b \triangleright_{k} & \mathbf{0}
\end{bmatrix} \mid \begin{bmatrix}
\overline{a}.\operatorname{co} l \mid c \triangleright_{l} & \mathbf{0}
\end{bmatrix}$$

$$\xrightarrow{\text{R-EMB}} \quad \begin{bmatrix}
a.\operatorname{co} k \mid b \mid \begin{bmatrix}\overline{a}.\operatorname{co} l \mid c \triangleright_{l} & \mathbf{0}\end{bmatrix} & \triangleright_{k} & \begin{bmatrix}\overline{a}.\operatorname{co} l \mid c \triangleright_{l} & \mathbf{0}\end{bmatrix}
\end{bmatrix}$$

$$\begin{bmatrix}
a.\operatorname{co} k \mid b \triangleright_{k} & \mathbf{0}
\end{bmatrix} \mid \begin{bmatrix}
\bar{a}.\operatorname{co} I \mid c \triangleright_{I} & \mathbf{0}
\end{bmatrix}$$

$$\overset{\text{R-EMB}}{\longrightarrow} \begin{bmatrix}
a.\operatorname{co} k \mid b \mid \begin{bmatrix}
\bar{a}.\operatorname{co} I \mid c \triangleright_{I} & \mathbf{0}
\end{bmatrix} \triangleright_{k} \begin{bmatrix}
\bar{a}.\operatorname{co} I \mid c \triangleright_{I} & \mathbf{0}
\end{bmatrix}$$

$$\overset{\text{R-EMB}}{\longrightarrow} \begin{bmatrix}
b \mid \begin{bmatrix}
a.\operatorname{co} k \mid \bar{a}.\operatorname{co} I \mid c \triangleright_{I} & a.\operatorname{co} k
\end{bmatrix} \triangleright_{k} \begin{bmatrix}
\bar{a}.\operatorname{co} I \mid c \triangleright_{I} & \mathbf{0}
\end{bmatrix}$$

$$\begin{bmatrix}
a.\operatorname{co} k \mid b \triangleright_{k} & \mathbf{0}
\end{bmatrix} \mid \begin{bmatrix} \overline{a}.\operatorname{co} I \mid c \triangleright_{I} & \mathbf{0} \end{bmatrix}$$

$$\xrightarrow{\text{R-EMB}} \quad \begin{bmatrix}
a.\operatorname{co} k \mid b \mid \begin{bmatrix} \overline{a}.\operatorname{co} I \mid c \triangleright_{I} & \mathbf{0} \end{bmatrix} \triangleright_{k} & \begin{bmatrix} \overline{a}.\operatorname{co} I \mid c \triangleright_{I} & \mathbf{0} \end{bmatrix}
\end{bmatrix}$$

$$\xrightarrow{\text{R-EMB}} \quad \begin{bmatrix}
b \mid \begin{bmatrix} a.\operatorname{co} k \mid \overline{a}.\operatorname{co} I \mid c \triangleright_{I} & a.\operatorname{co} k \end{bmatrix} \triangleright_{k} & \begin{bmatrix} \overline{a}.\operatorname{co} I \mid c \triangleright_{I} & \mathbf{0} \end{bmatrix}
\end{bmatrix}$$

$$\xrightarrow{\text{R-COMM}} \quad \begin{bmatrix}
b \mid \begin{bmatrix} \operatorname{co} k \mid \operatorname{co} I \mid c \triangleright_{I} & a.\operatorname{co} k \end{bmatrix} \triangleright_{k} & \begin{bmatrix} \overline{a}.\operatorname{co} I \mid c \triangleright_{I} & \mathbf{0} \end{bmatrix}
\end{bmatrix}$$

$$\begin{bmatrix}
a.\operatorname{co} k \mid b \triangleright_{k} & \mathbf{0} \end{bmatrix} \mid \begin{bmatrix} \overline{a}.\operatorname{co} I \mid c \triangleright_{I} & \mathbf{0} \end{bmatrix} \\
\xrightarrow{\text{R-EMB}} \quad \begin{bmatrix}
a.\operatorname{co} k \mid b \mid \begin{bmatrix} \overline{a}.\operatorname{co} I \mid c \triangleright_{I} & \mathbf{0} \end{bmatrix} \triangleright_{k} & \begin{bmatrix} \overline{a}.\operatorname{co} I \mid c \triangleright_{I} & \mathbf{0} \end{bmatrix} \end{bmatrix} \\
\xrightarrow{\text{R-EMB}} \quad \begin{bmatrix}
b \mid \begin{bmatrix} a.\operatorname{co} k \mid \overline{a}.\operatorname{co} I \mid c \triangleright_{I} & a.\operatorname{co} k \end{bmatrix} \triangleright_{k} & \begin{bmatrix} \overline{a}.\operatorname{co} I \mid c \triangleright_{I} & \mathbf{0} \end{bmatrix} \end{bmatrix} \\
\xrightarrow{\text{R-COMM}} \quad \begin{bmatrix}
b \mid \begin{bmatrix} \operatorname{co} k \mid \operatorname{co} I \mid c \triangleright_{I} & a.\operatorname{co} k \end{bmatrix} \triangleright_{k} & \begin{bmatrix} \overline{a}.\operatorname{co} I \mid c \triangleright_{I} & \mathbf{0} \end{bmatrix} \end{bmatrix} \\
\xrightarrow{\text{R-CO}} \quad \begin{bmatrix}
b \mid \operatorname{co} k \mid c \triangleright_{k} & \begin{bmatrix} \overline{a}.\operatorname{co} I \mid c \triangleright_{I} & \mathbf{0} \end{bmatrix} \end{bmatrix}$$

$$\begin{bmatrix}
a.\operatorname{co} k \mid b \triangleright_{k} & \mathbf{0}
\end{bmatrix} \mid \begin{bmatrix} \overline{a}.\operatorname{co} I \mid c \triangleright_{I} & \mathbf{0} \end{bmatrix}$$

$$\xrightarrow{\text{R-EMB}} \quad \begin{bmatrix}
a.\operatorname{co} k \mid b \mid \begin{bmatrix} \overline{a}.\operatorname{co} I \mid c \triangleright_{I} & \mathbf{0} \end{bmatrix} \triangleright_{k} & \begin{bmatrix} \overline{a}.\operatorname{co} I \mid c \triangleright_{I} & \mathbf{0} \end{bmatrix}
\end{bmatrix}$$

$$\xrightarrow{\text{R-EMB}} \quad \begin{bmatrix}
b \mid \begin{bmatrix} a.\operatorname{co} k \mid \overline{a}.\operatorname{co} I \mid c \triangleright_{I} & a.\operatorname{co} k \end{bmatrix} \triangleright_{k} & \begin{bmatrix} \overline{a}.\operatorname{co} I \mid c \triangleright_{I} & \mathbf{0} \end{bmatrix}
\end{bmatrix}$$

$$\xrightarrow{\text{R-COMM}} \quad \begin{bmatrix}
b \mid \begin{bmatrix} \operatorname{co} k \mid \operatorname{co} I \mid c \triangleright_{I} & a.\operatorname{co} k \end{bmatrix} \triangleright_{k} & \begin{bmatrix} \overline{a}.\operatorname{co} I \mid c \triangleright_{I} & \mathbf{0} \end{bmatrix}
\end{bmatrix}$$

$$\xrightarrow{\text{R-CO}} \quad \begin{bmatrix}
b \mid \operatorname{co} k \mid c \triangleright_{k} & \begin{bmatrix} \overline{a}.\operatorname{co} I \mid c \triangleright_{I} & \mathbf{0} \end{bmatrix}
\end{bmatrix}$$

$$\xrightarrow{\text{R-CO}} \quad b \mid c$$

$$\begin{bmatrix}
a.\operatorname{co} k \mid b \triangleright_{k} & \mathbf{0}
\end{bmatrix} \mid \begin{bmatrix} \overline{a}.\operatorname{co} I \mid c \triangleright_{I} & \mathbf{0}
\end{bmatrix} \\
\xrightarrow{\text{R-EMB}} \quad \begin{bmatrix}
a.\operatorname{co} k \mid b \mid \begin{bmatrix} \overline{a}.\operatorname{co} I \mid c \triangleright_{I} & \mathbf{0}
\end{bmatrix} \triangleright_{k} & \begin{bmatrix} \overline{a}.\operatorname{co} I \mid c \triangleright_{I} & \mathbf{0}
\end{bmatrix}
\end{bmatrix} \\
\xrightarrow{\text{R-EMB}} \quad \begin{bmatrix}
b \mid \begin{bmatrix} a.\operatorname{co} k \mid \overline{a}.\operatorname{co} I \mid c \triangleright_{I} & a.\operatorname{co} k
\end{bmatrix} \triangleright_{k} & \begin{bmatrix} \overline{a}.\operatorname{co} I \mid c \triangleright_{I} & \mathbf{0}
\end{bmatrix}
\end{bmatrix} \\
\xrightarrow{\text{R-COMM}} \quad \begin{bmatrix}
b \mid \begin{bmatrix} \operatorname{co} k \mid \operatorname{co} I \mid c \triangleright_{I} & a.\operatorname{co} k
\end{bmatrix} \triangleright_{k} & \begin{bmatrix} \overline{a}.\operatorname{co} I \mid c \triangleright_{I} & \mathbf{0}
\end{bmatrix}
\end{bmatrix} \\
\xrightarrow{\text{R-CO}} \quad \begin{bmatrix}
b \mid \operatorname{co} k \mid c \triangleright_{k} & \begin{bmatrix} \overline{a}.\operatorname{co} I \mid c \triangleright_{I} & \mathbf{0}
\end{bmatrix}
\end{bmatrix} \\
\xrightarrow{\text{R-CO}} \quad b \mid c$$

Outline

Introduction

TransCCS

Liveness and safety properties

Compositional semantics

Safety properties

Safety: "Nothing bad will happen" [Lamport'77]

A safety property can be formulated as a safety test T° which signals on channel \circ when it detects the bad behaviour

- ullet $\mu X.(a.X+e.0)$ can not perform e while performing any sequence of as
- $T^{\circ}=e.$ $\odot \mid \overline{a}.\overline{b}$ can not perform e when a followed by b is offered.

Safety properties

Safety: "Nothing bad will happen" [Lamport'77]

A safety property can be formulated as a safety test T° which signals on channel \circ when it detects the bad behaviour

- ullet $\mu X.(a.X+e.0)$ can not perform e while performing any sequence of as
- $m{T}^{\scriptscriptstyle (0)}=e.00\mid ar{a}.ar{b}$ can not perform e when a followed by b is offered.
- ▶ P passes the safety test T° when $P \mid T^{\circ}$ can not output on \circ
 - ▶ This is the negation of passing a "may test" [DeNicola-Hennessy'84]

Safety properties

Safety: "Nothing bad will happen" [Lamport'77]

A safety property can be formulated as a safety test T° which signals on channel \circ when it detects the bad behaviour

Examples:

- ullet $\mu X.(a.X+e.0)$ can not perform e while performing any sequence of as
- $m{\mathcal{T}}^{\scriptscriptstyle (0)}=e.$ $\odot \mid \overline{a}.\overline{b}$ can not perform e when a followed by b is offered.
- ▶ P passes the safety test T° when $P \mid T^{\circ}$ can not output on \circ
 - ► This is the negation of passing a "may test" [DeNicola-Hennessy'84]

- ▶ $I_3 = \mu X$. [a.b.co $k + \overline{e} \triangleright_k X$] passes safety test T°
- ▶ $I_4 = \mu X$. $[a.b.co\ k \mid \overline{e} \triangleright_k X]$ does not pass safety test T°

Definition (Basic Observable)

 $P \Downarrow_{\scriptscriptstyle{\mathfrak{O}}}$ iff there exists P' such that $P \to^* P' \mid {\scriptscriptstyle{\mathfrak{O}}}$

▶ Basic observable actions are *permanent*

Definition (Basic Observable)

 $P \Downarrow_{\scriptscriptstyle{\mathfrak{O}}}$ iff there exists P' such that $P \to^* P' \mid {\scriptscriptstyle{\mathfrak{O}}}$

- ▶ Basic observable actions are *permanent*
- ► True: $[a.b.co k \mid \overline{e} \triangleright_k 0] \mid (e.o \mid \overline{a}.\overline{b}) \downarrow_o$

Definition (Basic Observable)

 $P \Downarrow_{\scriptscriptstyle{\mathfrak{O}}}$ iff there exists P' such that $P \to^* P' \mid {\scriptscriptstyle{\mathfrak{O}}}$

- ▶ Basic observable actions are *permanent*
- ► True: $[a.b.co k \mid \overline{e} \triangleright_k \mathbf{0}] \mid (e.\omega \mid \overline{a}.\overline{b}) \downarrow_{\omega}$
- ► False: $[a.b.co k + \overline{e} \triangleright_k 0]$ | $(e.\omega | \overline{a}.\overline{b}) \Downarrow_\omega$

Definition (Basic Observable)

 $P \Downarrow_{\mathfrak{G}}$ iff there exists P' such that $P \rightarrow^* P' \mid \mathfrak{G}$

- Basic observable actions are permanent
- ► True: $[a.b.co k | \overline{e} \triangleright_k 0] | (e.\omega | \overline{a}.\overline{b}) \downarrow_{\omega}$
- ► False: $[a.b.co k + \overline{e} \triangleright_k 0]$ | $(e.\omega | \overline{a}.\overline{b}) \Downarrow_\omega$

Definition (P Passes safety test T°)

$$P \operatorname{cannot} T^{\circ}$$
 when $P \mid T^{\circ} \not \Downarrow_{\circ}$

Definition (Basic Observable)

 $P \Downarrow_{\scriptscriptstyle{\mathfrak{O}}}$ iff there exists P' such that $P \to^* P' \mid {\scriptscriptstyle{\mathfrak{O}}}$

- ▶ Basic observable actions are *permanent*
- ► True: $[a.b.co k \mid \overline{e} \triangleright_k \mathbf{0}] \mid (e.\omega \mid \overline{a}.\overline{b}) \downarrow_{\omega}$
- ► False: $[a.b.co k + \overline{e} \triangleright_k \mathbf{0}] \mid (e. \bowtie | \overline{a}. \overline{b}) \Downarrow_{\bowtie}$

Definition (P Passes safety test T°)

 $P \operatorname{cannot} T^{\circ}$ when $P \mid T^{\circ} \not \Downarrow_{\circ}$

Definition (Safety Preservation)

 $S \sqsubseteq_{\text{enfo}} I$ when $\forall T^{\circ}$. $S \text{ cannot } T^{\circ}$ implies $I \text{ cannot } T^{\circ}$

$$S_{ab} = \mu X$$
. [a.b.co $k \triangleright_k X$]
$$I_3 = \mu X$$
. [a.b.co $k + \overline{e} \triangleright_k X$]
$$I_4 = \mu X$$
. [a.b.co $k \mid \overline{e} \triangleright_k X$]

$$S_{ab} = \mu X$$
. [a.b.co $k \triangleright_k X$]
$$I_3 = \mu X$$
. [a.b.co $k + \overline{e} \triangleright_k X$]
$$I_4 = \mu X$$
. [a.b.co $k \mid \overline{e} \triangleright_k X$]

$$\triangleright$$
 $S_{ab} \not \sqsubseteq_{\text{safe}} I_4$

$$S_{ab} = \mu X$$
. [a.b.co $k \triangleright_k X$]
$$I_3 = \mu X$$
. [a.b.co $k + \overline{e} \triangleright_k X$]
$$I_4 = \mu X$$
. [a.b.co $k \mid \overline{e} \triangleright_k X$]

$$ightharpoonup S_{ab} \not\sqsubseteq_{\mathrm{safe}} I_4$$
 use test $T^{\circ} = e. \circ | \overline{a}. \overline{b}|$

$$S_{ab} = \mu X$$
. [a.b.co $k \triangleright_k X$]
$$I_3 = \mu X$$
. [a.b.co $k + \overline{e} \triangleright_k X$]
$$I_4 = \mu X$$
. [a.b.co $k \mid \overline{e} \triangleright_k X$]

►
$$S_{ab} \not\sqsubseteq_{\text{safe}} I_4$$
 use test $T^{\circ} = e. \circ | \overline{a}. \overline{b}|$

$$\triangleright$$
 $S_{ab} \sqsubseteq_{\text{safe}} I_3$

$$S_{ab} = \mu X$$
. $[a.b.co k \triangleright_k X]$

$$I_3 = \mu X$$
. $[a.b.co k + \overline{e} \triangleright_k X]$

$$I_4 = \mu X$$
. $[a.b.co k | \overline{e} \triangleright_k X]$

- ► $S_{ab} \not\sqsubseteq_{\text{safe}} I_4$ use test $T^{\circ} = e. \circ | \overline{a}. \overline{b}|$
- ► $S_{ab} \subset_{\text{safe}} I_3$ proof techniques required

$$S_{ab} = \mu X$$
. $[a.b.co k \triangleright_k X]$

$$I_3 = \mu X$$
. $[a.b.co k + \overline{e} \triangleright_k X]$

$$I_4 = \mu X$$
. $[a.b.co k | \overline{e} \triangleright_k X]$

- ► $S_{ab} \not\sqsubseteq_{\text{safe}} I_4$ use test $T^{\circ} = e. \circ | \overline{a}. \overline{b}|$
- $S_{ab} \sqsubseteq_{\text{safe}} I_3$ proof techniques required
- ▶ $\tau.P + \tau.Q \sqsubseteq_{\text{safe}} \llbracket P \triangleright_k Q \rrbracket$, for any P,Q

$$S_{ab} = \mu X$$
. [a.b.co $k \triangleright_k X$]
$$I_3 = \mu X$$
. [a.b.co $k + \overline{e} \triangleright_k X$]
$$I_4 = \mu X$$
. [a.b.co $k \mid \overline{e} \triangleright_k X$]

- ► $S_{ab} \not\sqsubseteq_{\text{safe}} I_4$ use test $T^{\circ} = e. \circ | \overline{a}. \overline{b}|$
- $S_{ab} \sqsubseteq_{\text{safe}} I_3$ proof techniques required
- $ightharpoonup au.P + au.Q \sqsubseteq_{\text{safe}} \llbracket P
 ightharpoonup_k Q
 rbracket$, for any P,Q

- proof techniques rad

Liveness

Liveness: "Something good will eventually happen" [Lamport'77]

▶ A liveness property can be formulated as a *liveness test* T^{ω} which detects and reports good behaviour on ω .

- ullet $T^\omega=\overline{a}.\overline{b}.\omega$ can do an a then a b
- $\blacktriangleright \mu X$. $\llbracket \overline{a}.\overline{b}.(\omega \mid \text{co } I) \triangleright_I X
 rbracket$ can eventually do an a,b uninterrupted?
- ▶ $a.\mu X$. $[\overline{b}.\overline{c}.(\omega \mid \text{co } I) \triangleright_I X]$ English?

Liveness

Liveness: "Something good will eventually happen" [Lamport'77]

▶ A liveness property can be formulated as a *liveness test* T^{ω} which detects and reports good behaviour on ω .

- $m{ au}=ar{a}.ar{b}.\omega$ can do an a then a b
- ▶ $a.\mu X$. $\llbracket \overline{b}.\overline{c}.(\omega \mid \text{co } I) \triangleright_I X \rrbracket$ English?
- ▶ P passes the liveness test T^{ω} when ω is eventually guaranteed

Liveness

Liveness: "Something good will eventually happen" [Lamport'77]

▶ A liveness property can be formulated as a *liveness test* T^{ω} which detects and reports good behaviour on ω .

Examples:

- $m{ au}=ar{a}.ar{b}.\omega$ can do an a then a b
- $ightharpoonup \mu X. \ egin{bmatrix} \overline{a}.\overline{b}.(\omega \mid \operatorname{co}\ I) & artheta_I & X \end{bmatrix}$ can eventually do an a,b uninterrupted?
- ▶ $a.\mu X$. $\llbracket \overline{b}.\overline{c}.(\omega \mid \text{co } I) \triangleright_I X \rrbracket$ English?
- ▶ P passes the liveness test T^{ω} when ω is eventually guaranteed

Dilemma: What does this mean?

Does μX . $[a.b.co\ k \triangleright_k X]$ pass liveness test $T_{ab}^{\omega} = \overline{a}.\overline{b}.\omega$?

Does μX . $[a.b.co\ k\ \triangleright_k\ X]$ pass liveness test $T_{ab}^{\omega} = \overline{a}.\overline{b}.\omega$?

Does μX . $[a.b.co k \triangleright_k X]$ pass liveness test $T_{ab}^{\omega} = \overline{a}.\overline{b}.\omega$?

Does μX . $[a.b.co\ k\ \triangleright_k\ X]$ pass liveness test $T^{\omega}_{ab} = \overline{a}.\overline{b}.\omega$?

- ▶ must-testing: NO because of infinite loop
- should-testing: YES

Liveness testing

Definition (P Passes liveness test T^{ω} [Rensink-Vogler'07])

 $P \operatorname{shd} T^{\omega}$ when $\forall R. P \mid T^{\omega} \to^* R$ implies $R \downarrow_{\omega}$

Liveness testing

Definition (P Passes liveness test T^{ω} [Rensink-Vogler'07])

$$P \operatorname{shd} T^{\omega}$$
 when $\forall R. P \mid T^{\omega} \to^* R$ implies $R \downarrow_{\omega}$

Examples:

- ▶ μX . $[a.b.co\ k\ \triangleright_k\ X]$ passes liveness test $T^{\omega}_{ab} = \overline{a}.\overline{b}.\omega$
- ▶ $[a.b.co k \triangleright_k \mathbf{0}]$ does not pass test T_{ab}^{ω}

Liveness testing

Definition (P Passes liveness test T^{ω} [Rensink-Vogler'07])

 $P \operatorname{shd} T^{\omega}$ when $\forall R. P \mid T^{\omega} \to^* R$ implies $R \downarrow_{\omega}$

Examples:

- ▶ μX . $[\![a.b.co\ k\ \triangleright_k\ X]\!]$ passes liveness test $T^{\omega}_{ab} = \overline{a}.\overline{b}.\omega$
- ▶ $[a.b.co\ k\ \triangleright_k\ \mathbf{0}]$ does not pass test T_{ab}^{ω}

Definition (Liveness preservation)

 $S \sqsubseteq_{\text{loc}} I$ when $\forall T^{\omega}$. $S \operatorname{shd} T^{\omega}$ implies $I \operatorname{shd} T^{\omega}$

$$S_{ab} = \mu X$$
. [a.b.co $k \triangleright_k X$]
 $I_2 = \mu X$. [a.b.0 $\triangleright_k X$]
 $I_3 = \mu X$. [a.b.co $k + \overline{e} \triangleright_k X$]

$$S_{ab} = \mu X$$
. [a.b.co $k \triangleright_k X$]
 $I_2 = \mu X$. [a.b.0 $\triangleright_k X$]
 $I_3 = \mu X$. [a.b.co $k + \overline{e} \triangleright_k X$]

$$ightharpoonup S_{ab}
ot igspace_{ ext{live}} I_2$$

$$S_{ab} = \mu X$$
. [a.b.co $k \triangleright_k X$]
 $I_2 = \mu X$. [a.b.0 $\triangleright_k X$]
 $I_3 = \mu X$. [a.b.co $k + \overline{e} \triangleright_k X$]

$$ightharpoonup S_{ab} \not\sqsubseteq_{\text{live}} I_2$$
 use test $T^{\omega} = \overline{a}.\overline{b}.\omega$

$$S_{ab} = \mu X$$
. [a.b.co $k \triangleright_k X$]
 $I_2 = \mu X$. [a.b.0 $\triangleright_k X$]
 $I_3 = \mu X$. [a.b.co $k + \overline{e} \triangleright_k X$]

- $ightharpoonup S_{ab} \not\sqsubseteq_{\text{live}} I_2$ use test $T^{\omega} = \overline{a}.\overline{b}.\omega$
- $ightharpoonup S_{ab} \sqsubseteq_{ ext{live}} I_3$

$$S_{ab} = \mu X$$
. [a.b.co $k \triangleright_k X$]
 $I_2 = \mu X$. [a.b.0 $\triangleright_k X$]
 $I_3 = \mu X$. [a.b.co $k + \overline{e} \triangleright_k X$]

- $ightharpoonup S_{ab} \not\sqsubseteq_{\text{live}} I_2$ use test $T^{\omega} = \overline{a}.\overline{b}.\omega$
- ► $S_{ab} \sqsubseteq_{live} I_3$ proof techniques required

$$S_{ab} = \mu X. [a.b.co k \triangleright_k X]$$
 $I_2 = \mu X. [a.b.0 \triangleright_k X]$
 $I_3 = \mu X. [a.b.co k + \overline{e} \triangleright_k X]$

- $ightharpoonup S_{ab} \not\sqsubseteq_{\text{live}} I_2$ use test $T^{\omega} = \overline{a}.\overline{b}.\omega$
- ► $S_{ab} \sqsubseteq_{\text{live}} I_3$ proof techniques required
- ▶ μX . $\llbracket P \mid \text{co } k \triangleright_k X \rrbracket$ $\eqsim_{\text{live}} P$, for any P

$$S_{ab} = \mu X. [a.b.co k \triangleright_k X]$$

$$I_2 = \mu X. [a.b.0 \triangleright_k X]$$

$$I_3 = \mu X. [a.b.co k + \overline{e} \triangleright_k X]$$

- $ightharpoonup S_{ab} \not\sqsubseteq_{\text{live}} I_2$ use test $T^{\omega} = \overline{a}.\overline{b}.\omega$
- ▶ $S_{ab} \sqsubseteq_{\text{live}} I_3$ proof techniques required
- $ightharpoonup \mu X.$ $\llbracket P \mid \operatorname{co} k
 hd _k X
 rbracket
 ceil$ $ightharpoonup _{\operatorname{live}} P$, for any P proof techniques rqd

$$S_{ab} = \mu X. [a.b.co \ k \triangleright_k X]$$
 $I_2 = \mu X. [a.b.0 \triangleright_k X]$
 $I_3 = \mu X. [a.b.co \ k + \overline{e} \triangleright_k X]$

- ► $S_{ab} \sqsubseteq_{live} I_3$ proof techniques required
- lacksquare $\mu X. <math>\llbracket P \mid \mathsf{co} \ k \, lacksquare k \, X
 bracket \, lacksquare live \, P$, for any P proof techniques rqd

Proof techniques:

Require characterisations using "traces" and "refusals"

Outline

Introduction

TransCCS

Liveness and safety properties

- ▶ The embedding rule is simple but entangles the processes
- lackbox We need to reason about the behaviour of P|Q in terms of P and Q

- ▶ The embedding rule is simple but entangles the processes
- ▶ We need to reason about the behaviour of P|Q in terms of P and Q
- ▶ We introduce a compositional Labelled Transition System that uses secondary transactions: $[P \triangleright_k Q]^{\circ}$

a.c.0

 $[\overline{a}.\overline{c}.co\ k \mid \overline{a}.\mathbf{0} \rhd_k e]$

- ▶ The embedding rule is simple but entangles the processes
- ▶ We need to reason about the behaviour of P|Q in terms of P and Q
- ▶ We introduce a compositional Labelled Transition System that uses secondary transactions: $\llbracket P \rhd_k Q \rrbracket^{\circ}$

a.c.0

- ▶ The embedding rule is simple but entangles the processes
- We need to reason about the behaviour of P|Q in terms of P and Q
- ▶ We introduce a compositional Labelled Transition System that uses secondary transactions: $\llbracket P \rhd_k Q \rrbracket^{\circ}$

- ▶ The embedding rule is simple but entangles the processes
- lackbox We need to reason about the behaviour of P|Q in terms of P and Q
- ▶ We introduce a compositional Labelled Transition System that uses secondary transactions: $\llbracket P \rhd_k Q \rrbracket^{\circ}$

- ▶ The embedding rule is simple but entangles the processes
- lackbox We need to reason about the behaviour of P|Q in terms of P and Q
- ▶ We introduce a compositional Labelled Transition System that uses secondary transactions: $[P \triangleright_k Q]^{\circ}$

- ▶ The embedding rule is simple but entangles the processes
- ▶ We need to reason about the behaviour of P|Q in terms of P and Q
- ▶ We introduce a compositional Labelled Transition System that uses secondary transactions: $[P \triangleright_k Q]^{\circ}$

- ▶ The embedding rule is simple but entangles the processes
- ▶ We need to reason about the behaviour of P|Q in terms of P and Q
- ▶ We introduce a compositional Labelled Transition System that uses secondary transactions: $\llbracket P \rhd_k Q \rrbracket^{\circ}$

The behaviour of processes in TransCCS can be understood by a *simple subset of the LTS traces*:

- where all actions are eventually committed
- ▶ that *ignore transactional annotations* on the traces

The behaviour of processes in TransCCS can be understood by a *simple subset of the LTS traces*:

- where all actions are eventually committed
- ▶ that ignore transactional annotations on the traces

$$\mathsf{Tr}_{\mathsf{clean}}\left(\ \llbracket \mathsf{a.c.co} \ \mathsf{k} \
dots_{\mathsf{k}} \ \mathsf{e}
rbracket
ight) = \{ \epsilon, \ \mathsf{ac}, \ \mathsf{e} \}$$

The behaviour of processes in TransCCS can be understood by a *simple subset of the LTS traces*:

- where all actions are eventually committed
- ▶ that ignore transactional annotations on the traces

$$\mathsf{Tr}_{\mathsf{clean}}\left(\,\llbracket a.c.\operatorname{co}\,k\,\,\triangleright_k\,\,e\rrbracket\,\right) = \{\epsilon,\,\,\mathsf{a}\,\mathsf{c},\,\,\mathsf{e}\}$$

$$\mathsf{Tr}_{\mathsf{clean}}\left(\mu X.\,\llbracket a.c.\operatorname{co}\,k\,\,\triangleright_k\,\,X\rrbracket\,\right) = \{\epsilon,\,\,\mathsf{a}\,\mathsf{c}\}$$

The behaviour of processes in TransCCS can be understood by a *simple subset of the LTS traces*:

- where all actions are eventually committed
- ▶ that ignore transactional annotations on the traces

$$\mathsf{Tr}_{\mathsf{clean}}\left(\,\llbracket a.c.\operatorname{co}\,k\,\, \triangleright_k\,\, e\rrbracket\,\right) = \{\epsilon,\,\, \mathsf{a}\,\mathsf{c},\,\, \mathsf{e}\}$$

$$\mathsf{Tr}_{\mathsf{clean}}\left(\mu X.\,\llbracket a.c.\operatorname{co}\,k\,\, \triangleright_k\,\, X\rrbracket\,\right) = \{\epsilon,\,\, \mathsf{a}\,\mathsf{c}\}$$

Set of clean traces not prefix closed: atomicity

The behaviour of processes in TransCCS can be understood by a *simple subset of the LTS traces*:

- where all actions are eventually committed
- ▶ that *ignore transactional annotations* on the traces

$$\mathsf{Tr}_{\mathsf{clean}}\left(\,\llbracket a.c.\operatorname{co}\,k\, \, \triangleright_k\, \, e \rrbracket\,\,\right) = \{\epsilon,\,\, \mathsf{a}\,\mathsf{c},\,\, \mathsf{e}\}$$

$$\mathsf{Tr}_{\mathsf{clean}}\left(\mu X.\,\llbracket a.c.\operatorname{co}\,k\, \, \triangleright_k\,\, X \rrbracket\,\,\right) = \{\epsilon,\,\, \mathsf{a}\,\mathsf{c}\}$$

Set of clean traces not prefix closed: atomicity

Characterisation of May Testing:

$$P \subset_{\mathsf{mav}} Q$$
 iff $\mathsf{Tr}_{\mathsf{clean}}(P) \subseteq \mathsf{Tr}_{\mathsf{clean}}(Q)$

The behaviour of processes in TransCCS can be understood by a *simple subset of the LTS traces*:

- where all actions are eventually committed
- that ignore transactional annotations on the traces

$$\mathsf{Tr}_{\mathsf{clean}}\left(\,\llbracket a.c.\operatorname{co}\,k\, \, \triangleright_k\, \, e \rrbracket\,\,\right) = \{\epsilon,\,\, \mathsf{a}\,\mathsf{c},\,\, \mathsf{e}\}$$

$$\mathsf{Tr}_{\mathsf{clean}}\left(\mu X.\,\llbracket a.c.\operatorname{co}\,k\, \, \triangleright_k\,\, X \rrbracket\,\,\right) = \{\epsilon,\,\, \mathsf{a}\,\mathsf{c}\}$$

Set of clean traces not prefix closed: atomicity

Characterisation of May Testing:

$$P \sqsubseteq_{\sf may} Q \qquad {\sf iff} \qquad {\sf Tr}_{\sf clean}(P) \subseteq {\sf Tr}_{\sf clean}(Q)$$

▶ To understand the may-testing behaviour of P we only need to consider the clean traces $Tr_{clean}(P)$.

Compositional semantics: should-testing

```
Tree Failures: [Rensink-Vogler'07] (t, Ref) where
```

- ▶ t is a clean trace
- Ref is a set of clean traces

can be non-prefixed closed

Compositional semantics: should-testing

```
Tree Failures: [Rensink-Vogler'07] (t, Ref) where
```

- ▶ *t* is a clean trace
- Ref is a set of clean traces

can be non-prefixed closed

Tree failures of a process:

(t, Ref) is a tree failure of P when $\exists P' \quad P \stackrel{t}{\Rightarrow} c P' \quad \text{and} \quad C(P)$

$$\exists P'. P \stackrel{t}{\Rightarrow}_{\mathit{CL}} P' \text{ and } \mathcal{L}(P') \cap \mathit{Ref} = \emptyset$$

$$\mathcal{F}(P) = \{(t, Ref) \text{ tree failure of } P\}$$

Compositional semantics: should-testing

Tree Failures: [Rensink-Vogler'07] (t, Ref) where

- ▶ t is a clean trace
- Ref is a set of clean traces

can be non-prefixed closed

Tree failures of a process:

(t, Ref) is a tree failure of P when $\exists P'. P \stackrel{t}{\Rightarrow}_{CI} P'$ and $\mathcal{L}(P') \cap Ref = \emptyset$

$$\mathcal{F}(P) = \{(t, Ref) \text{ tree failure of } P\}$$

Characterisation of should-testing:

$$S \sqsubseteq_{\text{live}} I \quad \text{iff} \quad \mathcal{F}(S) \supseteq \mathcal{F}(I)$$

Simple Examples

Let
$$S_{ab} = \mu X$$
. $[a.b.co \ k \triangleright_k \ X]$ $\mathcal{L}(S_{ab}) = \{\epsilon, ab\}$ $\mathcal{F}(S_{ab}) = \{(\epsilon, S \setminus ab), (ab, S) \mid S \subseteq A^*\}$

Simple Examples

Let
$$S_{ab} = \mu X$$
. $[a.b.co \ k
ho_k \ X]$ $\mathcal{L}(S_{ab}) = \{\epsilon, ab\}$ $\mathcal{F}(S_{ab}) = \{(\epsilon, S \backslash ab), (ab, S) \mid S \subseteq A^*\}$

$$\begin{array}{lll} \blacktriangleright & S_{ab} \eqsim_{\mathrm{safe}} I_1 = \begin{bmatrix} a.b.\mathrm{co} & k \bowtie_k & \mathbf{0} \end{bmatrix} & \mathcal{L}(I_1) = \{\epsilon, ab\} \\ & S_{ab} \not \succsim_{\mathrm{live}} I_1 & \mathcal{F}(I_1) = \{(\epsilon, S), (ab, S) \mid S \subseteq A^*\} \end{array}$$

Simple Examples

Let
$$S_{ab} = \mu X$$
. $[a.b.co \ k
ho_k \ X]$ $\mathcal{L}(S_{ab}) = \{\epsilon, ab\}$ $\mathcal{F}(S_{ab}) = \{(\epsilon, S \backslash ab), (ab, S) \mid S \subseteq A^*\}$

$$S_{ab} \succsim_{\text{safe}} I_1 = [\![a.b.\text{co } k \bowtie_k 0]\!] \qquad \mathcal{L}(I_1) = \{\epsilon, ab\}$$

$$S_{ab} \succsim_{\text{live}} I_1 \qquad \mathcal{F}(I_1) = \{(\epsilon, S), (ab, S) \mid S \subseteq A^*\}$$

$$\begin{array}{c} \blacktriangleright \ \ S_{ab} \eqsim_{\text{safe}} \ I_2 = \mu X. \ \llbracket a.b.\text{co} \ k + e \vartriangleright_k \ X \rrbracket \\ S_{ab} \eqsim_{\text{live}} \ I_2 \end{array} \qquad \qquad \begin{array}{c} \mathcal{L}(I_2) = \mathcal{L}(S_{ab}) \\ \mathcal{F}(I_2) = \mathcal{F}(S_{ab}) \end{array}$$

Summary

- ► TransCCS: a language for communicating/co-operative transactions
- simple reduction semantics using an embedding rule
- behavioural theories for preservation of
 - safety properties
 - liveness properties
- characterisations which allow
 - proofs of equivalences
 - equational laws

References:

- Communicating Transactions, Concur 2010
- Liveness of Communicating Transactions, APLAS 2010

Intro TransCCS Properties **Compositional semantics**

Summary

- ► TransCCS: a language for communicating/co-operative transactions
- simple reduction semantics using an embedding rule
- behavioural theories for preservation of
 - safety properties
 - liveness properties
- characterisations which allow
 - proofs of equivalences
 - equational laws

References:

- Communicating Transactions, Concur 2010
- Liveness of Communicating Transactions, APLAS 2010

Future work:

- ► Reference implementation
- Extension to Haskell
- ▶ PhD Scholarship position funded by Microsoft Research, UK

THANK YOU!

