Communicating Transactions

Matthew Hennessy
joint work with Edsko de Vries, Vasileois Koutavas

FSEN11, Teheran, april 2011

%g TRINITY COLLEGE DUBLIN

COLAISTE NA TRIONGIDE, BAILE ATHA CLIATH

(o TensCCS Propetis Compositional semantics _
Outline

Introduction

TransCCS

Liveness and safety properties

Compositional semantics

Outline

Introduction

Intro

Standard Transactions

» Transactions provide an abstraction for error recovery in a
concurrent setting.

o,
—sfi

Intro

Standard Transactions

» Transactions provide an abstraction for error recovery in a
concurrent setting.

» Guarantees:

» Atomicity: Each transaction either runs in its entirety
(commits) or not at all

» Consistency: When faults are detected the transaction is
automatically rolled-back

> lIsolation: The effects of a transaction are concealed from the
rest of the system until the transaction commits

» Durability: After a transaction commits, its effects are
permanent

o,
—sfi

Intro

Standard Transactions

» Transactions provide an abstraction for error recovery in a
concurrent setting.

» Guarantees:

» Atomicity: Each transaction either runs in its entirety
(commits) or not at all

» Consistency: When faults are detected the transaction is
automatically rolled-back

> lIsolation: The effects of a transaction are concealed from the
rest of the system until the transaction commits

» Durability: After a transaction commits, its effects are
permanent

» Isolation:

» good: provides coherent semantics

» bad: limits concurrency

» bad: limits co-operation between transactions and their o
environments _sfi

Intro

Communicating Transactions

» We drop isolation to increase concurrency

» There is no limit on the communication between a transaction
and its environment

» These new transactional systems guarantee:

» Atomicity: Each transaction will either run in its entirety or
not at all

» Consistency: When faults are detected the transaction is
automatically rolled-back, together with all effects of the
transaction on its environment

» Durability: After all transactions that have interacted commit,
their effects are permanent (coordinated checkpointing)

Outline

TransCCS

o,
—sfi

TransCCS

An extension of CCS with communicating transactions.
1. Simple language: 2 additional language constructs and 3
additional reduction rules.

2. Intricate concurrent and transactional behaviour:
» encodes nested, restarting, and non-restarting transactions
» does not limit communication between transactions

3. Simple behavioural theory: based on properties of systems:

» Safety property: nothing bad happens
» Liveness property: something good happens

TransCCS

Syntax:

P,Q

> wi-Pi
e
va.P
uX.P

[[P D>k Q]]

co k

guarded choice

parallel

hiding

recursion

transaction (k bound in P)
commit

o,
—sfi

TransCCS

Syntax: P,Q == > wi.P; guarded choice
| P|Q parallel
| va.P hiding
| wpX.P recursion
| [P >k Q] transaction (k bound in P)
| cok commit

o,
—sfi

TransCCS

Syntax:

P,Q

> wi-Pi
e
va.P
uX.P

[[P D>k Q]]

co k

guarded choice

parallel

hiding

recursion

transaction (k bound in P)
commit

o,
—sfi

TransCCS

Syntax:

P,Q

> wi-Pi
e
va.P
uX.P

[[P D>k Q]]

co k

guarded choice

parallel

hiding

recursion

transaction (k bound in P)
commit

o,
—sfi

TransCCS

Syntax:

P,Q

> wi-Pi
e
va.P
uX.P

[[P D>k Q]]

co k

guarded choice

parallel

hiding

recursion

transaction (k bound in P)
commit

o,
—sfi

TransCCS

Syntax:

P,Q

> wi-Pi
e
va.P
uX.P

[[P D>k Q]]

co k

guarded choice

parallel

hiding

recursion

transaction (k bound in P)
commit

o,
—sfi

TransCCS

TransCCS

Syntax: P,Q == > wi.P; guarded choice
| P|Q parallel
| va.P hiding
| wpX.P recursion
| [P >k Q] transaction (k bound in P)
| cok commit

Transaction [P >y Q]

> execute P to completion (co k)

» subject to random aborts

» if aborted roll back all effects of P and initiate @
(%)
sfi

TransCCS

Syntax: P,Q == > wi.P; guarded choice
| P|Q parallel
| va.P hiding
| wpX.P recursion
| [P >k Q] transaction (k bound in P)
| cok commit

Transaction [P >y Q]

> execute P to completion (co k)
» subject to random aborts
» if aborted roll back all effects of P and initiate @

. . . (%)
» roll back includes ...environmental impact of P “sfi

Rollbacks and Commits

Co-operating actions: ‘a < needs co-operation of — 5‘

o,
—sfi

Rollbacks and Commits

Co-operating actions: ‘a < needs co-operation of — 5‘

Ta’Tb|Tc|Pd|Pe

where L
Ta = [[d.b.(co kl | a) D>k, @]]
T, = [[E.(CO ko | b) >k, @]]

T. = [[é.C.CO k3 D ks @]]
Py = d.Ry
P. = eRe

o,
—sfi

Rollbacks and Commits

Co-operating actions: ‘a < needs co-operation of — 5‘

Ta’Tb|Tc|Pd|Pe

where
Ta = [[HB(CO kl | a) D>k, @]]
T, = [[E.(CO ko | b) >k, @]]
T. = [[é.C.CO k3 D ks @]]
Py = d.Ry4
P. = eRe

» if T, aborts, what roll-backs are necessary?

o,
—sfi

TransCCS

Rollbacks and Commits

Co-operating actions: ‘a < needs co-operation of — 23

Ta’Tb|TC|Pd|Pe

where
Ta = [[HB(CO kl | a) D>k, @]]
T, = [[E.(CO ko | b) >k, @]]
T. = [[é.C.CO k3 D ks @]]
Py = d.Ry4
P. = eRe

» if T, aborts, what roll-backs are necessary?

» When can action a be considered permanent?

o,
—sfi

TransCCS Compositional semantics

Rollbacks and Commits

Co-operating actions: ‘a < needs co-operation of — 23

Ta’Tb|TC|Pd|Pe

where
Ta = [[HB(CO kl | a) D>k, @]]
T, = [[E.(CO ko | b) >k, @]]
T. = [[é.C.CO k3 D ks @]]
Py = d.Ry4
P. = eRe

» if T, aborts, what roll-backs are necessary?
» When can action a be considered permanent?

» When can code R, be considered permanent? o
STl

Reduction semantics main rules

R-ComMm B
aj = bj . .
Communication
Za,-.P,- | ij.Qj — P,' ‘ Qj
i€l jed
R-Co
Commit
[Plcokpy QQ — P
R-AB
Random abort
[Prk Q] — @

o,
—sfi

10/31

TransCCS es Compositional semn

Reduction semantics main rules

R-Comm -
a; = bj . .
Communication
doaPil Y biQ—PilQ
icl jeJd
R-Co
Commit
[Plcokpy Q] — P
R-AB
Random abort
[Pre Q — @
R-EMB
k¢ R
Embed .
[Pox Q] |IR— [PIRbx QIR] “sf

10/31

Simple Example

Convention:

> w: | am happy

» o: | am sad

o,
—sfi

11/31

Simple Example

Convention:

> w: | am happy

» o: | am sad

a.cw+eo| [a.c.co k+e >y r]

o,
—sfi

11/31

Simple Example

Convention:

> w: | am happy

» o: | am sad

a.cw+eo| [ac.co k+e >y r]

o,
—sfi

11/31

Simple Example

Convention:

> w: | am happy

» o: | am sad

a.cw+eo| [a.c.co k+e >y r]

REMD, [a.cw+ e | 3.co k+8 b acw+eo|r]

o,
—sfi

11/31

Compositional semantics

TransCCS

Simple Example

Convention:

> w: | am happy

» o: | am sad

a.cw+e.o| [a.c.co k+e >y r]
LSRN [a.cw+em|acC.co k+€rpy acw+en|r]

BCom, 1w | Teok ppacwteo]|r]

o,
—sfi

11/31

TransCCS Compositional semantics

Simple Example

Convention:

> w: | am happy

» o: | am sad

a.cw+ew| [ac.co k+e g r]

R-EMB_ [a.cw+em|3C.cok+€rg acw+eon|r]
BCom, 1w | Teok >y acwteo]|r]

RCown g, | cok pgacwteo|r]

o,
—sfi

11/31

TransCCS Compositional semantics

Simple Example

Convention:

> w: | am happy

» o: | am sad

a.cw+e.o| [a.c.co k+e >y r]

TP, [a.cw+ e.o |ac.co k+& by acw+eo|r]
R-Covm, [cw | C.cok >k a.cw+e.o | r]
R-Comm, [w | cok p>gpacwteonlr]

R-Co
_— W

o,
—sfi

11/31

TransCCS Compositional semantics

Simple Example

Convention:

> w: | am happy

» o: | am sad

a.c.w+eo| [a.c.co k+e g r]

TP, [a.cw+ e.o |ac.co k+& by acw+eo|r]
R-Covm, [cw | C.cok >k a.cw+e.o | r]
R-Comm, [w | cok Dk acw+teonlr]

R-Co
= w

o,
—sfi

11/31

Simple Example (a second trace)

a.cw+e.o| [a.c.co k+ery r]

o,
—sfi

12/31

Simple Example (a second trace)

a.cw+e.o| [a.C.co k+€ g r]

BB, [a.cw+eo|accok+e bk acw+eo|r]

o,
—sfi

12/31

TransCCS Compositional semantics

Simple Example (a second trace)

a.cw+e.o| [a.c.co k+ery r]

R-EmB [a.cw+em|acCcok+e>y acwten]r]

R-Conmm, [o Dk a.c.w+ e.m | r]

o,
—sfi

12/31

Simple Example (a second trace)

a.cw+e.o| [a.c.co k+ery r]

R-EmB [a.cw+em|acCcok+e>y acwten]r]
R-ComMM [o bk a.cw+e.o|r] (Deadlocked)
o,
sh

12/31

Simple Example (a second trace)

a.cw+e.o| [a.c.co k+ery r]

R-EmB [a.cw+em|acCcok+e>y acwten]r]

B-Cow, p o bk a.cw+eo|r]

R-AB
— acwteo|r

o,
—sfi

12/31

Simple Example (a second trace)

a.cw+e.o| [a.c.co k+€ g r]

R-EmB [a.cw+em|acCcok+e>y acwten]r]

R-Conmm, [o Dk a.c.w+ e.m | r]

R-AB . .
——— a.cw+ew|r (The environment is restored)

o,
—sfi

12/31

Simple Example (all traces)

acw+en| [accok+en, r] — acw+eon|r

R-EmB R-AB
P1 d
\R-iomm
R-Comm)
Pe
P A
a
R-Comm
P J
(o
R-Co
w

o,
—sfi

13/31

Simple Example (all traces)

acw+en| [accok+en, r] — acw+eon|r

R-EmB R-AB
Py g
\R-iomm
R-Comm Pe A
P, ’
R-Comm
P. g
R-Co
w
Will never be sad: 0 assuming r does not contain & ‘ ;ﬂ

13/31

TransCCS Compositional semantics

Aborting transactions

\\\\\

acw+ten| [3T.cok+8 by] ————D acwteol|r .
’ ' y A commit step makes the effects of the

transaction permanent (Durability)

An abort step:

> restarts the transaction

» rolls-back embedded processes to
their state before embedding
(Consistency)

» does not roll-back actions that
happened before embedding

» does not affect non-embedded
processes

The behavioural theory will show the
Atomicity property. ~S

14/31

Restarting transactions

a.cw+ e | uX. [ac.co k+e >y X]

o,
—sfi

15/31

Restarting transactions

a.cw+eo|uX. [accok+ervp X| <«

R-EmB R-AB
P1 d
\R-iOMM
R-Com
OMM P2
P2 d
R-Comm
P3 d
R-Co
w
Sf
. STl
Will never be sad: ® e

15/31

Restarting transactions

a.cw+eo|uX. [accok+ervp X| <«

R-EmB R-AB
P1 d
\R-iOMM
R-Com
OMM P2
P2 d
R-Covmm
P3 4
R-Co
" Infinitely aborting loop
Sf
. sfi
Will never be sad: ® O

15/31

Double Embedding

[a.co k| bk O] | [a.col|c ;0]

o,
—sfi

16/31

Double Embedding

[a.co k| bk O] | [a.col|c ;0]

o,
—sfi

16/31

Double Embedding

[a.co k| bk O] | [.col|c ;0]

R-EmB Ha.co k|b| [a.col|cr; 0] pg [a.col]|cr 0] H

o,
—sfi

16/31

TransCCS Compositional semantics

Double Embedding

[a.co k| bk O] | [a.col|c ;0]

R-EMB Ha.co k|b| [a.col|cr; 0] b [a.col]|c > 0] H

o,
—sfi

16/31

TransCCS Compositional semantics

Double Embedding

[a.co k| bk O] | [a.col|c ;0]

R-EMB Ha.co k|b| [a.col|cr; 0] pg [a.col]|c > 0] H

R-EMs, Hb | [a.co k|a.col|c > acok] pg [acol|cr 0] ﬂ

o,
—sfi

16/31

TransCCS

Double Embedding

[a.co k| bk O] | [a.col|c ;0]

BB, Jaco k| b| [a.col|c v 8] bk [acol|c o]
R-EMB [= a

——— |b]| [a.co k|a.col|c > acok] g [a.col]|cr 0]]]
R-Comm [y | [cok|col]|cp acok] bk [a.col|c ;0] ﬂ

o,
—sfi

16/31

TransCCS

Double Embedding

[a.co k| bk O] | [a.col|c ;0]

R-EMB -a.co k|b| [a.col|cr; 0] pg [a.col]|c > 0] J]
R-EmB [= 3
——— |b| [a.co k|a.col|c > acok] >k [a.col|c ;0] ﬂ
R-Comm [y | [cok|col]|cp acok] bk [a.col|c ;0] ﬂ
R-Co, -b|cok\cl>k [[E.co/|cb/®]]ﬂ

o,
—sfi

16/31

TransCCS

Double Embedding

[a.co k| bk O] | [a.col|c ;0]

R-EMB -a.co k|b| [a.col|cr; 0] pg [a.col]|c > 0] J]

Rebve Ty | [a.co k|a.col|c > acok] >y [acol|cr 0] ﬂ

R-Comm [y | [cok|col]|cp acok] bk [a.col|c ;0] ﬂ

R-Co
—_—

blcok|cox [Feol]c @]]ﬂ

R-Co b ’ c

o,
—sfi

16/31

TransCCS

Double Embedding

[a.co k| bk O] | [a.col|c ;0]

R-EMB -a.co k|b| [a.col|cr; 0] pg [a.col]|c > 0] J]

Rebve Ty | [a.co k|a.col|c > acok] >y [acol|cr 0] ﬂ

R-Comm [y | [cok|col]|cp acok] bk [a.col|c ;0] ﬂ

R-Co
—_—

blcok|cor [Feoll]c @]]ﬂ

R-Co b ’ c

o,
—sfi

16/31

Outline

Liveness and safety properties

o,
—sfi

17/31

Safety properties
Safety: “Nothing bad will happen” [Lamport'77]

> A safety property can be formulated as a safety test T® which
signals on channel ® when it detects the bad behaviour

Examples:

> uX(aX + e.m) can not perform e while performing any sequence of as
> T(Y) = e.0 ‘ Eb can not perform e when a followed by b is offered.

o,
—sfi

18/31

Safety properties
Safety: “Nothing bad will happen” [Lamport'77]

> A safety property can be formulated as a safety test T® which
signals on channel ® when it detects the bad behaviour

Examples:

> uX(aX + e.m) can not perform e while performing any sequence of as
> T(Y) = e.0 ‘ Eb can not perform e when a followed by b is offered.

> P passes the safety test T® when P | T® can not output on ®
» This is the negation of passing a “may test” [DeNicola-Hennessy'84]

o,
—sfi

18/31

Properties Compositional semantics

Safety properties
Safety: “Nothing bad will happen” [Lamport'77]

> A safety property can be formulated as a safety test T® which
signals on channel ® when it detects the bad behaviour

Examples:

> uX(aX + e.m) can not perform e while performing any sequence of as
> T(Y) = e.0 ‘ Eb can not perform e when a followed by b is offered.

> P passes the safety test T® when P | T® can not output on ®
» This is the negation of passing a “may test” [DeNicola-Hennessy'84]

Examples:
» I3 = uX. [a.b.co k+€ >y X] passes safety test T

> Iy = uX. [[a.b.co k | € >k X] does not pass safety test T .
_sfi

18/31

Safety

Definition (Basic Observable)
Py, iff there exists P’ such that P —* P' | ®

» Basic observable actions are permanent

o,
—sfi

19/31

Safety

Definition (Basic Observable)
Py, iff there exists P’ such that P —* P' | ®

» Basic observable actions are permanent
> True: [a.b.co k|e vy 0] | (e.o]|a.b)l,

o,
—sfi

19/31

Safety

Definition (Basic Observable)
Py, iff there exists P’ such that P —* P' | ®

» Basic observable actions are permanent

> True: [a.b.co k|e vy 0] | (e.o]|a.b)l,
> False: [a.b.co k+e >k 0] | (e.w|3a.b) |,

o,
—sfi

19/31

Safety

Definition (Basic Observable)
Py, iff there exists P’ such that P —* P' | ®

» Basic observable actions are permanent

> True: [a.b.co k|e vy 0] | (e.o]|a.b)l,
> False: [a.b.co k+e >k 0] | (e.w|3a.b) |,

Definition (P Passes safety test T°)
Pcannot T® when P | T?Y,

o,
—sfi

19/31

Safety

Definition (Basic Observable)
Py, iff there exists P’ such that P —* P' | ®

» Basic observable actions are permanent
> True: [a.b.co k|e vy 0] | (e.o]|a.b)l,
> False: [a.b.co k+€ >k 0] | (e.w|a.b) |,

Definition (P Passes safety test T°)
Pcannot T® when P | T?Y,

Definition (Safety Preservation)

S Esafe I when VT®. Scannot T® implies [cannot T°

o,
—sfi

19/31

Safety preservation: Examples

S = wpX. [a.b.co k by X]
I = pX.[a.b.co k+e >y X]
ls = pX.[a.b.cok|e >y X]

o,
—sfi

20/31

Safety preservation: Examples

S = wpX. [a.b.co k by X]
I = pX.[a.b.co k+e >y X]
ls = pX.[a.b.cok|e >y X]

> Sab %safe l4

o,
—sfi

20/31

Safety preservation: Examples

S = wpX. [a.b.co k by X]
I = pX.[a.b.co k+e >y X]
ls = pX.[a.b.cok|e >y X]

> S Ia use test T° = e.0 | a.b

o,
—sfi

20/31

Safety preservation: Examples

S = wpX. [a.b.co k by X]
I = pX.[a.b.co k+e >y X]
ls = pX.[a.b.cok|e >y X]

> S Ia use test T° = e.0 | a.b

> Sab Esafe /3

o,
—sfi

20/31

Safety preservation: Examples

S = wpX. [a.b.co k by X]
I = pX.[a.b.co k+e >y X]
ls = pX.[a.b.cok|e >y X]

> S Ia use test T° = e.0 | a.b

> Sab S B — proof techniques required

o,
—sfi

20/31

Properties Compositional semantics

Safety preservation: Examples

S = wpX. [a.b.co k by X]
/3 = /LX. [[a.b.co k+e Dk X]]
ls = pX.[a.b.cok|e >y X]

> S Ia use test T° = e.0 | a.b

> Sab S B — proof techniques required

» . P+7.QL,,. [Prk Q. forany P,Q .
_sfi

20/31

Properties

Safety preservation: Examples

S = wpX. [a.b.co k by X]
/3 = /LX. [[a.b.co k+e Dk X]]
ls = pX.[a.b.cok|e >y X]

> Sab Koo la use test T° = e.0 | a.b
> Sab S B — proof techniques required
> 7.P+ T'Q gsafe IIP Dk Q]] ' for any P, Q — proof techniques rqd

o,
—sfi

20/31

Properties Compositional semantics

Liveness

Liveness: “Something good will eventually happen” [Lamport'77]

» A liveness property can be formulated as a liveness test T
which detects and reports good behaviour on w.

Examples:

» TY =3.b.w candoan athena b

> /LX [[Eb(w | co /) D> X]] can eventually do an a, b uninterrupted?

» apX. [be(w]|col) > X] Engisne

o,
—sfi

21/31

Liveness

Liveness: “Something good will eventually happen” [Lamport'77]

» A liveness property can be formulated as a liveness test T
which detects and reports good behaviour on w.

Examples:

» TY =3.b.w candoan athena b

> /LX [[Eb(w | co /) D> X]] can eventually do an a, b uninterrupted?

» apX. [be(w]|col) > X] Engisne
» P passes the liveness test T when w is eventually guaranteed

o,
—sfi

21/31

Properties Compositional semantics

Liveness

Liveness: “Something good will eventually happen” [Lamport'77]

» A liveness property can be formulated as a liveness test T
which detects and reports good behaviour on w.

Examples:

» TY =3.b.w candoan athena b

> /LX [[Eb(w | co /) D> X]] can eventually do an a, b uninterrupted?

» apX. [be(w]|col) > X] Engisne

» P passes the liveness test T when w is eventually guaranteed

Dilemma: What does this mean? o
sfi

21/31

Dilemma
Does uX. [a.b.co k by X] pass liveness test T = a.b.w ?

o,
—sfi

22/31

Dilemma
Does uX. [a.b.co k by X] pass liveness test T = a.b.w ?

a.bw | pX. [a.b.co k by X] <

R-Eb R-AB
w‘mm
—

R-Comm

R-Comm

R-Co

o,
sfi

22/31

Dilemma
Does uX. [a.b.co k by X] pass liveness test T = a.b.w ?

a.bw | pX. [a.b.co k by X] =

R-Eb R-AB
w‘mm
—

R-Comm

R-Comm

R-Co

o,
sfi

22/31

Dilemma
Does uX. [a.b.co k by X] pass liveness test T = a.b.w ?

a.bw | pX. [a.b.co k by X] =

R-Eb R-AB
w‘mm
—

R-Comm

R-Comm

R-Co

> mUSt—testing: NO because of infinite loop
» should-testing: YES

22/31

o,
sfi

Liveness testing
Definition (P Passes liveness test T* [Rensink-Vogler'07])

Pshd T¥ when VR. P|TY =" R implies RI,

o,
—sfi

23/31

Liveness testing
Definition (P Passes liveness test T* [Rensink-Vogler'07])
Pshd T¥ when VR. P|TY =" R implies RI,

Examples:

> uX. [a.b.co k by X] passes liveness test T = a.b.w

> [a.b.co k >k 0] does not pass test T2

o,
—sfi

23/31

Liveness testing
Definition (P Passes liveness test T* [Rensink-Vogler'07])
Pshd T¥ when VR. P|TY =" R implies RI,

Examples:

> uX. [a.b.co k by X] passes liveness test T = a.b.w
> [a.b.co k >k 0] does not pass test T2

Definition (Liveness preservation)
SEHVQI when VT®. Sshd T® implies [shd T
()
—.8f1

23/31

Liveness preservation:Examples

Sy = wX. [a.b.co k >y X]
b = pX.[a.bo s X]
Iz = pX.[a.b.co k+e >y X]

o,
—sfi

24/31

Liveness preservation:Examples

Sy = wX. [a.b.co k >y X]
b = pX.[a.bo s X]
Iz = pX.[a.b.co k+e >y X]

> Sab %live I2

o,
—sfi

24/31

Liveness preservation:Examples

Sy = wX. [a.b.co k >y X]
b = pX.[a.bo s X]
Iz = pX.[a.b.co k+e >y X]

> Sab ¥ b2 use test T = a.b.w

o,
—sfi

24/31

Liveness preservation:Examples

Sy = wX. [a.b.co k >y X]
b = pX.[a.bo s X]
Iz = pX.[a.b.co k+e >y X]

> Sab ¥ b2 use test T = a.b.w

> Sab Sy I3

o,
—sfi

24/31

Liveness preservation:Examples

Sy = wX. [a.b.co k >y X]
b = pX.[a.bo s X]
Iz = pX.[a.b.co k+e >y X]

> Sab ¥ b2 use test T = a.b.w

> Sab Sy I3 — proof techniques required

o,
—sfi

24/31

Properties

Liveness preservation:Examples

Sy = wX. [a.b.co k >y X]
b = pX.[a.bo s X]
Iz = pX.[a.b.co k+e >y X]

> Sab ¥ b2 use test T = a.b.w

> Sab Sy I3 — proof techniques required

> uX. [P|co k by X] =<y P, for any P

o,
—sfi

24/31

Properties

Liveness preservation:Examples

Sy = wX. [a.b.co k >y X]
b = pX.[a.bo s X]
Iz = pX.[a.b.co k+e >y X]

> Sab ¥ b2 use test T = a.b.w
> Sab Sy I3 — proof techniques required
> /LX IIP | co k % X]] ~live P, for any P — proof techniques rqd

o,
—sfi

24/31

Properties Compositional semantics

Liveness preservation:Examples

Sy = wX. [a.b.co k >y X]
b = pX.[a.bo s X]
Iz = pX.[a.b.co k+e >y X]

> Sab ¥ b2 use test T = a.b.w
> Sab Sy I3 — proof techniques required
> /LX IIP | co k % X]] ~live P, for any P — proof techniques rqd

Proof techniques:

Require characterisations using “traces” and ‘“refusals” .
sfi

24/31

Compositional sem

Outline

Compositional semantics

o,
sfi

25/31

Compositional semantics

Compositional Semantics

» The embedding rule is simple but entangles the processes

» We need to reason about the behaviour of P|Q in terms of P
and @

o,
—sfi

26/31

Compositional semantics

Compositional Semantics

» The embedding rule is simple but entangles the processes

» We need to reason about the behaviour of P|Q in terms of P
and @

» We introduce a compositional Labelled Transition System that
uses secondary transactions: [P >y Q]°

a.c.0 | [a.C.co k|3a.0 by €]

o,
—sfi

26/31

Compositional semantics

Compositional Semantics

» The embedding rule is simple but entangles the processes

» We need to reason about the behaviour of P|Q in terms of P
and @

» We introduce a compositional Labelled Transition System that
uses secondary transactions: [P >y Q]°

a.c.0 | [2.C.co k|3a.0 by €]

o,
—sfi

26/31

Compositional semantics

Compositional Semantics

» The embedding rule is simple but entangles the processes

» We need to reason about the behaviour of P|Q in terms of P
and @

» We introduce a compositional Labelled Transition System that
uses secondary transactions: [P >y Q]°

a.c.0 | [a.C.co k|3a.0 by €]

emb k emb k
— ’ ——

[a.c.0 bk a.c.0]° [a.c.co k|3.0 > €]

o,
—sfi

26/31

TransCCS Compositional semantics

Compositional Semantics

» The embedding rule is simple but entangles the processes

» We need to reason about the behaviour of P|Q in terms of P
and @

» We introduce a compositional Labelled Transition System that
uses secondary transactions: [P >y Q]°

a.c.0 | [a.C.co k|3a.0 by €]

emb k emb k
- ’ -

[a.c.0 bk a.c.0]° [2.C.co k|3.0 > €]

k(a) k(a)
— —

[c.® > a.c.0]° | [c.co k|a.0 >k €]

o,
—sfi

26/31

TransCCS Compositional semantics

Compositional Semantics

» The embedding rule is simple but entangles the processes

» We need to reason about the behaviour of P|Q in terms of P
and @

» We introduce a compositional Labelled Transition System that
uses secondary transactions: [P >y Q]°

a.c.0 | [a.C.co k|3a.0 by €]
K [a.c® bk a.c8]° | =25 [ac.co k|30 ok €]
k o k(a - —
K, [c.® by a.c.0]] LIGR [c.co k|a.0 >k €]
k(e) k(©)

— [0 >k a.c.0]°] [co k|3a.0 bk €]

o,
—sfi

26/31

TransCCS Compositional semantics

Compositional Semantics

» The embedding rule is simple but entangles the processes

» We need to reason about the behaviour of P|Q in terms of P
and @

» We introduce a compositional Labelled Transition System that
uses secondary transactions: [P >y Q]°

a.c.0 | [a.C.co k|3a.0 by €]
emb K, [a.c.0 bk a.c.0]°] sub k, [3.C.co k|3.0 >k €]
Ka), [c.® > a.c.0]°] LOR [c.co k| 3.0 by €]
LGN | M [co k2.0 b €]

. 25 e

o,
—sfi

26/31

TransCCS Compositional semantics

Compositional Semantics

» The embedding rule is simple but entangles the processes

» We need to reason about the behaviour of P|Q in terms of P
and @

» We introduce a compositional Labelled Transition System that
uses secondary transactions: [P >y Q]°

a.c.0 | [a.C.co k|3a.0 >y €]
em K, [a.c.0 bk a.c.0]° | em K, [a.C.co k|3a.0 by €]
k ° k(a S
*a), [c.® >k a.c.0] | *@, [a.C.co k|0 >k €]
ab k ab k
— a.c.0 | — e

o,
—sfi

26/31

Compositional semantics

Compositional Semantics: may-testing

The behaviour of processes in TransCCS can be understood by a
simple subset of the LTS traces:

» where all actions are eventually committed

» that ignore transactional annotations on the traces

o,
—sfi

27/31

Compositional semantics

Compositional Semantics: may-testing

The behaviour of processes in TransCCS can be understood by a
simple subset of the LTS traces:

» where all actions are eventually committed

» that ignore transactional annotations on the traces

Trelean ([a.c.co k >y €]) ={e, ac, e}

o,
—sfi

27/31

Compositional semantics

Compositional Semantics: may-testing

The behaviour of processes in TransCCS can be understood by a
simple subset of the LTS traces:

» where all actions are eventually committed

» that ignore transactional annotations on the traces

Trelean ([a.c.co k >y €]) = {e, ac, e}

Trelean (uX. [a.c.co k >y X]) = {e, ac}

o,
—sfi

27/31

Compositional semantics

Compositional Semantics: may-testing

The behaviour of processes in TransCCS can be understood by a
simple subset of the LTS traces:

» where all actions are eventually committed

» that ignore transactional annotations on the traces

Trelean ([a.c.co k >y €]) = {e, ac, e}
Trelean (uX. [a.c.co k >y X]) = {e, ac}

» Set of clean traces not prefix closed: atomicity

o,
—sfi

27/31

Compositional semantics

Compositional Semantics: may-testing

The behaviour of processes in TransCCS can be understood by a
simple subset of the LTS traces:

» where all actions are eventually committed

» that ignore transactional annotations on the traces
Trelean ([a.c.co k >y €]) ={e, ac, e}
Trelean ([,LX. [a.c.co k i X]) ={e, ac}

» Set of clean traces not prefix closed: atomicity

Characterisation of May Testing:
P 'I\:Jmay Q iff Trclean(P) c Trclean(Q)

o,
—sfi

27/31

Compositional semantics

Compositional Semantics: may-testing

The behaviour of processes in TransCCS can be understood by a
simple subset of the LTS traces:

» where all actions are eventually committed

» that ignore transactional annotations on the traces

Trelean ([a.c.co k >y €]) ={e, ac, e}
Trelean (MX. [a.c.co k >y X]) = {e, ac}
» Set of clean traces not prefix closed: atomicity
Characterisation of May Testing:

P 'I\:Jmay Q iff Trclean(P) c Trclean(Q)

» To understand the may-testing behaviour of P we only need
to consider the clean traces Trgjean(P). _sfi

27/31

Compositional semantics

Compositional semantics: should-testing

Tree Failures: [Rensink-Vogler'07]
(t, Ref) where

> 1 is a clean trace

> Ref iS a set Of Clean traces can be non-prefixed closed

o,
—sfi

28/31

Compositional semantics

Compositional semantics: should-testing

Tree Failures: [Rensink-Vogler'07]
(t, Ref) where

> 1 is a clean trace

> Ref iS a set Of Clean traces can be non-prefixed closed

Tree failures of a process:
(t, Ref) is a tree failure of P when
P P3c P oand L(P)NRef =0

JAN

F(P) = {(t, Ref) tree failure of P}

o,
—sfi

28/31

Compositional semantics

Compositional semantics: should-testing

Tree Failures: [Rensink-Vogler'07]
(t, Ref) where

> 1 is a clean trace

> Ref iS a set Of Clean traces can be non-prefixed closed

Tree failures of a process:
(t, Ref) is a tree failure of P when
P P3c P oand L(P)NRef =0

F(P) = {(t, Ref) tree failure of P} @
Characterisation of should-testing:

SC. I iff F(S)2F()

~live

9,
—sfi

28/31

Compositional semantics

Simple Examples

Let Sap = uX. [a.b.co k by X] L(Sap) = {€, ab}
F(Sap) = {(¢,S\ab),(ab,S) | S C A*}

o,
—sfi

29/31

Compositional semantics

Simple Examples

Let Sap = uX. [a.b.co k by X] L(Sap) = {€, ab}
F(Sap) = {(¢,S\ab),(ab,S) | S C A*}

> Sab ~safe /1 = [[a.b.co k D 0]] E(Il) = {E, ab}
Sab Il F(Il) = {(675)5 (abv S) | S C A*}

~live

o,
—sfi

29/31

Compositional semantics

Simple Examples

Let Sap = uX. [a.b.co k by X] L(Sap) = {€, ab}
F(Sap) = {(¢,S\ab),(ab,S) | S C A*}

> Sab ~safe /1 = [[a.b.co k D 0]] E(Il) = {E, ab}
Sab S It F(h)={(e,S),(ab,S) | S C A*}
> Sob ~eate b = pX. [a.b.co k+ e > X] L(h) = L(S.p)
Sab zlive I2 f(l2) - f(sab)

o,
—sfi

29/31

Compositional semantics

Summary

» TransCCS: a language for communicating/co-operative
transactions
» simple reduction semantics using an embedding rule
» behavioural theories for preservation of
» safety properties
> liveness properties
» characterisations which allow
» proofs of equivalences
» equational laws
References:

| 4 Communicating Transactions, Concur 2010

P Liveness of Communicating Transactions, APLAS 2010

Compositional semantics

Summary

» TransCCS: a language for communicating/co-operative
transactions
» simple reduction semantics using an embedding rule
» behavioural theories for preservation of
» safety properties
> liveness properties
» characterisations which allow
» proofs of equivalences
» equational laws
References:

| 4 Communicating Transactions, Concur 2010

P Liveness of Communicating Transactions, APLAS 2010

Future work:

» Reference implementation
» Extension to Haskell
» PhD Scholarship position funded by Microsoft Research, UK

Compositional semantics

THANK YOU!

o,
—sfi

31/31

