
SAFEDPI: using types to control mobile code

Matthew Hennessy, U of Sussex

Background: controlling resources using types

SAFEDPI: a higher-order distributed picalculus

Process types

Examples

Behavioural equivalences

Supported by EU Global Computing projects Mikado/ Myths

Joint work with Julian Rathke, Yoshida Nobuko

Details in Sussex Technical Report

Extended abstract in Fossacs 2004

Copenhagen, Nov 2004 – p.1/26

Background

Distributed processes: lJP K | (new e : E)(kJQK | lJRK) Capability

types ensure

channels/resources are typesafe

use of channels/resources policy driven

SERVJ(newloc k : K) with P in xpt1!〈k〉 | xpt2!〈k〉K

−→ (new k : K) SERVJxpt1!〈k〉 | xpt2!〈k〉K | kJP K

Client capabilities on location k depend on rights obtained via distribu-

tion channels xpt1 and xpt2

Copenhagen, Nov 2004 – p.2/26

Goto Considered Harmful

Unrestricted migration:
kJgo SERV.NastyK | SERVJSK −→ SERVJS | NastyK

With static typing:

Nasty uses resources at SERV in type-safe fashion

SERV has no control over immigration by Nasty

Objective: control migration and behaviour of incoming agents

Copenhagen, Nov 2004 – p.3/26

Goto tamed in SAFEDPI

In SAFEDPI:

kJgop SERV.NastyK | SERVJSK −→ SERVJS | p!〈Nasty〉K

p: a port at site SERV - aka: higher-order channel

Nasty - a higher-order value - aka: thunked process

Nasty gains entrance if SERV provides access via port p

Copenhagen, Nov 2004 – p.4/26

Using ports to control access

Server is interested:

kJgop SERV.NastyK | SERVJS | p?(ξ) run ξK

−→ SERVJS | p?(ξ) run ξ | p!〈Nasty〉K

−→ SERVJS | NastyK

Server is not interested:

kJgop SERV.NastyK | SERVJSK −→ SERVJS | p!〈Nasty〉K

S without p

≡ SERVJSK

Copenhagen, Nov 2004 – p.5/26

Using typed ports to control behaviour

kJgop SERV.NastyK | SERVJS | p?(ξ : G) run ξK

−→ SERVJS | p?(ξ : G) run ξ | p!〈Nasty〉K

−→ SERVJS | NastyK

Type G determines allowed behaviour of incoming Nasty

Idea: use process types from :

Assigning Types to Processes, Yoshida and Hennessy, LICS 2000

Copenhagen, Nov 2004 – p.6/26

Process Types pr[. . .]

Process restricted to at most two channels:

pr[info : r〈str〉@here, reply : w〈str〉@CL]

read from local channel info

write to channel reply at location CL

Process needs an entry port:

Copenhagen, Nov 2004 – p.7/26

Process Types pr[. . .]

Process restricted to at most two channels:

pr[info : r〈str〉@here, reply : w〈str〉@CL]

read from local channel info

write to channel reply at location CL

Process needs an entry port:

pr[info : r〈str〉@here, reply : w〈str〉@CL, in : w〈thunk〉@CL]

Copenhagen, Nov 2004 – p.7/26

Process Types pr[. . .]

Process restricted to at most two channels:

pr[info : r〈str〉@here, reply : w〈str〉@CL]

read from local channel info

write to channel reply at location CL

Process needs an entry port:

pr[info : r〈str〉@here, reply : w〈str〉@CL, in : w〈I〉@CL]

where I = th[reply : w〈str〉@CL]@CL

th[. . .] - thunk types

Copenhagen, Nov 2004 – p.7/26

Syntax of SAFEDPI: Systems

M, N ::= Systems

lJP K Located Process

M | N Composition

(new e : E) M Name Creation

0 Termination

u, v ::= Values

λ(x̃ : T̃)P Scripts

x, n, . . . The usual: identifiers etc

Copenhagen, Nov 2004 – p.8/26

Syntax of SAFEDPI: Processes

P, Q ::= Processes

u!〈V 〉 Output

u?(X : T) P Input

gou v.P Migration

if u = v then P else Q Matching

(newc c : C) P Channel creation

(newreg n : N) P Global name creation

(newloc k : K) with P in Q Location creation

P | Q Composition

F (ṽ) Application

∗P Iteration

stop Termination

Copenhagen, Nov 2004 – p.9/26

Reduction Semantics

(R-COMM) kJc!〈V 〉K | kJc?(X : T) P K −→ kJP{|V/X|}K

(R-MOVE) kJgop l.F K −→ lJp!〈F 〉K

(R-BETA) (λ (x̃ : T̃). P)(ṽ) −→ P{|ṽ/̃x|}

(R-L.CREATE) kJ(newloc l : L) with P in QK −→

(new l : L)(kJQK | lJP K)

.

Copenhagen, Nov 2004 – p.10/26

Types in SAFEDPI

local channels C ::= r〈T〉 | w〈T〉 | rw〈Tr, Tw〉

locations L ::= loc[u1 : C1, . . . , un : Cn]

processes π ::= proc | pr[u1 : C1@w1, . . . un : C@wn]

scripts S ::= FDep((x̃ : T̃)→ π)

values T ::= S | C | L |

TDep(T̃) T | EDep(T̃) T

. . .

Copenhagen, Nov 2004 – p.11/26

Dependent function types

FDep(x : r〈T〉→ pr[x : r〈T〉@here, reply : w〈T〉@k])

Script which is instantiated with a local channel; can only access

that local channel in read mode

channel reply at site k in write mode.

Copenhagen, Nov 2004 – p.12/26

Dependent tuple types

TDep(x : L) th[info : r〈str〉@here, reply : w〈str〉@x]

Thunk, tupled with a location of type L; can access

local channel info in read mode

channel reply in write mode at provided location

thunk type th[.] shorthand for script with no arguments FDep(()→ pr[.])

run V shorthand for V () where V is a thunk

Copenhagen, Nov 2004 – p.13/26

Existential tuple types

EDep(x : L) th[info : r〈str〉@here, reply : w〈str〉@x]

Thunk which can access

local channel info in read mode

channel reply in write mode at some location provided by client

Provided location can only be used as part of thunk

Server does not have independent use of provided location

Copenhagen, Nov 2004 – p.14/26

Example

Client can only deliver news

Service: sJreq?(ξ : S) run ξ | ∗ news?(x) continueK

Client: CLJgoreq s.news!〈scandal〉K

Guardian type S: th[news : w〈str〉@here]

Copenhagen, Nov 2004 – p.15/26

Example

Client collects the news

Service: sJreq?(ξ : S) run ξ | ∗ news!〈juicy〉K

Client: CLJgoreq s.news?(x) goin CL. reply!〈x〉

| in?(ξ : R) run ξ | reply?(y) continueK

Guardians:

S : th[news : r〈str〉@here, in : w〈thunk〉@CL]

R : thunk

Copenhagen, Nov 2004 – p.16/26

Example

Client collects the news

Service: sJreq?(ξ : S) run ξ | ∗ news!〈juicy〉K

Client: CLJgoreq s.news?(x) goin CL. reply!〈x〉

| in?(ξ : R) run ξ | reply?(y) continueK

Guardians for client protection:

S : th[news : r〈str〉@here, in : w〈R〉@CL]

R : th[reply : w〈str〉@here]

Copenhagen, Nov 2004 – p.16/26

Anonymous servers - dependent tuple types

server does not know clients name

Service: sJreq?(ξ with x : S) run ξ | ∗ news!〈juicy〉K

Client: CLJgoreq s.news?(x) goin CL. reply!〈x〉 with CLK

| in?(ξ : R) run ξ | reply?(y) continue

Guardians:

S : TDep(x : In) th[news : r〈str〉@here, in : w〈thunk〉@x]

R : thunk

In : loc[in : w〈thunk〉]

Copenhagen, Nov 2004 – p.17/26

Anonymous servers - protecting clients

Service: sJreq?(ξ with x, y, z : S) run ξ | ∗ news!〈juicy〉K

Client: CLJ(newc reply) (newc in : rw〈R〉)

goreq s.news?(x) goin CL. reply!〈x〉 with (CL, reply, in)

| in?(ξ : R) run ξ | reply?(y) continueK

Guardians:

S :
TDep(x : loc, y : w〈str〉@x, z : w〈Inx,y〉@x)

th[news : r〈str〉@here, z : w〈Inx,y〉@x]

R : w〈th[reply : w〈str〉]〉

Inx,y : th[y : w〈str〉@x]

Copenhagen, Nov 2004 – p.18/26

Nasty servers

Service: sJreq?(ξ with x, y, z : S) run ξ | goz x.y!〈rubbish〉K

Client: CLJ. goreq s. . . . with (CL, reply, in)K

Server

ignores incoming script

lifts return address from it

misleads client

Copenhagen, Nov 2004 – p.19/26

Existential types

protecting client information from nasty servers

Service: sJreq?(ξ : Se) run ξ | ∗ news!〈juicy〉K

Client: CLJ. goreq s. . . . with (CL, reply, in)K

Se :
EDep(x : loc, y : w〈str〉@x, z : w〈Inx,y〉@x)

th[news : r〈str〉@here, z : w〈Inx,y〉@x, y : w〈str〉@x]

Server does not gain access to (CL, reply, in)

Service: sJreq?(ξ : Se) run ξ | goz x.y!〈rubbish〉K

not well-typed
Copenhagen, Nov 2004 – p.20/26

Behavioural Equivalences

Two problems:

Capability types: observers may not have full knowledge of
processes

Use typed bisimulations from: Towards a . . . Mobility . . . , by Hennessy, Merro,

Rathke, in Fossacs 2003

Higher-order language

Target higher-order bisimulations for the moment

Copenhagen, Nov 2004 – p.21/26

Behavioural Equivalences

Two problems:

Capability types: observers may not have full knowledge of
processes

Use typed bisimulations from: Towards a . . . Mobility . . . , by Hennessy, Merro,

Rathke, in Fossacs 2003

Higher-order language

Target higher-order bisimulations for the moment

Copenhagen, Nov 2004 – p.21/26

Typed contextual equivalence

I |= M ≈cxt N

M and N can not be distinguished by any observer typeable by I

I is current observers knowledge of resources/capabilities of M, N .

I |= kJxpt!〈req!〈news〉〉K ≈cxt kJxpt!〈stop〉K

provided req at k not known in I

Copenhagen, Nov 2004 – p.22/26

Typed contextual equivalence

I |= M ≈cxt N

M and N can not be distinguished by any observer typeable by I

I is current observers knowledge of resources/capabilities of M, N .

I |= kJxpt!〈req!〈news〉〉K ≈cxt kJxpt!〈stop〉K

provided req at k not known in I

Copenhagen, Nov 2004 – p.22/26

Typed contextual equivalence

I |= M ≈cxt N

M and N can not be distinguished by any observer typeable by I

I is current observers knowledge of resources/capabilities of M, N .

I |= kJxpt!〈req!〈news〉〉K ≈cxt kJxpt!〈stop〉K

provided req at k not known in I

Copenhagen, Nov 2004 – p.22/26

Typed higher-order actions

Internal actions: I B M τ−→ I B N

Input actions: I B M (ñ:Ẽ)k.c?V−−−−−−→ I ′
B N

I B kJreq?(ξ) run ξ | SK k.req?V−−−−→ I B kJrun V | SK

provided I knows req at k, . . . and I has migration rights to k

Output Actions: I B M (ñ)k.c!G−−−−→ I ′
B N

I B kJreq!〈V 〉 | SK k.req!G−−−→ I, . . . B kJGV | SK

provided I knows req at k, I types G appropriately, . . . and I
has migration rights to k

Copenhagen, Nov 2004 – p.23/26

Typed higher-order actions

Internal actions: I B M τ−→ I B N

Input actions: I B M (ñ:Ẽ)k.c?V−−−−−−→ I ′
B N

I B kJreq?(ξ) run ξ | SK k.req?V−−−−→ I B kJrun V | SK

provided I knows req at k, . . . and I has migration rights to k

Output Actions: I B M (ñ)k.c!G−−−−→ I ′
B N

I B kJreq!〈V 〉 | SK k.req!G−−−→ I, . . . B kJGV | SK

provided I knows req at k, I types G appropriately, . . . and I
has migration rights to k

Copenhagen, Nov 2004 – p.23/26

Typed higher-order actions

Internal actions: I B M τ−→ I B N

Input actions: I B M (ñ:Ẽ)k.c?V−−−−−−→ I ′
B N

I B kJreq?(ξ) run ξ | SK k.req?V−−−−→ I B kJrun V | SK

provided I knows req at k, . . .

and I has migration rights to k

Output Actions: I B M (ñ)k.c!G−−−−→ I ′
B N

I B kJreq!〈V 〉 | SK k.req!G−−−→ I, . . . B kJGV | SK

provided I knows req at k, I types G appropriately, . . .

and I
has migration rights to k

Copenhagen, Nov 2004 – p.23/26

Typed higher-order actions

Internal actions: I B M τ−→ I B N

Input actions: I B M (ñ:Ẽ)k.c?V−−−−−−→ I ′
B N

I B kJreq?(ξ) run ξ | SK k.req?V−−−−→ I B kJrun V | SK

provided I knows req at k, . . . and I has migration rights to k

Output Actions: I B M (ñ)k.c!G−−−−→ I ′
B N

I B kJreq!〈V 〉 | SK k.req!G−−−→ I, . . . B kJGV | SK

provided I knows req at k, I types G appropriately, . . . and I
has migration rights to k

Copenhagen, Nov 2004 – p.23/26

Higher-order goto actions

I B M go
p

k.V−−−−→ I, BM | kJp!〈V 〉K

provided I knows about p at k and V at appropriate type

even if I has no migration rights to k

Copenhagen, Nov 2004 – p.24/26

Higher-order goto actions

I B M go
p

k.V−−−−→ I, BM | kJp!〈V 〉K

provided I knows about p at k and V at appropriate type

even if I has no migration rights to k

Copenhagen, Nov 2004 – p.24/26

Higher-order goto actions

I B M go
p

k.V−−−−→ I, BM | kJp!〈V 〉K

provided I knows about p at k and V at appropriate type

even if I has no migration rights to k

Copenhagen, Nov 2004 – p.24/26

T Contextuality

T : locations to which I has migration rights

bisimulation equivalence is contextual

I |= M ≈bis
T N and

I ` kJOK

k in T

implies

I |= M | kJOK ≈bis
T M | kJOK

Example: Observer kJreq?(ξ) P K captured by action k.req!〈λ ξ. P 〉

Copenhagen, Nov 2004 – p.25/26

Full Abstraction

I |= M ≈bis
T N if and only if I |= M ≈cxt

T N

Copenhagen, Nov 2004 – p.26/26

	sdpi : using types to control mobile code
	Background
	Goto Considered Harmful
	Goto tamed in sdpi
	Using ports to control access
	Using typed ports to control behaviour
	Process Types ;;; $	proc {ldots }$
	Syntax of sdpi : Systems
	Syntax of sdpi : Processes
	Reduction Semantics
	Types in sdpi
	Dependent function types
	Dependent tuple types
	Existential tuple types
	Example
	Example
	Anonymous servers - dependent tuple types
	Anonymous servers - protecting clients
	Nasty servers
	Existential types
	Behavioural Equivalences
	Typed contextual equivalence
	Typed higher-order actions
	Higher-order goto actions
	$ed eTest $ Contextuality
	Full Abstraction

