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Background

Distributed processes: lJP K | (new e : E)(kJQK | lJRK) Capability

types ensure

channels/resources are typesafe

use of channels/resources policy driven

SERVJ(newloc k : K) with P in xpt1!〈k〉 | xpt2!〈k〉K

−→ (new k : K) SERVJxpt1!〈k〉 | xpt2!〈k〉K | kJP K

Client capabilities on location k depend on rights obtained via distribu-

tion channels xpt1 and xpt2
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Goto Considered Harmful

Unrestricted migration:
kJgo SERV.NastyK | SERVJSK −→ SERVJS | NastyK

With static typing:

Nasty uses resources at SERV in type-safe fashion

SERV has no control over immigration by Nasty

Objective: control migration and behaviour of incoming agents
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Goto tamed in SAFEDPI

In SAFEDPI:

kJgop SERV.NastyK | SERVJSK −→ SERVJS | p!〈Nasty〉K

p: a port at site SERV - aka: higher-order channel

Nasty - a higher-order value - aka: thunked process

Nasty gains entrance if SERV provides access via port p
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Using ports to control access

Server is interested:

kJgop SERV.NastyK | SERVJS | p?(ξ) run ξK

−→ SERVJS | p?(ξ) run ξ | p!〈Nasty〉K

−→ SERVJS | NastyK

Server is not interested:

kJgop SERV.NastyK | SERVJSK −→ SERVJS | p!〈Nasty〉K

S without p

≡ SERVJSK
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Using typed ports to control behaviour

kJgop SERV.NastyK | SERVJS | p?(ξ : G) run ξK

−→ SERVJS | p?(ξ : G) run ξ | p!〈Nasty〉K

−→ SERVJS | NastyK

Type G determines allowed behaviour of incoming Nasty

Idea: use process types from :

Assigning Types to Processes, Yoshida and Hennessy, LICS 2000
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Process Types pr[. . .]

Process restricted to at most two channels:

pr[info : r〈str〉@here, reply : w〈str〉@CL]

read from local channel info

write to channel reply at location CL

Process needs an entry port:
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Process Types pr[. . .]

Process restricted to at most two channels:

pr[info : r〈str〉@here, reply : w〈str〉@CL]

read from local channel info

write to channel reply at location CL

Process needs an entry port:

pr[info : r〈str〉@here, reply : w〈str〉@CL, in : w〈I〉@CL]

where I = th[reply : w〈str〉@CL]@CL

th[. . .] - thunk types
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Syntax of SAFEDPI: Systems

M, N ::= Systems

lJP K Located Process

M | N Composition

(new e : E) M Name Creation

0 Termination

u, v ::= Values

λ(x̃ : T̃)P Scripts

x, n, . . . The usual: identifiers etc
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Syntax of SAFEDPI: Processes

P, Q ::= Processes

u!〈V 〉 Output

u?(X : T) P Input

gou v.P Migration

if u = v then P else Q Matching

(newc c : C) P Channel creation

(newreg n : N) P Global name creation

(newloc k : K) with P in Q Location creation

P | Q Composition

F (ṽ) Application

∗P Iteration

stop Termination
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Reduction Semantics

(R-COMM) kJc!〈V 〉K | kJc?(X : T) P K −→ kJP{|V/X|}K

(R-MOVE) kJgop l.F K −→ lJp!〈F 〉K

(R-BETA) (λ (x̃ : T̃). P )(ṽ) −→ P{|ṽ/̃x|}

(R-L.CREATE) kJ(newloc l : L) with P in QK −→

(new l : L)(kJQK | lJP K)

. . . . . . . . .
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Types in SAFEDPI

local channels C ::= r〈T〉 | w〈T〉 | rw〈Tr, Tw〉

locations L ::= loc[u1 : C1, . . . , un : Cn]

processes π ::= proc | pr[u1 : C1@w1, . . . un : C@wn]

scripts S ::= FDep((x̃ : T̃)→ π)

values T ::= S | C | L |

TDep(T̃) T | EDep(T̃) T

. . .
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Dependent function types

FDep(x : r〈T〉→ pr[x : r〈T〉@here, reply : w〈T〉@k])

Script which is instantiated with a local channel; can only access

that local channel in read mode

channel reply at site k in write mode.
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Dependent tuple types

TDep(x : L) th[info : r〈str〉@here, reply : w〈str〉@x]

Thunk, tupled with a location of type L; can access

local channel info in read mode

channel reply in write mode at provided location

thunk type th[. . . . . .] shorthand for script with no arguments FDep(()→ pr[. . . . . .])

run V shorthand for V () where V is a thunk
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Existential tuple types

EDep(x : L) th[info : r〈str〉@here, reply : w〈str〉@x]

Thunk which can access

local channel info in read mode

channel reply in write mode at some location provided by client

Provided location can only be used as part of thunk

Server does not have independent use of provided location
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Example

Client can only deliver news

Service: sJreq?(ξ : S) run ξ | ∗ news?(x) continueK

Client: CLJgoreq s.news!〈scandal〉K

Guardian type S: th[news : w〈str〉@here]
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Example

Client collects the news

Service: sJreq?(ξ : S) run ξ | ∗ news!〈juicy〉K

Client: CLJgoreq s.news?(x) goin CL. reply!〈x〉

| in?(ξ : R) run ξ | reply?(y) continueK

Guardians:

S : th[news : r〈str〉@here, in : w〈thunk〉@CL]

R : thunk
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Example

Client collects the news

Service: sJreq?(ξ : S) run ξ | ∗ news!〈juicy〉K

Client: CLJgoreq s.news?(x) goin CL. reply!〈x〉

| in?(ξ : R) run ξ | reply?(y) continueK

Guardians for client protection:

S : th[news : r〈str〉@here, in : w〈R〉@CL]

R : th[reply : w〈str〉@here]

Copenhagen, Nov 2004 – p.16/26



Anonymous servers - dependent tuple types

server does not know clients name

Service: sJreq?(ξ with x : S) run ξ | ∗ news!〈juicy〉K

Client: CLJgoreq s.news?(x) goin CL. reply!〈x〉 with CLK

| in?(ξ : R) run ξ | reply?(y) continue

Guardians:

S : TDep(x : In) th[news : r〈str〉@here, in : w〈thunk〉@x]

R : thunk

In : loc[in : w〈thunk〉]
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Anonymous servers - protecting clients

Service: sJreq?(ξ with x, y, z : S) run ξ | ∗ news!〈juicy〉K

Client: CLJ(newc reply) (newc in : rw〈R〉)

goreq s.news?(x) goin CL. reply!〈x〉 with (CL, reply, in)

| in?(ξ : R) run ξ | reply?(y) continueK

Guardians:

S :
TDep(x : loc, y : w〈str〉@x, z : w〈Inx,y〉@x)

th[news : r〈str〉@here, z : w〈Inx,y〉@x]

R : w〈th[reply : w〈str〉]〉

Inx,y : th[y : w〈str〉@x]
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Nasty servers

Service: sJreq?(ξ with x, y, z : S) run ξ | goz x.y!〈rubbish〉K

Client: CLJ. . . . . . goreq s. . . . with (CL, reply, in)K

Server

ignores incoming script

lifts return address from it

misleads client
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Existential types

protecting client information from nasty servers

Service: sJreq?(ξ : Se) run ξ | ∗ news!〈juicy〉K

Client: CLJ. . . . . . goreq s. . . . with (CL, reply, in)K

Se :
EDep(x : loc, y : w〈str〉@x, z : w〈Inx,y〉@x)

th[news : r〈str〉@here, z : w〈Inx,y〉@x, y : w〈str〉@x]

Server does not gain access to (CL, reply, in)

Service: sJreq?(ξ : Se) run ξ | goz x.y!〈rubbish〉K

not well-typed
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Behavioural Equivalences

Two problems:

Capability types: observers may not have full knowledge of
processes

Use typed bisimulations from: Towards a . . . Mobility . . . , by Hennessy, Merro,

Rathke, in Fossacs 2003

Higher-order language

Target higher-order bisimulations for the moment
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Typed contextual equivalence

I |= M ≈cxt N

M and N can not be distinguished by any observer typeable by I

I is current observers knowledge of resources/capabilities of M, N .

I |= kJxpt!〈req!〈news〉〉K ≈cxt kJxpt!〈stop〉K

provided req at k not known in I
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Typed higher-order actions

Internal actions: I B M τ−→ I B N

Input actions: I B M (ñ:Ẽ)k.c?V−−−−−−→ I ′
B N

I B kJreq?(ξ) run ξ | SK k.req?V−−−−→ I B kJrun V | SK

provided I knows req at k, . . . and I has migration rights to k

Output Actions: I B M (ñ)k.c!G−−−−→ I ′
B N

I B kJreq!〈V 〉 | SK k.req!G−−−→ I, . . . B kJGV | SK

provided I knows req at k, I types G appropriately, . . . and I
has migration rights to k
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Higher-order goto actions

I B M go
p

k.V−−−−→ I, BM | kJp!〈V 〉K

provided I knows about p at k and V at appropriate type

even if I has no migration rights to k
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T Contextuality

T : locations to which I has migration rights

bisimulation equivalence is contextual

I |= M ≈bis
T N and

I ` kJOK

k in T

implies

I |= M | kJOK ≈bis
T M | kJOK

Example: Observer kJreq?(ξ) P K captured by action k.req!〈λ ξ. P 〉
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Full Abstraction

I |= M ≈bis
T N if and only if I |= M ≈cxt

T N
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