Real Reward Testing for Probabilistic Processes

Matthew Hennessy

(joint work with Y. Deng, R. van Glabbeek, C. Morgan)

QAPL, Saarbrucken, April 2011

Outline

Testing

Outcomes: resolutions v derivations

Failure simulations

Results

Outline

Testing

Outcomes: resolutions v derivations

Failure simulations

Results

Probabilistic labelled transition systems

Intensional semantics:

A process is a distribution in an pLTS

pLTSs:

- $\langle S, \mathsf{Act}_{\tau}, \longrightarrow \rangle$
 - ► S states
 - $\blacktriangleright \longrightarrow \subseteq S \times \operatorname{Act}_{\tau} \times \mathcal{D}(S)$

 $\mathcal{D}(S)$: Mappings $\Delta:S
ightarrow [0,1]$ with $\sum_{s\in S} \Delta(s) = 1$

 $s_1 \xrightarrow{\mu} \Delta$: process s_1

- \blacktriangleright can perform action μ
- with probability $\Delta(s_2)$ it continues as process s_2

Probabilistic labelled transition systems

Intensional semantics:

A process is a distribution in an pLTS

pLTSs:

- $\langle S, \mathsf{Act}_{\tau}, \longrightarrow \rangle$
 - S states
 - $\blacktriangleright \longrightarrow \subseteq S \times \operatorname{Act}_{\tau} \times \mathcal{D}(S)$

 $\mathcal{D}(S)$: Mappings $\Delta: S \to [0,1]$ with $\sum_{s \in S} \Delta(s) = 1$

- $s_1 \xrightarrow{\mu} \Delta$: process s_1
 - \blacktriangleright can perform action μ
 - with probability $\Delta(s_2)$ it continues as process s_2

Probabilistic labelled transition systems

Intensional semantics:

A process is a distribution in an pLTS

pLTSs:

- $\langle S, \mathsf{Act}_{\tau}, \longrightarrow \rangle$
 - S states
 - $\blacktriangleright \longrightarrow \subseteq S \times \operatorname{Act}_{\tau} \times \mathcal{D}(S)$

 $\mathcal{D}(\mathcal{S})$: Mappings $\Delta: \mathcal{S}
ightarrow [0,1]$ with $\sum_{s \in \mathcal{S}} \Delta(s) = 1$

 $s_1 \xrightarrow{\mu} \Delta$: process s_1

- can perform action μ
- with probability $\Delta(s_2)$ it continues as process s_2

Example

Testing scenario

- a set of processes $\mathcal{P}roc$
- a set of tests ${\mathcal T}$
- a set of ordered outcomes ${\cal O}$
- Apply : T × Proc → P⁺(O) the non-empty set of possible results of applying a test to a process

Testing preorders:

- ► Optimistic: P ⊑_{pmay} Q if ∐ Apply(T, P) ≤ ∐ Apply(T, Q) for every test T
- ▶ Pessimistic: P ⊑_{pmust} Q if ∏ Apply(T, P) ≤ ∏ Apply(T, Q) for every test T

Testing scenario

- a set of processes $\mathcal{P}roc$
- \blacktriangleright a set of tests ${\cal T}$
- a set of ordered outcomes ${\cal O}$
- *Apply* : *T* × *Proc* → *P*⁺(*O*) − the non-empty set of possible results of applying a test to a process

Testing preorders:

- ► Optimistic: P □_{pmay} Q if □ Apply(T, P) ≤ □ Apply(T, Q) for every test T
- ▶ Pessimistic: $P \sqsubseteq_{pmust} Q$ if $\prod Apply(T, P) \le \prod Apply(T, Q)$ for every test T

Variations on Testing preorders

$\begin{array}{ll} \mbox{Standard testing:} \\ \mbox{Use } \mathcal{O} = \{\top, \ \bot\} & \mbox{with } \bot \leq \top \end{array} \end{array}$

Probabilistic testing

Use as \mathcal{O} the unit interval [0,1] with \qquad worse $ightarrow p \leq q \leftarrow$ better

Modal testing:

Use as \mathcal{O} the interval $[0,1]^{\mathcal{G}}$

- Ω a countable set of *qualities* { $\omega_1, \omega_2, \omega_3 \dots$ }
- each assigned a probability $p_i \in [0, 1]$

Variations on Testing preorders

Standard testing:

Use $\mathcal{O} = \{\top, \perp\}$ with $\perp \leq \top$

Probabilistic testing:

Use as ${\mathcal O}$ the unit interval [0,1] with

worse $ightarrow p \leq q \leftarrow$ better

Modal testing:

Use as \mathcal{O} the interval $[0,1]^{\mathcal{G}}$

- Ω a countable set of *qualities* { $\omega_1, \omega_2, \omega_3 \dots$ }
- each assigned a probability $p_i \in [0, 1]$

Variations on Testing preorders

Standard testing:

Use $\mathcal{O} = \{\top, \perp\}$ with $\perp \leq \top$

Probabilistic testing:

Use as \mathcal{O} the unit interval [0,1] with worse

worse $\rightarrow p \leq q \leftarrow$ better

Modal testing:

Use as \mathcal{O} the interval $[0,1]^{\Omega}$

- Ω a countable set of *qualities* { $\omega_1, \omega_2, \omega_3, \ldots$ }
- each assigned a probability $p_i \in [0, 1]$

Intuition: Associate with each success modality $\omega_i \in \Omega$ a reward weighting h_i

Reward preorders:

- $\Delta \sqsubseteq_{\operatorname{nrmust}}^{\Omega} \Theta$ if for every Ω -test \mathcal{T} and non-negative reward tuple $h \in [0, 1]^{\Omega}$, $\prod h \cdot \mathcal{A}(\mathcal{T}, \Delta) \leq \prod h \cdot \mathcal{A}(\mathcal{T}, \Gamma)$.
- $\Delta \sqsubseteq_{\mathsf{rrmust}}^{\Omega} \Theta$ if for every Ω -test \mathcal{T} and real reward tuple $h \in [-1, 1]^{\Omega}$, $\prod h \cdot \mathcal{A}(\mathcal{T}, \Delta) \leq \prod h \cdot \mathcal{A}(\mathcal{T}, \Gamma)$.

Main result: In finitary convergent pLTS

Intuition:

Associate with each success modality $\omega_i \in \Omega$ a reward weighting h_i

Reward preorders:

- Δ ⊑^Ω_{nrmust} Θ if for every Ω-test T and non-negative reward tuple h ∈ [0, 1]^Ω,
 ∏ h · A(T, Δ) ≤ ∏ h · A(T, Γ).
- $\Delta \sqsubseteq_{\text{rrmust}}^{\Omega} \Theta$ if for every Ω -test \mathcal{T} and real reward tuple $h \in [-1, 1]^{\Omega}$, $\prod h \cdot \mathcal{A}(\mathcal{T}, \Delta) \leq \prod h \cdot \mathcal{A}(\mathcal{T}, \Gamma).$

Main result: In finitary convergent pLTSs

Intuition:

Associate with each success modality $\omega_i \in \Omega$ a reward weighting h_i

Reward preorders:

- $\Delta \sqsubseteq_{\mathsf{nrmust}}^{\Omega} \Theta$ if for every Ω -test \mathcal{T} and non-negative reward tuple $h \in [0, 1]^{\Omega}$, $\prod h \cdot \mathcal{A}(\mathcal{T}, \Delta) \leq \prod h \cdot \mathcal{A}(\mathcal{T}, \Gamma)$.
- $\Delta \sqsubseteq_{\mathsf{rrmust}}^{\Omega} \Theta$ if for every Ω -test \mathcal{T} and real reward tuple $h \in [-1, 1]^{\Omega}$, $\prod h \cdot \mathcal{A}(\mathcal{T}, \Delta) \leq \prod h \cdot \mathcal{A}(\mathcal{T}, \Gamma)$.

Main result:

In finitary convergent pLTSs

Intuition:

Associate with each success modality $\omega_i \in \Omega$ a reward weighting h_i

Reward preorders:

- $\Delta \sqsubseteq_{\operatorname{nrmust}}^{\Omega} \Theta$ if for every Ω -test \mathcal{T} and non-negative reward tuple $h \in [0, 1]^{\Omega}$, $\prod h \cdot \mathcal{A}(\mathcal{T}, \Delta) \leq \prod h \cdot \mathcal{A}(\mathcal{T}, \Gamma)$.
- $\Delta \sqsubseteq_{\text{rrmust}}^{\Omega} \Theta$ if for every Ω -test \mathcal{T} and real reward tuple $h \in [-1, 1]^{\Omega}$, $\prod h \cdot \mathcal{A}(\mathcal{T}, \Delta) \leq \prod h \cdot \mathcal{A}(\mathcal{T}, \Gamma).$

Main result:

In finitary convergent pLTSs

$$\Delta \sqsubseteq_{\mathsf{nrmust}}^{\Omega} \Theta \iff \Delta \sqsubseteq_{\mathsf{rrmust}}^{\Omega} \Theta$$

Outline

Testing

Outcomes: resolutions v derivations

Failure simulations

Results

Applying tests to processes Apply(T, P)Run the combined process (T||P)

Outcomes

Nondeterministic case:

- ► Nondeterministic (T||P) resolved to a set of deterministic executions
- Each execution succeeds or fails
- Each execution contributes \top or \perp to Apply(T, P)

Reward case:

- Probabilistic (T||P) resolved to a set of deterministic but probabilistic executions
- Each execution contributes a modal vector of probabilities to *Apply*(*T*, *P*)
- Formalisation: resolutions, policies, strategies, derivations, ...

Run the combined process (T||P)

Nondeterministic case:

- ► Nondeterministic (T||P) resolved to a set of deterministic executions
- Each execution succeeds or fails
- Each execution contributes \top or \perp to Apply(T, P)

Reward case:

- Probabilistic (T||P) resolved to a set of deterministic but probabilistic executions
- Each execution contributes a modal vector of probabilities to *Apply*(*T*, *P*)
- Formalisation: resolutions, policies, strategies, derivations, ...

Outcomes

Run the combined process (T||P)

Nondeterministic case:

- ► Nondeterministic (T||P) resolved to a set of deterministic executions
- Each execution succeeds or fails
- Each execution contributes \top or \perp to Apply(T, P)

Reward case:

- Probabilistic (T||P) resolved to a set of deterministic but probabilistic executions
- Each execution contributes a modal vector of probabilities to *Apply*(*T*, *P*)

Formalisation: resolutions, policies, strategies, derivations, ...

Run the combined process (T||P)

Nondeterministic case:

- ► Nondeterministic (T||P) resolved to a set of deterministic executions
- Each execution succeeds or fails
- Each execution contributes \top or \perp to Apply(T, P)

Reward case:

- Probabilistic (T||P) resolved to a set of deterministic but probabilistic executions
- Each execution contributes a modal vector of probabilities to *Apply*(*T*, *P*)
- Formalisation: resolutions, policies, strategies, derivations, ...

Testing	Outcomes	Failure simulat	tions	Results
Resolutions				
Resolutio	n of process Δ from	ı pLTS M :		
► a det	erministic pLTS $\mathbf{R} =$	$\langle R, \Omega_{\tau}, \rightarrow_R \rangle$	but probabilistic	
► a pro	cess Θ_Δ in R			
► a reso R is a	olving function $f : \mathbf{R}$	$\rightarrow \mathbf{M}$ explaining \mathbf{M}	how process Θ_{Δ} i	n

Calculating outcomes:

- Each resolution **R** of process Δ determines an outcome o_R
- $Apply^{res}(T|P) = \{ o_{\mathbf{R}} \mid \mathbf{R} \text{ is a resolution of } T || P \}$

Resolutions

Resolutions - interpolations

šf

Generalisation:

- Distributions to distributions: $\Delta \xrightarrow{\alpha} \Theta$
- Internal moves: $\Delta \xrightarrow{\tau} \Delta_1 \xrightarrow{\tau} \ldots \xrightarrow{\tau} \Delta_k$
- In the limit: $\Delta \xrightarrow{\tau} \Delta_1 \xrightarrow{\tau} \dots \xrightarrow{\tau} \Delta_k \xrightarrow{\tau} \dots \Delta_{\infty}$

A D

Generalisation:

- Distributions to distributions: $\Delta \xrightarrow{\alpha} \Theta$
- ▶ Internal moves: $\Delta \xrightarrow{\tau} \Delta_1 \xrightarrow{\tau} \ldots \xrightarrow{\tau} \Delta_k$
- In the limit: $\Delta \xrightarrow{\tau} \Delta_1 \xrightarrow{\tau} \dots \xrightarrow{\tau} \Delta_k \xrightarrow{\tau} \dots \Delta_{\infty}$

Generalisation:

- Distributions to distributions: $\Delta \xrightarrow{\alpha} \Theta$
- Internal moves: $\Delta \xrightarrow{\tau} \Delta_1 \xrightarrow{\tau} \dots \xrightarrow{\tau} \Delta_k$
- $\blacktriangleright \text{ In the limit: } \Delta \xrightarrow{\tau} \Delta_1 \xrightarrow{\tau} \dots \xrightarrow{\tau} \Delta_k \xrightarrow{\tau} \dots \Delta_{\infty}$

Generalisation:

- Distributions to distributions: $\Delta \xrightarrow{\alpha} \Theta$
- Internal moves: $\Delta \xrightarrow{\tau} \Delta_1 \xrightarrow{\tau} \dots \xrightarrow{\tau} \Delta_k$
- In the limit: $\Delta \xrightarrow{\tau} \Delta_1 \xrightarrow{\tau} \dots \xrightarrow{\tau} \Delta_k \xrightarrow{\tau} \dots \Delta_{\infty}$

- ∢ ⊒ →

From $\mathcal{R} \subseteq S \times \mathcal{D}(S)$, to lift $(\mathcal{R}) \subseteq \mathcal{D}(S) \times \mathcal{D}(S)$

whenever

- $\blacktriangleright \ \Delta = \sum_{i \in I} p_i \cdot s_i$, $\qquad I$ a finite index set
- For each $i \in I$ there is a distribution Θ_i s.t. $s_i \in \mathcal{R} \cup \Theta_i$

$$\bullet \ \Theta = \sum_{i \in I} p_i \cdot \Theta_i$$

► $\sum_{i \in I} p_i = 1$

Many different formulations Note: in decomposition $\sum_{i \in I} p_i \cdot s_i$ states s_i are not necessarily unique

 $\mathsf{From} \ \mathcal{R} \ \subseteq \ \mathcal{S} \times \ \mathcal{D}(\mathcal{S}), \ \mathsf{to} \quad \mathsf{lift}(\mathcal{R}) \ \subseteq \ \mathcal{D}(\mathcal{S}) \times \mathcal{D}(\mathcal{S})$

$$\Delta$$
 lift $(\mathcal{R})\Theta$ whenever

• $\Delta = \sum_{i \in I} p_i \cdot s_i$, I a finite index set

▶ For each $i \in I$ there is a distribution Θ_i s.t. $s_i \quad \mathcal{R} \quad \Theta_i$

$$\bullet \ \Theta = \sum_{i \in I} p_i \cdot \Theta_i$$

• $\sum_{i\in I} p_i = 1$

Many different formulations Note: in decomposition $\sum_{i \in I} p_i \cdot s_i$ states s_i are not necessarily unique

 $\mathsf{From} \ \mathcal{R} \ \subseteq \ \mathcal{S} \times \ \mathcal{D}(\mathcal{S}), \ \mathsf{to} \quad \mathsf{lift}(\mathcal{R}) \ \subseteq \ \mathcal{D}(\mathcal{S}) \times \mathcal{D}(\mathcal{S})$

$$\Delta$$
 lift(\mathcal{R}) Θ v

whenever

•
$$\Delta = \sum_{i \in I} p_i \cdot s_i$$
, I a finite index set

▶ For each $i \in I$ there is a distribution Θ_i s.t. $s_i \quad \mathcal{R} \quad \Theta_i$

•
$$\Theta = \sum_{i \in I} p_i \cdot \Theta_i$$

• $\sum_{i\in I} p_i = 1$

Many different formulations

Note: in decomposition $\sum_{i \in I} p_i \cdot s_i$ states s_i are not necessarily unique

 $\mathsf{From} \ \mathcal{R} \ \subseteq \ \mathcal{S} \times \ \mathcal{D}(\mathcal{S}), \ \mathsf{to} \quad \mathsf{lift}(\mathcal{R}) \ \subseteq \ \mathcal{D}(\mathcal{S}) \times \mathcal{D}(\mathcal{S})$

$$\Delta$$
 lift $(\mathcal{R})\Theta$ w

whenever

- $\Delta = \sum_{i \in I} p_i \cdot s_i$, I a finite index set
- ▶ For each $i \in I$ there is a distribution Θ_i s.t. $s_i \quad \mathcal{R} \quad \Theta_i$

•
$$\Theta = \sum_{i \in I} p_i \cdot \Theta_i$$

$$\blacktriangleright \sum_{i\in I} p_i = 1$$

Many different formulations Note: in decomposition $\sum_{i \in I} p_i \cdot s_i$ states s_i are not necessarily unique

Lifting actions: from $|s \xrightarrow{\mu} \Theta|$ to $|\Delta \xrightarrow{\mu} \Theta|$

- \triangleright Δ represents a cloud of possible process states
- \triangleright all possible residuals combine to Θ

$$(a.b + a.c)_{\frac{1}{2}} \oplus a.d \xrightarrow{a} b_{\frac{1}{2}} \oplus d$$

$$(a.b + a.c)_{\frac{1}{2}} \oplus a.d \xrightarrow{a} (b_{\frac{1}{2}} \oplus c)_{\frac{1}{2}} \oplus d$$

$$(a.b + a.c)_{\frac{1}{2}} \oplus a.d \xrightarrow{a} (b_{p} \oplus c)_{\frac{1}{2}} \oplus d$$

$$(\tau.a + \tau.b)_{\frac{1}{2}} \oplus (\tau.a + \tau.c) \xrightarrow{\tau} a_{\frac{1}{2}} \oplus (b_{\frac{1}{2}} \oplus c)$$

Lifting actions: from $\boxed{s \xrightarrow{\mu} \Theta}$ to $\boxed{\Delta \xrightarrow{\mu} \Theta}$

Outcomes

$$\Delta \xrightarrow{\mu} \Theta$$

- Δ represents a cloud of possible process states
- each possible state must be able to perform μ
- all possible residuals combine to Θ

Examples:

$$(a.b + a.c)_{\frac{1}{2}} \oplus a.d \xrightarrow{a} b_{\frac{1}{2}} \oplus d$$

$$(a.b + a.c)_{\frac{1}{2}} \oplus a.d \xrightarrow{a} (b_{\frac{1}{2}} \oplus c)_{\frac{1}{2}} \oplus d$$

$$(a.b + a.c)_{\frac{1}{2}} \oplus a.d \xrightarrow{a} (b_{p} \oplus c)_{\frac{1}{2}} \oplus d$$

$$(\tau.a + \tau.b)_{\frac{1}{2}} \oplus (\tau.a + \tau.c) \xrightarrow{\tau} a_{\frac{1}{2}} \oplus (b_{\frac{1}{2}} \oplus c)$$

Lifting actions: from $|s \xrightarrow{\mu} \Theta|$ to $|\Delta \xrightarrow{\mu} \Theta|$

$$\Delta \xrightarrow{\mu} \Theta$$

- \blacktriangleright Δ represents a cloud of possible process states
- each possible state must be able to perform μ
- \blacktriangleright all possible residuals combine to Θ

Examples:

 $(a.b+a.c)_{\frac{1}{2}} \oplus a.d \xrightarrow{a} b_{\frac{1}{2}} \oplus d$

Lifting actions: from $s \xrightarrow{\mu} \Theta$ to $\Delta \xrightarrow{\mu} \Theta$

$$\Delta \xrightarrow{\mu} \Theta$$

- Δ represents a cloud of possible process states
- \blacktriangleright each possible state must be able to perform μ
- all possible residuals combine to Θ

Examples:

 $(a.b+a.c)_{\frac{1}{2}} \oplus a.d \xrightarrow{a} b_{\frac{1}{2}} \oplus d$ $(a.b+a.c)_{\frac{1}{2}} \oplus a.d \xrightarrow{a} (b_{\frac{1}{2}} \oplus c)_{\frac{1}{2}} \oplus d$ $(a.b+a.c)_{\frac{1}{2}} \oplus a.d \xrightarrow{a} (b_{p} \oplus c)_{\frac{1}{2}} \oplus d$ $(\tau.a+\tau.b)_{\frac{1}{2}} \oplus (\tau.a+\tau.c) \xrightarrow{\tau} a_{\frac{1}{2}} \oplus (b_{\frac{1}{2}} \oplus c)$

Lifting actions: from $s \xrightarrow{\mu} \Theta$ to $\Delta \xrightarrow{\mu} \Theta$

$$\Delta \xrightarrow{\mu} \Theta$$

- Δ represents a cloud of possible process states
- \blacktriangleright each possible state must be able to perform μ
- all possible residuals combine to Θ

Examples:

 $(a.b+a.c)_{\frac{1}{2}} \oplus a.d \xrightarrow{a} b_{\frac{1}{2}} \oplus d$ $(a.b+a.c)_{\frac{1}{2}} \oplus a.d \xrightarrow{a} (b_{\frac{1}{2}} \oplus c)_{\frac{1}{2}} \oplus d$ $(a.b+a.c)_{\frac{1}{2}} \oplus a.d \xrightarrow{a} (b_{p} \oplus c)_{\frac{1}{2}} \oplus d$ $(\tau.a+\tau.b)_{\frac{1}{2}} \oplus (\tau.a+\tau.c) \xrightarrow{\tau} a_{\frac{1}{2}} \oplus (b_{\frac{1}{2}} \oplus c)$

Lifting actions: from $|s \xrightarrow{\mu} \Theta|$ to $|\Delta|$ $\xrightarrow{\mu} \Theta$

$$\Delta \xrightarrow{\mu} \Theta$$

- \blacktriangleright Δ represents a cloud of possible process states
- each possible state must be able to perform μ
- all possible residuals combine to Θ

Examples:

$$(a.b + a.c)_{\frac{1}{2}} \oplus a.d \xrightarrow{a} b_{\frac{1}{2}} \oplus d$$

$$(a.b + a.c)_{\frac{1}{2}} \oplus a.d \xrightarrow{a} (b_{\frac{1}{2}} \oplus c)_{\frac{1}{2}} \oplus d$$

$$(a.b + a.c)_{\frac{1}{2}} \oplus a.d \xrightarrow{a} (b_{p} \oplus c)_{\frac{1}{2}} \oplus d$$

$$(\tau.a + \tau.b)_{\frac{1}{2}} \oplus (\tau.a + \tau.c) \xrightarrow{\tau} a_{\frac{1}{2}} \oplus (b_{\frac{1}{2}} \oplus c)$$

Derivations from (T||P) to Θ :

$$(T \| P) \implies \Theta$$

Total: $\Theta = \sum_{k=0}^{\infty} \Delta_k^{\text{stop}}$

. . .

•
$$\Delta^{\text{stop}}$$
: all states in Δ which

note: subdistributions

< 日 > < 同 > < 三 > < 三 >

- ▶ are successful $s \xrightarrow{\omega}$
- or are stuck $s \neq \to$

. . .

• Δ^{\rightarrow} : all other states, which can proceed $s \xrightarrow{\tau}$

Derivations from (T||P) to Θ :

$$(T \| P) \implies \Theta$$

$$T \| P) = \Delta_{0}^{\rightarrow} + \Delta_{0}^{\text{stop}}$$

$$\Delta_{0}^{\rightarrow} \xrightarrow{\tau} \Delta_{1}^{\rightarrow} + \Delta_{1}^{\text{stop}}$$

$$\cdots$$

$$\Delta_{k}^{\rightarrow} \xrightarrow{\tau} \Delta_{(k+1)}^{\rightarrow} + \Delta_{(k+1)}^{\text{stop}}$$

Total: $\Theta = \sum_{k=0}^{\infty} \Delta_k^{\text{stop}}$

. . .

•
$$\Delta^{\text{stop}}$$
: all states in Δ which

note: subdistributions

< 日 > < 同 > < 三 > < 三 >

- ▶ are successful $s \xrightarrow{\omega}$
- or are stuck $s \neq \to$

. . .

• Δ^{\rightarrow} : all other states, which can proceed $s \xrightarrow{\tau}$

Derivations from (T||P) to Θ :

$$(T \| P) \implies \Theta$$

Total: $\Theta = \sum_{k=0}^{\infty} \Delta_k^{\text{stop}}$

• Δ^{stop} : all states in Δ which

note: subdistributions

・ロト ・同ト ・ヨト ・ヨト

- are successful $s \xrightarrow{\omega}$
- or are stuck $s \neq \to$
- Δ^{\rightarrow} : all other states, which can proceed $s \xrightarrow{\tau}$

Derivations from (T||P) to Θ :

$$(T \| P) \implies \Theta$$

Total: $\Theta = \sum_{k=0}^{\infty} \Delta_k^{\text{stop}}$

• Δ^{stop} : all states in Δ which

note: subdistributions

- 4 同 6 4 日 6 4 日 6

- ► are successful s →
- ▶ or are stuck s ≠
- Δ^{\rightarrow} : all other states, which can proceed $s \xrightarrow{\tau}$

• find all executions from (T||P):

Outcomes

- $(T||P) \implies \Theta$
- calculate contribution of each Θ

$$\mathcal{Apply}^{der}(T, P) = \{ \text{ contribute}(\Theta) \mid (T \| P) \implies \Theta \}$$

Resolutions v. Derivations:
In an arbitrary pLTS

$$Apply^{der}(T, P) = Apply^{res}(T, P)$$

- ▶ bijection between resolutions **R** of process Δ and executions $\Delta \implies \Theta$
- outcome o_R the same as contribute(Θ)

• find all executions from (T||P):

Outcomes

$$(T||P) \implies \Theta$$

calculate contribution of each Θ

$\mathcal{A}pply^{der}(T, P) = \{ \text{ contribute}(\Theta) \mid (T \| P) \implies \Theta \}$

Resolutions v. Derivations: In an arbitrary pLTS

$$Apply^{der}(T, P) = Apply^{res}(T, P)$$

- ▶ bijection between resolutions **R** of process Δ and executions $\Delta \implies \Theta$
- outcome o_R the same as contribute(Θ)

• find all executions from (T||P):

Outcomes

$$(T||P) \implies \Theta$$

calculate contribution of each Θ

$$\mathcal{A}pply^{der}(T, P) = \{ \text{ contribute}(\Theta) \mid (T \| P) \implies \Theta \}$$

Resolutions v. Derivations:
In an arbitrary pLTS

$$Apply^{der}(T,P) = Apply^{res}(T,P)$$

- bijection between resolutions **R** of process Δ and executions Δ ⇒ Θ
- outcome o_R the same as contribute(Θ)

• find all executions from (T||P):

Outcomes

$$(T||P) \implies \Theta$$

• calculate contribution of each Θ

$$\mathcal{A}pply^{der}(T, P) = \{ \text{ contribute}(\Theta) \mid (T \| P) \implies \Theta \}$$

Resolutions v. Derivations:
In an arbitrary pLTS

$$Apply^{der}(T, P) = Apply^{res}(T, P)$$

- ► bijection between resolutions **R** of process Δ and executions $\Delta \implies \Theta$
- outcome o_R the same as contribute(Θ)

6	2	t	or i

Outline

Testing

Outcomes: resolutions v derivations

Failure simulations

Results

Failure simulation preorder

 $\lhd_{_{FS}} \text{ is the largest relation in } S \times \mathcal{D}_{sub}(S) \text{ such that if } s \lhd_{_{FS}} \Theta \text{ then}$

(i) whenever $\overline{s} \stackrel{\alpha}{\Longrightarrow} \Delta'$, for $\alpha \in \operatorname{Act}_{\tau}$, then there is a $\Theta' \in \mathcal{D}_{sub}(S)$ with $\Theta \stackrel{\alpha}{\Longrightarrow} \Theta'$ and $\Delta' \operatorname{lift}(\triangleleft_{FS}) \Theta'$,

(ii) and whenever $\overline{s} \Longrightarrow \xrightarrow{A}$ then $\Delta \Longrightarrow \xrightarrow{A}$.

Note: Definition based on derivations

 $\Delta \sqsubseteq_{FS} \Theta$

whenever there is a Δ^{\natural} with $\Delta \Longrightarrow \Delta^{\natural}$ and $\Theta \triangleleft_{FS} \Delta^{\natural}$.

Soundness and completeness:

In a finitary pLTS

$$\Delta \sqsubseteq_{FS} \Theta \iff \Delta \sqsubseteq_{\mathsf{nrmust}}^{\Omega} \Theta$$

from concur 2009

Failure simulation preorder

 $\lhd_{_{FS}}$ is the largest relation in $S imes \mathcal{D}_{sub}(S)$ such that if $s \lhd_{_{FS}} \Theta$ then

(i) whenever $\overline{s} \stackrel{\alpha}{\Longrightarrow} \Delta'$, for $\alpha \in \operatorname{Act}_{\tau}$, then there is a $\Theta' \in \mathcal{D}_{sub}(S)$ with $\Theta \stackrel{\alpha}{\Longrightarrow} \Theta'$ and $\Delta' \operatorname{lift}(\triangleleft_{FS}) \Theta'$,

(ii) and whenever $\overline{s} \Longrightarrow \xrightarrow{A}$ then $\Delta \Longrightarrow \xrightarrow{A}$.

Note: Definition based on derivations

 $\Delta \sqsubseteq_{FS} \Theta$

whenever there is a Δ^{\natural} with $\Delta \Longrightarrow \Delta^{\natural}$ and $\Theta \overline{\triangleleft_{FS}} \Delta^{\natural}$.

Soundness and completeness: In a finitary pLTS

$$\Delta \sqsubseteq_{FS} \Theta \iff \Delta \sqsubseteq_{\mathsf{nrmust}}^{\Omega} \Theta$$

from concur 2009

Failure simulation preorder

 $\lhd_{_{FS}} \text{ is the largest relation in } S \times \mathcal{D}_{\textit{sub}}(S) \text{ such that if } s \lhd_{_{FS}} \Theta \text{ then}$

(i) whenever $\overline{s} \stackrel{\alpha}{\Longrightarrow} \Delta'$, for $\alpha \in \operatorname{Act}_{\tau}$, then there is a $\Theta' \in \mathcal{D}_{sub}(S)$ with $\Theta \stackrel{\alpha}{\Longrightarrow} \Theta'$ and $\Delta' \operatorname{lift}(\triangleleft_{FS}) \Theta'$,

(ii) and whenever $\overline{s} \Longrightarrow \xrightarrow{A}$ then $\Delta \Longrightarrow \xrightarrow{A}$.

Note: Definition based on derivations

$$\Delta \sqsubseteq_{FS} \Theta$$

whenever there is a Δ^{\natural} with $\Delta \Longrightarrow \Delta^{\natural}$ and $\Theta \overline{\triangleleft_{\scriptscriptstyle FS}} \Delta^{\natural}$.

Soundness and completeness:

In a finitary pLTS

$$\Delta \sqsubseteq_{FS} \Theta \iff \Delta \sqsubseteq_{\mathsf{nrmust}}^{\Omega} \Theta$$

from concur 2009

- 1	00	:+:	œ
			8

Outline

Testing

Outcomes: resolutions v derivations

Failure simulations

Results

Divergence makes a difference

$$\bullet P = \operatorname{rec} x.x \qquad Q = a. \mathbf{0}$$

- $P \sqsubseteq_{FS} Q$ and so $P \sqsubseteq_{\mathsf{nrmust}}^{\Omega} Q$
- But $P \not\sqsubseteq_{\mathbf{rrmust}}^{\Omega} Q$

- Use test $t = \overline{a}.\omega$
- use real reward $h(\omega) = -1$

$$\square h \cdot \mathcal{A}(t, P) = \square h \cdot \{emptyDis\} = 0$$
$$\square h \cdot \mathcal{A}(t, Q) = \square h \cdot \{\overrightarrow{\omega}\} = -1$$

Negative rewards make a difference in the presence of divergence

Divergence makes a difference

$$\bullet P = \operatorname{rec} x.x \qquad Q = a. \mathbf{0}$$

- $P \sqsubseteq_{FS} Q$ and so $P \sqsubseteq_{\mathsf{nrmust}}^{\Omega} Q$
- But $P \not\sqsubseteq_{\mathbf{rrmust}}^{\Omega} Q$

- Use test $t = \overline{a}.\omega$
- use real reward $h(\omega) = -1$

$$\square h \cdot \mathcal{A}(t, P) = \square h \cdot \{emptyDis\} = 0$$
$$\square h \cdot \mathcal{A}(t, Q) = \square h \cdot \{\overrightarrow{\omega}\} = -1$$

Negative rewards make a difference in the presence of divergence

Convergence:

No state with $\overline{s} \xrightarrow{\tau} \Delta_1 \xrightarrow{\tau} \Delta_2 \xrightarrow{\tau} \ldots$...

► For finitary processes, $\Delta \sqsubseteq_{nrmust}^{\Omega} \Theta$ implies $\Delta \sqsubseteq_{FS} \Theta$

- See: Concur 2009 paper
- For finitary convergent processes,
 - $\Delta \sqsubseteq_{FS} \Theta \text{ implies } \Delta \sqsubseteq_{\mathsf{rrmust}}^{\Omega} \Theta$
 - simulations make proof (relatively) straightforward

Cor: For finitary convergent processes,

$$\sqsubseteq^{\Omega}_{\mathsf{nrmust}} \Theta \iff \Delta \sqsubseteq^{\Omega}_{\mathsf{rrmust}} \Theta$$

Convergence:

No state with $\overline{s} \xrightarrow{\tau} \Delta_1 \xrightarrow{\tau} \Delta_2 \xrightarrow{\tau} \ldots$.

- For finitary processes, Δ ⊑^Ω_{nrmust} Θ implies Δ ⊑_{FS} Θ
 - See: Concur 2009 paper
- For finitary convergent processes, Δ ⊑_{FS} Θ implies Δ ⊑^Ω_{rrmust} Θ
 simulations make proof (relatively) straightforward

Cor: For finitary convergent processes,

Convergence:

No state with $\overline{s} \xrightarrow{\tau} \Delta_1 \xrightarrow{\tau} \Delta_2 \xrightarrow{\tau} \ldots$.

- ► For finitary processes, $\Delta \sqsubseteq_{nrmust}^{\Omega} \Theta$ implies $\Delta \sqsubseteq_{FS} \Theta$
 - See: Concur 2009 paper
- For finitary convergent processes, $\Delta \Box_{FS} \Theta$ implies $\Delta \Box_{rrmust}^{\Omega} \Theta$
 - simulations make proof (relatively) straightforward

Cor: For finitary convergent processes,

$$_{\rm st} \Theta \iff \Delta \sqsubseteq_{\rm rrmust} \Theta$$

Convergence:

No state with $\overline{s} \xrightarrow{\tau} \Delta_1 \xrightarrow{\tau} \Delta_2 \xrightarrow{\tau} \ldots$.

- For finitary processes, Δ ⊑^Ω_{nrmust} Θ implies Δ ⊑_{FS} Θ
 - See: Concur 2009 paper
- For finitary convergent processes, $\Delta \sqsubset_{FS} \Theta$ implies $\Delta \sqsubset_{rrmust}^{\Omega} \Theta$
 - simulations make proof (relatively) straightforward

Cor: For finitary convergent processes,

Λ

$$\Delta \sqsubseteq_{\mathsf{nrmust}}^{\Omega} \Theta \iff \Delta \sqsubseteq_{\mathsf{rrmust}}^{\Omega} \Theta$$

THANK YOU!

