Real Reward Testing for Probabilistic Processes

Matthew Hennessy

(joint work with Y. Deng, R. van Glabbeek, C. Morgan)

QAPL, Saarbrucken, april 2011

2@ TRINITY COLLEGE DUBLIN

COLAISTE NA TRIONGIDE, BAILE ATHA CLIATH

_ Tesng Oucomes Faluesimulatons Results
Outline

Testing

Outcomes: resolutions v derivations

Failure simulations

Results

Outline

Testing

Probabilistic labelled transition systems

Intensional semantics:

‘A process is a distribution in an pLTS

pLTSs:
(S,Act;, —)
> S - states
» — C S x Act, x D(S)

Probabilistic labelled transition systems

Intensional semantics:

‘A process is a distribution in an pLTS

pLTSs:
(S,Act;, —)
> S - states
» — C S x Act, x D(S)

D(S): Mappings A : S — [0,1] with > s A(s) =1

Probabilistic labelled transition systems

Intensional semantics:

‘A process is a distribution in an pLTS

pLTSs:
(S,Act;, —)
» S - states

» — C S x Act; x D(S)

D(S): Mappings A : S — [0,1] with > s A(s) =1

s1 £ A: process s;
» can perform action
» with probability A(sy) it continues as process s,

Testing

Example

Testing Outcomes Failure simulations

Testing scenario

v

a set of processes Proc
a set of tests T

v

a set of ordered outcomes O

v

v

Apply : T x Proc — P*(O) — the non-empty set of possible
results of applying a test to a process

Testing scenario

> a set of processes Proc
> a set of tests T
» a set of ordered outcomes O

» Apply : T x Proc — P*(O) — the non-empty set of possible
results of applying a test to a process

Testing preorders:

» Optimistic: P Cpmay Q if | Apply(T,P) < || Apply(T, Q)
for every test T

» Pessimistic: P Cpmust Q if [| Apply(T,P) <[] Apply(T,Q)
for every test T

Variations on Testing preorders

Standard testing:
Use O ={T, 1} with L < T

Variations on Testing preorders

Standard testing:
Use O ={T, 1} with L < T

Probabilistic testing:
Use as O the unit interval [0, 1] with worse — p < g < better

Variations on Testing preorders

Standard testing:
Use O ={T, 1} with L < T

Probabilistic testing:
Use as O the unit interval [0, 1] with worse — p < g < better

Modal testing:

Use as O the interval [0, 1]
» Q a countable set of qualities {w1, w2, w3...... }
» each assigned a probability p; € [0,1]

Reward testing

Intuition:
Associate with each success modality w; € €2 a reward weighting h;

Reward testing

Intuition:
Associate with each success modality w; € €2 a reward weighting h;

Reward preorders:

» ALYt © if for every Q-test 7 and non-negative reward

tuple h € [0,1]%,
[h- A(T,A) <[]h-A(T,T).

Reward testing

Intuition:
Associate with each success modality w; € €2 a reward weighting h;

Reward preorders:

» ALYt © if for every Q-test 7 and non-negative reward
tuple h € [0,1]%,

» ALY © if for every Q-test 7 and real reward tuple

h e_[rr—mlu,Stl]Q,
Mh-AT,A) <[k A(T,T).

Reward testing

Intuition:
Associate with each success modality w; € €2 a reward weighting h;

Reward preorders:

» ALYt © if for every Q-test 7 and non-negative reward
tuple h € [0,1]%,
[M1h-A(T,A) <[]h-A(T,T).

» ACE, . © if for every Q-test T and real reward tuple

he[-1,1]%,
Mh-AT,A) <[Th- A(T,T).

Main result:
In finitary convergent pLTSs

Q Q
A Chrmust © = A Crrmust ©

Outline

Outcomes: resolutions v derivations

o,
sfi

Applying tests to processes Apply(T, P)
Run the combined process (T ||P)

Applying tests to processes Apply(T, P)
Run the combined process (T ||P)

Nondeterministic case:

» Nondeterministic (T||P) resolved to a set of deterministic
executions

» Each execution succeeds or fails
» Each execution contributes T or L to Apply(T, P)

Applying tests to processes Apply(T, P)
Run the combined process (T||P)
Nondeterministic case:
» Nondeterministic (T||P) resolved to a set of deterministic
executions
» Each execution succeeds or fails
» Each execution contributes T or L to Apply(T, P)

Reward case:
» Probabilistic (T ||P) resolved to a set of deterministic but
probabilistic executions

» Each execution contributes a modal vector of probabilities to
Apply(T, P)

Applying tests to processes Apply(T, P)
Run the combined process (T||P)
Nondeterministic case:
» Nondeterministic (T||P) resolved to a set of deterministic
executions
» Each execution succeeds or fails
» Each execution contributes T or L to Apply(T, P)

Reward case:
» Probabilistic (T ||P) resolved to a set of deterministic but
probabilistic executions

» Each execution contributes a modal vector of probabilities to
Apply(T, P)

» Formalisation: resolutions, policies, strategies, derivations, ... “Z¢

Resolutions

Resolution of process A from pLTS M:

» a deterministic pLTS R = (R, Q., —Rr) but probabilistic
> a process Op in R

> a resolving function f : R — M explaining how process ©x in
R is an execution of A in M

Calculating outcomes:

» Each resolution R of process A determines an outcome or
» Apply"(T|P) ={or | Ris a resolution of T||P}

Outcomes

Resolutions

Outcomes

Resolutions - interpolations

Outcomes

Derivations in a pLTS

o,
—sfi

Derivations in a pLTS

Generalisation:

» Distributions to distributions: A 25 ©

o,
—sfi

Derivations in a pLTS

Generalisation:

» Distributions to distributions: A 25 ©
> Internal moves: A 5 Ay T ... T3 Ay

o,
—sfi

Derivations in a pLTS

Generalisation:

» Distributions to distributions: A 25 ©
> Internal moves: A 5 Ay T ... T3 Ay

> In the limit: A 5 A1 5 ... 5 A 5 ... Ay

o,
—sfi

Lifting relations

FromR C Sx D(S),to lift(R) € D(S) x D(S)

o,
—sfi

Outcomes Failure simulations

Lifting relations

From R C Sx D(S), to lift(R) € D(S) x D(S)

A lift(R)© whenever

» A= Ziel pi-Si, I a finite index set

» For each i€/ there is a distribution ©; s.t. s; R ©;
» O =3 piO;

> e pi=1

o,
—sfi

Outcomes Failure simulations

Lifting relations

From R C Sx D(S), to lift(R) € D(S) x D(S)

A lift(R)© whenever

» A= Ziel pi-Si, I a finite index set

» For each i€/ there is a distribution ©; s.t. s; R ©;
» O =3 piO;

> e pi=1

Many different formulations

o,
—sfi

Outcomes Failure simulations

Lifting relations

From R C Sx D(S), to lift(R) € D(S) x D(S)

A lift(R)© whenever

v

A=), pi-si, I a finite index set

For each i €/ there is a distribution ©; s.t. s; R ©;
> e:EiG/Pi‘ei
> DierPi =1

Many different formulations

Note: in decomposition Zie, pi - S; states s; are not necessarily
1 o
unique By

v

Outcomes

Lifting actions: from |s <> O to |A £ O]

o,
—sfi

Lifting actions: from |s <> O to |A £ O]

A +5 0

» A represents a cloud of possible process states
» each possible state must be able to perform p

» all possible residuals combine to ©

Lifting actions: from |s <> O to |A £ O]

A +5 0

» A represents a cloud of possible process states
» each possible state must be able to perform p

» all possible residuals combine to ©

Examples:

> (ab+ac)ibad 2 bidd

1
2

Lifting actions: from |s <> O to |A £ O]

A +5 0

» A represents a cloud of possible process states
» each possible state must be able to perform p

» all possible residuals combine to ©

Examples:
> (ab—l—ac)%@ad 2 b1 d
> (ab—l—ac)%@ad -2 (b%@)1® d

Lifting actions: from |s <> O to |A £ O]

A +5 0

» A represents a cloud of possible process states
» each possible state must be able to perform p

» all possible residuals combine to ©

Examples:
> (a.b—i—a.c)%@ ad b%@d
> (a.b—i—a.c)%@a.d -2 (b%EB C)%@d
> (ab+ac)ibad = (bdc)1dd

Lifting actions: from |s <> O to |A £ O]

A +5 0

» A represents a cloud of possible process states
» each possible state must be able to perform p

» all possible residuals combine to ©

Examples:
> (ab+ac)ibad 2 bidd
> (abtac)i®ad = (by®c)1®d
> (ab+ac)ibad = (bdc)1dd
> (rat+7.b)1®(rat+rc) & a1 (b1®)

Derivations in a pLTS
Derivations from (T[|P) to ©: |(T||P) = ©)|

(TIP) = Ag+ AF*®
Ay D AT+ AT

stop

Ay T At AL,

. oo t

Derivations in a pLTS
Derivations from (T[|P) to ©: |(T||P) = ©)|

(TIP) = Ag+ AF*®
Ay D AT+ AT

stop

DY T Ayt AL,

. o] t

Derivations in a pLTS
Derivations from (T[|P) to ©: |(T||P) = ©)|

(TIP) = Ag+ AF*®
Ay D AT+ AT

stop

DY T Ayt AL,

. o] t

Derivations in a pLTS
Derivations from (T[|P) to ©: |(T||P) = ©)|

(TIP) = Ag+ AF*®
Ay D AT+ AT
ce B Ce ctop
Ay T DGt AR
. t
Total: O =11 AT
> AStop: all states in A which note: subdistributions

» are successful s «
» or are stuck s z»

» A7 all other states, which can proceed s = ‘ ;ﬂ

Applying tests to processes: Apply® (T, P)
» find all executions from (T||P): ‘(THP) = @‘

» calculate contribution of each ©

o,
—sfi

Applying tests to processes: Apply® (T, P)
» find all executions from (T||P): ‘(THP) = @‘

» calculate contribution of each ©

Apply (T, P) = { contribute(®) | (T||P) =+ ©}

o,
—sfi

Applying tests to processes: Apply® (T, P)
» find all executions from (T||P): ‘(THP) = @‘

» calculate contribution of each ©

Apply (T, P) = { contribute(®) | (T||P) =+ ©}

Resolutions v. Derivations:
In an arbitrary pLTS

Apply®™ (T, P) = Apply™(T,P)

o,
—sfi

Applying tests to processes: Apply® (T, P)
» find all executions from (T||P): ‘(THP) = @‘

» calculate contribution of each ©

Apply® (T, P) = { contribute(®) | (T||P) = O}
Resolutions v. Derivations:
In an arbitrary pLTS

Apply®™ (T, P) = Apply™(T,P)

because

> bijection between resolutions R of process A and executions
A =0

» outcome oR the same as contribute(©) o
STI

Outline

Failure simulations

Failure simulation preorder

<ps is the largest relation in S X Dg,p(S) such that if s <5 © then

(i) whenever 5 == A/, for a € Act,, then there is a ©" € Dgp(S)
with © =% ©' and A’ lift(<,) ©,
(ii) and whenever § =44 then A =94,

Note: Definition based on derivations

Failure simulation preorder

<ps is the largest relation in S X Dg,p(S) such that if s <5 © then
(i) whenever 5 == A/, for a € Act,, then there is a ©" € Dgp(S)
with © =% ©' and A’ lift(<,) ©,
(ii) and whenever § =44 then A =94,
Note: Definition based on derivations

A Crs ©

whenever there is a A with A = A% and © <, A%

Failure simulation preorder

<ps is the largest relation in S X Dg,p(S) such that if s <5 © then

(i) whenever 5 == A/, for a € Act,, then there is a ©" € Dgp(S)
with © =% ©' and A’ lift(<,) ©,
(ii) and whenever § =44 then A =94,

Note: Definition based on derivations
A Crs ©

whenever there is a A with A = A% and © <, A%

Soundness and completeness:
In a finitary pLTS

A EFS @ < A Eﬁzrmust @ from concur 2009

Outline

Results

o,
—sfi

Divergence makes a difference

» P —=recx.x QR=a0
» PCrs Q and so P Erglzrmust Q
> But P zgmust Q

Use test t = q.w

v

v

use real reward h(w) = —1

[]h-A(t,P)=[]|h-{emptyDis} =0
[]h A, Q) =[]h {&}=-1

Negative rewards make a difference

Divergence makes a difference

» P —=recx.x QR=a0
» PCrs Q and so P E?rmust Q
> But P zgmust Q

Use test t = q.w

v

v

use real reward h(w) = —1

[]h-A(t,P)=[]|h-{emptyDis} =0
[]h A, Q) =[]h {&}=-1

Negative rewards make a difference in the presence of divergence

Results

Convergence:
No state with s = Ay = Ay T5

Results

Convergence:
No state with s = Ay = Ay T5

» For finitary processes,
A C2 © implies A Crs ©

—nrmust

» See: Concur 2009 paper

Results

Convergence:
No state with s = Ay = Ay T5

» For finitary processes,
A C2 © implies A Crs ©

—nrmust

» See: Concur 2009 paper

» For finitary convergent processes,
A Crs © implies A 2,06 ©
» simulations make proof (relatively) straightforward

Outcomes Failure simulations Results

Results

Convergence:
No state with s = Ay = Ay T5

» For finitary processes,
A C2 © implies A Crs ©

—nrmust

» See: Concur 2009 paper

» For finitary convergent processes,
A Crs © implies A 2,06 ©
» simulations make proof (relatively) straightforward

Cor: For finitary convergent processes,

Q Q
A Chrmust 0 = A Errmust o ‘ ;f!

THANK YOU!

o,
—sfi

	Testing
	Outcomes: resolutions v derivations
	Failure simulations
	Results

