
Testing Outcomes Failure simulations Results

Real Reward Testing for Probabilistic Processes

Matthew Hennessy

(joint work with Y. Deng, R. van Glabbeek, C. Morgan)

QAPL, Saarbrucken, April 2011

1/25

Testing Outcomes Failure simulations Results

Outline

Testing

Outcomes: resolutions v derivations

Failure simulations

Results

2/25

Testing Outcomes Failure simulations Results

Outline

Testing

Outcomes: resolutions v derivations

Failure simulations

Results

3/25

Testing Outcomes Failure simulations Results

Probabilistic labelled transition systems

Intensional semantics:

A process is a distribution in an pLTS

pLTSs:

〈S ,Actτ ,−→〉
I S - states

I −→ ⊆ S × Actτ ×D(S)

D(S): Mappings ∆ : S → [0, 1] with
∑

s∈S ∆(s) = 1

s1
µ−→ ∆: process s1

I can perform action µ

I with probability ∆(s2) it continues as process s2

4/25

Testing Outcomes Failure simulations Results

Probabilistic labelled transition systems

Intensional semantics:

A process is a distribution in an pLTS

pLTSs:

〈S ,Actτ ,−→〉
I S - states

I −→ ⊆ S × Actτ ×D(S)

D(S): Mappings ∆ : S → [0, 1] with
∑

s∈S ∆(s) = 1

s1
µ−→ ∆: process s1

I can perform action µ

I with probability ∆(s2) it continues as process s2

4/25

Testing Outcomes Failure simulations Results

Probabilistic labelled transition systems

Intensional semantics:

A process is a distribution in an pLTS

pLTSs:

〈S ,Actτ ,−→〉
I S - states

I −→ ⊆ S × Actτ ×D(S)

D(S): Mappings ∆ : S → [0, 1] with
∑

s∈S ∆(s) = 1

s1
µ−→ ∆: process s1

I can perform action µ

I with probability ∆(s2) it continues as process s2

4/25

Testing Outcomes Failure simulations Results

Example

P

τ

τ
τ

0.5

0.5

a

0.5
0.5

a

5/25

Testing Outcomes Failure simulations Results

Testing scenario

I a set of processes Proc
I a set of tests T
I a set of ordered outcomes O
I Apply : T × Proc → P+(O) – the non-empty set of possible

results of applying a test to a process

Testing preorders:

I Optimistic: P vpmay Q if
⊔
Apply(T ,P)≤

⊔
Apply(T ,Q)

for every test T

I Pessimistic: P vpmust Q if
d
Apply(T ,P) ≤

d
Apply(T ,Q)

for every test T

6/25

Testing Outcomes Failure simulations Results

Testing scenario

I a set of processes Proc
I a set of tests T
I a set of ordered outcomes O
I Apply : T × Proc → P+(O) – the non-empty set of possible

results of applying a test to a process

Testing preorders:

I Optimistic: P vpmay Q if
⊔
Apply(T ,P)≤

⊔
Apply(T ,Q)

for every test T

I Pessimistic: P vpmust Q if
d
Apply(T ,P) ≤

d
Apply(T ,Q)

for every test T

6/25

Testing Outcomes Failure simulations Results

Variations on Testing preorders

Standard testing:

Use O = {>, ⊥} with ⊥ ≤ >

Probabilistic testing:

Use as O the unit interval [0, 1] with worse→ p ≤ q ← better

Modal testing:

Use as O the interval [0, 1]Ω

I Ω a countable set of qualities {ω1, ω2, ω3}
I each assigned a probability pi ∈ [0, 1]

7/25

Testing Outcomes Failure simulations Results

Variations on Testing preorders

Standard testing:

Use O = {>, ⊥} with ⊥ ≤ >

Probabilistic testing:

Use as O the unit interval [0, 1] with worse→ p ≤ q ← better

Modal testing:

Use as O the interval [0, 1]Ω

I Ω a countable set of qualities {ω1, ω2, ω3}
I each assigned a probability pi ∈ [0, 1]

7/25

Testing Outcomes Failure simulations Results

Variations on Testing preorders

Standard testing:

Use O = {>, ⊥} with ⊥ ≤ >

Probabilistic testing:

Use as O the unit interval [0, 1] with worse→ p ≤ q ← better

Modal testing:

Use as O the interval [0, 1]Ω

I Ω a countable set of qualities {ω1, ω2, ω3}
I each assigned a probability pi ∈ [0, 1]

7/25

Testing Outcomes Failure simulations Results

Reward testing

Intuition:
Associate with each success modality ωi ∈ Ω a reward weighting hi

Reward preorders:

I ∆ vΩ
nrmust Θ if for every Ω-test T and non-negative reward

tuple h ∈ [0, 1]Ω,d
h · A(T ,∆) ≤

d
h · A(T , Γ).

I ∆ vΩ
rrmust Θ if for every Ω-test T and real reward tuple

h ∈ [−1, 1]Ω,d
h · A(T ,∆) ≤

d
h · A(T , Γ).

Main result:
In finitary convergent pLTSs

∆ vΩ
nrmust Θ ⇐⇒ ∆ vΩ

rrmust Θ

8/25

Testing Outcomes Failure simulations Results

Reward testing

Intuition:
Associate with each success modality ωi ∈ Ω a reward weighting hi

Reward preorders:

I ∆ vΩ
nrmust Θ if for every Ω-test T and non-negative reward

tuple h ∈ [0, 1]Ω,d
h · A(T ,∆) ≤

d
h · A(T , Γ).

I ∆ vΩ
rrmust Θ if for every Ω-test T and real reward tuple

h ∈ [−1, 1]Ω,d
h · A(T ,∆) ≤

d
h · A(T , Γ).

Main result:
In finitary convergent pLTSs

∆ vΩ
nrmust Θ ⇐⇒ ∆ vΩ

rrmust Θ

8/25

Testing Outcomes Failure simulations Results

Reward testing

Intuition:
Associate with each success modality ωi ∈ Ω a reward weighting hi

Reward preorders:

I ∆ vΩ
nrmust Θ if for every Ω-test T and non-negative reward

tuple h ∈ [0, 1]Ω,d
h · A(T ,∆) ≤

d
h · A(T , Γ).

I ∆ vΩ
rrmust Θ if for every Ω-test T and real reward tuple

h ∈ [−1, 1]Ω,d
h · A(T ,∆) ≤

d
h · A(T , Γ).

Main result:
In finitary convergent pLTSs

∆ vΩ
nrmust Θ ⇐⇒ ∆ vΩ

rrmust Θ

8/25

Testing Outcomes Failure simulations Results

Reward testing

Intuition:
Associate with each success modality ωi ∈ Ω a reward weighting hi

Reward preorders:

I ∆ vΩ
nrmust Θ if for every Ω-test T and non-negative reward

tuple h ∈ [0, 1]Ω,d
h · A(T ,∆) ≤

d
h · A(T , Γ).

I ∆ vΩ
rrmust Θ if for every Ω-test T and real reward tuple

h ∈ [−1, 1]Ω,d
h · A(T ,∆) ≤

d
h · A(T , Γ).

Main result:
In finitary convergent pLTSs

∆ vΩ
nrmust Θ ⇐⇒ ∆ vΩ

rrmust Θ

8/25

Testing Outcomes Failure simulations Results

Outline

Testing

Outcomes: resolutions v derivations

Failure simulations

Results

9/25

Testing Outcomes Failure simulations Results

Applying tests to processes Apply(T ,P)
Run the combined process (T‖P)

Nondeterministic case:

I Nondeterministic (T‖P) resolved to a set of deterministic
executions

I Each execution succeeds or fails

I Each execution contributes > or ⊥ to Apply(T ,P)

Reward case:

I Probabilistic (T‖P) resolved to a set of deterministic but
probabilistic executions

I Each execution contributes a modal vector of probabilities to
Apply(T ,P)

I Formalisation: resolutions, policies, strategies, derivations, . . .

10/25

Testing Outcomes Failure simulations Results

Applying tests to processes Apply(T ,P)
Run the combined process (T‖P)

Nondeterministic case:

I Nondeterministic (T‖P) resolved to a set of deterministic
executions

I Each execution succeeds or fails

I Each execution contributes > or ⊥ to Apply(T ,P)

Reward case:

I Probabilistic (T‖P) resolved to a set of deterministic but
probabilistic executions

I Each execution contributes a modal vector of probabilities to
Apply(T ,P)

I Formalisation: resolutions, policies, strategies, derivations, . . .

10/25

Testing Outcomes Failure simulations Results

Applying tests to processes Apply(T ,P)
Run the combined process (T‖P)

Nondeterministic case:

I Nondeterministic (T‖P) resolved to a set of deterministic
executions

I Each execution succeeds or fails

I Each execution contributes > or ⊥ to Apply(T ,P)

Reward case:

I Probabilistic (T‖P) resolved to a set of deterministic but
probabilistic executions

I Each execution contributes a modal vector of probabilities to
Apply(T ,P)

I Formalisation: resolutions, policies, strategies, derivations, . . .

10/25

Testing Outcomes Failure simulations Results

Applying tests to processes Apply(T ,P)
Run the combined process (T‖P)

Nondeterministic case:

I Nondeterministic (T‖P) resolved to a set of deterministic
executions

I Each execution succeeds or fails

I Each execution contributes > or ⊥ to Apply(T ,P)

Reward case:

I Probabilistic (T‖P) resolved to a set of deterministic but
probabilistic executions

I Each execution contributes a modal vector of probabilities to
Apply(T ,P)

I Formalisation: resolutions, policies, strategies, derivations, . . .

10/25

Testing Outcomes Failure simulations Results

Resolutions

Resolution of process ∆ from pLTS M:

I a deterministic pLTS R = 〈R,Ωτ ,→R〉 but probabilistic

I a process Θ∆ in R

I a resolving function f : R→M explaining how process Θ∆ in
R is an execution of ∆ in M

Calculating outcomes:

I Each resolution R of process ∆ determines an outcome oR
I Apply res(T |P) = { oR | R is a resolution of T‖P }

11/25

Testing Outcomes Failure simulations Results

Resolutions

τ

τ

0.5

0.5

a

P

τ

τ
τ

0.5

0.5

a

0.5
0.5

a

12/25

Testing Outcomes Failure simulations Results

Resolutions - interpolations

τ

0.25

0.75

τ τ

0.5

0.5

a

0.5
0.5

a

P

τ

τ
τ

0.5

0.5

a

0.5
0.5

a

13/25

Testing Outcomes Failure simulations Results

Resolutions - dynamic policies

τ

0.25

0.75

τ τ

0.5
0.5

a

0.5
0.5

aτ

τ

P

τ

τ
τ

0.5

0.5

a

0.5
0.5

a

14/25

Testing Outcomes Failure simulations Results

Derivations in a pLTS

s α−→ Θ

Generalisation:

I Distributions to distributions: ∆ α−→ Θ

I Internal moves: ∆ τ−→ ∆1
τ−→ . . . τ−→ ∆k

I In the limit: ∆ τ−→ ∆1
τ−→ . . . τ−→ ∆k

τ−→ . . .∆∞

15/25

Testing Outcomes Failure simulations Results

Derivations in a pLTS

s α−→ Θ

Generalisation:

I Distributions to distributions: ∆ α−→ Θ

I Internal moves: ∆ τ−→ ∆1
τ−→ . . . τ−→ ∆k

I In the limit: ∆ τ−→ ∆1
τ−→ . . . τ−→ ∆k

τ−→ . . .∆∞

15/25

Testing Outcomes Failure simulations Results

Derivations in a pLTS

s α−→ Θ

Generalisation:

I Distributions to distributions: ∆ α−→ Θ

I Internal moves: ∆ τ−→ ∆1
τ−→ . . . τ−→ ∆k

I In the limit: ∆ τ−→ ∆1
τ−→ . . . τ−→ ∆k

τ−→ . . .∆∞

15/25

Testing Outcomes Failure simulations Results

Derivations in a pLTS

s α−→ Θ

Generalisation:

I Distributions to distributions: ∆ α−→ Θ

I Internal moves: ∆ τ−→ ∆1
τ−→ . . . τ−→ ∆k

I In the limit: ∆ τ−→ ∆1
τ−→ . . . τ−→ ∆k

τ−→ . . .∆∞

15/25

Testing Outcomes Failure simulations Results

Lifting relations

From R ⊆ S × D(S), to lift(R) ⊆ D(S)×D(S)

∆ lift(R) Θ whenever

I ∆ =
∑

i∈I pi · si , I a finite index set

I For each i ∈ I there is a distribution Θi s.t. si R Θi

I Θ =
∑

i∈I pi ·Θi

I
∑

i∈I pi = 1

Many different formulations
Note: in decomposition

∑
i∈I pi · si states si are not necessarily

unique

16/25

Testing Outcomes Failure simulations Results

Lifting relations

From R ⊆ S × D(S), to lift(R) ⊆ D(S)×D(S)

∆ lift(R) Θ whenever

I ∆ =
∑

i∈I pi · si , I a finite index set

I For each i ∈ I there is a distribution Θi s.t. si R Θi

I Θ =
∑

i∈I pi ·Θi

I
∑

i∈I pi = 1

Many different formulations
Note: in decomposition

∑
i∈I pi · si states si are not necessarily

unique

16/25

Testing Outcomes Failure simulations Results

Lifting relations

From R ⊆ S × D(S), to lift(R) ⊆ D(S)×D(S)

∆ lift(R) Θ whenever

I ∆ =
∑

i∈I pi · si , I a finite index set

I For each i ∈ I there is a distribution Θi s.t. si R Θi

I Θ =
∑

i∈I pi ·Θi

I
∑

i∈I pi = 1

Many different formulations
Note: in decomposition

∑
i∈I pi · si states si are not necessarily

unique

16/25

Testing Outcomes Failure simulations Results

Lifting relations

From R ⊆ S × D(S), to lift(R) ⊆ D(S)×D(S)

∆ lift(R) Θ whenever

I ∆ =
∑

i∈I pi · si , I a finite index set

I For each i ∈ I there is a distribution Θi s.t. si R Θi

I Θ =
∑

i∈I pi ·Θi

I
∑

i∈I pi = 1

Many different formulations
Note: in decomposition

∑
i∈I pi · si states si are not necessarily

unique

16/25

Testing Outcomes Failure simulations Results

Lifting actions: from s µ−→ Θ to ∆ µ−→ Θ

∆ µ−→ Θ

I ∆ represents a cloud of possible process states

I each possible state must be able to perform µ

I all possible residuals combine to Θ

Examples:

I (a.b + a.c) 1
2
⊕ a.d a−→ b 1

2
⊕ d

I (a.b + a.c) 1
2
⊕ a.d a−→ (b 1

2
⊕ c) 1

2
⊕ d

I (a.b + a.c) 1
2
⊕ a.d a−→ (b p⊕ c) 1

2
⊕ d

I (τ.a + τ.b) 1
2
⊕ (τ.a + τ.c) τ−→ a 1

2
⊕ (b 1

2
⊕ c)

17/25

Testing Outcomes Failure simulations Results

Lifting actions: from s µ−→ Θ to ∆ µ−→ Θ

∆ µ−→ Θ

I ∆ represents a cloud of possible process states

I each possible state must be able to perform µ

I all possible residuals combine to Θ

Examples:

I (a.b + a.c) 1
2
⊕ a.d a−→ b 1

2
⊕ d

I (a.b + a.c) 1
2
⊕ a.d a−→ (b 1

2
⊕ c) 1

2
⊕ d

I (a.b + a.c) 1
2
⊕ a.d a−→ (b p⊕ c) 1

2
⊕ d

I (τ.a + τ.b) 1
2
⊕ (τ.a + τ.c) τ−→ a 1

2
⊕ (b 1

2
⊕ c)

17/25

Testing Outcomes Failure simulations Results

Lifting actions: from s µ−→ Θ to ∆ µ−→ Θ

∆ µ−→ Θ

I ∆ represents a cloud of possible process states

I each possible state must be able to perform µ

I all possible residuals combine to Θ

Examples:

I (a.b + a.c) 1
2
⊕ a.d a−→ b 1

2
⊕ d

I (a.b + a.c) 1
2
⊕ a.d a−→ (b 1

2
⊕ c) 1

2
⊕ d

I (a.b + a.c) 1
2
⊕ a.d a−→ (b p⊕ c) 1

2
⊕ d

I (τ.a + τ.b) 1
2
⊕ (τ.a + τ.c) τ−→ a 1

2
⊕ (b 1

2
⊕ c)

17/25

Testing Outcomes Failure simulations Results

Lifting actions: from s µ−→ Θ to ∆ µ−→ Θ

∆ µ−→ Θ

I ∆ represents a cloud of possible process states

I each possible state must be able to perform µ

I all possible residuals combine to Θ

Examples:

I (a.b + a.c) 1
2
⊕ a.d a−→ b 1

2
⊕ d

I (a.b + a.c) 1
2
⊕ a.d a−→ (b 1

2
⊕ c) 1

2
⊕ d

I (a.b + a.c) 1
2
⊕ a.d a−→ (b p⊕ c) 1

2
⊕ d

I (τ.a + τ.b) 1
2
⊕ (τ.a + τ.c) τ−→ a 1

2
⊕ (b 1

2
⊕ c)

17/25

Testing Outcomes Failure simulations Results

Lifting actions: from s µ−→ Θ to ∆ µ−→ Θ

∆ µ−→ Θ

I ∆ represents a cloud of possible process states

I each possible state must be able to perform µ

I all possible residuals combine to Θ

Examples:

I (a.b + a.c) 1
2
⊕ a.d a−→ b 1

2
⊕ d

I (a.b + a.c) 1
2
⊕ a.d a−→ (b 1

2
⊕ c) 1

2
⊕ d

I (a.b + a.c) 1
2
⊕ a.d a−→ (b p⊕ c) 1

2
⊕ d

I (τ.a + τ.b) 1
2
⊕ (τ.a + τ.c) τ−→ a 1

2
⊕ (b 1

2
⊕ c)

17/25

Testing Outcomes Failure simulations Results

Lifting actions: from s µ−→ Θ to ∆ µ−→ Θ

∆ µ−→ Θ

I ∆ represents a cloud of possible process states

I each possible state must be able to perform µ

I all possible residuals combine to Θ

Examples:

I (a.b + a.c) 1
2
⊕ a.d a−→ b 1

2
⊕ d

I (a.b + a.c) 1
2
⊕ a.d a−→ (b 1

2
⊕ c) 1

2
⊕ d

I (a.b + a.c) 1
2
⊕ a.d a−→ (b p⊕ c) 1

2
⊕ d

I (τ.a + τ.b) 1
2
⊕ (τ.a + τ.c) τ−→ a 1

2
⊕ (b 1

2
⊕ c)

17/25

Testing Outcomes Failure simulations Results

Derivations in a pLTS
Derivations from (T‖P) to Θ: (T‖P) =⇒� Θ

(T‖P) = ∆→
0 + ∆stop

0

∆→
0

τ−→ ∆→
1 + ∆stop

1

.

∆→
k

τ−→ ∆→
(k+1)+ ∆stop

(k+1)

.
.

Total: Θ =
∑∞

k=0 ∆stop
k

I ∆stop: all states in ∆ which note: subdistributions

I are successful s ω−→

I or are stuck s 6 τ−→

I ∆→: all other states, which can proceed s τ−→

18/25

Testing Outcomes Failure simulations Results

Derivations in a pLTS
Derivations from (T‖P) to Θ: (T‖P) =⇒� Θ

(T‖P) = ∆→
0 + ∆stop

0

∆→
0

τ−→ ∆→
1 + ∆stop

1

.

∆→
k

τ−→ ∆→
(k+1)+ ∆stop

(k+1)

.
.

Total: Θ =
∑∞

k=0 ∆stop
k

I ∆stop: all states in ∆ which note: subdistributions

I are successful s ω−→

I or are stuck s 6 τ−→

I ∆→: all other states, which can proceed s τ−→

18/25

Testing Outcomes Failure simulations Results

Derivations in a pLTS
Derivations from (T‖P) to Θ: (T‖P) =⇒� Θ

(T‖P) = ∆→
0 + ∆stop

0

∆→
0

τ−→ ∆→
1 + ∆stop

1

.

∆→
k

τ−→ ∆→
(k+1)+ ∆stop

(k+1)

.
.

Total: Θ =
∑∞

k=0 ∆stop
k

I ∆stop: all states in ∆ which note: subdistributions

I are successful s ω−→

I or are stuck s 6 τ−→

I ∆→: all other states, which can proceed s τ−→

18/25

Testing Outcomes Failure simulations Results

Derivations in a pLTS
Derivations from (T‖P) to Θ: (T‖P) =⇒� Θ

(T‖P) = ∆→
0 + ∆stop

0

∆→
0

τ−→ ∆→
1 + ∆stop

1

.

∆→
k

τ−→ ∆→
(k+1)+ ∆stop

(k+1)

.
.

Total: Θ =
∑∞

k=0 ∆stop
k

I ∆stop: all states in ∆ which note: subdistributions

I are successful s ω−→

I or are stuck s 6 τ−→

I ∆→: all other states, which can proceed s τ−→

18/25

Testing Outcomes Failure simulations Results

Applying tests to processes: Apply der(T ,P)
I find all executions from (T‖P): (T‖P) =⇒� Θ

I calculate contribution of each Θ

Applyder (T ,P) = { contribute(Θ) | (T‖P) =⇒� Θ }

Resolutions v. Derivations:
In an arbitrary pLTS

Applyder (T ,P) = Apply res(T ,P)

because

I bijection between resolutions R of process ∆ and executions
∆ =⇒� Θ

I outcome oR the same as contribute(Θ)

19/25

Testing Outcomes Failure simulations Results

Applying tests to processes: Apply der(T ,P)
I find all executions from (T‖P): (T‖P) =⇒� Θ

I calculate contribution of each Θ

Applyder (T ,P) = { contribute(Θ) | (T‖P) =⇒� Θ }

Resolutions v. Derivations:
In an arbitrary pLTS

Applyder (T ,P) = Apply res(T ,P)

because

I bijection between resolutions R of process ∆ and executions
∆ =⇒� Θ

I outcome oR the same as contribute(Θ)

19/25

Testing Outcomes Failure simulations Results

Applying tests to processes: Apply der(T ,P)
I find all executions from (T‖P): (T‖P) =⇒� Θ

I calculate contribution of each Θ

Applyder (T ,P) = { contribute(Θ) | (T‖P) =⇒� Θ }

Resolutions v. Derivations:
In an arbitrary pLTS

Applyder (T ,P) = Apply res(T ,P)

because

I bijection between resolutions R of process ∆ and executions
∆ =⇒� Θ

I outcome oR the same as contribute(Θ)

19/25

Testing Outcomes Failure simulations Results

Applying tests to processes: Apply der(T ,P)
I find all executions from (T‖P): (T‖P) =⇒� Θ

I calculate contribution of each Θ

Applyder (T ,P) = { contribute(Θ) | (T‖P) =⇒� Θ }

Resolutions v. Derivations:
In an arbitrary pLTS

Applyder (T ,P) = Apply res(T ,P)

because

I bijection between resolutions R of process ∆ and executions
∆ =⇒� Θ

I outcome oR the same as contribute(Θ)

19/25

Testing Outcomes Failure simulations Results

Outline

Testing

Outcomes: resolutions v derivations

Failure simulations

Results

20/25

Testing Outcomes Failure simulations Results

Failure simulation preorder

�FS is the largest relation in S ×Dsub(S) such that if s �FS Θ then

(i) whenever s α=⇒ ∆′, for α∈Actτ , then there is a Θ′ ∈Dsub(S)
with Θ α=⇒ Θ′ and ∆′ lift(�FS) Θ′,

(ii) and whenever s =⇒ 6A−→ then ∆ =⇒ 6A−→.

Note: Definition based on derivations

∆ vFS Θ

whenever there is a ∆\ with ∆ =⇒ ∆\ and Θ �FS ∆\.

Soundness and completeness:

In a finitary pLTS

∆ vFS Θ ⇐⇒ ∆ vΩ
nrmust Θ from concur 2009

21/25

Testing Outcomes Failure simulations Results

Failure simulation preorder

�FS is the largest relation in S ×Dsub(S) such that if s �FS Θ then

(i) whenever s α=⇒ ∆′, for α∈Actτ , then there is a Θ′ ∈Dsub(S)
with Θ α=⇒ Θ′ and ∆′ lift(�FS) Θ′,

(ii) and whenever s =⇒ 6A−→ then ∆ =⇒ 6A−→.

Note: Definition based on derivations

∆ vFS Θ

whenever there is a ∆\ with ∆ =⇒ ∆\ and Θ �FS ∆\.

Soundness and completeness:

In a finitary pLTS

∆ vFS Θ ⇐⇒ ∆ vΩ
nrmust Θ from concur 2009

21/25

Testing Outcomes Failure simulations Results

Failure simulation preorder

�FS is the largest relation in S ×Dsub(S) such that if s �FS Θ then

(i) whenever s α=⇒ ∆′, for α∈Actτ , then there is a Θ′ ∈Dsub(S)
with Θ α=⇒ Θ′ and ∆′ lift(�FS) Θ′,

(ii) and whenever s =⇒ 6A−→ then ∆ =⇒ 6A−→.

Note: Definition based on derivations

∆ vFS Θ

whenever there is a ∆\ with ∆ =⇒ ∆\ and Θ �FS ∆\.

Soundness and completeness:

In a finitary pLTS

∆ vFS Θ ⇐⇒ ∆ vΩ
nrmust Θ from concur 2009

21/25

Testing Outcomes Failure simulations Results

Outline

Testing

Outcomes: resolutions v derivations

Failure simulations

Results

22/25

Testing Outcomes Failure simulations Results

Divergence makes a difference

I P = rec x .x Q = a. 0

I P vFS Q and so P vΩ
nrmust Q

I But P 6vΩ
rrmust Q

I Use test t = a.ω

I use real reward h(ω) = −1

l
h · A(t,P) =

l
h · {emptyDis} = 0

l
h · A(t,Q) =

l
h · {−→ω } = −1

Negative rewards make a difference in the presence of divergence

23/25

Testing Outcomes Failure simulations Results

Divergence makes a difference

I P = rec x .x Q = a. 0

I P vFS Q and so P vΩ
nrmust Q

I But P 6vΩ
rrmust Q

I Use test t = a.ω

I use real reward h(ω) = −1

l
h · A(t,P) =

l
h · {emptyDis} = 0

l
h · A(t,Q) =

l
h · {−→ω } = −1

Negative rewards make a difference in the presence of divergence

23/25

Testing Outcomes Failure simulations Results

Results

Convergence:

No state with s τ−→ ∆1
τ−→ ∆2

τ−→

I For finitary processes,
∆ vΩ

nrmust Θ implies ∆ vFS Θ

I See: Concur 2009 paper

I For finitary convergent processes,
∆ vFS Θ implies ∆ vΩ

rrmust Θ
I simulations make proof (relatively) straightforward

Cor: For finitary convergent processes,

∆ vΩ
nrmust Θ ⇐⇒ ∆ vΩ

rrmust Θ

24/25

Testing Outcomes Failure simulations Results

Results

Convergence:

No state with s τ−→ ∆1
τ−→ ∆2

τ−→

I For finitary processes,
∆ vΩ

nrmust Θ implies ∆ vFS Θ

I See: Concur 2009 paper

I For finitary convergent processes,
∆ vFS Θ implies ∆ vΩ

rrmust Θ
I simulations make proof (relatively) straightforward

Cor: For finitary convergent processes,

∆ vΩ
nrmust Θ ⇐⇒ ∆ vΩ

rrmust Θ

24/25

Testing Outcomes Failure simulations Results

Results

Convergence:

No state with s τ−→ ∆1
τ−→ ∆2

τ−→

I For finitary processes,
∆ vΩ

nrmust Θ implies ∆ vFS Θ

I See: Concur 2009 paper

I For finitary convergent processes,
∆ vFS Θ implies ∆ vΩ

rrmust Θ
I simulations make proof (relatively) straightforward

Cor: For finitary convergent processes,

∆ vΩ
nrmust Θ ⇐⇒ ∆ vΩ

rrmust Θ

24/25

Testing Outcomes Failure simulations Results

Results

Convergence:

No state with s τ−→ ∆1
τ−→ ∆2

τ−→

I For finitary processes,
∆ vΩ

nrmust Θ implies ∆ vFS Θ

I See: Concur 2009 paper

I For finitary convergent processes,
∆ vFS Θ implies ∆ vΩ

rrmust Θ
I simulations make proof (relatively) straightforward

Cor: For finitary convergent processes,

∆ vΩ
nrmust Θ ⇐⇒ ∆ vΩ

rrmust Θ

24/25

Testing Outcomes Failure simulations Results

THANK YOU!

25/25

	Testing
	Outcomes: resolutions v derivations
	Failure simulations
	Results

