
Intro LTSs Bisimulations Property logics Summary

Exploring probabilistic bisimulations, part I

Matthew Hennessy

IMT Lucca, November 2012

1/32

Intro LTSs Bisimulations Property logics Summary

Outline

Concurrency theory à la Milner

Labelled transition systems

Bisimulations

Property logics

Summary

2/32

Intro LTSs Bisimulations Property logics Summary

Outline

Concurrency theory à la Milner

Labelled transition systems

Bisimulations

Property logics

Summary

3/32

Intro LTSs Bisimulations Property logics Summary

Concurrency theory à la Milner

I Intensional model of nondeterministic processes: LTSs

I Language for describing processes: algebra CCS

I Extensional equivalence: barbed congruence
processes indistinguishable in all contexts

I Proof method: bisimulations to show processes equivalent

I Proof method: HML property logic to show inequivalence

I Semantic preserving transformations: equational
characterisation

What happens when we add probabilistic behaviour ?

4/32

Intro LTSs Bisimulations Property logics Summary

Concurrency theory à la Milner

I Intensional model of nondeterministic processes: LTSs

I Language for describing processes: algebra CCS

I Extensional equivalence: barbed congruence
processes indistinguishable in all contexts

I Proof method: bisimulations to show processes equivalent

I Proof method: HML property logic to show inequivalence

I Semantic preserving transformations: equational
characterisation

What happens when we add probabilistic behaviour ?

4/32

Intro LTSs Bisimulations Property logics Summary

Outline

Concurrency theory à la Milner

Labelled transition systems

Bisimulations

Property logics

Summary

5/32

Intro LTSs Bisimulations Property logics Summary

Intensional models: nondeterministic processes

LTS labelled transition systems

〈S ,Act,→〉 where

(a) S states
(b) Actτ transition labels, with distinguished τ
(c) relation → is a subset of S × Actτ × S s a−→ t

A process is a state in an LTS

6/32

Intro LTSs Bisimulations Property logics Summary

Intensional models: probabilistic processes and nondeterministic

pLTSs: probabilistic LTSs Segala

〈S ,Actτ ,→〉, where

(a) S states
(b) Actτ transition labels, with distinguished τ
(c) relation → is a subset of S × Act×D(S) s µ−→ ∆

A process is a distribution over states of a pLTS

s0 t0 t1 t2

s1

p

s2

p

s3

p

τ
1
2 τ

1
2 τ

1
2

1
2

a

b

1
2

a2

b

1
2

a3

b

τ

7/32

Intro LTSs Bisimulations Property logics Summary

Processes are distributions in pLTSs

s

a

0.5 0.5

b

b b

c

0.2 0.8

0.6 0.4

d

c
c

e
c

c

c

0.4
0.6

0.3
0.7

0.5
0.5

0.1
0.9

start distribution s

8/32

Intro LTSs Bisimulations Property logics Summary

Processes are distributions in pLTSs

s

a

0.5 0.5

b

b b

c

0.2 0.8

0.6 0.4

d

c
c

e
c

c

c

0.4
0.6

0.3
0.7

0.5
0.5

0.1
0.9

distribution after a

8/32

Intro LTSs Bisimulations Property logics Summary

Processes are distributions in pLTSs

s

a

0.5 0.5

b

b b

c

0.2 0.8

0.6 0.4

d

c
c

e
c

c

c

0.4
0.6

0.3
0.7

0.5
0.5

0.1
0.9

distribution after ab

8/32

Intro LTSs Bisimulations Property logics Summary

Processes are distributions in pLTSs

s

a

0.5 0.5

b

b b

c

0.2 0.8

0.6 0.4

d

c
c

e
c

c

c

0.4
0.6

0.3
0.7

0.5
0.5

0.1
0.9

distribution after abc

8/32

Intro LTSs Bisimulations Property logics Summary

Algebras for processes

LTSs: CCS

P,Q ::= 0 | µ.P, µ ∈ Actτ | P + Q | P | Q | A, A⇐ D(A)

I Every P determines an LTS

I Every P is a state in an LTS

pLTSs: pCCS

P,Q ::= 0 | µ.P, µ ∈ Actτ | P + Q | P | Q | A, A⇐ D(A)

P p⊕ Q, 0 ≤ p ≤ 1

I Every P determines a pLTS

I Every P is a distribution in an LTS

9/32

Intro LTSs Bisimulations Property logics Summary

Algebras for processes

LTSs: CCS

P,Q ::= 0 | µ.P, µ ∈ Actτ | P + Q | P | Q | A, A⇐ D(A)

I Every P determines an LTS

I Every P is a state in an LTS

pLTSs: pCCS

P,Q ::= 0 | µ.P, µ ∈ Actτ | P + Q | P | Q | A, A⇐ D(A)

P p⊕ Q, 0 ≤ p ≤ 1

I Every P determines a pLTS

I Every P is a distribution in an LTS

9/32

Intro LTSs Bisimulations Property logics Summary

Extensional equivalence: LTSs

P = a.(a.(b + c) + a.b + a.c) R = a.a.(b + c) + a.(a.b + a.c)

Q: Can P and R be distinguished behaviourally?

Contextual equivalences: P ∼rbc Q

Very general method:
Largest equivalence between processes which

I is preserved by language contexts

I preserves basic observables

I preserves nondeterministic potential

10/32

Intro LTSs Bisimulations Property logics Summary

Extensional equivalence: LTSs

P = a.(a.(b + c) + a.b + a.c) R = a.a.(b + c) + a.(a.b + a.c)

Q: Can P and R be distinguished behaviourally?

Contextual equivalences: P ∼rbc Q

Very general method:

Largest equivalence between processes which

I is preserved by language contexts

I preserves basic observables

I preserves nondeterministic potential

10/32

Intro LTSs Bisimulations Property logics Summary

Extensional equivalence: LTSs

P = a.(a.(b + c) + a.b + a.c) R = a.a.(b + c) + a.(a.b + a.c)

Q: Can P and R be distinguished behaviourally?

Contextual equivalences: P ∼rbc Q

Very general method:
Largest equivalence between processes which

I is preserved by language contexts

I preserves basic observables

I preserves nondeterministic potential

10/32

Intro LTSs Bisimulations Property logics Summary

Extensional equivalence: LTSs

P = a.(a.(b + c) + a.b + a.c) R = a.a.(b + c) + a.(a.b + a.c)

Q: Can P and R be distinguished behaviourally?

Contextual equivalences: P ∼rbc Q

Very general method:
Largest equivalence between processes which

I is preserved by language contexts
I preserves basic observables

I requires definition of observation predicates P ↓ o

I preserves nondeterministic potential
I requires reduction semantics P τ−→ P ′

10/32

Intro LTSs Bisimulations Property logics Summary

Extensional equivalence: example in pLTSs

s
a a1

2

1
2

1
2

1
2

b1

b2 b3 b4

u
a a1

2

1
2

1
2

1
2

b1

b3 b2 b4

s 6∼rbc u:

s | T T = a.(b1.ω + b2.ω)
τ−→ (b1 1

2
⊕ b2) | (b1.ω + b2.ω)

the same as b1 | (b1.ω + b2.ω) 1
2
⊕ b2 | ((b1.ω + b2.ω)

τ−→ω 1
2
⊕ ω

11/32

Intro LTSs Bisimulations Property logics Summary

Extensional equivalence: example in pLTSs

s
a a1

2

1
2

1
2

1
2

b1

b2 b3 b4

u
a a1

2

1
2

1
2

1
2

b1

b3 b2 b4

s 6∼rbc u:

s | T T = a.(b1.ω + b2.ω)
τ−→ (b1 1

2
⊕ b2) | (b1.ω + b2.ω)

the same as b1 | (b1.ω + b2.ω) 1
2
⊕ b2 | ((b1.ω + b2.ω)

τ−→ω 1
2
⊕ ω

11/32

Intro LTSs Bisimulations Property logics Summary

Extensional equivalence: example in pLTSs

s
a a1

2

1
2

1
2

1
2

b1

b2 b3 b4

u
a a1

2

1
2

1
2

1
2

b1

b3 b2 b4

s 6∼rbc u:

s | T T = a.(b1.ω + b2.ω)
τ−→ (b1 1

2
⊕ b2) | (b1.ω + b2.ω)

the same as b1 | (b1.ω + b2.ω) 1
2
⊕ b2 | ((b1.ω + b2.ω)

τ−→ω 1
2
⊕ ω ↓1 ω ← probabilistic observable

11/32

Intro LTSs Bisimulations Property logics Summary

Extensional equivalence: in pLTs

Reduction barbed congruence

Largest equivalence over distributions which is

I closed wrt parallel contexts

I preserves probabilistic observations barbs

I is reduction-closed

Observations:
∆ ↓p a if Σ{∆(s) | s a−→} ≥ p

Reduction-closed:strong

if ∆ ∼rbc Θ then

I ∆ τ−→ ∆′ implies Θ τ−→ Θ′ s.t. ∆′ ∼rbc Θ

I conversely, Θ τ−→ Θ′ implies

12/32

Intro LTSs Bisimulations Property logics Summary

Extensional equivalence: in pLTs

Reduction barbed congruence

Largest equivalence over distributions which is

I closed wrt parallel contexts

I preserves probabilistic observations barbs

I is reduction-closed

Observations:
∆ ↓p a if Σ{∆(s) | s a−→} ≥ p

Reduction-closed:strong

if ∆ ∼rbc Θ then

I ∆ τ−→ ∆′ implies Θ τ−→ Θ′ s.t. ∆′ ∼rbc Θ

I conversely, Θ τ−→ Θ′ implies

12/32

Intro LTSs Bisimulations Property logics Summary

Outline

Concurrency theory à la Milner

Labelled transition systems

Bisimulations

Property logics

Summary

13/32

Intro LTSs Bisimulations Property logics Summary

Bisimulations for LTSs a proof method

R⊆ S × S is a bisimulation in an LTS if
whenever p R q then

(1) p µ−→ p′ implies q µ−→ q′ such that p′ R q′

(2) conversely, q µ−→ q′ implies p µ−→ p′ such that p′ R q′

Thm (Milner&Sangiorgi): In a sufficiently expressive
finite-branching LTS,

p ∼rbc q iff p R q for some bisimulation R

Proof method;
To show p ∼rbc q:

I exhibit a bisimulation R containing the pair (p, q)

14/32

Intro LTSs Bisimulations Property logics Summary

Bisimulations for LTSs a proof method

R⊆ S × S is a bisimulation in an LTS if
whenever p R q then

(1) p µ−→ p′ implies q µ−→ q′ such that p′ R q′

(2) conversely, q µ−→ q′ implies p µ−→ p′ such that p′ R q′

Thm (Milner&Sangiorgi): In a sufficiently expressive
finite-branching LTS,

p ∼rbc q iff p R q for some bisimulation R

Proof method;
To show p ∼rbc q:

I exhibit a bisimulation R containing the pair (p, q)

14/32

Intro LTSs Bisimulations Property logics Summary

Bisimulations for LTSs a proof method

R⊆ S × S is a bisimulation in an LTS if
whenever p R q then

(1) p µ−→ p′ implies q µ−→ q′ such that p′ R q′

(2) conversely, q µ−→ q′ implies p µ−→ p′ such that p′ R q′

Thm (Milner&Sangiorgi): In a sufficiently expressive
finite-branching LTS,

p ∼rbc q iff p R q for some bisimulation R

Proof method;
To show p ∼rbc q:

I exhibit a bisimulation R containing the pair (p, q)

14/32

Intro LTSs Bisimulations Property logics Summary

Bisimulations for pLTSs a proof method

Processes are distributions

Proof method:
To show ∆ ∼rbc Θ

I exhibit a bisimulation R such that ∆ R Θ

Problem:

I Definition of bisimulations require actions ∆ µ−→ Θ

I pLTSs only have actions s µ−→ Θ

Solution:

Lift s µ−→ Θ to ∆ µ−→ Θ

15/32

Intro LTSs Bisimulations Property logics Summary

Bisimulations for pLTSs a proof method

Processes are distributions

Proof method:
To show ∆ ∼rbc Θ

I exhibit a bisimulation R such that ∆ R Θ

Problem:

I Definition of bisimulations require actions ∆ µ−→ Θ

I pLTSs only have actions s µ−→ Θ

Solution:

Lift s µ−→ Θ to ∆ µ−→ Θ

15/32

Intro LTSs Bisimulations Property logics Summary

Bisimulations for pLTSs a proof method

Processes are distributions

Proof method:
To show ∆ ∼rbc Θ

I exhibit a bisimulation R such that ∆ R Θ

Problem:

I Definition of bisimulations require actions ∆ µ−→ Θ

I pLTSs only have actions s µ−→ Θ

Solution:

Lift s µ−→ Θ to ∆ µ−→ Θ

15/32

Intro LTSs Bisimulations Property logics Summary

Lifting relations: from S ×D(S) to D(S)×D(S)

from s µ−→ Θ to ∆ µ−→ Θ

∆ µ−→ Θ

I ∆ represents a cloud of possible process states

I each possible state must be able to perform µ

I all possible residuals combine to Θ

Examples:

I (a.b + a.c) 1
2
⊕ a.d a−→ b 1

2
⊕ d

I (a.b + a.c) 1
2
⊕ a.d a−→ (b 1

2
⊕ c) 1

2
⊕ d

I (a.b + a.c) 1
2
⊕ a.d a−→ (b p⊕ c) 1

2
⊕ d

Note: dynamic scheduling

16/32

Intro LTSs Bisimulations Property logics Summary

Lifting relations: from S ×D(S) to D(S)×D(S)

from s µ−→ Θ to ∆ µ−→ Θ

∆ µ−→ Θ

I ∆ represents a cloud of possible process states

I each possible state must be able to perform µ

I all possible residuals combine to Θ

Examples:

I (a.b + a.c) 1
2
⊕ a.d a−→ b 1

2
⊕ d

I (a.b + a.c) 1
2
⊕ a.d a−→ (b 1

2
⊕ c) 1

2
⊕ d

I (a.b + a.c) 1
2
⊕ a.d a−→ (b p⊕ c) 1

2
⊕ d

Note: dynamic scheduling

16/32

Intro LTSs Bisimulations Property logics Summary

Lifting relations: from S ×D(S) to D(S)×D(S)

from s µ−→ Θ to ∆ µ−→ Θ

∆ µ−→ Θ

I ∆ represents a cloud of possible process states

I each possible state must be able to perform µ

I all possible residuals combine to Θ

Examples:

I (a.b + a.c) 1
2
⊕ a.d a−→ b 1

2
⊕ d

I (a.b + a.c) 1
2
⊕ a.d a−→ (b 1

2
⊕ c) 1

2
⊕ d

I (a.b + a.c) 1
2
⊕ a.d a−→ (b p⊕ c) 1

2
⊕ d

Note: dynamic scheduling
16/32

Intro LTSs Bisimulations Property logics Summary

Lifting relations

From R ⊆ S × D(S), to lift(R) ⊆ D(S)×D(S)

∆ lift(R) Θ whenever

I ∆ =
∑

i∈I pi · si , I a finite index set

I For each i ∈ I there is a distribution Θi s.t. si R Θi

I Θ =
∑

i∈I pi ·Θi

I
∑

i∈I pi = 1

Many different formulations
Note: in decomposition

∑
i∈I pi · si states si are not necessarily

unique

17/32

Intro LTSs Bisimulations Property logics Summary

Lifting relations

From R ⊆ S × D(S), to lift(R) ⊆ D(S)×D(S)

∆ lift(R) Θ whenever

I ∆ =
∑

i∈I pi · si , I a finite index set

I For each i ∈ I there is a distribution Θi s.t. si R Θi

I Θ =
∑

i∈I pi ·Θi

I
∑

i∈I pi = 1

Many different formulations
Note: in decomposition

∑
i∈I pi · si states si are not necessarily

unique

17/32

Intro LTSs Bisimulations Property logics Summary

Lifting relations

From R ⊆ S × D(S), to lift(R) ⊆ D(S)×D(S)

∆ lift(R) Θ whenever

I ∆ =
∑

i∈I pi · si , I a finite index set

I For each i ∈ I there is a distribution Θi s.t. si R Θi

I Θ =
∑

i∈I pi ·Θi

I
∑

i∈I pi = 1

Many different formulations
Note: in decomposition

∑
i∈I pi · si states si are not necessarily

unique

17/32

Intro LTSs Bisimulations Property logics Summary

Bisimulations for pLTSs a proof method

R⊆ D(S)×D(S) is a bisimulation in an pLTS if
whenever ∆ R Θ then

(1) ∆ µ−→ ∆′ implies Θ µ−→ Θ′ such that ∆′ R Θ′

(2) conversely,

Problem:

I There is a bisimulation containing (a 0.5⊕ b, 0)

I a 0.5⊕ b and 0 are NOT reduction barbed congruent

Singleton relation R= (a 0.5⊕ b, 0) is a trivial bisimulation

18/32

Intro LTSs Bisimulations Property logics Summary

Bisimulations for pLTSs a proof method

R⊆ D(S)×D(S) is a bisimulation in an pLTS if
whenever ∆ R Θ then

(1) ∆ µ−→ ∆′ implies Θ µ−→ Θ′ such that ∆′ R Θ′

(2) conversely,

Problem:

I There is a bisimulation containing (a 0.5⊕ b, 0)

I a 0.5⊕ b and 0 are NOT reduction barbed congruent

Singleton relation R= (a 0.5⊕ b, 0) is a trivial bisimulation

18/32

Intro LTSs Bisimulations Property logics Summary

Decomposable Relations

R⊆ D(S)×D(S) is decomposable if

I (∆1 p⊕ ∆2) R Θ implies Θ = Θ1 p⊕ Θ2 such that ∆iRΘi

I ∆ R (Θ1 p⊕ Θ2) implies ∆ = ∆1 p⊕ ∆2 such that ∆iRΘi

Examples:

I R= (a 0.5⊕ b, 0) is NOT decomposable

I ∼rbc is decomposable

Properties:

I Every R⊆ S × S can be lifted to a decomposable
slift(R)⊆ D(S)×D(S)

I Every decomposable R⊆ D(S)×D(S) can be written as
slift(Rs) for some Rs ⊆S × S

19/32

Intro LTSs Bisimulations Property logics Summary

Decomposable Relations

R⊆ D(S)×D(S) is decomposable if

I (∆1 p⊕ ∆2) R Θ implies Θ = Θ1 p⊕ Θ2 such that ∆iRΘi

I ∆ R (Θ1 p⊕ Θ2) implies ∆ = ∆1 p⊕ ∆2 such that ∆iRΘi

Examples:

I R= (a 0.5⊕ b, 0) is NOT decomposable

I ∼rbc is decomposable

Properties:

I Every R⊆ S × S can be lifted to a decomposable
slift(R)⊆ D(S)×D(S)

I Every decomposable R⊆ D(S)×D(S) can be written as
slift(Rs) for some Rs ⊆S × S

19/32

Intro LTSs Bisimulations Property logics Summary

Bisimulations for pLTSs at last

A decomposable R⊆ D(S)×D(S) is a bisimulation in an pLTS if
whenever ∆ R Θ then

(1) ∆ µ−→ ∆′ implies Θ µ−→ Θ′ such that ∆′ R Θ′

(2) conversely,

Result:
Thm: In a sufficiently expressive finitary pLTS,

∆ ∼rbc Θ iff ∆ R Θ for some bisimulation R

Result:
Thm: ∆ slift(∼segala) Θ iff ∆ R Θ for some bisimulation R

s ∼segala t is state based probabilistic bisimulation à la Segala.

20/32

Intro LTSs Bisimulations Property logics Summary

Bisimulations for pLTSs at last

A decomposable R⊆ D(S)×D(S) is a bisimulation in an pLTS if
whenever ∆ R Θ then

(1) ∆ µ−→ ∆′ implies Θ µ−→ Θ′ such that ∆′ R Θ′

(2) conversely,

Result:
Thm: In a sufficiently expressive finitary pLTS,

∆ ∼rbc Θ iff ∆ R Θ for some bisimulation R

Result:
Thm: ∆ slift(∼segala) Θ iff ∆ R Θ for some bisimulation R

s ∼segala t is state based probabilistic bisimulation à la Segala.

20/32

Intro LTSs Bisimulations Property logics Summary

Bisimulations for pLTSs at last

A decomposable R⊆ D(S)×D(S) is a bisimulation in an pLTS if
whenever ∆ R Θ then

(1) ∆ µ−→ ∆′ implies Θ µ−→ Θ′ such that ∆′ R Θ′

(2) conversely,

Result:
Thm: In a sufficiently expressive finitary pLTS,

∆ ∼rbc Θ iff ∆ R Θ for some bisimulation R

Result:
Thm: ∆ slift(∼segala) Θ iff ∆ R Θ for some bisimulation R

s ∼segala t is state based probabilistic bisimulation à la Segala.

20/32

Intro LTSs Bisimulations Property logics Summary

Bisimulations à Segala in pLTSs

An equivalence relation R⊆ S × S is an s-bisimulation if,
whenever s R t, then

I s µ−→ ∆ implies t µ−→ Θ such that ∆(E) = Θ(E) for all R-
equivalence classes E

I conversely, t µ−→ Θ implies

∼segala is the largest s-bisimulation

21/32

Intro LTSs Bisimulations Property logics Summary

Example in pLTSs: dynamic scheduling

s
o o

o0.7

0.3 0.3

0.7

0.5 0.5
h

t h

t

h t

t
o o

0.7

0.3 0.3

0.7

h

t h

t

s ∼ t

Because

t o−→ h 0.5⊕ t

using combined moves

22/32

Intro LTSs Bisimulations Property logics Summary

Outline

Concurrency theory à la Milner

Labelled transition systems

Bisimulations

Property logics

Summary

23/32

Intro LTSs Bisimulations Property logics Summary

Property logics in LTSs: proving inequivalences

HML:

ϕ ::= tt | ϕ1 ∨ ϕ2 | 〈µ〉ϕ, µ ∈ Actτ | ¬ϕ

p |= ϕ means process p has property ϕ
E.G:

I p |= 〈µ〉ϕ if p µ−→ p′ such that p′ |= ϕ

Classical result:
In a finite branching LTS, p ∼rbc q iff
p |= ϕ implies q |= ϕ, for every property ϕ

Proof method:
To show p 6∼rbc q exhibit ϕ such that

p |= ϕ and q 6|= ϕ

24/32

Intro LTSs Bisimulations Property logics Summary

Property logics in LTSs: proving inequivalences

HML:

ϕ ::= tt | ϕ1 ∨ ϕ2 | 〈µ〉ϕ, µ ∈ Actτ | ¬ϕ

p |= ϕ means process p has property ϕ
E.G:

I p |= 〈µ〉ϕ if p µ−→ p′ such that p′ |= ϕ

Classical result:
In a finite branching LTS, p ∼rbc q iff
p |= ϕ implies q |= ϕ, for every property ϕ

Proof method:
To show p 6∼rbc q exhibit ϕ such that

p |= ϕ and q 6|= ϕ

24/32

Intro LTSs Bisimulations Property logics Summary

Example

P = a.(a.(b + c) + a.b + a.c)

R = a.a.(b + c) + a.(a.b + a.c)

Q: Can P and R be distinguished behaviourally?

P 6∼rbc Q because

I P |= 〈a〉(〈a〉(〈b〉tt ∧ 〈c〉tt) ∧ 〈a〉(〈b〉tt ∧ ¬〈c〉tt))

I Q 6|= 〈a〉(. . .

25/32

Intro LTSs Bisimulations Property logics Summary

Example

P = a.(a.(b + c) + a.b + a.c)

R = a.a.(b + c) + a.(a.b + a.c)

Q: Can P and R be distinguished behaviourally?

P 6∼rbc Q because

I P |= 〈a〉(〈a〉(〈b〉tt ∧ 〈c〉tt) ∧ 〈a〉(〈b〉tt ∧ ¬〈c〉tt))

I Q 6|= 〈a〉(. . .

25/32

Intro LTSs Bisimulations Property logics Summary

Property logics in pLTSs: proving inequivalences

pHML:

ϕ ::= tt | ϕ1 ∨ ϕ2 | 〈µ〉ϕ, µ ∈ Actτ | ¬ϕ
| ϕ1 p⊕ ϕ2, p ∈ [0, 1]

∆ |= ϕ means process ∆ has property ϕ
E.G:

I ∆ |= ϕ1 p⊕ ϕ2 if ∆ = ∆1 p⊕ ∆2 such that ∆i |= ϕi

Result:
In a finitary pLTS, ∆ ∼ Θ iff
∆ |= ϕ implies Θ |= ϕ, for every property ϕ

Proof method:
To show ∆ 6∼rbc Θ exhibit ϕ such that

∆ |= ϕ and Θ 6|= ϕ

26/32

Intro LTSs Bisimulations Property logics Summary

Property logics in pLTSs: proving inequivalences

pHML:

ϕ ::= tt | ϕ1 ∨ ϕ2 | 〈µ〉ϕ, µ ∈ Actτ | ¬ϕ
| ϕ1 p⊕ ϕ2, p ∈ [0, 1]

∆ |= ϕ means process ∆ has property ϕ
E.G:

I ∆ |= ϕ1 p⊕ ϕ2 if ∆ = ∆1 p⊕ ∆2 such that ∆i |= ϕi

Result:
In a finitary pLTS, ∆ ∼ Θ iff
∆ |= ϕ implies Θ |= ϕ, for every property ϕ

Proof method:
To show ∆ 6∼rbc Θ exhibit ϕ such that

∆ |= ϕ and Θ 6|= ϕ

26/32

Intro LTSs Bisimulations Property logics Summary

Example

s
a a1

2

1
2

1
2

1
2

b1

b2 b3 b4

u
a a1

2

1
2

1
2

1
2

b1

b3 b2 b4

s 6∼rbc u because

I s |= 〈a〉(〈b1〉tt 1
2
⊕ 〈b2〉tt)

I u 6|= 〈a〉(〈b1〉tt 1
2
⊕ 〈b2〉tt)

27/32

Intro LTSs Bisimulations Property logics Summary

Outline

Concurrency theory à la Milner

Labelled transition systems

Bisimulations

Property logics

Summary

28/32

Intro LTSs Bisimulations Property logics Summary

Summary

I Emphasis on processes as distributions in pLTSs

I Natural formulation of (strong) contextual behavioural
equivalence

I Behavioural justification of Segalas state-based bisimulation
equivalence

I Simple complete extension of HML for probabilistic processes

I Complete axiomatisation for probabilistic CCS

Future

I Algorithms ?
I Input two processes ∆, Θ
I Output: bisimulation containing (∆, Θ) or a pHML

distinguishing formula

I Static schedulers ?

I Weak case ?

29/32

Intro LTSs Bisimulations Property logics Summary

Summary

I Emphasis on processes as distributions in pLTSs

I Natural formulation of (strong) contextual behavioural
equivalence

I Behavioural justification of Segalas state-based bisimulation
equivalence

I Simple complete extension of HML for probabilistic processes

I Complete axiomatisation for probabilistic CCS

Future

I Algorithms ?
I Input two processes ∆, Θ
I Output: bisimulation containing (∆, Θ) or a pHML

distinguishing formula

I Static schedulers ?

I Weak case ?

29/32

Intro LTSs Bisimulations Property logics Summary

The weak case: thoughts

Weak reduction barbed congruence ≈rbc: easy to define

Largest equivalence over distributions which is

I closed wrt parallel contexts

I preserves weak probabilistic observations barbs

I is weak reduction-closed

Weak observations:
∆ ⇓p a if ∆ τ=⇒ ∆′ such that ∆′ ↓p a

Weak reduction-closed:
if ∆ ≈rbc Θ then

I ∆ τ=⇒ ∆′ implies Θ τ=⇒ Θ′ s.t. ∆′ ≈rbc Θ

I conversely, Θ τ=⇒ Θ′ implies

30/32

Intro LTSs Bisimulations Property logics Summary

The weak case: thoughts

Weak reduction barbed congruence ≈rbc: easy to define

Largest equivalence over distributions which is

I closed wrt parallel contexts

I preserves weak probabilistic observations barbs

I is weak reduction-closed

Weak observations:
∆ ⇓p a if ∆ τ=⇒ ∆′ such that ∆′ ↓p a

Weak reduction-closed:
if ∆ ≈rbc Θ then

I ∆ τ=⇒ ∆′ implies Θ τ=⇒ Θ′ s.t. ∆′ ≈rbc Θ

I conversely, Θ τ=⇒ Θ′ implies

30/32

Intro LTSs Bisimulations Property logics Summary

The weak case: thoughts

Problem:

≈rbc is not decomposable

Consequence:

I Let ≈s be any relation in S × S eg a state-based weak bisimulation equivalence

I Then ≈rbc is NOT the same as slift(≈s)

31/32

Intro LTSs Bisimulations Property logics Summary

The weak case: thoughts

Problem:

≈rbc is not decomposable

Consequence:

I Let ≈s be any relation in S × S eg a state-based weak bisimulation equivalence

I Then ≈rbc is NOT the same as slift(≈s)

31/32

Intro LTSs Bisimulations Property logics Summary

≈
rbc

is not decomposable

s

s1

sasb sc

u

1
2

1
2

τ
1
2

1
2

ab c
versus

v

va vb vc

o
1
2

1
4

1
4

a b c

s ≈rbc v

32/32

	Concurrency theory à la Milner
	Labelled transition systems
	Bisimulations
	Property logics
	Summary

