Exploring probabilistic bisimulations, part I

Matthew Hennessy

IMT Lucca, November 2012

Outline

Concurrency theory à la Milner

Labelled transition systems

Bisimulations

Property logics

Summary

Outline

Concurrency theory à la Milner

Labelled transition systems

Bisimulations

Property logics

Summary

Concurrency theory à la Milner

- Intensional model of nondeterministic processes: LTSs
- Language for describing processes: algebra CCS
- Extensional equivalence: barbed congruence
processes indistinguishable in all contexts
- Proof method: bisimulations to show processes equivalent
- Proof method: HML property logic to show inequivalence
- Semantic preserving transformations: equational characterisation

Concurrency theory à la Milner

- Intensional model of nondeterministic processes: LTSs
- Language for describing processes: algebra CCS
- Extensional equivalence: barbed congruence processes indistinguishable in all contexts
- Proof method: bisimulations to show processes equivalent
- Proof method: HML property logic to show inequivalence
- Semantic preserving transformations: equational characterisation

What happens when we add probabilistic behaviour ?

Outline

Concurrency theory à la Milner

Labelled transition systems

Bisimulations

Property logics

Summary

Intensional models: nondeterministic processes

LTS labelled transition systems
$\langle S$, Act, $\rightarrow\rangle$ where
(a) S states
(b) Act_{τ} transition labels, with distinguished τ
(c) relation \rightarrow is a subset of $S \times \operatorname{Act}_{\tau} \times S_{s \rightarrow t} \rightarrow$

A process is a state in an LTS

Intensional models: probabilistic processes and ondedeteministic

pLTS : probabilistic LTss
$\left\langle S\right.$, Act $\left._{\tau}, \rightarrow\right\rangle$, where
(a) S states
(b) Act_{τ} transition labels, with distinguished τ
(c) relation \rightarrow is a subset of $S \times \operatorname{Act} \times \mathcal{D}(S) \quad s, \mu \Delta$

A process is a distribution over states of a pLTS

Processes are distributions in pltss

start distribution \bar{s}

Processes are distributions in pltss

distribution after a

Processes are distributions in pltss

distribution after $a b$

Processes are distributions in pltss

distribution after $a b c$

Algebras for processes

LTSs: CCS
$P, Q::=0\left|\mu . P, \mu \in \operatorname{Act}_{\tau}\right| P+Q|P| Q \mid A, A \Leftarrow D(A)$

- Every P determines an LTS
- Every P is a state in an LTS

Algebras for processes

LTSs: CCS
$P, Q::=0\left|\mu . P, \mu \in \operatorname{Act}_{\tau}\right| P+Q|P| Q \mid A, A \Leftarrow D(A)$

- Every P determines an LTS
- Every P is a state in an LTS
pLTSs: pCCS
$P, Q::=\mathbf{0}\left|\mu . P, \mu \in \operatorname{Act}_{\tau}\right| P+Q|P| Q \mid A, A \Leftarrow D(A)$ $P_{p} \oplus Q, 0 \leq p \leq 1$
- Every P determines a pLTS
- Every P is a distribution in an LTS

Extensional equivalence: LTSs

$P=a .(a .(b+c)+a . b+a . c) \quad R=a \cdot a .(b+c)+a \cdot(a \cdot b+a \cdot c)$
Q: Can P and R be distinguished behaviourally?

Extensional equivalence: LTSs

$P=a \cdot(a .(b+c)+a \cdot b+a \cdot c) \quad R=a \cdot a \cdot(b+c)+a \cdot(a \cdot b+a \cdot c)$
Q: Can P and R be distinguished behaviourally?
Contextual equivalences: $P \sim_{r b c} Q$
Very general method:

Extensional equivalence: LTSs

$P=a \cdot(a .(b+c)+a \cdot b+a \cdot c) \quad R=a \cdot a \cdot(b+c)+a \cdot(a \cdot b+a \cdot c)$
Q: Can P and R be distinguished behaviourally?
Contextual equivalences: $P \sim_{r b c} Q$
Very general method:
Largest equivalence between processes which

- is preserved by language contexts
- preserves basic observables
- preserves nondeterministic potential

Extensional equivalence: LTSs

$P=a .(a .(b+c)+a . b+a \cdot c) \quad R=a \cdot a \cdot(b+c)+a \cdot(a \cdot b+a \cdot c)$
Q: Can P and R be distinguished behaviourally?
Contextual equivalences: $P \sim_{r c c} Q$
Very general method:
Largest equivalence between processes which

- is preserved by language contexts
- preserves basic observables
- requires definition of observation predicates $P \downarrow 0$
- preserves nondeterministic potential
- requires reduction semantics $P \xrightarrow{\tau} P^{\prime}$

Extensional equivalence: example in pLTSs

$\bar{s} \not \chi_{r b c} \bar{u}:$

Extensional equivalence: example in pLTSs

$\bar{s} \not \chi_{r b c} \bar{u}:$

$$
\begin{aligned}
& s \mid T \quad T=\bar{a} \cdot\left(\overline{b_{1}} \cdot \omega+\overline{b_{2}} \cdot \omega\right) \\
& \left.\xrightarrow{\tau}\left(b_{1 \frac{1}{2}} \oplus b_{2}\right) \right\rvert\,\left(\overline{b_{1}} \cdot \omega+\overline{b_{2}} \cdot \omega\right)
\end{aligned}
$$

the same as $b_{1}\left|\left(\overline{b_{1}} \cdot \omega+\overline{b_{2}} \cdot \omega\right)_{\frac{1}{2}} \oplus b_{2}\right|\left(\left(\overline{b_{1}} \cdot \omega+\overline{b_{2}} \cdot \omega\right)\right.$

$$
\xrightarrow{\tau} \omega \underset{\frac{1}{2}}{ } \oplus \omega
$$

Extensional equivalence: example in pLTSs

$\bar{s} \not \chi_{r b c} \bar{u}:$

$$
\begin{aligned}
& s \mid T \quad T=\bar{a} \cdot\left(\overline{b_{1}} \cdot \omega+\overline{b_{2}} \cdot \omega\right) \\
& \left.\xrightarrow{\tau}\left(b_{1 \frac{1}{2}} \oplus b_{2}\right) \right\rvert\,\left(\overline{b_{1}} \cdot \omega+\overline{b_{2}} \cdot \omega\right)
\end{aligned}
$$

$$
\text { the same as } b_{1}\left|\left(\overline{b_{1}} \cdot \omega+\overline{b_{2}} \cdot \omega\right)_{\frac{1}{2}} \oplus b_{2}\right|\left(\left(\overline{b_{1}} \cdot \omega+\overline{b_{2}} \cdot \omega\right)\right.
$$

$$
\xrightarrow{\tau} \omega \underset{\frac{1}{2}}{ } \oplus \omega \quad \downarrow^{1} \omega \leftarrow \text { probabilistic observable }
$$

Extensional equivalence: in pLTs

Reduction barbed congruence
Largest equivalence over distributions which is

- closed wrt parallel contexts
- preserves probabilistic observations barbs
- is reduction-closed

Extensional equivalence: in pLTs

Reduction barbed congruence
Largest equivalence over distributions which is

- closed wrt parallel contexts
- preserves probabilistic observations barbs
- is reduction-closed

Observations:
$\Delta \downarrow^{p} a$ if $\Sigma\{\Delta(s) \mid s \xrightarrow{a}\} \geq p$
Reduction-closed:strong
if $\Delta \sim_{r b c} \Theta$ then

- $\Delta \xrightarrow{\tau} \Delta^{\prime}$ implies $\Theta \xrightarrow{\tau} \Theta^{\prime}$ s.t. $\Delta^{\prime} \sim_{r b c} \Theta$
- conversely, $\Theta \xrightarrow{\tau} \Theta^{\prime}$ implies

Outline

Concurrency theory à la Milner Labelled transition systems

Bisimulations

Property logics

Summary

Bisimulations for LTS a proof method

$\mathcal{R} \subseteq S \times S$ is a bisimulation in an LTS if whenever $p \mathcal{R} q$ then
(1) $p \xrightarrow{\mu} p^{\prime}$ implies $q \xrightarrow{\mu} q^{\prime}$ such that $p^{\prime} \mathcal{R} q^{\prime}$
(2) conversely, $q \xrightarrow{\mu} q^{\prime}$ implies $p \xrightarrow{\mu} p^{\prime}$ such that $p^{\prime} \mathcal{R} q^{\prime}$

Bisimulations for LTS a proof method

$\mathcal{R} \subseteq S \times S$ is a bisimulation in an LTS if whenever $p \mathcal{R} q$ then
(1) $p \xrightarrow{\mu} p^{\prime}$ implies $q \xrightarrow{\mu} q^{\prime}$ such that $p^{\prime} \mathcal{R} q^{\prime}$
(2) conversely, $q \xrightarrow{\mu} q^{\prime}$ implies $p \xrightarrow{\mu} p^{\prime}$ such that $p^{\prime} \mathcal{R} q^{\prime}$

Thm (Milner\&Sangiorgi): In a sufficiently expressive finite-branching LTS,

$$
p \sim_{\text {rbc }} q \text { iff } p \mathcal{R} q \text { for some bisimulation } \mathcal{R}
$$

Bisimulations for LTSs a proof method

$\mathcal{R} \subseteq S \times S$ is a bisimulation in an LTS if whenever $p \mathcal{R} q$ then
(1) $p \xrightarrow{\mu} p^{\prime}$ implies $q \xrightarrow{\mu} q^{\prime}$ such that $p^{\prime} \mathcal{R} q^{\prime}$
(2) conversely, $q \xrightarrow{\mu} q^{\prime}$ implies $p \xrightarrow{\mu} p^{\prime}$ such that $p^{\prime} \mathcal{R} q^{\prime}$

Thm (Milner\&Sangiorgi): In a sufficiently expressive finite-branching LTS,

$$
p \sim_{\text {rbc }} q \text { iff } p \mathcal{R} q \text { for some bisimulation } \mathcal{R}
$$

Proof method;

To show $p \sim_{r b c} q$:

- exhibit a bisimulation \mathcal{R} containing the pair (p, q)

Bisimulations for pLTSs a proof method

Processes are distributions

Proof method：
To show $\Delta \sim_{r b c} \Theta$
－exhibit a bisimulation \mathcal{R} such that $\Delta \mathcal{R} \Theta$

Bisimulations for pLTSs a proof method

Processes are distributions

Proof method:
To show $\Delta \sim_{r b c} \Theta$

- exhibit a bisimulation \mathcal{R} such that $\Delta \mathcal{R} \Theta$

Problem:

- Definition of bisimulations require actions $\Delta \xrightarrow{\mu} \Theta$
- pLTSs only have actions $s \xrightarrow{\mu} \Theta$

Bisimulations for pLTSs a proof method

Processes are distributions

Proof method:
To show $\Delta \sim_{r b c} \Theta$

- exhibit a bisimulation \mathcal{R} such that $\Delta \mathcal{R} \Theta$

Problem:

- Definition of bisimulations require actions $\Delta \xrightarrow{\mu} \Theta$
- pLTSs only have actions $s \xrightarrow{\mu} \Theta$

Solution:

$$
\text { Lift } s \xrightarrow{\mu} \Theta \text { to } \Delta \xrightarrow{\mu} \Theta
$$

Lifting relations: from $S \times \mathcal{D}(S)$ to $\mathcal{D}(S) \times \mathcal{D}(S)$

from $\xrightarrow{\mu} \Theta$ to $\Delta \xrightarrow{\mu} \Theta$

Lifting relations: from $S \times \mathcal{D}(S)$ to $\mathcal{D}(S) \times \mathcal{D}(S)$

from $s \xrightarrow{\mu} \Theta$ to $\Delta \xrightarrow{\mu} \Theta$

$$
\Delta \xrightarrow{\mu} \Theta
$$

- Δ represents a cloud of possible process states
- each possible state must be able to perform μ
- all possible residuals combine to Θ

Lifting relations: from $S \times \mathcal{D}(S)$ to $\mathcal{D}(S) \times \mathcal{D}(S)$
from $\stackrel{s \xrightarrow{\mu} \theta \text { to } \Delta \xrightarrow{\mu} \theta}{ }$

$$
\Delta \xrightarrow{\mu} \Theta
$$

- Δ represents a cloud of possible process states
- each possible state must be able to perform μ
- all possible residuals combine to Θ

Examples:

$$
\begin{array}{lll}
(a . b+a . c)_{\frac{1}{2}} \oplus a . d & \vec{\longrightarrow} & b_{\frac{1}{2}} \oplus d \\
(a . b+a . c)_{\frac{1}{2}} \oplus a . d & \xrightarrow{a} & \left(b_{\frac{1}{2}} \oplus c\right)_{\frac{1}{2}} \oplus d \\
(a . b+a . c)_{\frac{1}{2}} \oplus a . d & \xrightarrow{a} & \left(b_{p} \oplus c\right)_{\frac{1}{2}} \oplus d
\end{array}
$$

Note: dynamic scheduling

Lifting relations

From $\mathcal{R} \subseteq S \times \mathcal{D}(S)$, to $\quad \operatorname{lift}(\mathcal{R}) \subseteq \mathcal{D}(S) \times \mathcal{D}(S)$

Lifting relations

From $\mathcal{R} \subseteq S \times \mathcal{D}(S)$, to $\quad \operatorname{lift}(\mathcal{R}) \subseteq \mathcal{D}(S) \times \mathcal{D}(S)$
$\Delta \operatorname{lift}(\mathcal{R}) \Theta \quad$ whenever

- $\Delta=\sum_{i \in I} p_{i} \cdot \overline{s_{i}}, \quad l$ a finite index set
- For each $i \in I$ there is a distribution Θ_{i} s.t. si $\mathcal{R} \Theta_{i}$
- $\Theta=\sum_{i \in I} p_{i} \cdot \Theta_{i}$
- $\sum_{i \in I} p_{i}=1$

Lifting relations

From $\mathcal{R} \subseteq S \times \mathcal{D}(S)$, to $\quad \operatorname{lift}(\mathcal{R}) \subseteq \mathcal{D}(S) \times \mathcal{D}(S)$

$\Delta \quad$ lift $(\mathcal{R}) \Theta \quad$ whenever

- $\Delta=\sum_{i \in l} p_{i} \cdot \overline{s_{i}}, \quad l$ a finite index set
- For each $i \in I$ there is a distribution Θ_{i} s.t. si $\mathcal{R} \quad \Theta_{i}$
- $\Theta=\sum_{i \in I} p_{i} \cdot \Theta_{i}$
- $\sum_{i \in I} p_{i}=1$

Many different formulations
Note: in decomposition $\sum_{i \in I} p_{i} \cdot s_{i}$ states s_{i} are not necessarily unique

Bisimulations for pLTSs a proof method

$\mathcal{R} \subseteq \mathcal{D}(S) \times \mathcal{D}(S)$ is a bisimulation in an pLTS if whenever $\Delta \mathcal{R} \Theta$ then
(1) $\Delta \xrightarrow{\mu} \Delta^{\prime}$ implies $\Theta \xrightarrow{\mu} \Theta^{\prime}$ such that $\Delta^{\prime} \mathcal{R} \Theta^{\prime}$
(2) conversely,

Bisimulations for pLTSs a proof method

$\mathcal{R} \subseteq \mathcal{D}(S) \times \mathcal{D}(S)$ is a bisimulation in an pLTS if whenever $\Delta \mathcal{R} \Theta$ then
(1) $\Delta \xrightarrow{\mu} \Delta^{\prime}$ implies $\Theta \xrightarrow{\mu} \Theta^{\prime}$ such that $\Delta^{\prime} \mathcal{R} \Theta^{\prime}$
(2) conversely,

Problem:

- There is a bisimulation containing ($\left.a_{0.5} \oplus b, \overline{\mathbf{0}}\right)$
- $a_{0.5} \oplus b$ and $\overline{\mathbf{0}}$ are NOT reduction barbed congruent

Singleton relation $\mathcal{R}=\left(a_{0.5} \oplus b, \overline{\mathbf{0}}\right)$ is a trivial bisimulation

Decomposable Relations

$\mathcal{R} \subseteq \mathcal{D}(S) \times \mathcal{D}(S)$ is decomposable if

- $\left(\Delta_{1_{p}} \oplus \Delta_{2}\right) \mathcal{R} \Theta$ implies $\Theta=\Theta_{1 p} \oplus \Theta_{2}$ such that $\Delta_{i} \mathcal{R} \Theta_{i}$
- $\Delta \mathcal{R}\left(\Theta_{1 p} \oplus \Theta_{2}\right)$ implies $\Delta=\Delta_{1 p} \oplus \Delta_{2}$ such that $\Delta_{i} \mathcal{R} \Theta_{i}$

Decomposable Relations

$\mathcal{R} \subseteq \mathcal{D}(S) \times \mathcal{D}(S)$ is decomposable if

- $\left(\Delta_{1 p} \oplus \Delta_{2}\right) \mathcal{R} \Theta$ implies $\Theta=\Theta_{1 p} \oplus \Theta_{2}$ such that $\Delta_{i} \mathcal{R} \Theta_{i}$
- $\Delta \mathcal{R}\left(\Theta_{1 p} \oplus \Theta_{2}\right)$ implies $\Delta=\Delta_{1 p} \oplus \Delta_{2}$ such that $\Delta_{i} \mathcal{R} \Theta_{i}$

Examples:

- $\mathcal{R}=\left(a_{0.5} \oplus b, \mathbf{0}\right)$ is NOT decomposable
- $\sim_{r b c}$ is decomposable

Properties:

- Every $\mathcal{R} \subseteq S \times S$ can be lifted to a decomposable $\operatorname{slift}(\mathcal{R}) \subseteq \mathcal{D}(S) \times \mathcal{D}(S)$
- Every decomposable $\mathcal{R} \subseteq \mathcal{D}(S) \times \mathcal{D}(S)$ can be written as $\operatorname{slift}\left(\mathcal{R}_{s}\right)$ for some $\mathcal{R}_{s} \subseteq S \times S$

Bisimulations for $\mathrm{pLTS} \mathrm{s}_{\text {at ast }}$

A decomposable $\mathcal{R} \subseteq \mathcal{D}(S) \times \mathcal{D}(S)$ is a bisimulation in an pLTS if whenever $\Delta \mathcal{R} \Theta$ then
(1) $\Delta \xrightarrow{\mu} \Delta^{\prime}$ implies $\Theta \xrightarrow{\mu} \Theta^{\prime}$ such that $\Delta^{\prime} \mathcal{R} \Theta^{\prime}$
(2) conversely,

Bisimulations for pLTSs at ast

A decomposable $\mathcal{R} \subseteq \mathcal{D}(S) \times \mathcal{D}(S)$ is a bisimulation in an pLTS if whenever $\Delta \mathcal{R} \Theta$ then
(1) $\Delta \xrightarrow{\mu} \Delta^{\prime}$ implies $\Theta \xrightarrow{\mu} \Theta^{\prime}$ such that $\Delta^{\prime} \mathcal{R} \Theta^{\prime}$
(2) conversely,

Result:
Thm: In a sufficiently expressive finitary pLTS,
$\Delta \sim_{r b c} \Theta$ iff $\Delta \mathcal{R} \Theta$ for some bisimulation \mathcal{R}

Bisimulations for pLTS at ast

A decomposable $\mathcal{R} \subseteq \mathcal{D}(S) \times \mathcal{D}(S)$ is a bisimulation in an pLTS if whenever $\Delta \mathcal{R} \Theta$ then
(1) $\Delta \xrightarrow{\mu} \Delta^{\prime}$ implies $\Theta \xrightarrow{\mu} \Theta^{\prime}$ such that $\Delta^{\prime} \mathcal{R} \Theta^{\prime}$
(2) conversely,

Result:
Thm: In a sufficiently expressive finitary pLTS,

$$
\Delta \sim_{r b c} \Theta \text { iff } \Delta \mathcal{R} \Theta \text { for some bisimulation } \mathcal{R}
$$

Result:
Thm: $\Delta \operatorname{slift}\left(\sim_{\text {segala }}\right) \Theta$ iff $\Delta \mathcal{R} \Theta$ for some bisimulation \mathcal{R}
$s \sim_{\text {segala }} t$ is state based probabilistic bisimulation à la Segala.

Bisimulations à Segala

An equivalence relation $\mathcal{R} \subseteq S \times S$ is an s-bisimulation if, whenever $s \mathcal{R} t$, then

- $\bar{s} \xrightarrow{\mu} \Delta$ implies $\bar{t} \xrightarrow{\mu} \Theta$ such that $\Delta(E)=\Theta(E)$ for all \mathcal{R} equivalence classes E
- conversely, $\bar{t} \xrightarrow{\mu} \Theta$ implies
$\sim_{\text {segala }}$ is the largest s-bisimulation

Example in pLTSs: dynamic scheduling

$$
\bar{s} \sim \bar{t}
$$

Because

$$
\bar{t} \xrightarrow{O} \bar{h}_{0.5} \oplus \bar{t}
$$

using combined moves

Outline

Concurrency theory à la Milner

 Labelled transition systems

 Labelled transition systems}

Bisimulations

Property logics

Summary

Property logics in LTSs: proving inequivalences HML:

$$
\varphi::=\mathrm{tt}\left|\varphi_{1} \vee \varphi_{2}\right|\langle\mu\rangle \varphi, \mu \in \operatorname{Act}_{\tau} \mid \neg \varphi
$$

$p \models \varphi$ means process p has property φ
E.G:

- $p \models\langle\mu\rangle \varphi$ if $p \xrightarrow{\mu} p^{\prime}$ such that $p^{\prime} \models \varphi$

Property logics in LTSs: proving inequivalences HML:

$$
\varphi::=\mathrm{tt}\left|\varphi_{1} \vee \varphi_{2}\right|\langle\mu\rangle \varphi, \mu \in \operatorname{Act}_{\tau} \mid \neg \varphi
$$

$p \models \varphi$ means process p has property φ
E.G:

- $p \models\langle\mu\rangle \varphi$ if $p \xrightarrow{\mu} p^{\prime}$ such that $p^{\prime} \models \varphi$

Classical result:
In a finite branching LTS, $p \sim_{r b c}$ q iff $p \vDash \varphi$ implies $q \vDash \varphi, \quad$ for every property φ

Proof method:
To show $p \not \chi_{r b c} q$ exhibit φ such that

$$
p \models \varphi \text { and } q \not \models \varphi
$$

Example

$$
\begin{aligned}
& P=a \cdot(a \cdot(b+c)+a \cdot b+a \cdot c) \\
& R=a \cdot a \cdot(b+c)+a \cdot(a \cdot b+a \cdot c)
\end{aligned}
$$

Q: Can P and R be distinguished behaviourally?

Example

$$
\begin{aligned}
& P=a \cdot(a \cdot(b+c)+a \cdot b+a \cdot c) \\
& R=a \cdot a \cdot(b+c)+a \cdot(a \cdot b+a \cdot c)
\end{aligned}
$$

Q: Can P and R be distinguished behaviourally?
$P \not \chi_{r b c} Q$ because

- $P \models\langle a\rangle(\langle a\rangle(\langle b\rangle \mathrm{tt} \wedge\langle c\rangle \mathrm{tt}) \wedge\langle a\rangle(\langle b\rangle \mathrm{tt} \wedge \neg\langle c\rangle \mathrm{tt}))$
- $Q \not \vDash\langle a\rangle(\ldots$

Property logics in pLTSs: proving inequivalences pHML:

$$
\begin{gathered}
\varphi::=\mathrm{tt}\left|\varphi_{1} \vee \varphi_{2}\right|\langle\mu\rangle \varphi, \mu \in \operatorname{Act}_{\tau} \mid \neg \varphi \\
\mid \varphi_{1_{\rho} \oplus \varphi_{2}, p \in[0,1]}
\end{gathered}
$$

$\Delta \vDash \varphi$ means process Δ has property φ
E.G:

- $\Delta \models \varphi_{1} \oplus \varphi_{2}$ if $\Delta=\Delta_{1_{p}} \oplus \Delta_{2}$ such that $\Delta_{i} \models \varphi_{i}$

Property logics in pLTSs: proving inequivalences pHML:

$$
\begin{gathered}
\varphi::=\mathrm{tt}\left|\varphi_{1} \vee \varphi_{2}\right|\langle\mu\rangle \varphi, \mu \in \operatorname{Act}_{\tau} \mid \neg \varphi \\
\mid \varphi_{1 p} \oplus \varphi_{2}, p \in[0,1]
\end{gathered}
$$

$\Delta \models \varphi$ means process Δ has property φ E.G:

- $\Delta \models \varphi_{1} \oplus \varphi_{2}$ if $\Delta=\Delta_{1_{p}} \oplus \Delta_{2}$ such that $\Delta_{i} \models \varphi_{i}$

Result:
In a finitary pLTS, $\Delta \sim \Theta$ iff
$\Delta \models \varphi$ implies $\Theta \models \varphi$, for every property φ
Proof method:
To show $\Delta \chi_{\text {rbc }} \Theta$ exhibit φ such that

$$
\Delta \models \varphi \text { and } \Theta \not \models \varphi
$$

Example

$\bar{s} \not \chi_{r b c} \bar{u}$ because

- $\overline{\boldsymbol{s}} \models\langle a\rangle\left(\left\langle b_{1}\right\rangle \mathrm{tt}{ }_{\frac{1}{2}} \oplus\left\langle b_{2}\right\rangle \mathrm{tt}\right)$
- $\bar{u} \not \vDash\langle a\rangle\left(\left\langle b_{1}\right\rangle \mathrm{tt}_{\frac{1}{2}} \oplus\left\langle b_{2}\right\rangle \mathrm{tt}\right)$

Outline

Concurrency theory à la Milner
 Labelled transition systems

Bisimulations

Property logics

Summary

Summary

- Emphasis on processes as distributions in pLTSs
- Natural formulation of (strong) contextual behavioural equivalence
- Behavioural justification of Segalas state-based bisimulation equivalence
- Simple complete extension of HML for probabilistic processes
- Complete axiomatisation for probabilistic CCS

Summary

- Emphasis on processes as distributions in pLTSs
- Natural formulation of (strong) contextual behavioural equivalence
- Behavioural justification of Segalas state-based bisimulation equivalence
- Simple complete extension of HML for probabilistic processes
- Complete axiomatisation for probabilistic CCS

Future

- Algorithms ?
- Input two processes Δ, Θ
- Output: bisimulation containing (Δ, Θ) or a pHML distinguishing formula
- Static schedulers ?
- Weak case ?

The weak case: thoughts

Weak reduction barbed congruence $\approx_{\text {roc }}$: easy to define
Largest equivalence over distributions which is

- closed wrt parallel contexts
- preserves weak probabilistic observations barbs
- is weak reduction-closed

The weak case: thoughts
Weak reduction barbed congruence $\approx_{\text {rbc }}$: easy to define
Largest equivalence over distributions which is

- closed wrt parallel contexts
- preserves weak probabilistic observations barbs
- is weak reduction-closed

Weak observations:
$\Delta \Downarrow^{p} a$ if $\Delta \xlongequal{\tau} \Delta^{\prime}$ such that $\Delta^{\prime} \downarrow^{p} a$
Weak reduction-closed:
if $\Delta \approx_{r b c} \Theta$ then

- $\Delta \xlongequal{\tau} \Delta^{\prime}$ implies $\Theta \xlongequal{\tau} \Theta^{\prime}$ s.t. $\Delta^{\prime} \approx_{r b c} \Theta$
- conversely, $\Theta \xlongequal{\tau} \Theta^{\prime}$ implies

The weak case: thoughts

Problem:
$\approx_{r b c}$ is not decomposable

The weak case: thoughts

Problem:

$$
\approx_{r b c} \text { is not decomposable }
$$

Consequence:

- Let \approx_{s} be any relation in $S \times S$ eg a state-based weak bisimulation equivalence
- Then $\approx_{r b c}$ is NOT the same as slift $\left(\approx_{s}\right)$
$\approx_{r b c}$ is not decomposable

