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Intro

Concurrency theory a la Milner

» Intensional model of nondeterministic processes: LTSs
» Language for describing processes: algebra CCS

» Extensional equivalence: barbed congruence

processes indistinguishable in all contexts
» Proof method: bisimulations to show processes equivalent
» Proof method: HML property logic to show inequivalence
» Semantic preserving transformations: equational

characterisation
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Intro

Concurrency theory a la Milner

» Intensional model of nondeterministic processes: LTSs
» Language for describing processes: algebra CCS

» Extensional equivalence: barbed congruence

processes indistinguishable in all contexts
» Proof method: bisimulations to show processes equivalent
» Proof method: HML property logic to show inequivalence

» Semantic preserving transformations: equational
characterisation

(%)
What happens when we add probabilistic behaviour ? =0
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Intensional models: nondeterministic processes

I_TS labelled transition systems

(S, Act, —) where

(a) S states

(b) Act; transition labels, with distinguished 7
(c) relation — is a subset of S X Act, X S s =«

A process is a state in an LTS
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Intensional models: probabilistic processes an nondeterministic

pLTSSZ probabilistic LTSs Segala
(S, Act,, —), where

(a) S states

(b) Act; transition labels, with distinguished 7

(c) relation — is a subset of S x Act x D(S) EETRUN

A process is a distribution over states of a pLTS

1 1 1

O O O O

1 1 1
2 2 2
a 22 23
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Processes are distributions i pirss

start distribution s
‘ ,;f!



Processes are distributions i pirss

distribution after a
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Processes are distributions i pirss

distribution after ab
‘ ,;f!



Processes are distributions i pirss

distribution after abc
‘ ,;f!



Algebras for processes

LTSs: CCS
P.Q == 0 | uP,ucAct: | P+Q | P|Q | A A< D(A)

» Every P determines an LTS
» Every P is a state in an LTS
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Algebras for processes

LTSs: CCS
P.Q == 0 | uP,ucAct: | P+Q | P|Q | A A< D(A)

» Every P determines an LTS
» Every P is a state in an LTS

pLTSs: pCCS
P.Q o= 0 | uP,pcAct, | P+Q | P|Q | A A<= D(A)

» Every P determines a pLTS

» Every P is a distribution in an LTS .
_sfi



Extensional equivalence: LTSs

P=a(a(b+c)+ ab+ac) R=aa(b+c)+ a(a.b+ac)

Q: Can P and R be distinguished behaviourally?
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Extensional equivalence: LTSs

P=a(a(b+c)+ ab+ac) R=aa(b+c)+ a(a.b+ac)

Q: Can P and R be distinguished behaviourally?

Contextual equivalences: P ~, @
Very general method:
Largest equivalence between processes which
> is preserved by language contexts
> preserves basic observables
» requires definition of observation predicates P | o

> preserves nondeterministic potential
» requires reduction semantics P —— P’
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Extensional equivalence: example in pLTSs
\a
b3

§ 7érbc U:
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Extensional equivalence: example in pLTSs

ST
s| T T =3a.(b.w+ b.w)
5 (b11® b2) | (brw + bo.w)
thesameas by | (b1.w + bo.w) 1@ by | ((brw + bp.w)

w18 w o
2 sfi
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Extensional equivalence: example in pLTSs

1 1 1 1
" 2N NS TR
Ibg st lb4 Ib3 Ibz Ib4
S T
S\T T =3a.(bi.w+ by.w)

the same as b]_‘(b]_(.&)‘f’bz )%@b ’((blw+b2 )

-
—rw %@ w \L (W €< probabilistic observable

o,
—sfi

11/32



Extensional equivalence: in pLTs

Reduction barbed congruence

Largest equivalence over distributions which is
> closed wrt parallel contexts
> preserves probabilistic observations bars

> is reduction-closed
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Extensional equivalence: in pLTs

Reduction barbed congruence

Largest equivalence over distributions which is
> closed wrt parallel contexts
> preserves probabilistic observations bars

> is reduction-closed

Observations:
APaif Z{A(s) | s} >p

Reduction-closed:strong
if A ~_, © then
» A 5 Al implies © 5 @' sit. A'~, O

» conversely, © = ©' implies ...... o
sfi
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Bisimulations
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Bisimulations

BISImUIatIOHS fOF I_TSS a proof method

RC S x S is a bisimulation in an LTS if
whenever p R g then

(1) p 4 p' implies g £+ ¢’ such that p' R ¢’
(2) conversely, g £+ ¢’ implies p - p’ such that p’ R ¢
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Thm (Milner&Sangiorgi): In a sufficiently expressive
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Bisimulations

BISImUIatIOHS fOF I_TSS a proof method

RC S x S is a bisimulation in an LTS if
whenever p R g then

(1) p 4 p' implies g £+ ¢’ such that p' R ¢’
(2) conversely, g £+ ¢’ implies p - p’ such that p’ R ¢

Thm (Milner&Sangiorgi): In a sufficiently expressive
finite-branching LTS,

p ~.. q iff p R q for some bisimulation R

Proof method:
To show p ~,, q:

» exhibit a bisimulation R containing the pair (p, q)
(%)
-8fi
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Bisimulations

BISImUIatlonS fOF pI_TSS a proof method

\ Processes are distributions\

Proof method:
To show A ~, ©

» exhibit a bisimulation R such that A R ©
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Bisimulations

BISImUIatlonS fOF pI_TSS a proof method

\ Processes are distributions\

Proof method:
To show A ~, ©

» exhibit a bisimulation R such that A R ©

Problem:

» Definition of bisimulations require actions A 45 ©
» pLTSs only have actions s £ ©

o,
—sfi

15/32



Bisimulations

BISImUIatlonS fOF pI_TSS a proof method

\ Processes are distributions\

Proof method:
To show A ~, ©

» exhibit a bisimulation R such that A R ©

Problem:

» Definition of bisimulations require actions A 45 ©
» pLTSs only have actions s £ ©
Solution:

Lifts & ©to A & © o
ST

15/32



Lifting relations: from S x D(S) to D(S) x D(S)

from[s 4 ©to|A 45 9|
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Lifting relations: from S x D(S) to D(S) x D(S)

from[s 4 ©to|A 45 9|

A+ 0

» A represents a cloud of possible process states
> each possible state must be able to perform p

> all possible residuals combine to ©
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Lifting relations: from S x D(S) to D(S) x D(S)

from[s 4 ©to|A 45 9|

A+ 0

» A represents a cloud of possible process states
> each possible state must be able to perform p

> all possible residuals combine to ©

Examples:
> (abtac)ibad = bidd
> (ab—l—ac)%@ad -2 (b%@c)%@d
> (ab+ac)ibad = (b,dc)dd

(*)
sfi
Note: dynamic scheduling -
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Bisimulations

Lifting relations

FromR C Sx D(S),to Iift(R) C D(S) x D(S)
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Bisimulations

Lifting relations

From R C Sx D(S),to Iift(R) C D(S) x D(S)

A ift(R) © whenever

» A= Ziel pi-Si, I a finite index set

» For each i€/ there is a distribution ©; s.t. s; R ©;
» O =3 piO;

> Yiepi=1
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Bisimulations

Lifting relations

From R C Sx D(S),to Iift(R) C D(S) x D(S)

A ift(R) © whenever

v

A=), pi-5, I a finite index set

For each i €/ there is a distribution ©; s.t. s; R ©O;
> e:EiG/Pi‘ei
> DierPi =1

Many different formulations

Note: in decomposition Zie, pi - S; states s; are not necessarily
1 o
unique By

v
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Bisimulations

BISImUIatIOHS fOF pI_TSS a proof method

RC D(S) x D(S) is a bisimulation in an pLTS if
whenever A R © then

(1) A 5 A’ implies © £ @' such that A’ R ©’
(2) conversely, ......
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Bisimulations

BISImUIatIOHS fOF pI_TSS a proof method

RC D(S) x D(S) is a bisimulation in an pLTS if
whenever A R © then

(1) A 5 A’ implies © £ @' such that A’ R ©’
(2) conversely, ......

Problem:

» There is a bisimulation containing (a ¢s® b, 0)

» a o5® band 0 are NOT reduction barbed congruent

Singleton relation R= (a o.5@® b, 0) is a trivial bisimulation
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Bisimulations

Decomposable Relations
RC D(S) x D(S) is decomposable if
» (A1,D Az) R © implies © = ©1,& O7 such that A;RO;
» AR (01,0 0,) implies A = A; ,& Ay such that A;/RO;
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Bisimulations

Decomposable Relations
RC D(S) x D(S) is decomposable if
» (A1,D Az) R © implies © = ©1,& O7 such that A;RO;
» AR (01,0 0,) implies A = A; ,& Ay such that A;/RO;

Examples:

» R= (205D b, 0) is NOT decomposable

> ~ . is decomposable

Properties:
» Every RC S x S can be lifted to a decomposable
slift(R)C D(S) x D(S)

» Every decomposable RC D(S) x D(S) can be written as

slift(Rs) for some Rs CS x S o

19/32



Bisimulations for pLTSs .t s

A decomposable RC D(S) x D(S) is a bisimulation in an pLTS if
whenever A R © then

(1) A 45 A’ implies © £ © such that A’ R ©’

(2) conversely, ......
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Bisimulations for pLTSs .t s

A decomposable RC D(S) x D(S) is a bisimulation in an pLTS if
whenever A R © then

(1) A 45 A’ implies © £ © such that A’ R ©’
(2) conversely, ......

Result:
Thm: In a sufficiently expressive finitary pLTS,

A~, © iff AR © for some bisimulation R
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Bisimulations for pLTSs .t s

A decomposable RC D(S) x D(S) is a bisimulation in an pLTS if
whenever A R © then

(1) A 45 A’ implies © £ © such that A’ R ©’
(2) conversely, ......

Result:
Thm: In a sufficiently expressive finitary pLTS,

A~ , © iff AR O for some bisimulation R

rbc

Result:
Thm: A slift(~segala) © iff AR © for some bisimulation R

S ~segala t IS State based probabilistic bisimulation a la Segala.
(*)
sfi

20/32



Bisimulations

Bisimulations a Segala in pLTSs

An equivalence relation R C S x S is an s-bisimulation if,
whenever s R t, then

» 5 45 A implies t £ © such that A(E) = ©(E) for all R-
equivalence classes E

» conversely, t £ © implies ......

~segala IS the largest s-bisimulation
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Bisimulations

Example in pLTSS: aynamic scheduing

O0<—O
o0<—oO0

Because

. . (%)
using combined moves “sfi
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Property logics

o,
—sfi

23/32



Property logics in LTSs: proving inequivalences
HML:
o = tt | paVer | (pe peAct | —p

p = ¢ means process p has property ¢
E.G:

» p = (u)e if p 5 p’ such that p’ |= ¢
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Property logics

Property logics in LTSs: proving inequivalences
HML:

o = tt [ g1V | (me,p€Act | —p

p = ¢ means process p has property ¢
E.G:

» p = (u)e if p 5 p’ such that p’ |= ¢

Classical result:
In a finite branching LTS, p ~,_q iff
p = ¢ implies q =, for every property ¢

Proof method:

To show p £, g exhibit ¢ such that

rbc

(*)
pE@and g e
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Property logics

Example

P=a(a(b+c)+ ab+a.c)
R=aa.(b+c) + a.(a.b+ a.c)

Q: Can P and R be distinguished behaviourally?
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Property logics

Example

P=a(a(b+c)+ ab+a.c)
R=aa.(b+c) + a.(a.b+ a.c)

Q: Can P and R be distinguished behaviourally?

P .. Q because

- P @ (A (55) A A () )
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Property logics in pLTSs: proving inequivalences
pHML:

o = tt | p1Ver | (me,p€Act: | @
| (}le@ Y2, pe [07 1]

A = ¢ means process A has property ¢
E.G:

> A):@Ip@902 ifAZAlPEBAQ such that A; ):gp,-
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Property logics

Property logics in pLTSs: proving inequivalences
pHML:

o = tt | g1V | (me,p€Act | —p
| 991p@ w2, P E [07 1]
A = ¢ means process A has property ¢
E.G:
» A ): 1, P2 if A= Alp@ A5 such that A; ): Qi

Result:

In a finitary pLTS, A ~ © iff

A = ¢ implies © |= p, for every property ¢

Proof method:

To show A 4, © exhibit ¢ such that

A= ypand © [~ ¢ -2t

rbc
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5 o, U because

> 5= (a)((b1)tt 1@ (by)tt)

> U= (a)((br)tt 1 ® (b)tt)

—sfi
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Summary
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Bisimulations Summary

Summary

» Emphasis on processes as distributions in pLTSs

» Natural formulation of (strong) contextual behavioural
equivalence

» Behavioural justification of Segalas state-based bisimulation
equivalence

» Simple complete extension of HML for probabilistic processes

» Complete axiomatisation for probabilistic CCS
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Bisimulations Summary

Summary

» Emphasis on processes as distributions in pLTSs

» Natural formulation of (strong) contextual behavioural
equivalence

» Behavioural justification of Segalas state-based bisimulation
equivalence

» Simple complete extension of HML for probabilistic processes

» Complete axiomatisation for probabilistic CCS

Future
» Algorithms ?
» Input two processes A, ©

» Output: bisimulation containing (A, ©) or a pHML
distinguishing formula

» Static schedulers ?

o,
» Weak case ? —sfi
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The weak case: thoughts

Weak reduction barbed congruence ~ , :

o+ easyto define

Largest equivalence over distributions which is
» closed wrt parallel contexts
> preserves weak probabilistic observations barbs

» is weak reduction-closed
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The weak case: thoughts

Weak reduction barbed congruence ~ , :

o+ easyto define

Largest equivalence over distributions which is
» closed wrt parallel contexts
> preserves weak probabilistic observations barbs

» is weak reduction-closed

Weak observations:
A )P aif A == A’ such that A’ [P a
Weak reduction-closed:
if A=, © then
» A== A implies © = @' st. A’ ~, ©
» conversely, © == @' implies .. .... .
~sh
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The weak case: thoughts

Problem:

~ . is not decomposable
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The weak case: thoughts

Problem:

~ . is not decomposable

Consequence:

> Let s be any relation in 5 X 5 eg a state-based weak bisimulation equivalence

» Then ~,_is NOT the same as slift(~s)

o,
—sfi

31/32



~ _is not decomposable
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