LTSs		Property logics	
Exploring p	probabilistic bis	imulations, part	I

Matthew Hennessy

IMT Lucca, November 2012

LTSs	Property logics	

Outline

Concurrency theory à la Milner

Labelled transition systems

Bisimulations

Property logics

Summary

Intro	LTSs	Property logics	

Outline

Concurrency theory à la Milner

Labelled transition systems

Bisimulations

Property logics

Summary

Intro

Concurrency theory à la Milner

- Intensional model of nondeterministic processes: LTSs
- Language for describing processes: algebra CCS
- Extensional equivalence: barbed congruence processes indistinguishable in all contexts
- Proof method: bisimulations to show processes equivalent
- Proof method: HML property logic to show inequivalence
- Semantic preserving transformations: equational characterisation

Intro

Concurrency theory à la Milner

- Intensional model of nondeterministic processes: LTSs
- Language for describing processes: algebra CCS
- Extensional equivalence: barbed congruence processes indistinguishable in all contexts
- Proof method: bisimulations to show processes equivalent
- Proof method: HML property logic to show inequivalence
- Semantic preserving transformations: equational characterisation

What happens when we add probabilistic behaviour ?

LTSs	Property logics	

Outline

Concurrency theory à la Milner

Labelled transition systems

Bisimulations

Property logics

Summary

Intensional models: nondeterministic processes

- $LTS \ {\tt labelled \ transition \ systems}$
- $\langle S, \mathsf{Act},
 ightarrow
 angle$ where
- (a) S states
- (b) Act $_{\tau}$ transition labels, with distinguished τ
- (c) relation \rightarrow is a subset of $S imes {
 m Act}_{ au} imes S$ s a , t

A process is a state in an LTS

Intro	LTSs	Bisimulations	Property logi	ics Summary
Intensi	ional models:	probabilistic p	rocesses and	nondeterministic
pLT ⟨ <i>S</i> , , (a)	S: probabilistic LTSs Act $_{\tau}, \rightarrow \rangle$, where			Segala
(b) (c)	Act_{τ} transition relation \rightarrow is a	labels, with disting subset of $S imes \operatorname{Act}$	uished <i>τ</i> ≺ D(S) ₅	; <i>Ψ</i> Δ
	A process is	a distribution ove	r states of a	pLTS
	$ \begin{array}{c} s_0 & \xrightarrow{\tau} & \bigoplus_{1 \ge 0} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & &$	$ \begin{array}{c} \frac{1}{2} & & & \\ \frac{1}{2} & & & \\ & & & \\$	$ \begin{array}{c} & & & \\ & $	- <u>~s</u> fi

7/32

・ロ> < @> < E> < E> E

< 一型

Processes are distributions in pLTSs

start distribution \overline{s}

æ

зt

< 一型

Processes are distributions in pLTSs

distribution after a

æ

Processes are distributions in pLTSs

distribution after ab

문 🛌 문

Processes are distributions in pLTSs

distribution after abc

문어 문

	LTSs		Property logics	
Alge	ebras for proces	ses		
	$P, Q ::= 0 \mid \mu.$	$P, \ \mu \in Act_{ au} \ \mid \ P + Q$	P Q A, A	$A \leftarrow D(A)$
	 Every P detern Every P is a st 	nines an LTS <mark>ate</mark> in an LTS		

LTSs Algebras for processes ITSS CCS $P, Q ::= \mathbf{0} \mid \mu.P, \mu \in \mathsf{Act}_{\tau} \mid P + Q \mid P \mid Q \mid A, A \leftarrow D(A)$ Every P determines an LTS Every P is a state in an LTS pLTSs: pCCS $P, Q ::= \mathbf{0} \mid \mu.P, \mu \in \operatorname{Act}_{\tau} \mid P + Q \mid P \mid Q \mid A, A \leftarrow D(A)$ $P_p \oplus Q, \ 0 \leq p \leq 1$

- Every P determines a pLTS
- Every P is a distribution in an LTS

$$P = a.(a.(b+c) + a.b+a.c)$$
 $R = a.a.(b+c) + a.(a.b+a.c)$

Q: Can P and R be distinguished behaviourally?

$$P = a.(a.(b+c) + a.b+a.c)$$
 $R = a.a.(b+c) + a.(a.b+a.c)$

Q: Can P and R be distinguished behaviourally?

Contextual equivalences: $P \sim_{rbc} Q$ Very general method:

$$P = a.(a.(b+c) + a.b+a.c)$$
 $R = a.a.(b+c) + a.(a.b+a.c)$

Q: Can P and R be distinguished behaviourally?

Contextual equivalences: $P \sim_{_{rbc}} Q$

Very general method:

Largest equivalence between processes which

- is preserved by language contexts
- preserves basic observables
- preserves nondeterministic potential

P = a.(a.(b + c) + a.b + a.c) R = a.a.(b + c) + a.(a.b + a.c)

Q: Can P and R be distinguished behaviourally?

Contextual equivalences: $P \sim_{_{rbc}} Q$

Very general method:

Largest equivalence between processes which

- is preserved by language contexts
- preserves basic observables
 - requires definition of observation predicates $P \downarrow o$
- preserves nondeterministic potential
 - requires reduction semantics $P \xrightarrow{\tau} P'$

Extensional equivalence: example in pLTSs

$\overline{s} \not\sim_{rbc} \overline{u}$:

st æ < 17 ▶ ≪ ≣⇒ 11/32

Extensional equivalence: example in pLTSs

LTSs

 $\overline{s} \not\sim_{rbc} \overline{u}:$ $s \mid T \qquad T = \overline{a}.(\overline{b_1}.\omega + \overline{b_2}.\omega)$ $\xrightarrow{\tau} (b_1 \frac{1}{2} \oplus b_2) \mid (\overline{b_1}.\omega + \overline{b_2}.\omega)$ the same as $b_1 \mid (\overline{b_1}.\omega + \overline{b_2}.\omega) \frac{1}{2} \oplus b_2 \mid ((\overline{b_1}.\omega + \overline{b_2}.\omega))$ $\xrightarrow{\tau} \omega \quad \frac{1}{2} \oplus \quad \omega$

Extensional equivalence: example in pLTSs

LTSs

 $\overline{s} \not\sim_{rbc} \overline{u}:$ $s \mid T \qquad T = \overline{a}.(\overline{b_1}.\omega + \overline{b_2}.\omega)$ $\xrightarrow{\tau} (b_{1\frac{1}{2}} \oplus b_2) \mid (\overline{b_1}.\omega + \overline{b_2}.\omega)$ the same as $b_1 \mid (\overline{b_1}.\omega + \overline{b_2}.\omega)_{\frac{1}{2}} \oplus b_2 \mid ((\overline{b_1}.\omega + \overline{b_2}.\omega))$ $\xrightarrow{\tau} \omega_{\frac{1}{2}} \oplus \omega \qquad \qquad \downarrow^1 \omega \leftarrow \text{probabilistic observable}$

Reduction barbed congruence

Largest equivalence over distributions which is

- closed wrt parallel contexts
- preserves probabilistic observations barbs
- is reduction-closed

Reduction barbed congruence

LTSs

Largest equivalence over distributions which is

- closed wrt parallel contexts
- preserves probabilistic observations barbs
- is reduction-closed

Observations: $\Delta \downarrow^p a \text{ if } \Sigma\{\Delta(s) \mid s \xrightarrow{a}\} \ge p$

Reduction-closed:strong

if $\Delta \sim_{_{\it rbc}} \Theta$ then

- $\blacktriangleright \ \Delta \xrightarrow{\tau} \Delta' \text{ implies } \Theta \xrightarrow{\tau} \Theta' \text{ s.t. } \Delta' \sim_{rbc} \Theta$
- conversely, $\Theta \xrightarrow{\tau} \Theta'$ implies

	LTSs	Bisimulations	Property logics	
Outline				

Concurrency theory à la Milner

Labelled transition systems

Bisimulations

Property logics

Summary

Bisimulations for LTSs a proof method

 $\mathcal{R} \subseteq S \times S$ is a bisimulation in an LTS if whenever $p \mathcal{R} q$ then

(1) $p \xrightarrow{\mu} p'$ implies $q \xrightarrow{\mu} q'$ such that $p' \mathcal{R} q'$

(2) conversely, $q \xrightarrow{\mu} q'$ implies $p \xrightarrow{\mu} p'$ such that $p' \mathcal{R} q'$

Bisimulations for LTSs ${\mbox{\tiny a proof method}}$

 $\mathcal{R} \subseteq S \times S$ is a bisimulation in an LTS if whenever $p \mathcal{R} q$ then

(1) $p \xrightarrow{\mu} p'$ implies $q \xrightarrow{\mu} q'$ such that $p' \mathcal{R} q'$

(2) conversely, $q \xrightarrow{\mu} q'$ implies $p \xrightarrow{\mu} p'$ such that $p' \mathcal{R} q'$

Thm (Milner&Sangiorgi): In a sufficiently expressive finite-branching LTS,

 $p\sim_{\mbox{\tiny rbc}} q$ iff p ${\cal R}$ q for some bisimulation ${\cal R}$

Bisimulations for LTSs ${\mbox{\tiny a proof method}}$

 $\mathcal{R} \subseteq S \times S$ is a bisimulation in an LTS if whenever $p \mathcal{R} q$ then

(1) $p \xrightarrow{\mu} p'$ implies $q \xrightarrow{\mu} q'$ such that $p' \mathcal{R} q'$

(2) conversely, $q \xrightarrow{\mu} q'$ implies $p \xrightarrow{\mu} p'$ such that $p' \mathcal{R} q'$

Thm (Milner&Sangiorgi): In a sufficiently expressive finite-branching LTS,

 $p\sim_{\mbox{\tiny rbc}} q$ iff p ${\cal R}$ q for some bisimulation ${\cal R}$

Proof method;

To show $p \sim_{rbc} q$:

• exhibit a bisimulation \mathcal{R} containing the pair (p,q)

Bisimulations for pLTSs $_{\text{a proof method}}$

Processes are distributions

Proof method:

To show $\Delta\sim_{\rm {\it rbc}}\Theta$

• exhibit a bisimulation ${\mathcal R}$ such that $\Delta \ {\mathcal R} \ \Theta$

Bisimulations for pLTSs $_{\text{a proof method}}$

Processes are distributions

Proof method:

To show $\Delta\sim_{\rm {\it rbc}}\Theta$

• exhibit a bisimulation $\mathcal R$ such that $\Delta \mathcal R \Theta$

Problem:

- Definition of bisimulations require actions $\Delta \xrightarrow{\mu} \Theta$
- pLTSs only have actions $s \xrightarrow{\mu} \Theta$

Bisimulations for pLTSs ${}_{\text{a proof method}}$

Processes are distributions

Proof method:

To show $\Delta\sim_{\rm {\it rbc}}\Theta$

• exhibit a bisimulation $\mathcal R$ such that $\Delta \mathcal R \Theta$

Problem:

- Definition of bisimulations require actions $\Delta \xrightarrow{\mu} \Theta$
- pLTSs only have actions $s \xrightarrow{\mu} \Theta$

Solution:

Lift
$$s \xrightarrow{\mu} \Theta$$
 to $\Delta \xrightarrow{\mu} \Theta$

Lifting relations: from $S \times \mathcal{D}(S)$ to $\mathcal{D}(S) \times \mathcal{D}(S)$

from
$$s \xrightarrow{\mu} \Theta$$
 to $\Delta \xrightarrow{\mu} \Theta$

Lifting relations: from $S \times \mathcal{D}(S)$ to $\mathcal{D}(S) \times \mathcal{D}(S)$

from
$$\underline{s \xrightarrow{\mu} \Theta}$$
 to $\underline{\Delta \xrightarrow{\mu} \Theta}$

$$\Delta \xrightarrow{\mu} \Theta$$

- Δ represents a cloud of possible process states
- \blacktriangleright each possible state must be able to perform μ
- all possible residuals combine to Θ

Lifting relations: from $S \times \mathcal{D}(S)$ to $\mathcal{D}(S) \times \mathcal{D}(S)$

from
$$s \xrightarrow{\mu} \Theta$$
 to $\Delta \xrightarrow{\mu} \Theta$

• Δ represents a cloud of possible process states

- each possible state must be able to perform μ
- all possible residuals combine to Θ

Examples:

$$(a.b+a.c)_{\frac{1}{2}} \oplus a.d \xrightarrow{a} b_{\frac{1}{2}} \oplus d$$

$$(a.b+a.c)_{\frac{1}{2}} \oplus a.d \xrightarrow{a} (b_{\frac{1}{2}} \oplus c)_{\frac{1}{2}} \oplus d$$

$$(a.b+a.c)_{\frac{1}{2}} \oplus a.d \xrightarrow{a} (b_{p} \oplus c)_{\frac{1}{2}} \oplus d$$

Note: dynamic scheduling

Lifting relations

From $\mathcal{R} \subseteq S \times \mathcal{D}(S)$, to $lift(\mathcal{R}) \subseteq \mathcal{D}(S) \times \mathcal{D}(S)$

From $\mathcal{R} \subseteq S \times \mathcal{D}(S)$, to $lift(\mathcal{R}) \subseteq \mathcal{D}(S) \times \mathcal{D}(S)$ $\boxed{\Delta \quad lift(\mathcal{R}) \Theta} \qquad \text{whenever}$

$$\bullet \ \Theta = \sum_{i \in I} p_i \cdot \Theta_i$$

$$\blacktriangleright \sum_{i\in I} p_i = 1$$

æ

st

 Θ_i

- 4 聞 と 4 臣 と 4 臣 と

From $\mathcal{R} \subseteq S \times \mathcal{D}(S)$, to $lift(\mathcal{R}) \subseteq \mathcal{D}(S) \times \mathcal{D}(S)$

$$\Delta$$
 lift(\mathcal{R}) Θ whenever

•
$$\Delta = \sum_{i \in I} p_i \cdot \overline{s_i}$$
, I a finite index set

▶ For each $i \in I$ there is a distribution Θ_i s.t. $s_i \quad \mathcal{R} \quad \Theta_i$

•
$$\Theta = \sum_{i \in I} p_i \cdot \Theta_i$$

$$\blacktriangleright \sum_{i\in I} p_i = 1$$

Many different formulations Note: in decomposition $\sum_{i \in I} p_i \cdot s_i$ states s_i are not necessarily unique

Bisimulations for pLTSs a proof method

 $\mathcal{R}\subseteq \mathcal{D}(S) \times \mathcal{D}(S) \text{ is a bisimulation in an pLTS if}$ whenever $\Delta \mathcal{R} \Theta$ then (1) $\Delta \xrightarrow{\mu} \Delta'$ implies $\Theta \xrightarrow{\mu} \Theta'$ such that $\Delta' \mathcal{R} \Theta'$ (2) conversely,

Bisimulations for pLTSs a proof method

 $\begin{array}{l} \mathcal{R} \subseteq \mathcal{D}(S) \times \mathcal{D}(S) \text{ is a bisimulation in an pLTS if} \\ \text{whenever } \Delta \mathcal{R} \Theta \text{ then} \\ (1) \ \Delta \xrightarrow{\mu} \Delta' \text{ implies } \Theta \xrightarrow{\mu} \Theta' \text{ such that } \Delta' \mathcal{R} \Theta' \\ (2) \text{ conversely, } \dots \dots \end{array}$

Problem:

- There is a bisimulation containing $(a_{0.5} \oplus b, \overline{\mathbf{0}})$
- $a_{0.5} \oplus b$ and $\overline{\mathbf{0}}$ are NOT reduction barbed congruent

Singleton relation $\mathcal{R}=$ $(a_{0.5}\oplus b, \overline{0})$ is a trivial bisimulation

 $\mathcal{R} \subseteq \mathcal{D}(S) imes \mathcal{D}(S)$ is decomposable if

- $(\Delta_{1_p} \oplus \Delta_2) \mathcal{R} \Theta$ implies $\Theta = \Theta_{1_p} \oplus \Theta_2$ such that $\Delta_i \mathcal{R} \Theta_i$
- $\Delta \mathcal{R} (\Theta_{1_p} \oplus \Theta_2)$ implies $\Delta = \Delta_{1_p} \oplus \Delta_2$ such that $\Delta_i \mathcal{R} \Theta_i$

	LIJS	DISITIUTATIONS		F Toperty Togics	Summary
Decomp	osable Rel	ations			
$\mathcal{R} \subseteq \mathcal{I}$	$\mathcal{D}(S) imes \mathcal{D}(S)$	is decomposab	le if		
	$\mathbf{A} = \mathbf{A} \setminus \mathbf{D}$		\mathbf{O} \mathbf{E} \mathbf{O}		

- $(\Delta_{1_p} \oplus \Delta_2) \mathcal{R} \Theta$ implies $\Theta = \Theta_{1_p} \oplus \Theta_2$ such that $\Delta_i \mathcal{R} \Theta_i$
- $\Delta \mathcal{R} (\Theta_{1_p} \oplus \Theta_2)$ implies $\Delta = \Delta_{1_p} \oplus \Delta_2$ such that $\Delta_i \mathcal{R} \Theta_i$

Examples:

- $\mathcal{R} = (a_{0.5} \oplus b, \mathbf{0})$ is **NOT** decomposable
- $\sim_{\rm \tiny rbc}$ is decomposable

Properties:

- ► Every R⊆ S × S can be lifted to a decomposable slift(R)⊆ D(S) × D(S)
- Every decomposable R⊆ D(S) × D(S) can be written as slift(R_s) for some R_s ⊆S × S

Bisimulations for pLTSs at last

A decomposable $\mathcal{R} \subseteq \mathcal{D}(S) \times \mathcal{D}(S)$ is a bisimulation in an pLTS if whenever $\Delta \mathcal{R} \Theta$ then

- (1) $\Delta \xrightarrow{\mu} \Delta'$ implies $\Theta \xrightarrow{\mu} \Theta'$ such that $\Delta' \mathcal{R} \Theta'$
- (2) conversely,

Bisimulations for pLTSs $_{\scriptscriptstyle at \mbox{ last}}$

A decomposable $\mathcal{R} \subseteq \mathcal{D}(S) \times \mathcal{D}(S)$ is a bisimulation in an pLTS if whenever $\Delta \mathcal{R} \Theta$ then

(1)
$$\Delta \xrightarrow{\mu} \Delta'$$
 implies $\Theta \xrightarrow{\mu} \Theta'$ such that $\Delta' \mathcal{R} \Theta'$

(2) conversely,

Result:

Thm: In a sufficiently expressive finitary pLTS,

 $\Delta \sim_{\mbox{\tiny rbc}} \Theta \mbox{ iff } \Delta \mbox{ } \mathcal{R} \mbox{ } \Theta \mbox{ for some bisimulation } \mathcal{R}$

Bisimulations for pLTSs at last

A decomposable $\mathcal{R} \subseteq \mathcal{D}(S) \times \mathcal{D}(S)$ is a bisimulation in an pLTS if whenever $\Delta \mathcal{R} \Theta$ then

(1)
$$\Delta \xrightarrow{\mu} \Delta'$$
 implies $\Theta \xrightarrow{\mu} \Theta'$ such that $\Delta' \mathcal{R} \Theta'$

(2) conversely,

Result:

Thm: In a sufficiently expressive finitary pLTS,

 $\Delta \sim_{\mbox{\tiny rbc}} \Theta \mbox{ iff } \Delta \mbox{ } \mathcal{R} \mbox{ } \Theta \mbox{ for some bisimulation } \mathcal{R}$

Result:

Thm: Δ *slift*(\sim_{segala}) Θ iff $\Delta \mathcal{R} \Theta$ for some bisimulation \mathcal{R}

 $s \sim_{segala} t$ is state based probabilistic bisimulation à la Segala.

Intro LTSs Bisimulations Property logics Summary
Bisimulations à Segala in pLTSs

An equivalence relation $\mathcal{R} \subseteq S \times S$ is an s-bisimulation if, whenever $s \ \mathcal{R} \ t$, then

► $\overline{s} \xrightarrow{\mu} \Delta$ implies $\overline{t} \xrightarrow{\mu} \Theta$ such that $\Delta(E) = \Theta(E)$ for all \mathcal{R} -equivalence classes E

• conversely, $\overline{t} \xrightarrow{\mu} \Theta$ implies

 \sim_{segala} is the largest s-bisimulation

ntro	LTSs	Bisimulations	Property logics	Summary
Example in	pLTSs:	dynamic scheduling		

0.7

ò

0.3

o

h v

ò

0.5 0.3

¥^h

Because

0.7

v^t

0.5

ó

h↓

$$\overline{t} \xrightarrow{o} \overline{h}_{0.5} \oplus \overline{t}$$

using combined moves

æ

э

зt

LTSs	Property logics	

Outline

Concurrency theory à la Milner

Labelled transition systems

Bisimulations

Property logics

Summary

Intro	LTS	s	Bisimulations	Property logics	Summary
Property HML:	logio	cs in	LTSs: proving	inequivalences	
	φ	::=	tt $arphi_1 ee arphi_2$ $\langle \mu$	$\langle \varphi, \mu \in Act_{ au} \mid \neg \varphi$	

 $p \models \varphi$ means process p has property φ E.G:

• $p \models \langle \mu \rangle \varphi$ if $p \xrightarrow{\mu} p'$ such that $p' \models \varphi$

Intro	LTSs	Bisimulations	Property logics	Summary
Property HML:	logics in	LTSs: proving	inequivalences	

$$\varphi \hspace{0.1 in} ::= \hspace{0.1 in} \texttt{tt} \hspace{0.1 in} | \hspace{0.1 in} \varphi_1 \vee \varphi_2 \hspace{0.1 in} | \hspace{0.1 in} \langle \mu \rangle \varphi, \mu \in \mathsf{Act}_\tau \hspace{0.1 in} | \hspace{0.1 in} \neg \varphi$$

 $p \models \varphi$ means process p has property φ E.G:

•
$$p \models \langle \mu \rangle \varphi$$
 if $p \xrightarrow{\mu} p'$ such that $p' \models \varphi$

Classical result:

In a finite branching LTS,
$$p \sim_{rbc} q$$
 iff
 $p \models \varphi$ implies $q \models \varphi$, for every property φ

Proof method:

To show $p \not\sim_{rbc} q$ exhibit φ such that

$$\textit{p} \models \varphi \text{ and } \textit{q} \not\models \varphi$$

	LTSs	Property logics	
Example			

$$P = a.(a.(b + c) + a.b + a.c)$$

 $R = a.a.(b + c) + a.(a.b + a.c)$

Q: Can P and R be distinguished behaviourally?

	LTSs	Property logics	
Example			

$$P = a.(a.(b+c) + a.b + a.c)$$

 $R = a.a.(b+c) + a.(a.b + a.c)$

Q: Can P and R be distinguished behaviourally?

$$P \not\sim_{rbc} Q \text{ because}$$

$$P \models \langle a \rangle (\langle a \rangle (\langle b \rangle \texttt{tt} \land \langle c \rangle \texttt{tt}) \land \langle a \rangle (\langle b \rangle \texttt{tt} \land \neg \langle c \rangle \texttt{tt}))$$

$$P \models \langle a \rangle (\ldots)$$

25/32

æ

Intro	LTSs	Bisimulations	Property logics	Summary
Property	logics in	pLTSs: proving	inequivalences	
pHML	.:			
	φ ::=	tt $\varphi_1 \lor \varphi_2$ $\langle \mu \rangle$	$\varphi, \mu \in Act_{ au} \ \ \neg \varphi$	
		$ \varphi_{1p} \oplus \varphi$	$p_2, \ p \in [0,1]$	
$\pmb{\Delta} \models \varphi$	means pro	ocess Δ has property	arphi	
E.G:				

• $\Delta \models \varphi_1_p \oplus \varphi_2$ if $\Delta = \Delta_1_p \oplus \Delta_2$ such that $\Delta_i \models \varphi_i$

Property logics in pLTSs: proving inequivalences pHML:

$$\begin{array}{rcl} \varphi & ::= & \texttt{tt} & \mid \varphi_1 \lor \varphi_2 & \mid \langle \mu \rangle \varphi, \mu \in \mathsf{Act}_\tau & \mid \neg \varphi \\ & \mid & \varphi_{1\,p} \oplus \varphi_2, \ p \in [0,1] \end{array}$$

 $\label{eq:delta} \begin{array}{l} \Delta \models \varphi \text{ means process } \Delta \text{ has property } \varphi \\ \text{E.G:} \end{array}$

• $\Delta \models \varphi_{1_p} \oplus \varphi_2$ if $\Delta = \Delta_{1_p} \oplus \Delta_2$ such that $\Delta_i \models \varphi_i$ Result:

In a finitary pLTS, $\Delta \sim \Theta$ iff $\Delta \models \varphi$ implies $\Theta \models \varphi$, for every property φ

Proof method:

To show $\Delta \not\sim_{{}_{rbc}} \Theta$ exhibit φ such that

$$\Delta \models \varphi \text{ and } \Theta \not\models \varphi$$

Example

<ロ> <同> <同> < 同> < 同>

 $\overline{s} \not\sim_{rbc} \overline{u}$ because

$$\overline{s} \models \langle a \rangle (\langle b_1 \rangle \operatorname{tt}_{\frac{1}{2}} \oplus \langle b_2 \rangle \operatorname{tt})$$

$$\overline{u} \not\models \langle a \rangle (\langle b_1 \rangle \operatorname{tt}_{\frac{1}{2}} \oplus \langle b_2 \rangle \operatorname{tt})$$

27/32

æ

<u>sf</u>

LTSs	Property logics	Summary

Outline

Concurrency theory à la Milner

Labelled transition systems

Bisimulations

Property logics

Summary

Summary

- Emphasis on processes as *distributions* in pLTSs
- Natural formulation of (strong) contextual behavioural equivalence
- Behavioural justification of Segalas state-based bisimulation equivalence
- Simple complete extension of HML for probabilistic processes
- Complete axiomatisation for probabilistic CCS

Summary

- Emphasis on processes as distributions in pLTSs
- Natural formulation of (strong) contextual behavioural equivalence
- Behavioural justification of Segalas state-based bisimulation equivalence
- Simple complete extension of HML for probabilistic processes
- Complete axiomatisation for probabilistic CCS

Future

- Algorithms ?
 - Input two processes Δ, Θ
 - Output: bisimulation containing (Δ, Θ) or a pHML distinguishing formula
- Static schedulers ?
- Weak case ?

Weak reduction barbed congruence $\approx_{\rm rbc}$: easy to define

Largest equivalence over distributions which is

- closed wrt parallel contexts
- preserves weak probabilistic observations barbs
- is weak reduction-closed

Weak reduction barbed congruence \approx_{rbc} : easy to define Largest equivalence over distributions which is

- closed wrt parallel contexts
- preserves weak probabilistic observations barbs
- is weak reduction-closed

Weak observations: $\Delta \Downarrow^{p} a \text{ if } \Delta \stackrel{\tau}{\Longrightarrow} \Delta' \text{ such that } \Delta' \downarrow^{p} a$

Weak reduction-closed:

 $\text{if }\Delta\approx_{_{\textit{rbc}}}\Theta\text{ then }$

- $\Delta \stackrel{\tau}{\Longrightarrow} \Delta'$ implies $\Theta \stackrel{\tau}{\Longrightarrow} \Theta'$ s.t. $\Delta' \approx_{rbc} \Theta$
- conversely, $\Theta \stackrel{\tau}{\Longrightarrow} \Theta'$ implies

Problem:

 $\approx_{\scriptscriptstyle rbc}$ is not decomposable

Problem:

$\approx_{\rm rbc}$ is not decomposable

Consequence:

- Let \approx_s be any relation in S imes S $_{
 m eg \ a \ state-based \ weak \ bisimulation \ equivalence}$
- Then \approx_{rbc} is NOT the same as $slift(\approx_s)$

versus

<ロ> <同> <同> < 同> < 同>

 $\overline{s} pprox_{rbc} \overline{v}$

æ

šfi