
System behaviour in the presence of failures

Matthew Hennessy, U of Sussex
joint work with Adrian Francalanza.

Background:

Wide-area distributed networks

Location aware programming

Network failures

· nodes

· links

Programming in the presence of failures

Details: University of Sussex Technical Report 2005:01

Dagstuhl, February 2005 – p.1/26

Mobile Systems: Dpi

Anonymous agents migrating between sites
in a distributed network

SERV[[d?(x@z) T]] | CL[[(new a) goto SERV.d!〈a@k〉 | P]]

Dagstuhl, February 2005 – p.2/26

Mobile Systems: Dpi

Anonymous agents migrating between sites
in a distributed network

SERV[[d?(x@z) T]] | CL[[(new a) goto SERV.d!〈a@k〉 | P]]

Mobility between CL and SERV depends on state of underlying
network

Calculus requires explicit representation of network

Dagstuhl, February 2005 – p.2/26

Network representations

l1 l2 l3

k1 k2 k3

n1 n2 n3

l live node

k dead node

two way communication links

Dagstuhl, February 2005 – p.3/26

Network representations

l1 l2 l3

k1 k2 k3

n1 n2 n3

l live node

k dead node

two way communication links

many different possible choices

Dagstuhl, February 2005 – p.3/26

Network representations - ∆

∆ = 〈N ,D,L〉 where

N a set of names; - loc(N) the subset of N which are locations

D ⊆ loc(N) - dead locations

L ⊆ loc(N) × loc(N) - connections between locations
L is reflexive symmetric - a link set

Dagstuhl, February 2005 – p.4/26

Network representations - ∆

∆ = 〈N ,D,L〉 where

N a set of names; - loc(N) the subset of N which are locations

D ⊆ loc(N) - dead locations

L ⊆ loc(N) × loc(N) - connections between locations
L is reflexive symmetric - a link set

Look up functions:

∆ ⊢ l : alive

∆ ⊢ l ↔ k - a link

∆ ⊢ l ! k - active link
if ∆ ⊢ l, k : alive, l ↔ k

Dagstuhl, February 2005 – p.4/26

Process mobility

l1 l2 l3

k1 k2 k3

n1 n2 n3

Dagstuhl, February 2005 – p.5/26

Process mobility

l1 l2 l3

k1 k2 k3

n1 n2 n3

l1[[goto n1.P]] ? active path

k2[[goto n3.P]] ? any path

l2[[goto l3.P]] ? dead receiver

n2[[goto n3.P]] ? dead sender

k2[[goto k3.P]] ? active link

Dagstuhl, February 2005 – p.5/26

Process mobility

l1 l2 l3

k1 k2 k3

n1 n2 n3

l1[[goto n1.P]] ? active path

k2[[goto n3.P]] ? any path

l2[[goto l3.P]] ? dead receiver

n2[[goto n3.P]] ? dead sender

k2[[goto k3.P]] ? active link ⋆

Dagstuhl, February 2005 – p.5/26

Network programming

l1 l2 l3

k1 k2 k3

n1 n2 n3

How do processes take failures into account?

Dagstuhl, February 2005 – p.6/26

Network programming

l1 l2 l3

k1 k2 k3

n1 n2 n3

How do processes take failures into account?

l1[[pathping n1.P]] ?

l1[[pathping n3.P else Q]] ?

l2[[go n3.P elselocal Q]] ?

l2[[go n3.(P andlocal R)elselocal Q]] ?

l1[[ping l2.P]] ?

l1[[ping l2.P else Q]] ? Dagstuhl, February 2005 – p.6/26

Network programming

l1 l2 l3

k1 k2 k3

n1 n2 n3

How do processes take failures into account?

l1[[pathping n1.P]] ?

l1[[pathping n3.P else Q]] ?

l2[[go n3.P elselocal Q]] ?

l2[[go n3.(P andlocal R)elselocal Q]] ?

l1[[ping l2.P]] ?

l1[[ping l2.P else Q]] ? ⋆ Dagstuhl, February 2005 – p.6/26

Network generation

k1 k2

n1 n2 n3

Generating new nodes: k2[[(ν m)P]]
What locations is the new m connected with?

only k2 ?

some declared set

Dagstuhl, February 2005 – p.7/26

Network generation

k1 k2

n1 n2 n3

Generating new nodes: k2[[(ν m)P]]
What locations is the new m connected with?

only k2 ?

some declared set ⋆

k2[[(ν m :loca[S])P]]

connects the new m to all nodes in S accessible from k2

Dagstuhl, February 2005 – p.7/26

Network generation

k1 k2

n1 n2 n3

k2[[(ν m :loca[{n1, n3}])P]] leads to

Dagstuhl, February 2005 – p.8/26

Network generation

k1 k2

n1 n2 n3

k2[[(ν m :loca[{n1, n3}])P]] leads to

k1 k2 m

n1 n2 n3

Dagstuhl, February 2005 – p.8/26

Syntax of DPIF

Configurations: ∆ ⊲ M

Systems: M ::= l[[P]] | N |M | (ν n :T)M

Types: T ::= ch | loca[S] | locd[S]
S a set of location names

Processes:

P ::= u!〈V 〉.P | u?(X).P | . . .

goto u.P | ping u.P else Q | kill | break l

Dagstuhl, February 2005 – p.9/26

Use of kill and break l

Modelling fragile nodes and links:

l[[(ν k1 : loc[{l, n}])(ν k2 : loc[{k1, l}])

goto k1.P1 | goto k2.P2

| goto k1.break k2]]

Here link between k1 and k2 is subject to failure

Dagstuhl, February 2005 – p.10/26

Use of kill and break l

Modelling fragile nodes and links:

l[[(ν k1 : loc[{l, n}])(ν k2 : loc[{k1, l}])

goto k1.P1 | goto k2.P2

| goto k1.break k2]]

Here link between k1 and k2 is subject to failure

M ≈ N will mean:
M and N are behaviourally equivalent in the presence of failures
– provided ≈ is contextual

Dagstuhl, February 2005 – p.10/26

Reduction semantics of DPIF

comm

∆ ⊢ l : alive

∆ ⊲ l[[a!〈V 〉.P]] | l[[a?(X).Q]] −→ ∆ ⊲ l[[P]] | . . .

ping

∆ ⊢ l ! k

∆ ⊲ l[[ping k.P else Q]] −→ ∆ ⊲ l[[P]]

not−ping

∆ 6⊢ l ! k

∆ ⊲ l[[ping k.P else Q]] −→ ∆ ⊲ l[[Q]]

brk

∆ ⊢ l ! k

∆ ⊲ l[[break k]] −→ (∆ − (l ↔ k)) ⊲ l[[0]]

Dagstuhl, February 2005 – p.11/26

Reduction semantics - more

newl

∆ ⊢ l : alive

∆ ⊲ l[[(νk)loca[S] P]] −→ ∆ ⊲ (ν k :loca[D]) l[[P]]
where D is set of locations in S accessible from l

go

∆ ⊢ l ! k

∆ ⊲ l[[goto k.P]] −→ ∆ ⊲ k[[P]]

no−go

∆ ⊢ l 6! k

∆ ⊲ l[[goto k.P]] −→ ∆ ⊲ k[[0]]

. . .

Dagstuhl, February 2005 – p.12/26

Reduction barbed congruence

∆ |= M ∼= N

means: M and N can not be distinguished by any observer

interacting with M and N

running on any network extension of ∆

Dagstuhl, February 2005 – p.13/26

Reduction barbed congruence

∆ |= M ∼= N

means: M and N can not be distinguished by any observer

interacting with M and N

running on any network extension of ∆

Problem: Find bisimulation equivalence which captures exactly

∆ |= M ∼= N

.

Dagstuhl, February 2005 – p.13/26

Reduction barbed congruence - example

∆l |= Ni
∼= Nj where ∆l - network with one live location l

N1 ⇐ (ν k : locd[{l}])l[[a!〈k〉]]

N2 ⇐ (ν k : locd[{}])l[[a!〈k〉]]

N3 ⇐ (ν k : loca[{}])l[[a!〈k〉]]

Dagstuhl, February 2005 – p.14/26

Reduction barbed congruence - example

∆l |= Ni
∼= Nj where ∆l - network with one live location l

N1 ⇐ (ν k : locd[{l}])l[[a!〈k〉]]

N2 ⇐ (ν k : locd[{}])l[[a!〈k〉]]

N3 ⇐ (ν k : loca[{}])l[[a!〈k〉]]

Effective networks of running code l[[a!〈k〉]]:

∆1 = ∆l + k :locd[{l}] = l k

∆2 = ∆l + k :locd[{}] = l k

∆3 = ∆l + k :loca[{}] = l kDagstuhl, February 2005 – p.14/26

Another example

M1 ⇐ (ν k1 :{l}) (ν k2 :{k1}) (ν k3 :{k1, k2}) l[[a!〈k2, k3〉.P]]

M2 ⇐ (ν k1 : {l})(ν k2 : {k1})(ν k3 : {k1})l[[a!〈k2, k3〉.P]]

Is ∆l |= M1
∼= M2?

Dagstuhl, February 2005 – p.15/26

Another example

M1 ⇐ (ν k1 :{l}) (ν k2 :{k1}) (ν k3 :{k1, k2}) l[[a!〈k2, k3〉.P]]

M2 ⇐ (ν k1 : {l})(ν k2 : {k1})(ν k3 : {k1})l[[a!〈k2, k3〉.P]]

Is ∆l |= M1
∼= M2?

Effective networks of running code l[[a!〈k2, k3〉.P]]:

M1 : M2 :

k2

l k1

k3

k2

l k1

k3
Dagstuhl, February 2005 – p.15/26

Resist temptation

∆ ⊲ M
µ

−→ ∆′ ⊲ M ′ is not subtle enough

Dagstuhl, February 2005 – p.16/26

Resist temptation

∆ ⊲ M
µ

−→ ∆′ ⊲ M ′ is not subtle enough

Observers learn about new nodes, by extrusion

Observers can discover connections between new nodes by using
ping

But must be able to access new nodes in order to ping

Dagstuhl, February 2005 – p.16/26

Resist temptation

∆ ⊲ M
µ

−→ ∆′ ⊲ M ′ is not subtle enough

Observers learn about new nodes, by extrusion

Observers can discover connections between new nodes by using
ping

But must be able to access new nodes in order to ping

Result:

Observers may only be aware of part of underlying network

∆ must represent both actual network, and observers knowledge
of it

Dagstuhl, February 2005 – p.16/26

Extended network representations Γ

Γ = 〈N ,O,S〉

where

N is a set of names - known to the observer

O a linkset of live links known to the observer

S a linkset of live links unknown to the observer

Dagstuhl, February 2005 – p.17/26

Extended network representations Γ

Γ = 〈N ,O,S〉

where

N is a set of names - known to the observer

O a linkset of live links known to the observer

S a linkset of live links unknown to the observer

Note:

Dead nodes are known indirectly

Links to dead nodes are not recorded

Dagstuhl, February 2005 – p.17/26

Extended network representations Γ

Γ = 〈N ,O,S〉

where

N is a set of names - known to the observer

O a linkset of live links known to the observer

S a linkset of live links unknown to the observer

Note:

Dead nodes are known indirectly

Links to dead nodes are not recorded

Required actions: Γ ⊲ M
µ

−→ Γ′ ⊲ M ′

Dagstuhl, February 2005 – p.17/26

Lts for DPIF

Γ ⊲ M
µ

−→ Γ′ ⊲ M ′

where µ can be

τ

(ñ : T̃)l : a?(V)
(ñ) are fresh names introduced by observer

(T̃) are their state information

(ñ : T̃)l : a!〈V 〉
(ñ) are fresh names exported to the observer

(T̃) are their state information

kill(l)
external location kill

l 6↔ k

external link break Dagstuhl, February 2005 – p.18/26

Example rules

fail

Γ ⊢ l : alive

Π ⊲ N
kill(l)
−−→ (Π − l) ⊲ N

l−weak−in

(Γ+n :T) ⊲ N
αin−−→ Γ′ ⊲ N ′

Γ ⊲ N
(n:T)αin

−−−−→ Γ′ ⊲ N ′

l−rest−typ

Γ+k :T ⊲ N
(ñ:T̃)l:a!〈V 〉
−−−−−−→ (Γ+ñ : Ũ) +k :U ⊲ N ′

Γ ⊲ (ν k :T)N
(en:eU)l:a!〈V 〉
−−−−−−→ (Γ+ñ : Ũ) ⊲ (ν k :U)N ′

k in (T̃)

Dagstuhl, February 2005 – p.19/26

Soundness

Let Γ |= M ≈ N mean that Γ ⊲ M and Γ ⊲ N are weakly bisimilar.

Theorem: Γ |= M ≈ N implies Γ |= M ∼= N

Proof: Essentially ≈ is contextual

Dagstuhl, February 2005 – p.20/26

Soundness

Let Γ |= M ≈ N mean that Γ ⊲ M and Γ ⊲ N are weakly bisimilar.

Theorem: Γ |= M ≈ N implies Γ |= M ∼= N

Proof: Essentially ≈ is contextual

But Γ |= M ∼= N does not imply Γ |= M ≈ N

State information on actions is too detailed.

Dagstuhl, February 2005 – p.20/26

Counter-example

N1 ⇐ (ν k : locd[{l}])l[[a!〈k〉]] l k

N2 ⇐ (ν k : locd[{}])l[[a!〈k〉]] l k

Dagstuhl, February 2005 – p.21/26

Counter-example

N1 ⇐ (ν k : locd[{l}])l[[a!〈k〉]] l k

N2 ⇐ (ν k : locd[{}])l[[a!〈k〉]] l k

Γl ⊲ N1
α1−→ . . . ⊲

Γl ⊲ N2
α2−→ . . . ⊲

where

α1 = (k : locd[{l}])l : a!〈k〉

α2 = (k : locd[{}])l : a!〈k〉

Dagstuhl, February 2005 – p.21/26

Derived actions for DPIF

Γ ⊲ N
µ

7−→ Γ′ ⊲ N ′

where

τ

(ñ : L̃)l : a?(V)

(ñ : L̃)l : a!〈V 〉K

kill(l)

l 6↔ k

Here L̃ are live link sets: the live connections made visible by the ap-

pearance of the new (ñ).

Dagstuhl, February 2005 – p.22/26

Example

N1 ⇐ (ν k : locd[{l}])l[[a!〈k〉]] l k

N2 ⇐ (ν k : locd[{}])l[[a!〈k〉]] l k

Γl ⊲ N1
α1−→ . . . ⊲ . . . , α1 = (k : locd[{l}])l : a!〈k〉

Γl ⊲ N2
α2−→ . . . ⊲ . . . , α2 = (k : locd[{}])l : a!〈k〉

Dagstuhl, February 2005 – p.23/26

Example

N1 ⇐ (ν k : locd[{l}])l[[a!〈k〉]] l k

N2 ⇐ (ν k : locd[{}])l[[a!〈k〉]] l k

Γl ⊲ N1
α1−→ . . . ⊲ . . . , α1 = (k : locd[{l}])l : a!〈k〉

Γl ⊲ N2
α2−→ . . . ⊲ . . . , α2 = (k : locd[{}])l : a!〈k〉

Derived actions:

Γl ⊲ N1
α

7−→ . . . ⊲ . . . α = (k : {})l : a!〈k〉

Γl ⊲ N2
α

7−→ . . . ⊲ . . .

Dagstuhl, February 2005 – p.23/26

Example revisitied

Is Γl |= M1 ≈ M2

M1 ⇐ (ν k1 :{l}) (ν k2 :{k1}) (ν k3 :{k1, k2}) l[[a!〈k2, k3〉.P]]

M2 ⇐ (ν k1 : {l})(ν k2 : {k1})(ν k3 : {k1})l[[a!〈k2, k3〉.P]]

Effective networks of running code:

M1 : M2 :

k2

l k1

k3

k2

l k1

k3

Dagstuhl, February 2005 – p.24/26

Full-abstraction

Theorem: In derived lts

Γ |= M ≈ N if and only if Γ |= M ∼= N

Dagstuhl, February 2005 – p.25/26

Full-abstraction

Theorem: In derived lts

Γ |= M ≈ N if and only if Γ |= M ∼= N

Proof requires:

contextuality of ≈ in the derived lts

definability of every derived action

a formal definition of ∼=
We need to be able to compare configuraions running on different
networks

Dagstuhl, February 2005 – p.25/26

Further work

Application to examples

Relativisation:

· to a maximum number of failures

· to certain permanent nodes, connections

Fault tolerance

other connectivity models

other migration models

Dagstuhl, February 2005 – p.26/26

	System behaviour in the presence of failures
	Mobile Systems: Dpi
	Network representations
	Network representations - $
etRep $
	Process mobility
	Network programming
	Network generation
	Network generation
	Syntax of dpiF
	Use of $kil ;;$ and $;;�rkAsy {l}$
	Reduction semantics of dpiF
	Reduction semantics - more
	Reduction barbed congruence
	Reduction barbed congruence - example
	Another example
	Resist temptation
	Extended network representations $;;colSyn Gamma $
	Lts for dpiF
	Example rules
	Soundness
	Counter-example
	Derived actions for dpiF
	Example
	Example revisitied
	Full-abstraction
	Further work

