System behaviour in the presence of failures

Matthew Hennessy, U of Sussex
joint work with Adrian Francalanza.
Background:

$» \Wide-area distributed networks
$» Location aware programming

» Network failures
- nodes

- links

$» Programming in the presence of failures

Details: University of Sussex Technical Report 2005:01

Dagstuhl, February 2005 — p.1/26

Mobile Systems: Dpi

Anonymous agents migrating between sites
In a distributed network

serv[d?(zez)T]| | cL[(newa)goto serv.d!{aek) | P]

Dagstuhl, February 2005 — p.2/26

Mobile Systems: Dpi

Anonymous agents migrating between sites
In a distributed network

serv[d?(zez)T| | cL|(new a)goto serv.d!{aek) | P]

$» Mobility between cL and SERV depends on state of underlying
network

® Calculus requires explicit representation of network

Dagstuhl, February 2005 — p.2/26

Network representations

N\

9 0 live node
» @ dead node

$» two way communication links

Dagstuhl, February 2005 — p.3/26

Network representations

N\

9 0 live node
» @ dead node

$» two way communication links

many different possible choices

Dagstuhl, February 2005 — p.3/26

Network representations - A\

A = (N,D, L) where
® N aset of names; - loc(N) the subset of A which are locations
® D Cloc(N) - dead locations

® L Cloc(N) x loc(N) - connections between locations

L is reflexive symmetric - a link set

Dagstuhl, February 2005 — p.4/26

Network representations - A\

A = (N,D, L) where
® N aset of names; - loc(N) the subset of A which are locations
® D Cloc(N) - dead locations

® L Cloc(N) x loc(N) - connections between locations

L is reflexive symmetric - a link set
Look up functions:
® AF[:alive
® ARl k-alink

® AL [« k-actie link
fAFI[k:alive, | < k

Dagstuhl, February 2005 — p.4/26

Process mobility

Dagstuhl, February 2005 — p.5/26

Process mobility

© o o 0 0

l1|goto ny.P| ? active path
ko|goto n3.P| 2 any path
l>[goto [3.P] 2 dead receiver
ns|goto ng. P| 2 dead sender

ko|goto ks.P] ? active link

Dagstuhl, February 2005 — p.5/26

Process mobility

© o o 0 0

l1|goto ny.P| ? active path
ko|goto n3.P| 2 any path
l>[goto [3.P] 2 dead receiver
ns|goto ng. P| 2 dead sender

kolgoto ks.P| ? active link %

Dagstuhl, February 2005 — p.5/26

Network programming

o—0—0
© o

How do processes take failures into account?

Dagstuhl, February 2005 — p.6/26

Network programming

o—0—0
© o

How do processes take failures into account?

® [;[pathping n;.P] 2

1 [pathping n3. P else Q] 2

l5go ns3. P elselocal Q)] 2

|go n3.(P andlocal R)elselocal Q)] 2
[[ping [.P] 2

l1[ping I5.P else Q)] 7

© o o 0 0

Dagstuhl, February 2005 — p.6/26

Network programming

o—0—0
© o

How do processes take failures into account?

® [;[pathping n;.P] 2

1 [pathping n3. P else Q] 2

l5go ns3. P elselocal Q)] 2

|go n3.(P andlocal R)elselocal Q)] 2
[[ping [.P] 2

l1[ping l5.P else Q] ? *

© o o 0 0

Dagstuhl, February 2005 — p.6/26

Network generation

kl < >

Generating new nodes: ks [(v m) P]
What locations is the new m connected with?

® only ky ?

» some declared set

Dagstuhl, February 2005 — p.7/26

Network generation

—@
Generating new nodes: ks [(v m) P]

What locations is the new m connected with?
® only ky ?

» some declared set %

ko[(v m:loc,|S])P]

connects the new m to all nodes in S accessible from k5

Dagstuhl, February 2005 — p.7/26

Network generation

o
o0

ka[(vm:loc,|{ny,n3}])P] leads to

Dagstuhl, February 2005 — p.8/26

Network generation

a5
(Y
A
Y

o0

ka[(vm:loc,|{ny,n3}])P] leads to

®
o

Dagstuhl, February 2005 — p.8/26

Syntax of DPIF

® Configurations: A> M
® systems: M == [|P] | N|\M | (vn:T)M

® Types: T ::=ch | loc,[S] | Llocy|S]
S a set of location names

®» Processes:

P = ul{(V).P|u?(X).P| ...
goto u. P | ping u.P else () | kill | break [

Dagstuhl, February 2005 — p.9/26

Use of kil and break [

$» Modelling fragile nodes and links:

| (vki:locl{l,n}])(vks: loc|{ky,l}])
goto k1.P; | goto ky. P
| goto ky.break ko |

Here link between k; and k5 is subject to failure

Dagstuhl, February 2005 — p.10/26

Use of kil and break [

$» Modelling fragile nodes and links:

| (vki:locl{l,n}])(vks: loc|{ky,l}])
goto k1.P; | goto ky. P
| goto kq.break ko |

Here link between k; and k5 is subject to failure

® M =~ N will mean:
M and NN are behaviourally equivalent in the presence of failures
— provided = is contextual

Dagstuhl, February 2005 — p.10/26

Reduction semantics of DPIF

comm

A F [:alive
Avla(V).P]|l]a?(X).Q] — A>I[P]]| ...

ping
A1l ek
A [[ping k. P else Q] — A |P]

not—ping

AL ek
A > l[ping k.P else Q] — A>1][Q)]

brk
AFl ok

A lbreak k] — (A — (I < k)) > 1]0]

Dagstuhl, February 2005 — p.11/26

Reduction semantics - more

newl

A F 1 alive
A l(vk)locy S| P] — A (vk:1loc,D])I[P]

where D is set of locations in S accessible from [

go

. AF[ewk
A l[goto k.P] — A k[P]
no—go

. A sk

A l|goto k.P] — A k[0]

Dagstuhl, February 2005 — p.12/26

Reduction barbed congruence

A= M=N
means: M and /N can not be distinguished by any observer

® interacting with M and N

#® running on any network extension of A

Dagstuhl, February 2005 — p.13/26

Reduction barbed congruence

A= M=N
means: M and /N can not be distinguished by any observer

® interacting with M and N

& running on any network extension of A

Problem: Find bisimulation equivalence which captures exactly

Al M~N

Dagstuhl, February 2005 — p.13/26

Reduction barbed congruence - example

Al): Nz = Nj where A - network with one live location [

Ny <= (vk:locg[{l})i]a!(k)]
Ny <« (vk:locy[{}])i]al(k)
N3 < (vk:locy[{}l]a! (k)]

Dagstuhl, February 2005 — p.14/26

Reduction barbed congruence - example

A; = N; = N; where

N1 < (vk:locy|
Ny < (vk:locy|
N3 < (vk:locy|

A - network with one live location [

Effective networks of running code [[a!(k}]:

Ay = A;+ k:locg[{l}]

Ay = A;+ k:locg[{}]

As = A;+ k:locy[{}]

o—0
o

e ©

hl, February 2005 — p.14/26

Another example

My = (k{1 Wk {EY) (0 ks {ky, ko)) Ual (e, k3). P]
My <= (ki {)(wke: {kiV)(wks : {kaW)i[a(ky, ks). P]

Is Al): M1 = MQ?

Dagstuhl, February 2005 — p.15/26

Another example

My = (k{1 Wk {EY) (0 ks {ky, ko)) Ual (e, k3). P]
My <= (ki {)(wke: {kiV)(wks : {kaW)i[a(ky, ks). P]

Is Al): M1 = MQ?

Effective networks of running code [[a!{ks, k3).P]:

My - My -
o— 0
—
Y
Dagstuhl, Febru@p.la%

Resist temptation

A M -5 As M is not subtle enough

Dagstuhl, February 2005 — p.16/26

Resist temptation

A M -5 As M is not subtle enough

°

Observers learn about new nodes, by extrusion

°

Observers can discover connections between new nodes by using
ping

$» But must be able to access new nodes in order to ping

Dagstuhl, February 2005 — p.16/26

Resist temptation

A M -5 As M is not subtle enough

°

Observers learn about new nodes, by extrusion

°

Observers can discover connections between new nodes by using
ping

$» But must be able to access new nodes in order to ping

Result:

®» Observers may only be aware of part of underlying network

® A must represent both actual network, and observers knowledge
of it

Dagstuhl, February 2005 — p.16/26

Extended network representations |’

[=(N,O0,S)
where
® AN is a set of names - known to the observer

® (O alinkset of live links known to the observer

N 3 a linkset of live links unknown to the observer

Dagstuhl, February 2005 — p.17/26

Extended network representations |’

[=(N,O0,S)
where
® M\ is a set of names - known to the observer

® (O alinkset of live links known to the observer

K 3 a linkset of live links unknown to the observer

Note:

$» Dead nodes are known indirectly

» Links to dead nodes are not recorded

Dagstuhl, February 2005 — p.17/26

Extended network representations |’

[=(N,O0,S)
where
® M\ is a set of names - known to the observer

® (O alinkset of live links known to the observer

K 3 a linkset of live links unknown to the observer

Note:

$» Dead nodes are known indirectly

» Links to dead nodes are not recorded

Required actions: I'> M —— T > M’

Dagstuhl, February 2005 — p.17/26

Lts for DPIF

I's M 2T/ M

where [can be

9
9

T a?(V)
n) are fresh names introduced by observer
T) are their state information

) : al(V)

) are fresh names exported to the observer

N 32

(
(
(
(72:
(
(T

) are their state information

kill ()

external location Kkill

| & k

external link break

Dagstuhl, February 2005 — p.18/26

Example rules

fail
['+1[:alive
® kill(1)
[N — (Il -1)>N
l—weak—in
. (T+n:T)> N “% V> N/
Do N D%
[—rest—typ
| (7:T)l:al(V) ,
. I'+k:T> N > (C+n: U)+k U> N . (T)
~.17 ‘a In
Do (vk:T)N E2EY p 5 G e (v kU

Dagstuhl, February 2005 — p.19/26

Soundness

LetI' = M ~ N meanthat'> M and I' > N are weakly bisimilar.

Theorem: I' = M ~ N impliesI' = M = N
Proof: Essentially = is contextual

Dagstuhl, February 2005 — p.20/26

Soundness

LetI' = M ~ N meanthat'> M and I' > N are weakly bisimilar.

Theorem: I' = M ~ N impliesI' = M = N
Proof: Essentially = is contextual

ButI' = M = N doesnotimply I' = M ~ N

State information on actions Is too detailed.

Dagstuhl, February 2005 — p.20/26

Counter-example

N1 < (vk: locg[{I}])[a! (k)] 0‘—’@
N = (vk : loc,[{})l[al(k)] @ (k)

Counter-example

N1 < (vk: locg[{I}])[a! (k)] a‘—’@)
N = (vk : loc,[{})l[al(k)] @ (k)

FZDN1Q—1>...I>

I> Ny 22
where

ay = (k: locg[{l}])l : al(k)
ap = (k : Locy[{})! : al(k)

Derived actions for DPIF

's N 5TV N

where

°

(n:L) : a?(V)
(n:L) : a{VYK
kill([)

| o k

e o 0o @

Here L are live link sets: the live connections made visible by the ap-

pearance of the new (7).

Dagstuhl, February 2005 — p.22/26

Example

Ny <= (vk : Locg[{I}])I[al(K)] o—»

Ny < vk loc[(a!(K)] @ ()

D> Ny =5 o>, ay = (k : Locg[{{}])I : al(k)
D> Ny 25 > ay = (k : locg[{}) : al(k)

Example

Ny <= (vk : Locg[{I}])I[al(K)] o—»

Ny < vk loc[(a!(K)] @ ()

D> Ny =5 o>, ay = (k : Locg[{{}])I : al(k)

D> Ny 25 > ay = (k : locg[{}) : al(k)
Derived actions:
[i>Ny—s ... a=(k:{})l:alk)

Iy Ny —s >

Dagstuhl, February 2005 — p.23/26

Example revisitied

Is Fl ’: Ml ~ MQ

M, <= (wkiAl}) (Wke:{ki}) (v ks:{ky, ko}) l]a!{ke, k3).P]
My <= (vky:{{})(Wwke: {ki})(vks:{ki})l[al{ks, k3).P]

Effective networks of running code:

Dagstuhl, February 2005 — p.24/26

Full-abstraction

Theorem: In derived Its

['E=M= NifandonlyifI' = M = N

Dagstuhl, February 2005 — p.25/26

Full-abstraction

Theorem: In derived Its
['E=M= NifandonlyifI' = M = N

Proof requires:
$» contextuality of = in the derived lts
$ definability of every derived action

® a formal definition of =

We need to be able to compare configuraions running on different
networks

Dagstuhl, February 2005 — p.25/26

Further work

°

Application to examples

°

Relativisation:
- to a maximum number of failures

- to certain permanent nodes, connections

°

Fault tolerance

°

other connectivity models

°

other migration models

Dagstuhl, February 2005 — p.26/26

	System behaviour in the presence of failures
	Mobile Systems: Dpi
	Network representations
	Network representations - $
etRep $
	Process mobility
	Network programming
	Network generation
	Network generation
	Syntax of dpiF
	Use of $kil ;;$ and $;;�rkAsy {l}$
	Reduction semantics of dpiF
	Reduction semantics - more
	Reduction barbed congruence
	Reduction barbed congruence - example
	Another example
	Resist temptation
	Extended network representations $;;colSyn Gamma $
	Lts for dpiF
	Example rules
	Soundness
	Counter-example
	Derived actions for dpiF
	Example
	Example revisitied
	Full-abstraction
	Further work

