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Background:

Wide-area distributed networks

Location aware programming

Network failures

· nodes

· links

Programming in the presence of failures
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Mobile Systems: Dpi

Anonymous agents migrating between sites
in a distributed network

SERV[[d?(x@z) T ]] | CL[[(new a) goto SERV.d!〈a@k〉 | P ]]
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Mobile Systems: Dpi

Anonymous agents migrating between sites
in a distributed network

SERV[[d?(x@z) T ]] | CL[[(new a) goto SERV.d!〈a@k〉 | P ]]

Mobility between CL and SERV depends on state of underlying
network

Calculus requires explicit representation of network
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Network representations

l1 l2 l3

k1 k2 k3

n1 n2 n3

l live node

k dead node

two way communication links
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Network representations

l1 l2 l3

k1 k2 k3

n1 n2 n3

l live node

k dead node

two way communication links

many different possible choices
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Network representations - ∆

∆ = 〈N ,D,L〉 where

N a set of names; - loc(N ) the subset of N which are locations

D ⊆ loc(N ) - dead locations

L ⊆ loc(N ) × loc(N ) - connections between locations
L is reflexive symmetric - a link set
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Network representations - ∆

∆ = 〈N ,D,L〉 where

N a set of names; - loc(N ) the subset of N which are locations

D ⊆ loc(N ) - dead locations

L ⊆ loc(N ) × loc(N ) - connections between locations
L is reflexive symmetric - a link set

Look up functions:

∆ ⊢ l : alive

∆ ⊢ l ↔ k - a link

∆ ⊢ l ! k - active link
if ∆ ⊢ l, k : alive, l ↔ k
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Process mobility

l1 l2 l3

k1 k2 k3

n1 n2 n3
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Process mobility

l1 l2 l3

k1 k2 k3

n1 n2 n3

l1[[goto n1.P ]] ? active path

k2[[goto n3.P ]] ? any path

l2[[goto l3.P ]] ? dead receiver

n2[[goto n3.P ]] ? dead sender

k2[[goto k3.P ]] ? active link
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Process mobility

l1 l2 l3

k1 k2 k3

n1 n2 n3

l1[[goto n1.P ]] ? active path

k2[[goto n3.P ]] ? any path

l2[[goto l3.P ]] ? dead receiver

n2[[goto n3.P ]] ? dead sender

k2[[goto k3.P ]] ? active link ⋆
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Network programming

l1 l2 l3

k1 k2 k3

n1 n2 n3

How do processes take failures into account?
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Network programming

l1 l2 l3

k1 k2 k3

n1 n2 n3

How do processes take failures into account?

l1[[pathping n1.P ]] ?

l1[[pathping n3.P else Q]] ?

l2[[go n3.P elselocal Q]] ?

l2[[go n3.(P andlocal R)elselocal Q]] ?

l1[[ping l2.P ]] ?
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Network programming

l1 l2 l3

k1 k2 k3

n1 n2 n3

How do processes take failures into account?

l1[[pathping n1.P ]] ?

l1[[pathping n3.P else Q]] ?

l2[[go n3.P elselocal Q]] ?

l2[[go n3.(P andlocal R)elselocal Q]] ?

l1[[ping l2.P ]] ?

l1[[ping l2.P else Q]] ? ⋆ Dagstuhl, February 2005 – p.6/26



Network generation

k1 k2

n1 n2 n3

Generating new nodes: k2[[(ν m)P ]]
What locations is the new m connected with?

only k2 ?

some declared set
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Network generation

k1 k2

n1 n2 n3

Generating new nodes: k2[[(ν m)P ]]
What locations is the new m connected with?

only k2 ?

some declared set ⋆

k2[[(ν m :loca[S])P ]]

connects the new m to all nodes in S accessible from k2
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Network generation

k1 k2

n1 n2 n3

k2[[(ν m :loca[{n1, n3}])P ]] leads to
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Network generation

k1 k2

n1 n2 n3

k2[[(ν m :loca[{n1, n3}])P ]] leads to

k1 k2 m

n1 n2 n3
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Syntax of DPIF

Configurations: ∆ ⊲ M

Systems: M ::= l[[P ]] | N |M | (ν n :T)M

Types: T ::= ch | loca[S] | locd[S]
S a set of location names

Processes:

P ::= u!〈V 〉.P | u?(X).P | . . .

goto u.P | ping u.P else Q | kill | break l
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Use of kill and break l

Modelling fragile nodes and links:

l[[ (ν k1 : loc[{l, n}])(ν k2 : loc[{k1, l}])

goto k1.P1 | goto k2.P2

| goto k1.break k2 ]]

Here link between k1 and k2 is subject to failure
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Use of kill and break l

Modelling fragile nodes and links:

l[[ (ν k1 : loc[{l, n}])(ν k2 : loc[{k1, l}])

goto k1.P1 | goto k2.P2

| goto k1.break k2 ]]

Here link between k1 and k2 is subject to failure

M ≈ N will mean:
M and N are behaviourally equivalent in the presence of failures
– provided ≈ is contextual
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Reduction semantics of DPIF

comm

∆ ⊢ l : alive

∆ ⊲ l[[a!〈V 〉.P ]] | l[[a?(X).Q]] −→ ∆ ⊲ l[[P ]] | . . .

ping

∆ ⊢ l ! k

∆ ⊲ l[[ping k.P else Q]] −→ ∆ ⊲ l[[P ]]

not−ping

∆ 6⊢ l ! k

∆ ⊲ l[[ping k.P else Q]] −→ ∆ ⊲ l[[Q]]

brk

∆ ⊢ l ! k

∆ ⊲ l[[break k]] −→ (∆ − (l ↔ k)) ⊲ l[[0]]
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Reduction semantics - more

newl

∆ ⊢ l : alive

∆ ⊲ l[[(νk)loca[S] P ]] −→ ∆ ⊲ (ν k :loca[D]) l[[P ]]
where D is set of locations in S accessible from l

go

∆ ⊢ l ! k

∆ ⊲ l[[goto k.P ]] −→ ∆ ⊲ k[[P ]]

no−go

∆ ⊢ l 6! k

∆ ⊲ l[[goto k.P ]] −→ ∆ ⊲ k[[0]]

. . .

Dagstuhl, February 2005 – p.12/26



Reduction barbed congruence

∆ |= M ∼= N

means: M and N can not be distinguished by any observer

interacting with M and N

running on any network extension of ∆
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Reduction barbed congruence

∆ |= M ∼= N

means: M and N can not be distinguished by any observer

interacting with M and N

running on any network extension of ∆

Problem: Find bisimulation equivalence which captures exactly

∆ |= M ∼= N

.
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Reduction barbed congruence - example

∆l |= Ni
∼= Nj where ∆l - network with one live location l

N1 ⇐ (ν k : locd[{l}])l[[a!〈k〉]]

N2 ⇐ (ν k : locd[{}])l[[a!〈k〉]]

N3 ⇐ (ν k : loca[{}])l[[a!〈k〉]]
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Reduction barbed congruence - example

∆l |= Ni
∼= Nj where ∆l - network with one live location l

N1 ⇐ (ν k : locd[{l}])l[[a!〈k〉]]

N2 ⇐ (ν k : locd[{}])l[[a!〈k〉]]

N3 ⇐ (ν k : loca[{}])l[[a!〈k〉]]

Effective networks of running code l[[a!〈k〉]]:

∆1 = ∆l + k :locd[{l}] = l k

∆2 = ∆l + k :locd[{}] = l k

∆3 = ∆l + k :loca[{}] = l kDagstuhl, February 2005 – p.14/26



Another example

M1 ⇐ (ν k1 :{l}) (ν k2 :{k1}) (ν k3 :{k1, k2}) l[[a!〈k2, k3〉.P ]]

M2 ⇐ (ν k1 : {l})(ν k2 : {k1})(ν k3 : {k1})l[[a!〈k2, k3〉.P ]]

Is ∆l |= M1
∼= M2?
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Another example

M1 ⇐ (ν k1 :{l}) (ν k2 :{k1}) (ν k3 :{k1, k2}) l[[a!〈k2, k3〉.P ]]

M2 ⇐ (ν k1 : {l})(ν k2 : {k1})(ν k3 : {k1})l[[a!〈k2, k3〉.P ]]

Is ∆l |= M1
∼= M2?

Effective networks of running code l[[a!〈k2, k3〉.P ]]:

M1 : M2 :

k2

l k1

k3

k2

l k1

k3
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Resist temptation

∆ ⊲ M
µ

−→ ∆′ ⊲ M ′ is not subtle enough
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Resist temptation

∆ ⊲ M
µ

−→ ∆′ ⊲ M ′ is not subtle enough

Observers learn about new nodes, by extrusion

Observers can discover connections between new nodes by using
ping

But must be able to access new nodes in order to ping
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Resist temptation

∆ ⊲ M
µ

−→ ∆′ ⊲ M ′ is not subtle enough

Observers learn about new nodes, by extrusion

Observers can discover connections between new nodes by using
ping

But must be able to access new nodes in order to ping

Result:

Observers may only be aware of part of underlying network

∆ must represent both actual network, and observers knowledge
of it
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Extended network representations Γ

Γ = 〈N ,O,S〉

where

N is a set of names - known to the observer

O a linkset of live links known to the observer

S a linkset of live links unknown to the observer
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Extended network representations Γ

Γ = 〈N ,O,S〉

where

N is a set of names - known to the observer

O a linkset of live links known to the observer

S a linkset of live links unknown to the observer

Note:

Dead nodes are known indirectly

Links to dead nodes are not recorded
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Extended network representations Γ

Γ = 〈N ,O,S〉

where

N is a set of names - known to the observer

O a linkset of live links known to the observer

S a linkset of live links unknown to the observer

Note:

Dead nodes are known indirectly

Links to dead nodes are not recorded

Required actions: Γ ⊲ M
µ

−→ Γ′ ⊲ M ′
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Lts for DPIF

Γ ⊲ M
µ

−→ Γ′ ⊲ M ′

where µ can be

τ

(ñ : T̃)l : a?(V )
(ñ) are fresh names introduced by observer

(T̃) are their state information

(ñ : T̃)l : a!〈V 〉
(ñ) are fresh names exported to the observer

(T̃) are their state information

kill(l)
external location kill

l 6↔ k

external link break Dagstuhl, February 2005 – p.18/26



Example rules

fail

Γ ⊢ l : alive

Π ⊲ N
kill(l)
−−→ (Π − l) ⊲ N

l−weak−in

(Γ+n :T) ⊲ N
αin−−→ Γ′ ⊲ N ′

Γ ⊲ N
(n:T)αin

−−−−→ Γ′ ⊲ N ′

l−rest−typ

Γ+k :T ⊲ N
(ñ:T̃)l:a!〈V 〉
−−−−−−→ (Γ+ñ : Ũ) +k :U ⊲ N ′

Γ ⊲ (ν k :T)N
(en:eU)l:a!〈V 〉
−−−−−−→ (Γ+ñ : Ũ) ⊲ (ν k :U)N ′

k in (T̃ )
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Soundness

Let Γ |= M ≈ N mean that Γ ⊲ M and Γ ⊲ N are weakly bisimilar.

Theorem: Γ |= M ≈ N implies Γ |= M ∼= N

Proof: Essentially ≈ is contextual
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Soundness

Let Γ |= M ≈ N mean that Γ ⊲ M and Γ ⊲ N are weakly bisimilar.

Theorem: Γ |= M ≈ N implies Γ |= M ∼= N

Proof: Essentially ≈ is contextual

But Γ |= M ∼= N does not imply Γ |= M ≈ N

State information on actions is too detailed.
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Counter-example

N1 ⇐ (ν k : locd[{l}])l[[a!〈k〉]] l k

N2 ⇐ (ν k : locd[{}])l[[a!〈k〉]] l k
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Counter-example

N1 ⇐ (ν k : locd[{l}])l[[a!〈k〉]] l k

N2 ⇐ (ν k : locd[{}])l[[a!〈k〉]] l k

Γl ⊲ N1
α1−→ . . . ⊲

Γl ⊲ N2
α2−→ . . . ⊲

where

α1 = (k : locd[{l}])l : a!〈k〉

α2 = (k : locd[{}])l : a!〈k〉
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Derived actions for DPIF

Γ ⊲ N
µ

7−→ Γ′ ⊲ N ′

where

τ

(ñ : L̃)l : a?(V )

(ñ : L̃)l : a!〈V 〉K

kill(l)

l 6↔ k

Here L̃ are live link sets: the live connections made visible by the ap-

pearance of the new (ñ).
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Example

N1 ⇐ (ν k : locd[{l}])l[[a!〈k〉]] l k

N2 ⇐ (ν k : locd[{}])l[[a!〈k〉]] l k

Γl ⊲ N1
α1−→ . . . ⊲ . . . , α1 = (k : locd[{l}])l : a!〈k〉

Γl ⊲ N2
α2−→ . . . ⊲ . . . , α2 = (k : locd[{}])l : a!〈k〉
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Example

N1 ⇐ (ν k : locd[{l}])l[[a!〈k〉]] l k

N2 ⇐ (ν k : locd[{}])l[[a!〈k〉]] l k

Γl ⊲ N1
α1−→ . . . ⊲ . . . , α1 = (k : locd[{l}])l : a!〈k〉

Γl ⊲ N2
α2−→ . . . ⊲ . . . , α2 = (k : locd[{}])l : a!〈k〉

Derived actions:

Γl ⊲ N1
α

7−→ . . . ⊲ . . . α = (k : {})l : a!〈k〉

Γl ⊲ N2
α

7−→ . . . ⊲ . . .
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Example revisitied

Is Γl |= M1 ≈ M2

M1 ⇐ (ν k1 :{l}) (ν k2 :{k1}) (ν k3 :{k1, k2}) l[[a!〈k2, k3〉.P ]]

M2 ⇐ (ν k1 : {l})(ν k2 : {k1})(ν k3 : {k1})l[[a!〈k2, k3〉.P ]]

Effective networks of running code:

M1 : M2 :

k2

l k1

k3

k2

l k1

k3
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Full-abstraction

Theorem: In derived lts

Γ |= M ≈ N if and only if Γ |= M ∼= N
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Full-abstraction

Theorem: In derived lts

Γ |= M ≈ N if and only if Γ |= M ∼= N

Proof requires:

contextuality of ≈ in the derived lts

definability of every derived action

a formal definition of ∼=
We need to be able to compare configuraions running on different
networks
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Further work

Application to examples

Relativisation:

· to a maximum number of failures

· to certain permanent nodes, connections

Fault tolerance

other connectivity models

other migration models
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