
The Security π-calculus and Non-interference

M. Hennessy, University of Sussex

• Background
• The Security π-calculus
• Types
• Behavioural Equivalences
• Non-Interference Results

Work in progress by EU Gobal Computing projects Mikado/ Myths

mfps, Montréal, 2003 – p.1/21

Background

• Control of information flow in systems
cf. Denning, Goguen, Mesegeur

• Integrity: No High-to-Low information flow:
High (security) level users should not be able to send
high-level information to Low level users.
(No Trojan horses)

• Non-interference: Formal property of systems which
ensures their integrity.

mfps, Montréal, 2003 – p.2/21

High-to-Low Information Flow

Explicit: H sends high-level data (my visa no) to L

Implicit: H sends low-level data to L
H, L could have prearranged interpretation:
• 0 - Boss is in town
• 1 - Boss is away

Implicit: H may rendez-vous with L
• H turns up - Boss is away

• H absent - Boss is in town

mfps, Montréal, 2003 – p.3/21

How to Avoid H-to-L Information Flow
H can not send any data to L

Q?: What kind of data can L send to H ?
Q?: How can rendez-vous’s be managed ?

More General Q?: How can we SPECIFY behaviour of
system which will ensure no H-to-L information flow ?

ANSWER: Codify using Types cf. Volpano et al.

A system is safe if it can be typechecked

mfps, Montréal, 2003 – p.4/21

Safe Systems

• How do we prove safe systems contain no H-to-L
information flow?

• Introduce Interference-Freeness: Formal verifiable
concept, which informally implies no H-to-L information
flow

• Main Theorem: S is typeable (using my type system) implies

S is interference-free

mfps, Montréal, 2003 – p.5/21

Interference-Freeness
Requirements:

• concept of High-level process (specified using Type system)

• concept of behavioural equivalence 'σ , relativised to
security levels σ, (= bot, . . . , top)

Definition: S is Interference-Free if

S | H 'bot S | K

for all High-level processes H, K.

mfps, Montréal, 2003 – p.6/21

Remainder of Talk
• Language: π-calculus
• Types: input/output types, relativised to security levels
• Behavioural Equivalences 'σ: based on testing

mfps, Montréal, 2003 – p.7/21

The Security π-calculus (asynchronous)
channels = resources = read once variables

• u?(x : T) P - patterned input on channel u

to resource u

• u!〈v〉 - polyadic output on channel u

from resource u

v a tuple of values - may be channels
• P | Q - concurrent code
• if u = v then P else Q - value testing
• (new n : T) P - generation of new names
• ∗P, 0 - iteration and termination

mfps, Montréal, 2003 – p.8/21

Reduction Semantics
Same as ever (for π hackers):

(com) a!〈v〉 | a?(x : A) P 7→ (P [v/x])

(str)
P ≡ Q, P 7→ P ′, P ′ ≡ Q′

Q 7→ Q′

(cong)
P 7→ P ′

P | Q 7→ P ′ | Q

(etc.)

mfps, Montréal, 2003 – p.9/21

Reduction Semantics
Dynamic creation of communication links:

H � hl - B H � hl - B

7→

I@
@

@
@

@
@

h

R
C

l

?

6

C

l

?

6

Interface between H and L processes must be managed

mfps, Montréal, 2003 – p.10/21

Security Levels

A (static) complete lattice of security levels, SL.

• bot: lowest security level
- the great unwashed
- processes arriving off the web
- processes at this level offer no security

• top: highest security level
- the chosen few
- processes owned by superuser on local machine

• bot ≤ moderate ≤ top:
- processes originating on local area network
- processes which have demonstrated some reliability

SL may have an arbitrary complicated structure.

mfps, Montréal, 2003 – p.11/21

Types - graded read/write capabilities

Typeσ: Type for values accessible at security level σ

{wσ〈A〉, rρ1
〈B1〉, rρ2

〈B2〉, . . . rρk
〈Bk〉}

provided
• σ ≤ ρi - no write ups

• A ∈ Typeσ, Bi ∈ Typeρi

• A subtype Bi

Example:
• Yes: {wbot〈int〉, rbot〈int〉, rtop〈int〉} - multi-level type

• No: {wtop〈int〉, rbot〈int〉, rtop〈int〉}

• No: {wbot〈wbot〈int〉〉, rbot〈. . .〉, rtop〈wbot〈int〉〉}

mfps, Montréal, 2003 – p.12/21

Typing Systems non-stop

Type Environment Γ = u1 : A1, uk : Ak

• Γ ` P - P well -typed wrt Γ, ignoring security levels
• Γ σ̀ P - P well-typed, using at most level σ resources
• Γ `σ P - P well-typed, using at least level σ resources
• Γ r̀σ P - . . . , reading from at most level σ resources
• Γ `wσ P - . . . , writing to at least level σ

•

Thm: Subject Reduction: ∆ P and P 7→∗ Q implies ∆ Q

mfps, Montréal, 2003 – p.13/21

Type Inference

(LT-IN)

Γ, X : A σ̀ P
Γ ` u : rδ〈A〉

Γ σ̀ u?(X : A) P
δ � σ

(LT-OUT)

Γ ` v : A
Γ ` u : wδ〈A〉

Γ σ̀ u!〈v〉
δ � σ

(T-EQ)

Γ ` u : A, v : B
Γ Q
Γ u {u : B, v : A} P

Γ if u = v then P else Q

(T-NEW)

Γ, a : A P

Γ (new a : A) P

mfps, Montréal, 2003 – p.14/21

Examples

H ⇐ lh?(x) x!〈3pm〉

L ⇐ lh!〈cvt〉 cvt?(i) broadcast(i)

If lh is wbot〈. . .〉, rtop〈. . .〉 then Γ 6` L | H

L | H contains information flow

TrH ⇐ h?(x) .if x = boss then tr1!〈〉 else tr2!〈〉

If h high, tri low, then TrH can not be High-level

TrH represents a trojan horse

mfps, Montréal, 2003 – p.15/21

Safe Systems at last

Definition: S is Γ-safe if Γ r̀bot S

They can only read from low-level channels

Claim: If S is Γ-safe then

S | H 'bot S | K informal

for all High-level processes H, K.

Definition: H is a High-level process if Γ `wtop H

They can only write to high-level channels

mfps, Montréal, 2003 – p.16/21

Behavioural Equivalences

Idea: S 'σ U at level σ, if no observer running at level at
most σ can not distinguish between S and U .

• An observation of S by O is a sequence
O | S 7→ O1 | S1 . . . 7→ On | Sn 7→ . . .

• Successful if some Ok, can report success
• S may O if there is some successful observation of S by

O

• S must O if every observation of S by O is successful

Definition: Γ .σ S 'may U if for every Γ σ̀ O,
S may O if and only if U may O

Γ .σ S 'must U if

mfps, Montréal, 2003 – p.17/21

Non-Interference

Idea: S is interference-free if low-level observers/users can
not detect the presence/absence of high-level users in S.

Definition: S is mayIntFree if

Γ .bot S | H 'may S | K

for all High-level process H, K

NonInterference for Free:

Thm: If S is Γ-safe (Γ r̀bot S) then S is mayIntFree

mfps, Montréal, 2003 – p.18/21

Examples

Assume H, K high-level (Γ `wtop H, K)
S safe (Γ r̀bot S)

H = h?(x) if x = boss then tr1!〈〉 else tr2!〈〉

K = h?(x) tr1!〈〉

Γ .bot S | H 'may S | K because write on tri must be high

H = h?(x) if x = boss then tr1?() else tr2?()

K = h?(x) tr1?()

Γ .bot S | H 'may S | K because communication is asynchronous

mfps, Montréal, 2003 – p.19/21

Example: Multi-level types

Γ maps ml to {wbot〈. . .〉, rbot〈. . .〉, rtop〈. . .〉} multi-level type

S = ml!〈a〉 | ml?(x) x!〈〉

Γ .bot S | H 'may S | K because S is safe

BUT: Γ .bot S | H 6'must S | K
eg with H = 0 and K = ml?(x : B) 0

observer a?() ω!〈〉 sees a difference

Thm: Suppose Γ uses only single-level types.

If S is Γ-safe then it is mustIntFree

mfps, Montréal, 2003 – p.20/21

Wrap up

Thesis: Potential H-to-L information flow in concurrent
systems can be detected by type systems

Questions:
• How difficult is type inference?
• How restrictive is the type system?
• Can types be extended to distributed systems?

Technical Details: Sussex technical reports

mfps, Montréal, 2003 – p.21/21

	The Security picalculus and Non-interference
	Background
	High-to-Low Information Flow
	How to Avoid H-to-L Information Flow
	Safe Systems
	Interference-Freeness
	 Remainder of Talk
	The Security $pi $-calculus (asynchronous)

ewline small channels = resources = 	extit {read once} variables
	Reduction Semantics
	Reduction Semantics
	Security Levels
	Types - graded read/write capabilities
	Typing Systems {	iny non-stop}
	Type Inference
	Examples
	Safe Systems {	iny colCom at last}
	Behavioural Equivalences
	Non-Interference
	Examples
	Example: Multi-level types
	Wrap up

