The SQQUY'\W m-calcuius and Non-interference

M. Hennessy, University of Sussex

* Background

* The Security w-calculus

* Types

* Behavioural Equivalences
* Non-Interference Results

Work in progress by EU Gobal Computing projects Mikado/ Myths

mfps, Montréal, 2003 — p.1/2:

Background

e Control of iInformation flow In

cf. Denning, Goguen, Mesegeur

systems

* Integrity: No High-to-Low information flow:
High (security) level users should not be able to send
nigh-level information to Low level users.

(No Trojan horses)

* Non-interference: Formal property of

ensures their integrity.

systems

which

mfps, Montréal, 2003 — p.2/2:

High-to-Low Information Flow

Explicit: H sends high-level data (my visano) to L

Implicit: H sends low-level data to L
H, L could have prearranged interpretation:

* 0-Bossisintown
* 1-Bossis away

Implicit: H may rendez-vous with L
* Hturns up - Boss is away
e H absent - Boss is in town

mfps, Montréal, 2003 — p.3/2:

How TO Avoid H-To-L Information Flow

H can not send any data to L

Q?: What kind of data can L sendto H ?
Q?: How can rendez-vous’s be managed ?

More General Q?: How can we SPECIFY behaviour of
system | which will ensure no H-to-L information flow ?

ANSWER: COdify using TYPES cf. Volpano et al.

A system is safe If it can be typechecked

mfps, Montréal, 2003 — p.4/2:

Safe Systems

* How do we prove safe systems contain no H-to-L
Information flow?

* Introduce Interference-Freeness: Formal verifiable
concept, which informally implies no H-to-L information

flow

* Main Theorem: | S|is typeable (using my type system) Implies
S| is interference-free

mfps, Montréal, 2003 — p.5/2:

Intarference-kFreeness

Requirements:
* concept of High-level process (specified using Type system)

* concept of behavioural equivalence ~, , relativised to
security levels o, (= bot, ..., top)

Definition: | S | Is Interference-Free |f

S ‘Hﬁbot S ‘K

for all High-level processes H, K.

mfps, Montréal, 2003 — p.6/2:

Raemainder of Talk

* Language: w-calculus
* Types: input/output types, relativised to security levels
* Behavioural Equivalences ~,: based on testing

mfps, Montréal, 2003 — p.7/2:

The Security sr-calculus (asynenronous)

channels = resources = read once variables

u?(x:T) P - patterned input on channel v
to resource u,

u!{v) - polyadic output on channel u
from resource
v a tuple of values - may be channels

P | @ - concurrent code

if u = v then P else () - value testing
(newn:T) P - generation of new names
P, 0 - Iteration and termination

mfps, Montréal, 2003 — p.8/2:

Reduction Semantics

Same as ever (for = hackers):
(com) al{v) | a?(x:A) P — (Pluv/a])

P=Q, PP, PP=¢

(st o
P— P
(cong) PTO— PO

(etc.)

mfps, Montréal, 2003 — p.9/2:

Dynamic creation of communication links:

H

hi

Reduction Semantics

A

Y

H

hi

A

Y

Interface between H and L processes must be managed

mfps, Montréal, 2003 — p.10/2:

Security Levels

A (static) complete lattice of security levels, SL.

* bot: lowest security level
- the great unwashed
- processes arriving off the web
- processes at this level offer no security

* top: highest security level

- the chosen few |
- processes owned by superuser on local machine

* bot < moderate < top:
- processes originating on local area network
- processes which have demonstrated some reliability

SL may have an arbitrary complicated structure.

mfps, Montréal, 2003 — p.11/2:

Types - graded read /write capabilities

Type_: Type for values accessible at security level o

{wo(A), 15 (B1), rp(B2), - 1y (Br)}

provided

®* o < p; -no write ups

* A€ Type,, B; € Type,

°* A subtype B,
Example:

* Yes: {wpor(int), rper(int), ryp(int)} - multi-level type

* NO: {wiop(int), rper(int), ryp(int)}

* No: {Wbot<Wbot<int>>a rbot<--->7 rtop<Wbot<int>>}

mfps, Montréal, 2003 — p.12/2:

Typ\ng SySTJQmS non-stop

Type Environment I' = u; : Aq, wr - Ay
* I'F P - P well -typed wrt I', ignoring security levels
* I'E P- P well-typed, using at most level ¢ resources
e I't P - P well-typed, using at least level ¢ resources
* 'k, P-..., reading from at most level ¢ resources
e "7 P-...,writing to at least level o

Thm: Subject Reduction: A IF P and P —*) implies A IF Q)

mfps, Montréal, 2003 — p.13/2:

Type Inference

(LT-IN) (LT-0UT)

' X:AEP I'Fv:A

' w:rg(A) 5 ' w:ws(A) 5
FTEu?(X:A)P =7 TFu) -7
(T-EQ)

I'Fu:A,v:B

FH‘Q (T-NEW)
I'm{u:B,v:A}IFP [a:AlFP

['lFifu=vthen Pelse @ TIF (newa:A) P

mfps, Montréal, 2003 — p.14/2:

Examples

H|<1h?(z) z!(3pm)
L| < 1h!{cvt) cvt?(i) broadcast(7)

1T 1h IS Wpot(. . .), Feop(...) thenT'F L | H

L | H contains information flow

TrH <= h?(z) .if x = boss then trq!{) else try!()

If h high, tr; low, then TrH can not be High-level

TrH represents a trojan horse

mfps, Montréal, 2003 — p.15/2:

Safe Systems . ..

Definition: |SlisI'-safeifI'k,., S
They can only read from low-level channels

Claim: If | S|iIs I'-safe then

S

| H “hot

S

‘ K informal

for all High-level processes H, K.

Definition: H is a High-level process if I' #*** H

They can only write to high-level channels

mfps, Montréal, 2003 — p.16/2

Behavioural Equivalences

ldea: |S|~, |U|at level g, If no observer running at level at
most o can not distinguish between S and U.

* An observation of .S by O Is a seguence
O|S—O01|S51...—~0,|S,— ...

* Successful if some O, can report success

* S may O if there is some successful observation of S by
@,

* S must O if every observation of S by O is successful

Definition: I' >, | S| ., (U |If forevery I' 5 O,
S may O if and only if U may O

F[>0' S ™~ must Ujif......

mfps, Montréal, 2003 — p.17/2:

Non-Interference

ldea: | S | Is Interference-free If low-level observers/users can
not detect the presence/absence of high-level usersin S.

Definition: | S| is maylntFree if

FDbOtS’H:mayS’K

for all High-level process H, K

Nonlnterference for Free:
Thm: If S is I'-safe (I' k., S) then S is mayIntFree

mfps, Montréal, 2003 — p.18/2:

Examples

Assume H, K high-level (T' #** H, K)
S safe (I' k.. S)

H

K

= h?(z)if x = boss then try!() else try!()
=h7?(x)tr!()

I' >bot S | H “may S | K because write on tr; must be high

H

K

=h?(z)if v = boss then tr;7() else try?()

— h?(z) tr,?()

I’ >bot S ‘ H ™ may S ‘ K because communication is asynchronous

mfps, Montréal, 2003 — p.19/2:

Example: Multi-level types

I maps ml 10 {Wbot<- . .>, rbot<. . .>, rtop(. : >} multi-level type

S|=mll{a) | mI?(x) z!{)

['Dpot S| H ~pnay S| K because S is safe

BUT: T'bpot S| H Zmust S| K
egwith H=0and K =ml?(z:B)0
observer a?() w!{) sees a difference

Thm: Suppose I'" uses only single-level types.

If S Is I'-safe then it 1Is mustintFree

mfps, Montréal, 2003 — p.20/2:

Wrap up

Thesis: Potential H-to-L information flow in concurrent
systems can be detected by type systems

Questions:
* How difficult is type inference?

* How restrictive is the type system?
* Can types be extended to distributed systems?

Technical Details: Sussex technical reports

mfps, Montréal, 2003 — p.21/2:

	The Security picalculus and Non-interference
	Background
	High-to-Low Information Flow
	How to Avoid H-to-L Information Flow
	Safe Systems
	Interference-Freeness
	 Remainder of Talk
	The Security $pi $-calculus (asynchronous)

ewline small channels = resources = 	extit {read once} variables
	Reduction Semantics
	Reduction Semantics
	Security Levels
	Types - graded read/write capabilities
	Typing Systems {	iny non-stop}
	Type Inference
	Examples
	Safe Systems {	iny colCom at last}
	Behavioural Equivalences
	Non-Interference
	Examples
	Example: Multi-level types
	Wrap up

