-

Work in Progress

-

Behavioural Equivalences for Distributed'

Agents I

Matthew Hennessy

University of Sussex

Joint work with Massimo Merro and Julian Rathke

Partially funded by Mikado GC-project and Royal Society

~

/

Nalaga , July 2002

-

-

Behavioural Equivalences for Distributed
Agents

e Dpi: a language for distributed agents
— syntax and reduction semantics

- dynamlc Capablllty typeS for controlling resources

e Behavioural Equivalences
— dependent on users knowledge

— contextual s bisimulation equivalences

e Controlling Mobility
— using types to control access to sites

— effect on behavioural equivalences

~

Nalaga , July 2002

-

locations/sites: where computations occur. Flat structure; may be

The Computational Model underlying DPI

generated dynamically.
In DP1 all communication 1s local.

mobile agents: perform computations; move from site to site.
Described by augmented w-calculus processes.

resources: (communication channels) available at specific locations.
In DPI names of resources only have local significance.

types: guarantee controlled access to resources.
Agents may only use resources in accordance with
capabilities/permissions they have acquired.

May be generated dynamically.

-

Nalaga , July 2002

/ DPI Processes

S

S - site name
cl, c2, c3 -resources available at .S

Serva, Servb - anonymous threads/agents

Qgents may move autonomously from site to site

Nalaga , July 2002

Distributed Systems
B
A A
]]
© ® ®
A

A collection of independent distributed sites offering services/resources
to migrating agents.

Resources: Modelled by picalculus channels

Agents: Modelled by (augmented) picalculus processes

o /

Nalaga , July 2002

4 N

DPI- a w-calculus with explicit locations

A System is a collection of autonomous threads/agents each running at
explicit locations

Syntax of Systems M-N:

e [[P] - the thread P running at site [

e M | N - threads running in parallel

e (newe:T) M - sharing (typed) information
Example Systems:

[P]] (newa : Aak) (I[Q] | K[R])
[[d?(xez) P] | k[(newca : A) gotol.d!{aek)]

o /

Nalaga , July 2002

/ Threads/Agents in DPI \
Syntax of threads, P — R:
o u?(X : T)Q - local input on channel «,
o u!(V') Q) - local output on channel u
e gotou.P - code movement to site u
o if u = v then P else () - testing of names
e (newca : A) P - generation of new local channel
e (newlock : K) with P - generation of new location win nitai code 7

e (newregn :rc(A)) P - registration of new channel name o used consistenty a

multiple locations

e P | () - concurrent code

K. x P - 1teration /

Nalaga , July 2002

Reduction Semantics campe rues
E[eV) @1 | k[e?(X - T) Pl — E[Q] | E[P{"/x}]
FIP Q] — kLP] | F[Q]
k([gotol.P] — [[P]

E[(newloc!l : L) with C] — (new! : L) [[C]

El(newcn : A) P] — (newn : Aek) k[P]

with a structural congruence to make it all work

-

Nalaga , July 2002

/ Types via examples

Location type: record of resources known to be available

server site s with type L = loc|quest : T, ping : T, kill : 'T}]

s| internals | *quest?(X : U,) ...
x ping?(X : Up) ...
kill?(X : Ug) ...]

Server s may also be known at supertypes of Ly:

loc|quest : T, ping : T)]
loc|quest : 'T,]

loc

-

Nalaga , July 2002

4 N

Remote channel types

Server:

receives data - x, return channel - y, at some unknown location - z:
s. .. | xquest?(x,yaz)
goto z.y!(isprime(x))]
Type of service at port quest - T, = r(U,), where
U, = (int, w(bool)eloc)
Client:

c[(newcr : rw(bool)) goto s.quest! (v, rac)stop | r?(z)...]

o /

Nalaga , July 2002

/ Dynamic types
Replies must come to me:
[setup?(z) (newlocs : L) with xquest?(x,y) ...]
where
L = loc|quest : rw(int,w(bool)ez), ping : ...]

Acknowledgments will only be sent to location z, instantiated on input
via setup.

Dynamic type rw(bool)ez only instantiated at run-time.

Client:

me|goto l.setup!(me) ... |

Kreceives personalised treatment

Nalaga , July 2002

11

/ Shared Interfaces via Registered names
Registered names may be declared at varying locations

Remote bank account server:

(newreg put : rc(T)), get:rc(Ty))
Server <= s[request?(x : int, yeaz)

(newlocb : Ly) with ... put, get
| goto z.y!(D)]
Declared type of new account Ly:

loc|put : T;, get : T;] subtypes of I, T,

Client <= me[(newcr) goto s.request!(reme) |r?(x)...]

Gient: - receives name of new bank account

~

/

Nalaga , July 2002

12

-

An alternative bank account server:

Shared Interfaces

Client generates new location using interface obtained from server
Server <= (newreg put : rc(T,), get : rc(Ty))
s[request?(yaz)

goto z.y!(put, get)]
Client <= me[(newcr) goto s.request!(reme) |

r?(y, z) (newlocd : LY"%) with ...code...]
Client-side locations must have declared dynamic type

LY* =loc[y : T,z : T}]

-

Nalaga , July 2002

13

-

Type inference: I' = M

System M is well-typed relative to the type environment I’
Environments I': u; : base,...us : loc,...uz : rc(A),...

Separate judgements required for
e well-formed environments: I' - env
e well-formed types - requires subtyping
e typing agents: I' ;. P
e typing identifiers: I' = u : T

-

Uy Aew

Nalaga , July 2002

14

-

Example:

-

Behavioural equivalence between Systems

- Distinguishing between systems depends on knowledge of locations and

their resources

- This knowledge evolves as the systems are used

I [> M = cxt N means informally

M and N have the same behaviour for any user which has the knowledge
7 of the resources in M and V.

7 is a type environment

12

T,a:t(TYek> E[P|a?(z)Q] .., k[P]

if CL not in P user can not send on a at k

~

Nalaga , July 2002

15

4 N

Effect of type inference

Transmitting the same data v twice:

k[oi\(v) . 0o!(v) .in?(z). =.., k[oi!(v). 02!(v) .in?(z).
stop] if £ = v then yeah!()]
Successful probe:
tlgoto k.o17(x) . 027(y) .

if x = y then in!(x) . yeah?() .goto t.Eureka]

Question: Can probe always be typed ?

Answer: Depends on types of channels: 01, 02, in

o /

Nalaga , July 2002

16

/ Typing the probe

InZ: o, (r{))ek
(w())ek

in — rw(rw())ek

rw
09 = W

IThHx: T, y:T,
Il—kpv Q
T Fiif x =y then P else ()

Probe not typeable with standard rule:

Types at which v 1s received must be conflated to satisfy type constraint
on channel in:

ITHax:T, y:U,

TFe Q

ZM{x:U)ekMN(y: T)ek i P

KI g if © = y then P else ()

Nalaga , July 2002

17

-

Typed contextual equivalence Z > M =_,, N

touchstone equivalence between systems

The largest (paramaterised) equivalence which is

® I'edUCtIOIl ClO Sed = “preserves” reduction relation M — M'
® pI'G SCrves “Ob Sel'VatIOIlS” = a at k can be observed in M if and only if it can also be observed in N

e preserved by Z-contexts: If Z > M =_,, N then
—ZF OimpliesZ>M |O%=,.,,Q|0O

—Z,n:T> M=, N implies
Zr(newn:T) M=, (newn:T) N

- I, I/ [> M = cxt N —preserved by adding new names

Result: Can be characterised using bisimulations

-

Nalaga , July 2002

18

4 N

Typed Bisimulations

Need typed actions: |Z > M £ 7' > M’

Note: Type environment may change

Typed bisimulation equivalence: Largest family of relations satisfying:

IfZ > M ~,;, N then

I>M 1> N
L4 implies fL
Y
' M 7Z'> N’

such that Z' > M'~,,, N’

o /

Nalaga , July 2002

19

-

-

Typed Actions in DPI

Actions must be allowed by environment

Input: Z > M 22V 7 7/ > M’ if

o M 2V M- M can input on a at k
e a:w(T)ek appears in Z

e 7,7'+ V : Tak - new names can be invented

Output: Z > M EEYs 701y - Thak > M if

o N OkaVy nr AT can output V on a at k

e a:r(T)ek appears in Z

Nalaga , July 2002

20

-

Making the connection
Z > M 1s a configuration if
e 1 A <:Z such that - (a mayaliow more capavilites)
e AFM
e dom(Z) = dom(A)
Thm: Configurations are preserved under typed actions

Thm: Over configurations ~,,, is preserved by contexts

-

Nalaga , July 2002

21

Main Result

Bisimulation Equivalence coincides with Contextual Equivalence

For configurations: Z> M ~,,, Nift Z > M=_,, N

Proof idea: For every 1 and Z there is a context C|—|,, such that
I>M =1 M
iff
o 7+ Cl—|,
o C|M]—* D|M',T'] | yeah!()
where D|M', T'| delivers M' and 7'

-

Nalaga , July 2002

-

Problem: Knowledge of a name allows automatic access

Controlling Mobility - The taxman cometh

Remote bank account server:

(newreg put : rc(T,), get:rc(Ty))

| Taxman |
Taxman <= deduct?(x, —amount
y, —bank account, type Ly,
z) —ack

goto y. ... collect tax with get, put

-

Server <= s|request?(x : int, yez) (newlocb : L) with ...

Nalaga , July 2002

23

4 N

Mobility Types - restricting access using named locations

Extended location types:

[:loclmoves, uy:Agq,...]
Only sites &k in .S have migration rights to [
Typing rule:

r - I[P,
'+ l . IOC[mOVGSU{k}]

I' - k[goto!.P]

Note: Migration rights to [determined at generation time.

o /

Nalaga , July 2002

24

-

Avoiding the taxman

Server generates bank accounts with restricted migration rights.

(newreg put : rc(T,), get:rc(Ty))

Server <= s|request?(x : int, yez, W) — W allowed sites

(newloch : L") with .. .code . ..]

Declared type of new accounts LZV 1S

|OC[movew, putget: ..]

Note: L;" is a dynamic type.

-

Only locations specified at generation time, I/, can access an account.

Nalaga , July 2002

25

-

-

Migration rights affect behavioural equivalences

Suppose I' has no migration rights to site k:

12~

> E[pIO] =... E[stop]

Answer 1: Yes
Answer 2: No

Depends on definition of contextual equivalence =,

~

Nalaga , July 2002

26

-

Thm: .

Thm: .

-

Simple Mobility Rights

access by every site.

Restriction: only allow universal move capability move which grants

[:loclmove, uj:Ajp,...] allsites have access to [

k:loc[ul IAl,...]

1> M~

S NIMtL> M~ N

no site has access to k

I> M~

~/ N is not the same as Z > M =

~bi

cwt

N

(For configurations)

Nalaga , July 2002

27

-

Uses m-typed actions: |Z > M £, 7' > M’

Typed m-Bisimilarity /2" o mobiity

Input: Z > M £2Y 7' M’ if
o ' £ :loc/move]
e M can inputon a at k
o 7 allows it
Output: Z > M QY 71 (V : Tek > M’ if
e ' k:loc/move]
e M can output V on g at £

e 7 allows it

-

Nalaga , July 2002

28

-

1.

2.

N

Typed m-Contextual equivalence ~,

Replace clause:
o I'>DMZ=_, N
e 'O

implies['>0 | M =,,, 0| N

with

o ' £k : |OC[move]
e I'>M~w" N
o '+ k[P]

implies I' > k[P] | M ~™, k[P] | N

cxrt

Observations only allowed at sites ¢ such that 7 i~ ¢ : loc[move|

~

/

Nalaga , July 2002

29

-

-

Typed 7 -Contextual Equivalence ~’ |

That is: ~7 satisfies

cCx

o I'>DM=~" N

cxt

o '+ K[P]
e 'k :loc[move]ork € T

implies I' > k[P | M =" k[P] | N

cxrt

~

Let 7 be a set of sites at which the context has apriori processes running.

Nalaga , July 2002

30

-

Typed 7 -Bisimilarity ~/.

Uses 7 -typed actions: |Z > M £+ 17" > M’

Input: Z > M 22V T/ > M if
e 'k :loc[move]ork € T
e M caninputona at £
e 7 allows it
Output: Z > M QY 71 (V : Tk > M'if

-

Nalaga , July 2002

31

-

I> M=!, NdoesnotimplyZ > M ~/ N
I" contains h : loc|move], k : loc|], a : rw(T)eh

7 contains £ - context has already a process running at k

hla!(bak)] | K[0'()] =7, hlal{bek)] |k[stop]

cxrt

T

bis

Problem: With bisimulations information gained at A can be used at k£,
although context can not migrate from [to .

-

~

Nalaga , July 2002

32

/ Characterising 7 -Contextual Equivalence ~’

Thm: oM=<’ Niff oM =] N
9 contains:
e globally known capabilities

e capabilities known separately at each site in 7

Details: Watch this space

-

t

~

Nalaga , July 2002

33

/ Further Work

e Write all this down

e Extend to selective capabilities moves

e Allow dynamic update of migration rights

e Examine other ways of managing migration

e all kinds of things

-

Nalaga , July 2002

34

