On the Semantics of Markov Automata

Matthew Hennessy

(joint work with Yuxin Deng)

FMG, TCD March 2011

1/34

Background Markov Automata Bisimulations Composing Justification

Adding time to process descriptions

Pervasive:

- ▶ all actions have duration: $a^{3.5}.P + \text{delay}(1.3).Q \mid b^{2.1}.R$
- Semantic theory very sensitive to timing

Maximal progress:

- only passage of time has duration
- ▶ all other actions are instantaneous
- ▶ time only passes when no more actions are possible: $delay(d_1).Q_1 + b.(delay(d_2).Q_2 + c.R) \mid \overline{b}.\overline{a}.P$
- Semantic theory does not measure passage of time directly

Nature of time

- ▶ discrete time: **delay**(3). $Q_1 + b.(\text{delay}(2).Q_2 + c.R) \mid \overline{b}.\overline{a}.P$
- real-time: $delay(3.223).Q_1 + b.(delay(1.567).Q_2 + c.R) \mid \overline{b}.\overline{a}.P$
- ▶ probabilistic time: $delay(d_1).Q_1 + b.(delay(d_2).Q_2 + c.R) \mid \overline{b}.\overline{a}.P$

Timing of events $delay(d_i)$ governed by probability distributions d_i

4/34

Background Markov Automata Bisimulations Composing Justification

Poisson processes

Probability that event has happened by time x:

$$P(x) = (1 - e^{-\lambda x})$$

Poisson processes

$$P(x) = (1 - e^{-\lambda x})$$

Rates:

Characteristics completely determined by rate λ

- ▶ Memoryless: useful for interpreting parallel construct: $delay(\lambda).Q_1 \mid delay(\beta).Q_2$
- ▶ Race law: **delay**(λ). Q_1 + **delay**(β). Q_2
 - probability that Q_1 wins: $\frac{\lambda}{\lambda+\beta}$
 - probability that Q_2 wins: $\frac{\beta}{\lambda+\beta}$

6/34

Background Markov Automata Bisimulations Composing Justification

Markov automata

$$\langle \mathcal{S}, \mathsf{Act}_{ au},
ightarrow,
ightarrow,
angle$$
 ,

where

- (i) S is a set of states
- (ii) Act $_{\tau}$ is a set of transition labels, with distinguished element τ
- (iii) the relation \mapsto is a subset of $S \times (\mathbb{R}^+ \cup \{\delta\}) \times \mathcal{D}(S)$ satisfying
- (a) $s \mapsto^{\mathbf{d}} \Delta$ implies $s \not\stackrel{\mathcal{T}}{\longrightarrow} \mathbf{d} = \lambda$ or δ
- (b) $s \stackrel{\delta}{\mapsto} \Delta_1$ and $s \stackrel{\delta}{\mapsto} \Delta_2$ implies $\Delta_1 = \Delta_2$
 - ▶ $s \stackrel{\lambda}{\mapsto} \Delta$: definite time delay, governed by rate $\lambda \in \mathbb{R}^+$
 - $s \stackrel{\delta}{\mapsto} \Delta$ indefinite time delay
 - ▶ (a) is maximal progress

Background Markov Automata Composing

Examples

9/34

Background Markov Automata Composing

From time to probabilities

An MA:

Its MLTS:

From time to probabilities

An MA:

Its MLTS:

11/34

Background Markov Automata Bisimulations Composing Justification

From time to probabilities

An MA:

Semantically equivalent?

Semantically equivalent MLTSs?:

13/34

Background Markov Automata Bisimulations Composing Justification

Semantically equivalent?

- ▶ Not according to existing definitions of *bisimulation* equivalence
- Can a revised version of bisimulation equivalence be formulated?
- ▶ Is this revision justifiable?

Lifting relations

From
$$\mathcal{R}\subseteq S imes \mathcal{D}(S)$$
, to $\operatorname{lift}(\mathcal{R})\subseteq \mathcal{D}(S) imes \mathcal{D}(S)$
$$\boxed{\Delta \ \operatorname{lift}(\mathcal{R})\Theta} \quad \text{whenever}$$

- $ightharpoonup \Delta = \sum_{i \in I} p_i \cdot s_i$, I a finite index set
- ▶ For each $i \in I$ there is a distribution Θ_i s.t. $s_i \in \mathcal{R}$ Θ_i
- $\triangleright \Theta = \sum_{i \in I} p_i \cdot \Theta_i$
- $\triangleright \sum_{i\in I} p_i = 1$

Many different formulations

Note: in decomposition $\sum_{i \in I} p_i \cdot s_i$ states s_i are not necessarily unique

16/34

Background Markov Automata Bisimulations Composing Justification

Lifting actions: from
$$s \xrightarrow{\mu} \Theta$$
 to $\Delta \xrightarrow{\mu} \Theta$

$$\Delta \xrightarrow{\mu} \Theta$$

- $ightharpoonup \Delta$ represents a cloud of possible process states
- lacktriangle each possible state must be able to perform μ
- ightharpoonup all possible residuals combine to Θ

Examples:

$$(a.b + a.c)_{\frac{1}{2}} \oplus a.d \xrightarrow{a} b_{\frac{1}{2}} \oplus d$$

$$(a.b+a.c)_{\frac{1}{2}} \oplus a.d \xrightarrow{a} (b_{\frac{1}{2}} \oplus c)_{\frac{1}{2}} \oplus d$$

$$(a.b+a.c)_{\frac{1}{2}} \oplus a.d \xrightarrow{a} (b_p \oplus c)_{\frac{1}{2}} \oplus d$$

$$(\tau.a + \tau.b)_{\frac{1}{2}} \oplus (\tau.a + \tau.c) \xrightarrow{\tau} a_{\frac{1}{2}} \oplus (b_{\frac{1}{2}} \oplus c)$$

Bisimulations in an MLTS

$$\Delta pprox_{\it bis} \Theta$$

if, for each $\mu \in \mathsf{Act}_{\tau,\delta} \cup \mathbb{R}^+$ and all finite sets of probabilities $\{ p_i \mid i \in I \}$ satisfying $\sum_{i \in I} p_i = 1$,

- (i) whenever $\Delta \stackrel{\mu}{\Longrightarrow} \sum_{i \in I} p_i \cdot \Delta_i$, there is some $\Theta \stackrel{\mu}{\Longrightarrow} \sum_{i \in I} p_i \cdot \Theta_i$, such that $\Delta_i \approx_{bis} \Theta_i$ for each $i \in I$
- (ii) symmetrically, whenever $\Theta \stackrel{\mu}{\Longrightarrow} \sum_{i \in I} p_i \cdot \Theta_i$, there exists some $\Delta \stackrel{\mu}{\Longrightarrow} \sum_{i \in I} p_i \cdot \Delta_i$, such that $\Delta_i \approx_{\textit{bis}} \Theta_i$ for each $i \in I$

Properties:

- $ightharpoonup pprox pprox_{bis}$ is an equivalence relation
- ▶ $\Theta \stackrel{\tau}{\Longrightarrow} \Theta'$ such that $\Delta \operatorname{lift}(\approx_{bis}) \Theta'$

18/34

Background Markov Automata Bisimulations Composing Justification

Simple bisimulations

$$\Delta pprox_{ extit{sbis}} \Theta$$

if, for each $\mu \in \mathsf{Act}_{\tau,\delta} \cup \mathbb{R}^+$,

- (i) whenever $s \xrightarrow{\mu} \Delta'$, there is some $\Theta \stackrel{\mu}{\Longrightarrow} \Theta'$, such that $\Delta' \operatorname{lift}(\approx_{sbis}) \Theta'$
- (ii) there exists some $\Delta \in \mathcal{D}(S)$ such that $\overline{s} \stackrel{\tau}{\Longrightarrow} \Delta$ and $\Theta \operatorname{lift}(\approx_{sbis}) \Delta$.

Theorem:

In a finitary MLTS

- lacksquare Δ lift($pprox_{sbis}$) Θ implies $\Delta pprox_{bis} \Theta$
- $lackbox{}\Delta pprox_{\it bis} \Theta \ {\sf implies} \ \Delta \ {\sf lift}(pprox_{\it sbis}) \ \Theta', \ {\sf where} \ \Theta \stackrel{ au}{\Longrightarrow} \Theta'$

Example

Yes: $s pprox_{\scriptscriptstyle sbis} \overline{v}$ because of simple bisimulation

$$s \leftrightarrow \overline{v}$$
 $s_1 \leftrightarrow \frac{1}{2} \cdot \overline{v_b} + \frac{1}{2} \cdot \overline{v_c}$
 $s_* \leftrightarrow \overline{v_*}$
 $v \leftrightarrow \overline{s}$
 $v_* \leftrightarrow \overline{s_*}$

20/34

Background Markov Automata

Bisimulations

Composing

Justificatior

Example (MAs)

No: $s \not\approx_{sbis} \overline{u}$ because

$$s \xrightarrow{\tau} \frac{1}{2} \cdot \overline{s_1} + \frac{1}{2} \cdot \overline{s_2}$$

can not be matched by \overline{u}

Markovian CCS

$$P, Q ::= \mathbf{0} \mid \delta.P \mid \lambda.D, \ \lambda \in \mathbb{R}^+ \mid \mu:D, \ \mu \in \mathsf{Act}_{\tau}$$
 $::= \mid P+Q \mid P \mid Q \mid A$ declared definitions
 $D ::= (\bigoplus_{i \in I} p_i \cdot P_i)$

Intensional semantics: an MA

- ▶ states: terms *P*, *Q*
- ▶ arrows: $P \xrightarrow{\mu} \Delta$ and $P \xrightarrow{\mathbf{d}} \Delta$ defined inductively

23/34

Background Markov Automata Bisimulations Composing Justification

Rules for parallel

$$\begin{array}{c} (\text{PAR.L}) \\ s \stackrel{\mu}{\longrightarrow} \Delta \\ \hline s \mid t \stackrel{\mu}{\longrightarrow} \Delta \mid \overline{t} \\ \hline (\text{PAR.I}) \\ s \stackrel{a}{\longrightarrow} \Delta, \ t \stackrel{\overline{a}}{\longrightarrow} \Theta \\ \hline s \mid t \stackrel{\tau}{\longrightarrow} \Delta \mid \Theta \\ \hline (\text{PAR.L.T}) \\ s \stackrel{d}{\longrightarrow} \Delta, \ t \stackrel{\delta}{\longrightarrow} \Theta, \ s \mid t \stackrel{\tau}{\longrightarrow} \\ \hline s \mid t \stackrel{d}{\longrightarrow} \Delta \mid \Theta \\ \hline s \mid t \stackrel{d}{\longrightarrow} \Delta \mid \Theta \\ \hline \end{array}$$

$$\begin{array}{c} (\text{PAR.R.R.T}) \\ (\text{PAR.R.T.T}) \\ s \stackrel{\delta}{\longrightarrow} \Delta, \ t \stackrel{\delta}{\longrightarrow} \Theta, \ s \mid t \stackrel{\tau}{\longrightarrow} \\ \hline s \mid t \stackrel{d}{\longrightarrow} \Delta \mid \Theta \\ \hline \end{array}$$

$$d = \delta, \lambda$$

$$P \mid Q \stackrel{\mathbf{d}}{\mapsto} \Delta$$
 only if

- \triangleright both P and Q can delay
- ightharpoonup at least one has to perform indefinite delay δ

Example: $Q = (\lambda_1.P_1 \mid \lambda_2.P_2)$

- ▶ $Q \stackrel{\lambda_1}{\mapsto} (P_1 \mid \lambda_2.P_2)$ because of $\lambda_1.P_1 \stackrel{\lambda_1}{\mapsto} P_1$ and $\lambda_2.P_2 \stackrel{\delta}{\mapsto} \lambda_2.P_2$
- ▶ $Q \stackrel{\delta}{\mapsto} Q$ because of $\lambda_1.P_1 \stackrel{\delta}{\mapsto} \lambda_1.P_1$ and $\lambda_1.P_1 \stackrel{\delta}{\mapsto} \lambda_1.P_1$.

25/34

Background Markov Automata Bisimulations Composing Justification

some Other rules

(ACTION)
$$\mu: D \xrightarrow{\mu} \llbracket D \rrbracket$$
(DELAY)
$$\lambda.D \xrightarrow{\lambda} \llbracket D \rrbracket, \qquad (D.\delta)$$

$$\lambda.D \xrightarrow{\delta} \overline{\lambda.D}$$
($\delta.E$)
$$P \xrightarrow{\mu} \Delta$$

$$\delta.P \xrightarrow{\mu} \Delta$$
(EXT)
$$P \xrightarrow{\delta} \Delta_{1}, Q \xrightarrow{\delta} \Delta_{2}$$

$$P + Q \xrightarrow{\delta} \Delta_{1} + \Delta_{2}$$
(D. δ)
$$\lambda.D \xrightarrow{\delta} \overline{\lambda.D}$$
($\delta.D$)
$$P \xrightarrow{\mathcal{F}}$$

$$\delta.P \xrightarrow{\mathcal{F}}$$
(EXT.D.L)
$$P \xrightarrow{\delta} \Delta, Q \xrightarrow{\mathcal{F}}, Q \xrightarrow{\mathcal{F}}$$

External actions are insistent

- ▶ $(\lambda.Q \mid a:P)$ can not delay because
 - a:P ^d/→
- ▶ $\lambda.Q \mid a.P \stackrel{\lambda}{\mapsto} Q \mid a.P$ because
 - $\lambda. Q \stackrel{\lambda}{\mapsto} Q$
 - $a.P \stackrel{\delta}{\mapsto} a.P$

Lazy a.P is defined recursively by

$$a.P \Leftarrow a:P + \delta.a.P$$

27/34

Background Markov Automata Bisimulations Composing Justification

Compositionality

Theorem:

In a finitary MA, $\Delta \approx_{\it bis} \Theta$ implies $\Delta \mid \Gamma \approx_{\it bis} \Theta \mid \Gamma$

A very general semantic equivalence

 $P \approx_{rbc} Q$ is the largest relation which is

- compositional
 - preserved by some natural parallel operator on systems
- reduction-closed
 - preserved in some manner internal nondeterministic choices
- preserves barbs
 - some primitive observations

Has been defined for

▶ process calculi(CCS, CSP, . . .), object languages, λ -calculus, higher-order processes, . . .

In each case a variation on *bisimulations* have been justified as a proof methodology

30/34

Background Markov Automata Bisimulations Composing Justification

Thesis

- A bisimulation equivalence provides a proof method for the natural semantic equivalence, \approx_{rbc}
- ▶ It is sound if $P \approx_{bis} Q$ implies $P \approx_{rbc} Q$
 - to prove a semantic identity it is sufficient to provide a witness bisimulation
- ▶ It is *complete* if $P \approx_{rbc} Q$ implies $P \approx_{bis} Q$
 - if a semantic identity is true it is possible to demonstrate it

Theorem:

In mCCS, our bisimulations are sound and complete

Barbs

 $\Delta \Downarrow_{a}^{\geq p}$ whenever

- \triangleright probability of Δ' performing external action a is at least p.

 ${\mathcal R}$ is barb-preserving if whenever Δ ${\mathcal R}$ Θ

$$ightharpoonup \Delta \Downarrow_a^{\geq p}$$
 iff $\Theta \Downarrow_a^{\geq p}$

32/34

Background Markov Automata Bisimulations Composing Justification

Reduction-closure

$$\Delta \Longrightarrow \Delta'$$

whenever Δ can evolve to Δ' via

- ightharpoonup internal computations $\stackrel{ au}{\Longrightarrow}$
- passage of time

 ${\mathcal R}$ is reduction-closed if whenever Δ ${\mathcal R}$ Θ

- ▶ if $\Delta \Longrightarrow \Delta'$, there is a $\Theta \Longrightarrow \Theta'$ such that $\Delta' \mathcal{R} \Theta'$
- ▶ if $\Theta \Longrightarrow \Theta'$, there is a $\Delta \Longrightarrow \Delta'$ such that $\Delta' \mathcal{R} \Theta'$.

Future work

- ▶ A modal logic which characterises \approx_{bis} ?
- ▶ A polynomial-time algorithm for checking if $\Delta \approx_{\scriptscriptstyle bis} \Theta$?
- which returns a distinguishing formula if $\Delta \not\approx_{\scriptscriptstyle bis} \Theta$?
- ► Model-checking algorithms?
- ▶ Algebraic characterisation for finite terms in mCCS?
- ▶ Categorical justification for \approx_{bis} ?

