On the Semantics of Markov Automata

Matthew Hennessy
(joint work with Yuxin Deng)

FMG, TCD March 2011

Adding time to process descriptions

Pervasive:

- all actions have duration: $a^{3.5} . P+\operatorname{delay}(1.3) . Q \mid b^{2.1} . R$
- Semantic theory very sensitive to timing

Maximal progress:

- only passage of time has duration
- all other actions are instantaneous
- time only passes when no more actions are possible:
$\operatorname{delay}\left(d_{1}\right) \cdot Q_{1}+b .\left(\boldsymbol{\operatorname { d e l }} \mathbf{y}\left(d_{2}\right) \cdot Q_{2}+c . R\right) \mid \bar{b} . \bar{a} . P$
- Semantic theory does not measure passage of time directly

Nature of time

- discrete time: $\boldsymbol{\operatorname { d e l }} \mathbf{a y}(3) \cdot Q_{1}+b .\left(\boldsymbol{\operatorname { d e l }} \boldsymbol{a y}(2) \cdot Q_{2}+c . R\right) \mid \bar{b} \cdot \bar{a} . P$
- real-time:

$$
\operatorname{delay}(3.223) \cdot Q_{1}+b .\left(\operatorname{delay}(1.567) \cdot Q_{2}+c . R\right) \mid \bar{b} \cdot \bar{a} \cdot P
$$

- probabilistic time:
$\operatorname{delay}\left(d_{1}\right) \cdot Q_{1}+b .\left(\operatorname{delay}\left(d_{2}\right) \cdot Q_{2}+c . R\right) \quad \mid \quad \bar{b} \cdot \bar{a} . P$
Timing of events delay $\left(d_{i}\right)$ governed by probability distributions d_{i}

Poisson processes

Probability that event has happened by time x :

$$
P(x)=\left(1-e^{-\lambda x}\right)
$$

Poisson processes

$$
P(x)=\left(1-e^{-\lambda x}\right)
$$

Rates:

Characteristics completely determined by rate λ

- Memoryless: useful for interpreting parallel construct: $\operatorname{delay}(\lambda) \cdot Q_{1} \mid \boldsymbol{\operatorname { d e l }} \mathbf{a y}(\beta) \cdot Q_{2}$
- Race law: $\operatorname{delay}(\lambda) \cdot Q_{1}+\operatorname{delay}(\beta) \cdot Q_{2}$
- probability that Q_{1} wins: $\frac{\lambda}{\lambda+\beta}$
- probability that Q_{2} wins: $\frac{\beta}{\lambda+\beta}$

Markov automata

$$
\left\langle S, \operatorname{Act}_{\tau}, \rightarrow, \mapsto,\right\rangle
$$

where
(i) S is a set of states
(ii) Act_{τ} is a set of transition labels, with distinguished element τ
(iii) the relation \mapsto is a subset of $S \times\left(\mathbb{R}^{+} \cup\{\delta\}\right) \times \mathcal{D}(S)$ satisfying
(a) $s \stackrel{\mathbf{d}}{\mapsto} \Delta$ implies $s \xrightarrow{\pi} d=\lambda$ or δ
(b) $s \stackrel{\delta}{\mapsto} \Delta_{1}$ and $s \stackrel{\delta}{\mapsto} \Delta_{2}$ implies $\Delta_{1}=\Delta_{2}$

- $s \stackrel{\lambda}{\mapsto} \Delta$: definite time delay, governed by rate $\lambda \in \mathbb{R}^{+}$
- $s \stackrel{\delta}{\mapsto} \Delta$ indefinite time delay
- (a) is maximal progress

Examples

From time to probabilities
An MA:

Its MLTS:

From time to probabilities
An MA:

Its MLTS:

From time to probabilities
An MA:

Its MLTS:

Semantically equivalent?

Semantically equivalent MLTSs?:

Semantically equivalent?

- Not according to existing definitions of bisimulation equivalence
- Can a revised version of bisimulation equivalence be formulated?
- Is this revision justifiable?

Lifting relations

From $\mathcal{R} \subseteq S \times \mathcal{D}(S)$, to $\quad \operatorname{lift}(\mathcal{R}) \subseteq \mathcal{D}(S) \times \mathcal{D}(S)$

$\Delta \operatorname{lift}(\mathcal{R}) \Theta \quad$ whenever

- $\Delta=\sum_{i \in I} p_{i} \cdot s_{i}, \quad l$ a finite index set
- For each $i \in I$ there is a distribution Θ_{i} s.t. si $\mathcal{R} \Theta_{i}$
- $\Theta=\sum_{i \in I} p_{i} \cdot \Theta_{i}$
- $\sum_{i \in I} p_{i}=1$

Many different formulations
Note: in decomposition $\sum_{i \in I} p_{i} \cdot s_{i}$ states s_{i} are not necessarily unique

Lifting actions: from $s \xrightarrow{\mu} \Theta$ to $\Delta \xrightarrow{\mu} \Theta$

$$
\Delta \xrightarrow{\mu} \theta
$$

- Δ represents a cloud of possible process states
- each possible state must be able to perform μ
- all possible residuals combine to Θ

Examples:

$$
\begin{array}{ll}
(a . b+a . c)_{\frac{1}{2}} \oplus a . d & \xrightarrow{a} \quad b_{\frac{1}{2}} \oplus d \\
(a . b+a . c)_{\frac{1}{2}} \oplus a . d \quad \xrightarrow{a} \quad\left(b_{\frac{1}{2}} \oplus c\right)_{\frac{1}{2}} \oplus d \\
(a . b+a . c)_{\frac{1}{2}} \oplus a . d \quad \xrightarrow{a} \quad\left(b_{p} \oplus c\right)_{\frac{1}{2}} \oplus d \\
(\tau . a+\tau . b)_{\frac{1}{2}} \oplus(\tau . a+\tau . c) \quad \xrightarrow{\tau} \quad a_{\frac{1}{2}} \oplus\left(b_{\frac{1}{2}} \oplus c\right)
\end{array}
$$

Bisimulations in an MLTS

$$
\Delta \approx_{b i s} \Theta
$$

if, for each $\mu \in \operatorname{Act}_{\tau, \delta} \cup \mathbb{R}^{+}$and all finite sets of probabilities

$$
\left\{p_{i} \mid i \in I\right\} \text { satisfying } \sum_{i \in I} p_{i}=1
$$

(i) whenever $\Delta \xrightarrow{\mu} \sum_{i \in I} p_{i} \cdot \Delta_{i}$, there is some $\Theta \xrightarrow{\mu} \sum_{i \in I} p_{i} \cdot \Theta_{i}$, such that $\Delta_{i} \approx_{b i s} \Theta_{i}$ for each $i \in I$
(ii) symmetrically, whenever $\Theta \xrightarrow{\mu} \sum_{i \in I} p_{i} \cdot \Theta_{i}$, there exists some $\Delta \xrightarrow{\mu} \sum_{i \in I} p_{i} \cdot \Delta_{i}$, such that $\Delta_{i} \approx_{b i s} \Theta_{i}$ for each $i \in I$

Properties:

- $\approx_{b i s}$ is an equivalence relation
- $\Theta \stackrel{\tau}{\Longrightarrow} \Theta^{\prime}$ such that $\Delta \operatorname{lift}\left(\approx_{b i s}\right) \Theta^{\prime}$

Simple bisimulations

$$
\Delta \approx_{s b i s} \Theta
$$

if, for each $\mu \in \operatorname{Act}_{\tau, \delta} \cup \mathbb{R}^{+}$,
(i) whenever s $\xrightarrow{\mu} \Delta^{\prime}$, there is some $\Theta \xrightarrow{\mu} \Theta^{\prime}$, such that $\Delta^{\prime} \operatorname{lift}\left(\approx_{\text {sbis }}\right) \Theta^{\prime}$
(ii) there exists some $\Delta \in \mathcal{D}(S)$ such that $\bar{s} \xrightarrow{\tau} \Delta$ and $\Theta \operatorname{lift}\left(\approx_{\text {sbis }}\right) \Delta$.

Theorem:

In a finitary MLTS

- $\Delta \operatorname{lift}\left(\approx_{s b i s}\right) \Theta$ implies $\Delta \approx_{b i s} \Theta$
- $\Delta \approx_{\text {bis }} \Theta$ implies $\Delta \operatorname{lift}\left(\approx_{\text {sbis }}\right) \Theta^{\prime}$, where $\Theta \xlongequal{\tau} \Theta^{\prime}$

Example

Yes: $s \approx_{s b i s} \bar{v}$ because of simple bisimulation

$$
\begin{aligned}
s & \leftrightarrow \bar{v} \\
s_{1} & \leftrightarrow \frac{1}{2} \cdot \overline{v_{b}}+\frac{1}{2} \cdot \overline{v_{c}} \\
s_{*} & \leftrightarrow \overline{v_{*}} \\
v & \leftrightarrow \bar{s} \\
v_{*} & \leftrightarrow \overline{s_{*}}
\end{aligned}
$$

Example (MAs)

No: $s \not \nsim s b i s ~ \bar{u}$ because

$$
s \xrightarrow{\tau} \frac{1}{2} \cdot \overline{s_{1}}+\frac{1}{2} \cdot \overline{s_{2}}
$$

can not be matched by \bar{u}

Markovian CCS

$$
\begin{aligned}
P, Q & ::=0|\delta \cdot P| \lambda . D, \lambda \in \mathbb{R}^{+} \mid \mu: D, \mu \in \operatorname{Act}_{\tau} \\
& ::=|P+Q| P|Q| A \quad \begin{array}{l}
\text { decaraed definitions }
\end{array} \\
D & ::=\left(\oplus_{i \in I} P_{i} \cdot P_{i}\right)
\end{aligned}
$$

Intensional semantics: an MA

- states: terms P, Q
- arrows: $P \xrightarrow{\mu} \Delta$ and $P \stackrel{\text { d }}{\mapsto} \Delta$ defined inductively

Rules for parallel
$\frac{\stackrel{\text { (PAR.L) }}{s \xrightarrow{\mu} \Delta}}{s|t \xrightarrow{\mu} \Delta| \bar{t}}$
(PAR.I)
$\frac{s \xrightarrow{a} \Delta, t \xrightarrow{\bar{a}} \Theta}{s|t \xrightarrow{\tau} \Delta| \Theta}$
(PAR.L.t)
$\frac{s \stackrel{\text { d }}{\mapsto} \Delta, t \stackrel{\delta}{\mapsto} \Theta, s \mid t \not f^{T}}{s|t \stackrel{\text { d }}{\mapsto} \Delta| \Theta}$
$P \mid Q \stackrel{\text { d }}{\mapsto} \Delta$ only if

- both P and Q can delay
- at least one has to perform indefinite delay δ

Example: $Q=\left(\lambda_{1} \cdot P_{1} \mid \lambda_{2} \cdot P_{2}\right)$

- $Q \stackrel{\lambda_{1}}{\mapsto}\left(P_{1} \mid \lambda_{2} \cdot P_{2}\right)$ because of $\lambda_{1} \cdot P_{1} \stackrel{\lambda_{1}}{\longmapsto} P_{1}$ and $\lambda_{2} \cdot P_{2} \stackrel{\delta}{\mapsto} \lambda_{2} \cdot P_{2}$
- $Q \stackrel{\lambda_{2}}{\stackrel{ }{\sim}}\left(\lambda_{1} P_{2} \mid P_{2}\right)$ because of $\lambda_{1} \cdot P_{1} \stackrel{\delta}{\stackrel{ }{l}} \lambda_{1} \cdot P$ and $\lambda_{2} \cdot P_{2} \stackrel{\lambda_{2}}{\stackrel{ }{2}} P_{2}$
- $Q \stackrel{\delta}{\mapsto} Q$ because of $\lambda_{1} \cdot P_{1} \stackrel{\delta}{\mapsto} \lambda_{1} . P_{1}$ and $\lambda_{1} . P_{1} \stackrel{\delta}{\mapsto} \lambda_{1} . P_{1}$.

some Other rules

$$
\begin{aligned}
& \text { (ACTION) } \\
& \mu: D \xrightarrow{\mu} \llbracket D \rrbracket \\
& \text { (DELAY) } \\
& \lambda . D \stackrel{\lambda}{\mapsto}[D \rrbracket, \\
& \text { (} \delta . \mathrm{E} \text {) } \\
& \frac{P \xrightarrow{\mu} \Delta}{\delta . P \xrightarrow{\mu} \Delta} \\
& \frac{\stackrel{(\text { еХт })}{P \stackrel{\delta}{\mapsto}} \Delta_{1}, Q \stackrel{\delta}{\mapsto} \Delta_{2}}{P+Q \stackrel{\delta}{\mapsto} \Delta_{1}+\Delta_{2}} \\
& \frac{\stackrel{(\mathrm{ExT})}{P \stackrel{\delta}{\mapsto}} \Delta_{1}, Q \stackrel{\delta}{\mapsto} \Delta_{2}}{P+Q \stackrel{\delta}{\mapsto} \Delta_{1}+\Delta_{2}} \\
& \text { (Ext.D.L) } \\
& \frac{P \stackrel{\delta}{\mapsto} \Delta, Q \stackrel{\oint}{\ngtr}, Q \not f^{\top}}{P+Q \stackrel{\delta}{\mapsto} \Delta} \\
& \lambda . D \stackrel{\delta}{\stackrel{ }{\lambda} . D} \\
& \frac{\stackrel{(\delta . \mathrm{D})}{P \stackrel{ }{\sim}}}{\delta . P \stackrel{\delta}{\mapsto} \bar{P}}
\end{aligned}
$$

External actions are insistent

- ($\lambda . Q \mid a: P)$ can not delay because
- a: $P \stackrel{\text { d }}{\stackrel{1}{~}}$
- $\lambda . Q \mid$ a. $P \stackrel{\lambda}{\mapsto} Q \mid$ a. P because
- $\lambda \cdot Q \stackrel{\lambda}{\mapsto} Q$
- a. $P \stackrel{\delta}{\mapsto}$ a. P

Lazy a.P is defined recursively by

$$
a . P \Leftarrow a: P+\delta . a . P
$$

Compositionality

Theorem:
In a finitary MA, $\Delta \approx_{b i s} \Theta$ implies $\Delta\left|\Gamma \approx_{b i s} \Theta\right| \Gamma$

A very general semantic equivalence

$P \approx_{r b c} Q$ is the largest relation which is

- compositional
- preserved by some natural parallel operator on systems
- reduction-closed
- preserved in some manner internal nondeterministic choices
- preserves barbs
- some primitive observations

Has been defined for

- process calculi(CCS, CSP, ...), object languages, λ-calculus, higher-order processes, ...
In each case a variation on bisimulations have been justified as a proof methodology

Thesis

- A bisimulation equivalence provides a proof method for the natural semantic equivalence, $\approx_{r b c}$
- It is sound if $P \approx_{b i s} Q$ implies $P \approx_{r b c} Q$
- to prove a semantic identity it is sufficient to provide a witness bisimulation
- It is complete if $P \approx_{r b c} Q$ implies $P \approx_{b i s} Q$
- if a semantic identity is true it is possible to demonstrate it

Theorem:

In mCCS, our bisimulations are sound and complete

Barbs

$\Delta \Downarrow \geq p$ whenever

- $\Delta \stackrel{\tau}{\Longrightarrow} \Delta^{\prime}$
- probability of Δ^{\prime} performing external action a is at least p.
\mathcal{R} is barb-preserving if whenever $\Delta \mathcal{R} \Theta$
- $\Delta \Downarrow \frac{\geq p}{a}$ iff $\Theta \Downarrow \frac{\geq p}{a}$

Reduction-closure

$\Delta \Longrightarrow \Delta^{\prime}$
whenever Δ can evolve to Δ^{\prime} via

- internal computations $\xlongequal{\tau}$
- passage of time
\mathcal{R} is reduction-closed if whenever $\Delta \mathcal{R} \Theta$
- if $\Delta \Longrightarrow \Delta^{\prime}$, there is a $\Theta \Longrightarrow \Theta^{\prime}$ such that $\Delta^{\prime} \mathcal{R} \Theta^{\prime}$
- if $\Theta \Longrightarrow \Theta^{\prime}$, there is a $\Delta \Longrightarrow \Delta^{\prime}$ such that $\Delta^{\prime} \mathcal{R} \Theta^{\prime}$.

Future work

- A modal logic which characterises $\approx_{b i s}$?
- A polynomial-time algorithm for checking if $\Delta \approx_{b i s} \Theta$?
- which returns a distinguishing formula if $\Delta \not \nsim b_{b i s} \Theta$?
- Model-checking algorithms?
- Algebraic characterisation for finite terms in mCCS?
- Categorical justification for $\approx_{b i s}$?

