
TRINITY COLLEGE DUBLIN
COLÁISTE NA TRÍONÓIDE, BAILE ÁTHA CLIATH

Modelling session types using contracts

Giovanni Bernardi and Matthew Hennessy

Computer Science Department Technical Report TCS-CS-2011-07
Foundations and Methods Research Group August 2, 2011

Modelling session types using contracts

Giovanni Bernardi and Matthew Hennessy

August 2, 2011

Abstract

Session types and contracts are two formalisms used to study client-
server protocols. In this paper we study the relationship between them.
The main result is the existence of a fully abstract model of session types;
this model is based on a natural interpretation of these types into a subset
of contracts.1

Contents

1 Introduction 1

2 Session types 3
2.1 Sub-typing . 6

3 Contracts 8
3.1 The contract language . 8

3.1.1 Client-Server interactions and the compliance relation . . 14
3.2 The server pre-order . 19

3.2.1 Co-inductive characterisation 19
3.3 Must testing . 24

4 Session Contracts 29
4.1 Session contracts . 29
4.2 The server pre-order . 30
4.3 The client pre-order . 35

5 Modelling session types 38
5.1 Examples and applications . 41

6 Conclusions 43
6.1 Summary . 43

1 Introduction

Communication between processes in a distributed system often consists of a
structured dialogue, following a protocol which specifies the format of the mes-
sages interchanged and, at least for binary communication, the direction of the

1This research was supported by SFI project 06 IN.1 1898.

1

messages. Session types, ST , have been introduced as an approach to the static
analysis of the participants of such dialogues. They allow structured sequences
of non-uniform messages to be interchanged between the participants. For ex-
ample, using the notation of [GH05], the type ![Int]; ?[Real];end specifies the
output of a value of type Int followed by the input of a value of type Real, af-
ter which the dialogue is terminated. Flexibility in the permitted sequencing of
messages by a process is accommodated by two choice operators; the branching
type &〈T1, T2 〉 offers a choice to the partner in the dialogue between following
either the protocol specified by the type T1 or that specified by T2. On the other
hand the choice type ⊕〈T1, T2 〉 allows the process itself to follow either of the
protocols specified by T1 or T2.

Sub-typing, [GH05], also increases the flexibility of the type system; intu-
itively T1 4st T2 means that any participant designed with the protocol speci-
fied by T1 in mind may also be used in a situation where the protocol specified
by T2 will be followed. Intuitively this pre-order between session types is gen-
erated by allowing more possibilities in branching types and restricting them in
choice types. The reader is refered to [HVK98, GH05, CP10] for more details
on session types, including how they are associated with processes and what
behaviour they guarantee.

Web services [ACKM04, BPZ09] are distributed components which can be
combined using standard communication protocols and machine-independent
message formats to provide services to clients. To encourage reusability, de-
scriptions of their behaviour are typically made available in searchable reposi-
tories [oasisS11]. In papers such as [CCLP06, LP07, CGP09, Bd10] a language
of contracts has been proposed for describing this behaviour which, despite a
very different surface syntax, is very similar in style to session types. In par-
ticular there is the sequencing of messages α1.α2, an external choice between
behaviours σ1 + σ2 reminiscent of the branching type &〈T1, T2 〉, and an inter-
nal choice between allowed behaviours σ1 ⊕ σ2, reminiscent of the choice type
⊕〈T1, T2 〉.

The object of this paper is to study the precise relationship between these
two formalisms. In particular for first-order session types, which do not allow
the use of communication channels in messages, we show that the theory of
session types, 〈 ST ,4st 〉, can be captured precisely using a natural pre-order
over a natural subclass of contracts.

Contracts for web services serve two roles. A contract σ may describe the
behaviour of a server offering some specific service. Dually a contract ρ may
describe the behaviour expected of a client who wishes to avail of a particular
service. Central to the theory of contracts for web services is the idea of com-
pliance between such contracts, formalised as an asymmetric relation ρ a σ; it
has been defined in a variety of ways in papers such as [LP07, LP08, CGP09].
This leads to two natural pre-orders on contracts, defined set theoretically:

• the server pre-order: σ1 vsrv σ2 if for every (client) contract ρ, ρ a σ1

implies ρ a σ2

• the client pre-order: ρ1 vclt ρ2 if for every (server) contract σ, ρ1 a σ
implies ρ2 a σ

As we have already stated session types are more or less a syntactic variant of
contracts; formally there is a straightforward translationM(T) of session types

2

into contracts. Unfortunately neither of the relations vsrv ,vclt are sound
with respect to sub-typing; specifically there are session types T1, T2 such that
T1 4st T2 but M(T1) and M(T2) are unrelated as contracts.

The problem lies in the fact that, viewed as constraints on behaviour, session
types are much more constraining than contracts. We therefore isolate a subset
of contracts, which we call session contracts SC, which are the range of the
translation function M. This enables us to define more restrictive sub–server
and sub–client relations, vSCsrv and vSCclt respectively, on these contracts. It
turns out that these relations are still unsound with respect to session sub-
typing. But in the main result of the paper we show that by combining these
pre-orders we obtain full-abstraction, that is a sound and complete model for
session types.

The paper is organised as follows. In the next section we give the definition
of session types and the sub-typing between them; this material is taken directly
from [GH05], although our definition is based on first-order types; however, we
allow a primitive sub-typing relation between the basic types.

In the subsequent section we study contracts. Our language for contracts is
a subset of the language proposed in [Pad10]; we provide a novel co-inductive
formulation of the notion of compliance; nevertheless, the resulting compliance
relation coincides with that used in both in [Pad10] and [Bd10]. The sub-typing
relation between session types is defined co-inductively and the connection we
eventually make between contracts and session types will depend on co-inductive
characterisations of the set-based pre-orders on contracts. As an example of this
we provide a co-inductive characterisation of the server pre-order on contracts;
this definition is based on their behaviour. There is also much similarity between
the idea of contract compliance and must-testing [NH84], as has been pointed
out in [LP07]. We also prove that in our framework the must-testing pre-order
over contracts coincides with the server pre-ordervsrv .

In Section 4 we focus on a subset of contracts called session contracts SC,
this time giving co-inductive characterisations to both the restricted server pre-
order vSCsrv and the restricted client pre-order vSCclt over them. Due to the
very restricted nature of these contracts, these co-inductive characterisations
are purely in terms of their syntax.

In Section 5 we tackle the central question of the paper. Having defined
the (obvious) translation of session types into session contracts, we explain why
the two natural pre-orders vSCsrv and vSCclt are unsound relative to the sub-
typing on session types. Finally, we prove that when combined they provide a
sound and complete model; the proof is greatly facilitated by their co-inductive
characterisations. The paper concludes with a brief look at related work.

2 Session types

The syntax of terms for session types is given by the language LST in Figure 1.
It presupposes a denumerable set of labels L, ranged over by l, and a set of
basic or ground types BT types ranged over by t. We also use a denumerable
set of variables Vars, ranged over by X, in order to express recursive types.

The use of variables leads to the usual notion of free and bound occurrences
of variables in terms in the standard manner; we say that a term is closed
if it contains no free variables. We also have the standard notion of capture

3

S, T ::= Session types
end satisfaction
?[t];S input
![t];S output
&〈 l1 : S1, . . . , ln : Sn 〉, n ≥ 1 branch
⊕〈 l1 : S1, . . . , ln : Sn 〉, n ≥ 1 choice
X type variable
µX.S recursion

We impose the additional proviso that in a term the li’s are pair-wise different.

Figure 1: Session types (first-order).

T
T 6= µZ. S

T
{
µY. T /Y

}
µY. T

Figure 2: Inference rules for ↓dpt on closed terms.

avoidance substitution of terms for free variables. For the sake of clarity let us
recall this definition: a substitution s is a mapping from the set Vars to the set
of terms in LST . Let

s−X =

{
s \ {(X, s(X))} if X ∈ dom(s)

s otherwise

Then the result of applying a substitution s to the term S is defined as follows:

Ss =

end if S = end

s(X) if S = X, and X ∈ dom(S)

X if S = X, and X 6∈ dom(S)

![t]; (S′s) if S =![t];S′

?[t]; (S′s) if S =?[t];S′

&〈 l1 : (S1s), . . . , ln : (Sns) 〉 if S = &〈 l1 : S1, . . . , ln : Sn 〉
⊕〈 l1 : (S1s), . . . , ln : (Sns) 〉 if S = ⊕〈 l1 : S1, . . . , ln : Sn 〉
µX. (S′(s−X)) if S = µX. S′

In the final clause the application of s − X embodies the idea that in µX.S′

occurrences of X in the sub-term S′ are bound and therefore substitutions have
no effect on them.

It is easy to check that the effect of a substitution depends only on free
variables; that is, Ss1 = Ss2 whenever s1(X) = s2(X) for every free variable X
occurring in S. We use

{
T /X

}
to denote the singleton substitution {(X,T)}.

We will only use guarded recursion, which we now explain formally. Let ↓dpt
be the least fixed point of the functor on closed terms defined by the inference
rules in Figure 2.

4

Intuitively, T ↓dpt means that the free variables in T occur after a type con-
structor, which differs from µ. Now we say that a term T is guarded if every
sub-term of the form µX.S satisfies S↓dpt. Finally, we use ST to denote the set
of closed guarded terms, and we refer to the elements in ST as session types.

Example 2.1. The property↓dpt and the property of being guarded are different.
Consider the term T = &〈 l : µX.X 〉; it is not a variable and the top-most
constructor in it is not a recursion, therefore T ↓dpt. A sub-term of T is µX.X
and clearly µX.X↓dpt is false; therefore T is not guarded.

The advantage of only using guarded terms is that we can unfold types so
as to obtain their top-most type constructor. To explain this formally first let
us consider the function dpt from terms to N∞ (the set of natural numbers
augmented by ∞). This is defined as the least such function which satisfies:

dpt(S) =

{
1 + dpt(S′

{
S/X

}
) if S = µX.S′,

0 otherwise

Note that dpt(µX.X) =∞, but one can show that when applied to terms that
satisfy ↓dpt, one always obtains a natural number.

Lemma 2.2. If S↓dpt then dpt(S) ∈ N.

Proof. The proof is by rule induction on the derivation of S↓dpt.
If the axiom was used then thanks to the side condition S 6= µX. S′, and

so dpt(S) = 0 because of the definition of dpt . If the other rule was used then

S = µX.S′, and the hypothesis of the rule implies S
{
S′
/X

}
↓dpt. Then, by

definition of dpt , dpt(S) = 1+dpt(S
{
S′
/X

}
), and by the inductive hypothesis

dpt(S
{
S′
/X

}
) ∈ N; hence dpt(S) ∈ N.

Proposition 2.3. The depth of any session type is finite.

Proof. Follows from the definition of ST and Lemma 2.2.

This function dpt will therefore provide a measure of session types over which
we can perform induction.

Definition 2.4. [Unfolding [GH05]]
For all T ∈ ST , define unfold(T) as follows:

unfold(T) =

{
unfold(T ′

{
µX. T /X

}
) if T = µX. T ′

T otherwise

Lemma 2.5. For every T ∈ ST , unfold(T) is a well-defined session type.

Proof. We have to show that unfold(T) is closed and guarded. The proof is
by induction on dpt(P). It relies on the fact that each step of unfolding replaces
one variable with a closed and guarded term; hence the overall unfolding is
closed.

5

BoundedBool

Int Real Num Random

Figure 3: A sub-type relation on a set of basic types BT.

Intuitively, unfold(T) unfolds top-level recursive definitions until a type con-
structor appears, which is not µ. This will be extremely useful in manipulating
session types.

We conclude this sub-section by showing some typical examples of session
types, which we recall from the literature.

Example 2.6. [Math server, [GH05]]
Consider the session type

S1 = µX.&〈 plus : ?[Int]; ?[Int]; ![Int];X,

eq : ?[Int]; ?[Int]; ![Bool];end 〉

This specifies the protocol of a server which offers two services at the labels plus
and eq. The first expects the input of two integers, after which an integer is
returned, and then the service is once more available. The second also expects
two integers, then returns a boolean, after which the session terminates.

An extension to the service is specified by the type

S2 = µX.&〈 plus : ?[Int]; ?[Int]; ![Int];X,

eq : ?[Int]; ?[Int]; ![Bool];end,

neg : ?[Bool]; ![Bool];end 〉

This provides in addition queries for negation.

2.1 Sub-typing

There are three sources for the sub-typing relation over types. The first is
some predefined pre-order over the basic types, t1 4g t2, which intuitively
says that all data-values of type t1 may be safely used where values of t2
are expected. An example is given in Figure 3, for the set of basic types
BT = {Bounded, Bool, Int, Real, Num, Random}. More generally, if JtK denotes
the set of values of the basic type t then we can define 4g by letting t1 4g t2
whenever Jt1K ⊆ Jt2K. The other sources are two constructs of the language:
the branch construct allows sub-typing by extending the set of labels involved,
while in the choice construct the set of labels may be restricted. For example if
m ≤ n we will have

&〈 l1 : S1, . . . , lm : Sm 〉 subtype of &〈 l1 : S1, . . . , ln : Sn 〉
⊕〈 l1 : S1, . . . , ln : Sn 〉 subtype of ⊕〈 l1 : S1, . . . , lm : Sm 〉

6

Moreover, we will have the standard co-variance/contra-variance of input/output
types [PS96], extended to both the branch and choice constructs.

However, because of the recursive nature of our collection of types, the formal
definition of the sub-typing relation is given co-inductively.

Definition 2.7. [Type simulation]
Let P(X) denote the powerset of a set X and let F4st

: P(ST 2) −→ P(ST 2)
be the function defined so that (T,U) ∈ F4st

(R) whenever one of the following
holds:

1. if unfold(T) = end then unfold(U) = end

2. if unfold(T) =?[t1];S1 then unfold(U) =?[t2];S2 and (S1, S2) ∈R and
t1 4g t2

3. if unfold(T) =![t1];S1 then unfold(U) =![t2];S2 and (S1, S2) ∈R and
t2 4g t1

4. if unfold(T) = &〈 l1 : S1, . . . lm : Sm 〉 then unfold(U) = &〈 l1 :
S′1, . . . , ln : S′n 〉 where m ≤ n and (Si, S

′
i) ∈R for all i ∈ [1, . . . ,m]

5. if unfold(T) = ⊕〈 l1 : S1, . . . lm : Sm 〉 then unfold(U) = ⊕〈 l1 :
S′1, . . . , ln : S′n 〉 where n ≤ m and (Si, S

′
i) ∈R for all i ∈ [1, . . . , n]

A relation R such that R ⊆ F4st
(R) is called type simulation. The co-inductive

sub-typing relation 4st is now defined as the greatest fixed point of the equation
X = F4st(X). Standard arguments ensure that the relation 4st exists, that it
is a typing relation, and indeed the greatest type simulation.

Example 2.8. Let T, S denote the types µX. ?[Int];X, µX. ?[Real];X respec-
tively. Then T 4st S because the relation R= {(T, S), (?[Int];T, ?[Real];S)}
is a type simulation, since Int4g Real.

Referring to Example 2.6, one can also show that S1 4st S2 by providing an
appropriate type simulation.

The requirement that session types be guarded is crucial for the sub-typing
relation to be well-defined. We explain this fact in the next example.

Example 2.9. [Sub-typing and guardedness]
Consider again the term T = &〈 l : µX.X 〉 of Example 2.1. Suppose we wanted
to check whether

T 4st &〈 l : S 〉
for some session type S. The definition of 4st requires us to check whether
unfold(µX.X) 4st unfold(S); this check, though, can not be done because

unfold(µX.X)

is not defined at all (and unfold(S) may not be defined either).

Proposition 2.10. The relation 4st is a pre-order on ST .

Proof. See [GH05].

In [GH05] the set of types ST are used to give a typing system for the
pi calculus, and appropriate Type Safety and Type Preservation theorems are
proved. Here instead our aim is to give a model to the set of types 〈 ST ,4st 〉
using contracts.

7

σ ::= Contracts
nil termination
1 success
α.σ action
σ + σ external choice
σ ⊕ σ internal choice
x contract variable
µx. σ recursion

Figure 4: Contract grammar.

3 Contracts

We first define our language for contracts and give some examples. In the
following sub-section we define a natural server based pre-order on contracts,
for which we give a behavioural co-inductive characterisation. In the final sub-
section we investigate a closely related pre-order based on must testing.

3.1 The contract language

This subsection is roughly divided in three parts. In the first one we define the
language LC , and we are concerned with syntactical properties of its terms σ’s;
similarly to what we have done for session types, we introduce the unfolding of
closed terms of Lc and a predicate ↓dpt to guarantee that each contract can be
unfolded (Lemma 3.1). Afterwards, we give an operational semantics (Figure 5),
and we discuss important semantic properties that we want contracts to enjoy;
this will lead to the introduction of a predicate ↓, and two lemmas (Lemma 3.10
and 3.11) which ensure that (a) contracts do not diverge, and (b) silent moves
lead to a finite number of derivatives. In the last part of the subsection we
describe how client-server interactions are modelled by contracts (Figure 7).

A language for contracts LC is given in Figure 4. As with session types
it uses a denumerable set of recursion variables Vars, here lower case, but also
presupposes a set Act of actions, ranged over by α, which processes guaranteeing
contracts may perform; as we will see the special action X, which we assume is
not in Act , will be used to indicate the fulfilment of a contract. Intuitively the
contract α.σ performs the action α and then behaves like σ; the sum σ′ + σ′′

is ready to behave either as σ′ or as σ′′ and the choice depends on the external
environment. For this reason the operation + is called external sum. The
internal sum σ′ ⊕ σ′′ represents a contract that can behave as σ′ or as σ′′, and
the choice is taken by the contract independently from the environment. Such a
decision can be due for instance to an if statement in the process implementing
the contracts. The symbol nil denotes an empty contract, which intuitively can
never be fulfilled, while 1 denotes the contract that is always satisfied.

Recursive definitions are handled in much the same way as session types and
so we do not spell out the details; we assume a definition of capture-avoiding
substitution s. Now we define the predicate ↓ dpt, the function dpt , and the

8

function unfold as in the previous section.
The function dpt is the least one that satisfies

dpt(σ) =

{
1 + dpt(σ′ { µx. σ/x }) if σ = µx. σ′,

0 otherwise

and the unfold is the least function that satisfies:

unfold(σ) =

{
unfold(σ′ { µx. σ/x }) if σ = µx. σ′,

σ otherwise

These definitions are not arbitrary. As it happens, they let us prove Lemma 5.2,
which, to our aim, is paramount (see Section 5).

Let ↓dpt be the least fixed point of the functor defined on closed terms of LC
by the rules in Figure 2.

Similarly to what done in the previous section one can prove the following
lemma.

Lemma 3.1. Let σ↓dpt. Then

(i) the depth of σ is finite: dpt(σ) ∈ N

(ii) the term unfold(σ) is defined for and, if σ is closed then unfold(σ) is
closed.

Proof. The proof of (ii) relies on (i) and is similar to the proof of Lemma 2.2.
Part (iii) can be proven by induction on dpt .

An operational semantics for the closed terms of the language LC is given in
Figure 5. The judgements are of the form

σ
µ
−→ σ′, µ ∈ Actτ X

where we use Actτ X as a shorthand for the set Act ∪ {τ, X}. The judgement

σ
α
−→ σ, where α ∈ Act has the obvious meaning: σ

τ
−→ σ′, means that

the contract σ is resolved to the contact σ′ by some internal computation, while

σ
X
−→ σ′ represents the reporting of the successful completion of a computation.

Let
τ
−→∗ denote the reflexive transitive closure of

τ
−→.

We are now ready to show two properties of unfold. We will use them we
will require in the rest of the paper.

Lemma 3.2. Let σ be a contract.

(i) If σ
τ

6−→ then unfold(σ) = σ

(ii) σ
τ−→∗ unfold(σ)

Proof. Property (i) is proved by structural induction on σ;
We prove part (ii); the argument is by induction on dpt(σ). If dpt(σ) = 0

then from the definition of dpt it follows that σ 6= µx. σ′; by definition of unfold

then unfold(σ) = σ. The reflexivity of
τ
−→∗ implies σ

τ
−→∗ unfold(σ).

If dpt(σ) > 1 then, due to the definition of dpt , σ = µx. σ′. The definition of
unfold implies that unfold(σ) = unfold(σ′ { σ/x }), while the definition of

9

1
X
−→ nil

[a-Ok]

α.σ
α
−→ σ

[a-Pre]
µx. σ

τ
−→ σ { µx. σ/x }

[a-Unf]

σ ⊕ ρ
τ
−→ σ

[a-In-l]
σ ⊕ ρ

τ
−→ ρ

[a-In-r]

σ
α
−→ σ′

σ + ρ
α
−→ σ′

[r-Ext-l]
ρ

α
−→ ρ′

σ + ρ
α
−→ ρ′

[r-Ext-r]

σ
τ
−→ σ′

σ + ρ
τ
−→ σ′ + ρ

[r-Int-l]
ρ

τ
−→ ρ′

σ + ρ
τ
−→ σ + ρ′

[r-Int-r]

Figure 5: Inference rules for the semantics of closed terms of LC .

dpt implies dpt(σ) = 1 + dpt(σ′ { σ/x }), and therefore dpt(σ′ { σ/x }) is smaller
than dpt(σ). We are now allowed to use the inductive hypothesis on σ′ { σ/x }:

σ′ { σ/x }
τ
−→∗ unfold(σ′ { σ/x })

We use rule [a-Unf] (see Figure 5) to infer σ
τ
−→ σ′ { σ/x }, and then the

transitivity of
τ
−→∗ to obtain

σ
τ
−→∗ unfold(σ′ { σ/x })

We already know that unfold(σ) = unfold(σ′ { σ/x }), and, by applying this
equality to the reduction sequence above, we get

σ
τ
−→∗ unfold(σ)

This concludes the proof.

Let

S(σ) = {σ′ | σ
µ
−→ σ′ for some µ ∈ Actτ X }

F (σ) = {σ′ | σ
τ
−→∗ σ′ }

One might think that F (σ) is finite if and only if σ does not diverge. This
is not the case.

10

Example 3.3. [Divergence and finite deriviatives]
Consider the terms µx. x and µx. (nil ⊕ x). Both terms diverge, in the sense
that they perform an infinite sequence of τ ’s:

µx. x
τ−→ µx. x, µx. (nil ⊕ x)

τ−→ nil ⊕ µx. (nil ⊕ x)
τ−→ µx. (nil ⊕ x)

On the other hand we have

F (µx. x) = S(µx. x) = { µx. x }

and

F (µx. (nil ⊕ x)) = { µx. (nil ⊕ x),nil ⊕ µx. (nil ⊕ x) }
S(µx. (nil ⊕ x)) = { nil ⊕ µx. (nil ⊕ x) }

The set F (σ) is not finite for every σ.

Example 3.4. [Infinite derivatives]
We show two terms σ, σ′ such that F (σ) and F (σ) are infinite. Let σ = µx. α.x+
x and σ′ = µx. (α.nil + (x ⊕ x)). Then according to the rules in Figure 5
one can infer:

σ
τ−→ (α.σ + σ)

τ−→ (α.σ + (α.σ + σ))
τ−→ . . .

and

σ′
τ−→ α.nil + (σ′ ⊕ σ′) τ−→ α.nil + σ′

τ−→ α.nil + (α.nil + (σ′ ⊕ σ′)) τ−→ . . .

The root of the problem is that the inference rules [r-Int-L] and [r-Int-R] do
not resolve the external sum.

On the other hand the finiteness of S(σ) is easy to prove.

Lemma 3.5. [Finite branches]
The set S(σ) is finite for every σ.

Proof. The proof is by structural induction. If σ = nil Then plainly S(σ) = ∅.
Otherwise we proceed as follows.

• If σ = α.σ′ then the only applicable rule (see Figure 5) is [a-Pre], and so
S(σ) = {σ′}

• similarly if σ = µx. σ′. The only rule [A-Unf] can be applied, so S(σ) =
{σ′ { σ/x }}.

• If σ = σ′ + σ′′ then it σ′ and σ′′ are both smaller than σ. The inductive
hypothesis tells us that S(σ′) and S(σ′′) are finite. Rules [r-Ext-l], [r-
Ext-r], [r-Int-l] and [r-Int-r] in Figure 5 ensure that S(σ) = S(σ′) ∪
S(σ′′). This implies that the cardinality of S(σ) is finite.

• If σ = σ′ ⊕ σ′′ the argument is alike the previous one.

11

1 nil α.σ

ρ σ

(σ ⊕ ρ)

ρ σ

(ρ + σ)
σ { µx. σ/x }

µx. σ

Figure 6: Inference rules for ↓ over closed terms of LC .

Example 3.6. [Divergence and ↓dpt]
Consider the term

σ = µx. (x ⊕ x)

Using the rules in Figure 2 one can prove that σ↓dpt; consequently dpt(σ) is
finite and unfold(σ) is well-defined; in particular dpt(σ) = 1 and unfold(σ) =
σ ⊕ σ. Note now that the term σ engages in an infinite sequence of internal
moves

σ
τ−→ σ ⊕ σ

τ−→ σ
τ−→ σ ⊕ σ

τ−→ . . .

In other words the term σ diverges. Similarly, one can reason that terms as
µx. (nil ⊕ x) and µx. (α ⊕ x) suffer the same issue.

Throughout the paper we want to deal only with terms that do not diverge
and with finite F (σ). Unfortunately, ↓dpt is too weak a predicate to force the
terms that satisfy it to converge. To isolate the σ’s that converge we use the
predicate ↓. Formally, we define it as the least fixed point of the functor given
by the inference rules in Figure 6. The predicate ↓ is essentially a strengthened
version of ↓dpt.

Proposition 3.7. For every σ ∈ LC , σ↓ implies σ↓dpt.

Proof. Straightforward from the definitions of the predicates.

The predicate ↓ is preserved by silent moves.

Lemma 3.8. Let σ↓. If σ
τ−→ σ′ then σ′↓.

Proof. The proof proceeds by rule induction on the derivation of σ
τ
−→ σ′.

The only interesting case is when the silent move σ
τ
−→ σ′ is inferred by

using rule [r-Ext-L] or rule [r-Ext-R] (see Figure 5). Suppose rule [r-Ext-L]
was used. Then σ = σ1 + σ2, σ′ = σ′1 + σ2, and the derivation is

σ1

τ
−→ σ′1

σ1 + σ2

τ
−→ σ′1 + σ2

We have to prove that σ′1 + σ2↓; the definition of ↓ ensures that, to this
aim, it is enough to show that (a) σ′1↓ and that (b) σ2↓ (see Figure 6). Point
(b) follows from the hypothesis: since σ↓, the equality σ = σ1 + σ2 implies that
σ1↓ and that σ2↓. The last fact is exactly point (b).

Now, by using the fact that σ1↓, we prove point (a). The derivation shown

above let us use rule induction; the lemma holds for σ1: if σ1↓ and σ1

τ
−→ σ̂1

then σ̂′1↓. We know that σ1↓ and that σ1

τ
−→ σ′1, thus it must be σ′1↓.

If rule [r-Ext-R] was used the argument is similar.

12

We have also the converse.

Lemma 3.9. Let σ be a closed term of LC . Then σ↓ if and only if σ
τ−→ σ′

implies σ′↓.

Proof. The only if side of the lemma is Lemma 3.8, so we have to prove only

that if σ
τ
−→ σ′ implies σ′↓, then σ↓.

Let σ be a closed term of LC such that σ
τ
−→ σ′ implies σ′↓. We have to

show that σ↓.
The proof is by structural induction on the form of σ; the only interesting

case is when σ is an external sum. In that case, σ = σ1 + σ2, so to prove that
σ1↓ it is enough to show that σ1↓ and that σ2↓.

We prove σ1↓. The term σ1 is a sub-term of σ, hence structural induction

guarantees that the lemma holds for σ1: if σ1

τ
−→ σ′1 implies σ′1↓, then σ1↓.

Assume that σ1

τ
−→ σ′1; thanks to the structure of σ we can derive

σ1

τ
−→ σ′1

σ1 + σ2

τ
−→ σ′1 + σ2

[r-Ext-L]

Now the hypothesis of the lemma implies that σ′1 + σ2↓, so from the the defi-
nition of ↓ it follows that σ′1↓ and that σ2↓.

We have shown that σ1

τ
−→ σ′1 implies σ′1↓, so from the inductive hypothesis

it follows that σ1↓. Moreover, we have also shown that σ2↓; we have proven
that σ↓.

The for rule [r-Ext-L] is analogous, and left to the reader.

The predicate ↓ let us give an inductive characterisation of the convergent
terms.

Lemma 3.10. [Convergence]
Let σ be a closed term of LC . Then σ↓ if and only if there exists a k ∈ N such

that σ
τ−→∗

n
σ′ implies n ≤ k.

Proof. The only if side is by rule induction on why σ↓.
We prove the if side, which states that if there exists a k ∈ N such that

σ
τ
−→∗

n

σ′ implies n ≤ k, then σ↓.
The argument is an induction on k. If k = 0 then σ can not perform τ , and

so it is either 1, nil or a prefix α.σ′. In all these cases we can easily infer σ↓.
If k > 0 then σ performs a τ , so suppose σ

τ
−→ σ′; it follows that σ′

τ
−→∗

m

σ′′

implies m ≤ k − 1. This means that there exists a k′ such that σ′
τ
−→∗

m

σ′′

implies m ≤ k′. Since k − 1 < k, we can apply the inductive hypothesis to σ′;
from this application it follows that σ′↓.

As yet, we have proven that σ
τ
−→ σ′ implies σ′↓; this allows us to apply

Lemma 3.9, which ensures that σ↓.

It is easy to see that a converging term σ has finite F (σ).

Lemma 3.11. For every σ ∈ LC if σ↓ then F (σ) is finite.

Proof. We can prove it by rule induction on the derivation of σ↓.

13

Now we let C denote the set of all terms σ of LC which are closed and satisfy ↓.
We refer to these terms as contracts.

Proposition 3.12. Let σ be a contract, then unfold(σ) is a well-defined
contract.

Proof. We have to show that unfold(σ) is closed, and that it satisfies ↓. The
first fact is part (ii) of Lemma 3.1. The second fact follows from part (ii) of
Lemma 3.2 and Lemma 3.8.

Example 3.13. [e-vote, [LP08, Bd10]]

Ballot = µx. ?Login.(!Wrong.x⊕ !Ok.(?VoteA.x+ ?VoteB.x))

Voter = µx. !Login.(?Wrong.x+ ?Ok.(!VoteA.1⊕ !VoteB.1))

A process offering contract Ballot implements a service for e-voting. Such a
service lets a client log in. If the log in fails the services starts anew, while if the
log in succeeds the two actions are offered to the environment, namely VoteA

and VoteB.
The contract Voter is a recursive client for the protocol described by the

contract Ballot.

Example 3.14. [e-commerce, [BBMR08]]

Customer = !Request.(!PayDebit.ρ′⊕
!PayCredit.ρ′⊕
!PayCash.1)

ρ′ = !Long.?Bool.1

Bank = µx. ?Request.(?PayCredit.?Long.!Bool.x+
?PayDebit.?Long.!Bool.x+
?PayCash.x)

The contracts above describe the conversation that should take place be-
tween a client (which offers the contract Customer) and a bank (which has
contract Bank) involved in an on-line payment. The conversation unfolds as
follows: the Customer sends a request to the bank and afterwards it chooses the
payment method; the choice is taken by an internal sum and this means that
the decision of the Customer is independent from the environment (ie. the Bank
contract). If the Customer decides to pay by cash then no other action has to
be taken; while if the payment is done by debit or credit card the Customer
has to send the card number, this is represented by the output !Long. After the
card number has been received the Bank answers with a boolean. Intuitively,
this represents the fact that the bank can approve or reject the payment. The
Customer protocol finishes after such boolean has been received, while the Bank
starts anew.

3.1.1 Client-Server interactions and the compliance relation

Contracts are expressive enough to encode XML based languages such as WS-
BPEL activities and WSCL diagrams [CGP09]. and in [CCLP06] it is shown

14

how to assign contracts to a subset of ccs processes. Intuitively, if a process,
such as a server, is assigned a contract σ then it guarantees to support the
behaviour described in σ. The interaction between servers and clients can be
described at the level of their contracts, by defining a binary operation ρ ‖ σ
between their contracts and describing the evolution of the contracts as they
interact. This interacting semantics is given in Figure 7, where the judgements

are of the form ρ ‖ σ
τ
−→ ρ′ ‖ σ′. It presupposes a binary relation on Act , α ./ β,

which intuitively means that the action α can synchronise with action the β.
This relation can be instantiated in various ways depending on the particular
set of actions Act ; the only general property we require of it is that it be finitary,
that is for every action α the set {β | α ./ β } be finite.

Example 3.15. Suppose we take Act to be { a?, a! | a ∈ A } where A is a set
of communicating channels. Then define

α ./i β whenever α = a?, β = a! or α = a!, β = a? for some a ∈ A

This represents synchronisation on channels.
We will use a more elaborate set of actions when interpreting session types

as contracts. Recall from Section 2 the set of basic types BT and the set of labels
L used in session types. Using these we can define Act to be

{ ?b, !b | b ∈ BT } ∪ { l?, l! | l ∈ L }

with ./c determined by

α ./c β whenever

α =?b, β =!b′ b′ 4g b

α =!b, β =?b′ b4g b
′

α =?l, β =!l

α =!l, β =?l

Using the basic sub-typing relation depicted in Figure 3 the following exam-
ples should be clear:

(i) ?Num ./c!Int: a contract that can read a datum of type Num can read a
datum of type Int because Int4g Num.

(ii) ?Int 6./c!Num: conversely a contract ready to read a datum of type Int can
not read a datum of type Num because Num 64g Int.

(iii) ?Random ./c!Bool: as in point (i), Bool 4g Random hence an interaction
between the actions ?Random and !Bool is safe.

Having described how interactions between clients and servers affect their
contracts, let us describe, by means of a relation, when a client (guaranteeing a)
contract ρ can safely interact with a server (guaranteeing a) contract σ. Indeed,
we shall formalise the meaning of “safely”.

The central notion is that of compliance between contracts. This is defined

co-inductively and uses the predicate on contracts ρ
X
−→ which intuitively means

that the contract ρ has already been satisfied. Our definition is a variation on
that of compliance in [LP07, LP08, Pad10].

15

ρ
τ
−→ ρ′

ρ ‖ σ
τ
−→ ρ′ ‖ σ

[p-Sil-l]
σ

τ
−→ σ′

ρ ‖ σ
τ
−→ ρ ‖ σ′

[p-Sil-r]

ρ
α
−→ ρ′ σ

β
−→ σ′

ρ ‖ σ
τ
−→ ρ′ ‖ σ′

α ./ β [p-Synch]

Figure 7: Inference rules for contract interaction.

Definition 3.16. [Compliance relation]
Let Fa : P(C2) −→ P(C2) be the function defined so that (ρ, σ) ∈ Fa(R)
whenever both the following hold:

(i) if ρ ‖ σ
τ

6−→ then ρ
X−→

(ii) if ρ ‖ σ τ−→ ρ′ ‖ σ′ then (ρ′, σ′) ∈R

If R ⊆ Fa(R) then we say that R is a co-inductive compliance relation. Let a
denote the greatest solution of the equation X = Fa(X). We call this solution
the compliance relation. The relation a is the greatest co-inductive compliance
relation. If ρ a σ we say that the contract ρ complies with the contract σ.

Notice that there is an asymmetry in the relation ρ a σ; the intention is that
any client running contract ρ when interacting with a server running contract
σ will be satisfied, in the sense that either the interaction between client and
server will go on indefinitely, or, if the interaction gets stuck, the client will end

on its own in a state in which it is satisfied, ρ
X
−→.

Example 3.17. [Compliance and divergent terms]
In order that the relation a captures the intuition described above, it is crucial
that C contains no divergent terms. Had we admitted them, then for every ρ
the relation

{ (ρ′, µx. x) | ρ τ−→∗ ρ′ }

would have been a perfectly fine co-inductive compliance. Note, though, that
the client ρ is by no means satisfied by the server.

Example 3.18. Note that according to our definition of compliance, the client
need not ever perform X. For example, suppose α ./ β and consider the set

{(µx. α.x, µy. β.y)}

It is a co-inductive compliance relation, and the client contract, µx. α.x, does
not perform X at all.

Example 3.19. The fact that nil can not be satisfied is formally expressed by
the fact that

nil 6a σ

16

for every contract σ. On the other hand 1 is always satisfied because for every
σ

1 a σ.

Suppose σ is a contract which can not interact with the action α; by this we

mean that σ
τ−→∗ β−→ implies β 6./ α. Then

1 + α.ρ a σ

for every ρ, because ρ is guarded by an action that can never take place.
Referring to Example 3.13, it is routine work to check that the following

relation is a co-inductive compliance.

R= {(Voter,Ballot),

(?Wrong.Voter + ?Ok.(!VoteA.1⊕ !VoteB.1),

!Wrong.Ballot⊕ !Ok.(?VoteA.Ballot + ?VoteB.Ballot)),

(?Ok.(!VoteA.1⊕ !VoteB.1), !Ok.(?VoteA.Ballot + ?VoteB.Ballot),

(!VoteA.1⊕ !VoteB.1, ?VoteA.Ballot + ?VoteB.Ballot),

(!VoteA.1, ?VoteA.Ballot + ?VoteB.Ballot),

(!VoteB.1, ?VoteA.Ballot + ?VoteB.Ballot),

(1,Ballot)}

The compliance relation is determined purely by the client contract perform-
ing the success action X, therefore 1 complies with every contract σ; this means
that a client whose contract is 1 is satisfied by any server. On the other hand
a server with contract 1 is equivalent to a server with contract nil. We prove
this fact.

Proposition 3.20. For every contract ρ, ρ a 1 if and only if ρ a nil.

Proof. Suppose ρ a 1; this means that there exists a co-inductive compliance R
that contains (ρ,1). Since 1 offers no interaction, the contract ρ enjoys the two
properties which follow,

(a) if ρ
τ

6−→ then ρ
X
−→

(b) if ρ
τ
−→ ρ′ then (ρ′,1) ∈R

Knowing (a) , it is straightforward to show that

R′∆= { (ρ′,nil) | ρ
τ
−→∗ ρ′, ρ a 1 }

is a co-inductive compliance.
A symmetrical argument can be used to show that also

R′∆= { (ρ′,1) | ρ
τ
−→∗ ρ′, ρ a nil }

is a co-inductive compliance.

17

The following properties of the compliance relation will be useful later in the
paper.

Lemma 3.21. Let ρ, σ1, and σ2 be contracts. The following hold:

(i) if ρ a σ1, ρ a σ2 then ρ a σ1 ⊕ σ2

(ii) if ρ1 a σ, ρ2 a σ then ρ1 ⊕ ρ2 a σ

Proof. As an example we outline the proof of (i). Let R be the relation defined
by

R= { (ρ, σ) | ρ a σ or σ = σ1 ⊕ σ2 where ρ a σ1 and ρ a σ2 }

It is straightforward to show that R is a compliance relation, from which the
result follows.

Proposition 3.22. For all contracts ρ, σ, we have the following

(a) if ρ a σ then ρ a unfold(σ)

(b) if ρ a σ then unfold(ρ) a σ

Proof. Both follow in a straightforward manner from part (ii) of Lemma 3.2 and
point (ii) of Definition 3.16.

The converse is also true:

Proposition 3.23. For all contracts ρ, σ, we have the following

(a) if ρ a unfold(σ) then ρ a σ
(b) if unfold(ρ) a σ then ρ a σ

Proof. Let us look at the proof of (a). Let

R = { (ρ, σ) | ρ a σ or ρ a unfold(σ) }

The result will follow if we can prove that R is a co-inductive compliance rela-
tion, as given in Definition 3.16.

(i) Suppose ρ ‖ σ
τ

6−→. If ρ a σ then by definition ρ
X
−→. Otherwise

ρ a unfold(σ)

Note that σ
τ

6−→ and therefore by part (i) of Lemma 3.2 it follows that

unfold(σ) = σ, which means, since now ρ a σ, ρ
X
−→.

(ii) Suppose ρ ‖ σ
τ
−→ ρ′ ‖ σ′. We have to show (ρ′, σ′) ∈R, which is obvious

if ρ a σ. On the other hand if ρ a unfold(σ) there are three cases,

depending on the inference of the action ρ ‖ σ
τ
−→ ρ′ ‖ σ′. If the action is

due to a silent move of ρ, the result follows from point (ii) of Definition 3.16.
In the other cases the result will follow by an application of parts (ii), (iii)
or (iv) of Lemma 3.2 and of point (ii) of Definition 3.16.

18

3.2 The server pre-order

In this subsection we show how to compare servers in terms of their ability to
satisfy clients; once more this is done in terms of their respective contracts.

Definition 3.24. [Server pre-order] Let JσKsrv = { ρ | ρ a σ }. Then we write
σ vsrv σ

′ whenever JσKsrv ⊆ Jσ′Ksrv.

This provides us with a natural subsumption-like pre-order between server-
side contracts. For if σ vsrv σ

′ then we are assured every client satisfied by a
server running the contract σ is by definition also satisfied by a server running
the contract σ′.

One consequence of Proposition 3.22 and Proposition 3.23 is that

Junfold(σ)Ksrv = JσKsrv

and therefore when reasoning about the server pre-order we can work up to
unfolding.

3.2.1 Co-inductive characterisation

Here we give a co-inductive characterisation of the server pre-order vsrv ; this
is based on a number of semantic properties of contracts, which we outline in
the following lemmas.

Lemma 3.25. If σ1 vsrv σ2 and σ2
τ−→ σ′2 then σ1 vsrv σ

′
2.

Proof. Suppose ρ a σ1, where σ1 vsrv σ2 and σ2

τ
−→ σ′2; we have to show ρ a σ′2.

We know a is a co-inductive compliance relation, and also that ρ ‖ σ2

τ
−→

ρ ‖ σ′2. So by part (ii) of Definition 3.16 the required ρ a σ′2 follows.

The next property involves the acceptance sets of contracts. For any r ⊆ Act

let us write σ ↓ r whenever σ
τ

6−→ and r = {α ∈ Act | σ
α
−→}. These sets

r,r′, . . . are called initials [EF02] or ready sets [LP07, LP08]. If σ ↓ r we say
that σ converges to r; indeed, in our presentation only stuck states have ready
sets.

Then let Acc(σ) = {r | σ
τ
−→∗ σ′, σ′ ↓ r }; these are called the acceptance

sets of σ.

Example 3.26. We give a small example about the definitions above. See also
Figure 8.

σ = α.σ1 ⊕ (β.σ2 ⊕ γ.σ3) σ′ = (α.σ′1 ⊕ β.σ2) ⊕ γ.σ3)

Acc(σ) = { {α}, {β}, {γ} } Acc(σ) = { {α}, {β}, {γ} }

Moreover, one sees easily that nil ↓ ∅ and 1 ↓ ∅, so

Acc(nil) = Acc(1) = {∅}

19

σ

α.σ1

τ

β.σ2 ⊕ γ.σ3

β.σ2

τ

γ.σ3

τ

τ

σ′

β.σ′1 ⊕ γ.σ′2

α.σ′1

τ

β.σ′2

τ

τ

γ.σ′3

τ

Acc(σ) = { {α}, {β}, {γ} } Acc(σ) = { {α}, {β}, {γ} }

Figure 8: An example of acceptance sets.

Example 3.27. It is easy to show that whenever unfold(σ) = 1 and σ ↓ r
then r v r′ for every r′. Consider the action X; it does not belong to Act ,
therefore by definition of σ ↓ r the action X is not in r. But X is the only
visible action performed by σ, hence r = ∅.

Proposition 3.28. Let σ ∈ C. Then

(a) if σ ↓ r then r is finite

(b) the set Acc(σ) is finite

(c) the set Acc(σ) is non-empty

Proof. Part (a) follows from the fact that external sums contain a finite amount
of summands. Part (b) follows form Lemma 3.11. Part (c) follows from the fact
that if σ↓ then σ has stuck derivatives.

Example 3.29. [Divergent terms and acceptance sets]
Here we show the acceptance set of a divergent term. Let σ = µx. α.x + x. For
every r we have σ 6↓ r because σ

τ−→, and the same is true for the derivative
α.σ + σ, because it also performs a τ :

σ
τ−→ α.σ + σ

τ−→ . . .

We thus conclude that Acc(σ) = ∅. Indeed, in the proof of part (iii) of the
preceding proposition the crucial hypothesis is σ↓.

Individual acceptance sets are compared by their ability to offer interactions.
We write rv s whenever for every αr ∈ r and every β such that β ./ αr there
exists some αs ∈ s such that β ./ αs also. The precise meaning of this pre-order
actually depends on the instantiation of the interaction relation ./.

Example 3.30. Suppose Act is the set { a?, a! | a ∈ A } and ./i is defined
as in Example 3.15. Then one can check that r v s if and only if R ⊆ S. On
the other hand with ./c from the same example, defined over the set of actions
{ ?b, !b | b ∈ BT } ∪ { l?, l! | l ∈ L }, it turns out that rv s whenever

• !l ∈!r implies l ∈ s for every l ∈ L

20

• ?l ∈?r implies l ∈ s for every l ∈ L

• ?br ∈ r implies ?bs ∈ s for some type bs such that bs 4g br

• !br ∈ r implies !bs ∈ s for some type bs such that br 4g bs

Lemma 3.31. Suppose σ1 vsrv σ2 and σ2 ↓ r, then there is some r′ ∈ Acc(σ1)
such that r′ v r.

Proof. This proof proceeds by contradiction. To establish the contradiction we
construct a contract ρ such that

(i) ρ a σ1

(ii) ρ 6a σ2

Suppose there is no r′ ∈ Acc(σ1) such that r′ v r. Thanks to part (c) of
Proposition 3.28 this can not be because Acc(σ1) is empty. Again by Proposi-
tion 3.28 we know Acc(σ1) to be finite, so let r1, . . .rn be all the elements in
Acc(σ1). From the hypothesis there are αi ∈ ri and βi ./ αi such that βi 6./ α
whenever α ∈ r′. Let the contract ρ be defined as β1.1 + . . .+ βn.1.

First notice that (ii) above is true: since σ2 ↓ r, ρ ‖ σ2

τ
−→∗ ρ ‖ σ′2 such

that ρ ‖ σ′2
τ

6−→ and ρ
X
6−→. This means that (ρ, σ2) can not be contained in any

co-inductive compliance relation.
To establish (i) above it is sufficient to prove that

R = { (ρ, σ′1) | σ1

τ
−→∗ σ′1 }

is a co-inductive compliance relation, which is relatively straightforward.

The final property is even more complicated. For any action α let σafterα
be the set

{σ′ | σ
τ
−→∗

β
−→

τ
−→∗ σ′,where α ./ β }

Proposition 3.32. Let σ be a contract, then for every α ∈ Acts the set
(σ after α) is finite.

Proof. Because we assume ./ to be finitary and for every contract S(σ) and
F (σ) are finite (see Lemma 3.5 and Lemma 3.11).

Note that in general this set may be empty. When it is non-empty we use⊕
(σ after α) to denote the obvious contract, the internal sum of all its ele-

ments2.

Lemma 3.33. Suppose σ1 vsrv σ2 and σ2
β−→ σ′2. Then whenever α ./ β,

(i) the set (σ1 after α) is non-empty

(ii) the contract
⊕

(σ1 after α) is smaller than σ′2. Formally,⊕
(σ1 after α) vsrv σ

′
2

2 A concise account for the use of the general sum operation
⊕

is given in footnote 4,
Section 4.

21

Proof. To prove part (i) consider the contract ρ = 1 + α.nil. Since ρ ‖ σ2

τ
−→

nil ‖ σ′2 it follows that (ρ, σ′2) can not be in any co-inductive compliance relation,
hence ρ 6a σ2. Therefore, from σ1 vsrv σ2, we have that ρ 6a σ1.

But because of the construction of ρ this can only be the case if (σ1afterα)
is non-empty. More specifically, if it was empty we could construct a simple co-
inductive compliance relation containing the pair (ρ, σ1).

Now consider part (ii). Suppose ρ a
⊕

(σafterα); we have to show ρ a σ′2.
To do so consider the contract ρ′ = 1 + α.ρ. Suppose we could establish

ρ′ a σ1 (1)

Because σ1 vsrv σ2 this would mean that ρ′ a σ2, from which the required
ρ a σ′2 follows, by part (ii) of Definition 3.16.

It remains to prove (2) above. Let

R = { (ρ, σ′) | ρ a σ′, σ′ ∈ C } ∪ { (ρ′, σ′1) | σ1

τ
−→∗ σ′1 }

Then, because ρ a
⊕

(σafterα), it is easy to establish that R is a co-inductive
compliance relation.

We have now assembled all the required properties for our co-inductive char-
acterisation of the server pre-order.

Definition 3.34. [Semantic sub–server relation]
Let F4srv

: P(C2) −→ P(C2) be the function defined so that (σ1, σ2) ∈ F4srv
(R)

if and only if the following conditions hold:

(i) if σ2
τ−→ σ′2 then (σ1, σ

′
2) ∈R

(ii) for every r ∈ Acc(σ2), σ2 ↓ r implies r′ v r for some r′ ∈ Acc(σ1)

(iii) if σ2
β−→ σ′2 and α ./ β then (σ1 afterα) 6= ∅ and

⊕
(σ1 afterα) R σ′2

If R ⊆ F4srv(R) then we say that R is a co-inductive semantic sub–server
relation. Let 4srv denote the greatest solution of the equation X = F4srv(X).
We call this solution the semantic sub–server relation. The relation 4srv is the
greatest co-inductive semantic sub–server relation.

Proposition 3.35. If σ1 vsrv σ2 then σ1 4srv σ2.

Proof. It is sufficient to prove that the relation vsrv is a semantic sub-server
relation; this is straightforward in view of the last three lemmas.

We also have the converse.

Theorem 3.36. [Co-inductive characterisation]
The server pre-order is the greatest semantic sub–server relation.

Proof. We are required to prove that for all contracts σ1, σ2,

σ1 vsrv σ2 if and only if σ1 4srv σ2

Because of the previous proposition it is sufficient to prove that σ1 4srv σ2

and ρ a σ1 implies ρ a σ2. This will follow if we can show that the relation

R = { (ρ, σ) | ρ a σ1 for some σ1 such that σ1 4srv σ }

is a co-inductive compliance relation.
Suppose (ρ, σ) ∈R. By Definition 3.16 we are required to show that

22

(i) if ρ ‖ σ
τ

6−→ then ρ
X
−→

(ii) if ρ ‖ σ
τ
−→ ρ′ ‖ σ′ then (ρ′, σ′) ∈R

By the definition of R we know that there is some contract σ1 such that σ1 4srv

σ and ρ a σ1.

We prove the first point, (i). If ρ ‖ σ
τ

6−→ then ρ
τ

6−→, σ
τ

6−→; in addition, the

two contracts can not interact, that is ρ
α
−→ and σ

β
−→ implies α 6./ β. Since ρ

and σ are stable both Acc(ρ) and Acc(σ) contain exactly one set each, say r
and s respectively. Then rephrasing the above remark we know

α ∈ r, β ∈ s implies α 6./ β (2)

Since σ1 4srv σ, by part (ii) of Definition 3.34 σ1

τ
−→∗ σ′1 for some σ′1 such that

σ′1 ↓ s′ and s′ v s. One can use (2) above to show that this means

α ∈ r, β ∈ s′ implies α 6./ β

Also, since ρ a σ1 and σ1

τ
−→∗ σ′1, part (ii) of Definition 3.16 implies ρ a σ′1.

But ρ ‖ σ′1
τ

6−→ and therefore we have the required ρ
X
−→.

To prove point (ii) above, we have to show that if ρ ‖ σ
τ
−→ ρ′ ‖ σ′ there

exists a σ̂ such that

ρ′ a σ̂ and σ̂ 4srv σ
′

We proceed by case analysis on the rule used to infer ρ ‖ σ
τ
−→ ρ′ ‖ σ′. There

are three possibilities: first suppose the inference rule [p-Sil-L] from Figure 7

is used; that is ρ
τ
−→ ρ′ and σ′ = σ. In this case the required σ̂ is σ1; the

definition of R gives σ1 4srv σ and point (ii) of the definition of compliance,
Definition 3.16, gives ρ′ a σ1.

The case when the rule [p-Sil-R] is used is similar; choosing the required σ̂
to be σ1 again is justified by point (i) of Definition 3.34.

Finally suppose [p-Synch] is employed. Now we know that

ρ
δ
−→ ρ′, σ

β
−→ σ′, δ ./ β.

In this case we show that the required σ̂ is
⊕

(σ1 after δ). Part (iii) of Defini-
tion 3.34 implies that

⊕
(σ1 after δ) 4srv σ

′ and thus it suffices to show that
ρ′ a

⊕
(σ1 after δ).

The set σ1 after δ is finite and therefore by Lemma 3.21 it is sufficient to
prove ρ′ a σ′′ for every σ′′ ∈ (σ1 after δ).

For such a σ′′ we can derive the transition

ρ ‖ σ1

τ
−→∗ ρ′ ‖ σ′′,

where one of the reductions is due to the interaction through δ. From part (ii)
of Definition 3.16 it follows that ρ a σ′′.

23

3.3 Must testing

The compliance relation between contracts, Definition 3.16, has much in com-
mon with the idea of testing from [NH84]. Here we explain the relationship. We
recall the definition of must testing, and explain how it differs from the com-
pliance relation. Despite this difference we then go on to show that the testing
pre-order it induces on contracts actually coincides with the server pre-order.

For every contract ρ and σ a sequence of reductions

ρ ‖ σ
τ
−→ ρ1 ‖ σ1

τ
−→ ρ2 ‖ σ2 −→ . . .

is called a computation of ρ ‖ σ and each derivative ρi ‖ σi is a state of the
computation. Intuitively viewing ρ as a test, we say that the state ρi ‖ σi is

successful if ρi
X
−→. Then, a computation is successful it it contains a successful

state.

Example 3.37. For every σ all the computations of

1 + ?l1.nil ‖ σ

are successful because in the first state 1
X−→. On the other hand, suppose a

contract ρ does not perform X and neither do its derivatives. Then no compu-
tation of ρ ‖ σ is successful.

A computation is maximal if either

(i) it is infinite, or

(ii) it is finite and the last state is stuck, that is has the form ρk ‖ σk where

ρk ‖ σk
τ

6−→

Definition 3.38. [Must testing]
For all contracts ρ, σ we write σmustρ if all the maximal computations of ρ ‖ σ
are successful.

The notion of a client contract complying with a server contract differs in
two ways from that of a server contract passing a client contract viewed as a
test.

Example 3.39. One difference between must and a is what happens after
a contract has passed a test, that is the test has reached a success full state;
the subsequent computation is disregarded by must, whereas the compliance
relation has to hold for all the states in a computation.

As an example consider σ =?Real.nil and ρ = 1+!Int.nil. Clearly ρ
X−→,

therefore σ must ρ because each maximal computation of ρ ‖ σ begins in a

successful state. However ρ 6a σ because ρ ‖ σ τ−→ nil ‖ nil.

Example 3.40. The second difference is that the compliance relation does not
require the testing contract to ever report success, provided that the communi-
cation between the contracts can continue indefinitely. As an example consider
the following contracts

σ = µx. !Bool.x, ρ = µy. ?Rnd.x+!Int.1

24

Plainly, one sees that ρ
X
6−→, and, therefore, ρ ‖ σ is not a successful state. The

only computation of ρ ‖ σ is the infinite loop ρ ‖ σ τ−→ ρ ‖ σ, and therefore
ρ a σ holds; on the other hand σmustρ is false. Example 3.18 contains an even
simpler instance of the difference between the relation a and the relation must.

The must relation can be used to define a well known pre-order:

Definition 3.41 (Must pre-order [NH84]). Let σ1, σ2 be contracts. We write
σ1 vmust σ2 if and only if for every ρ if σ1 must ρ then σ2 must ρ.

Notwithstanding the differences between testing and compliance discussed
above, it turns out that the server pre-order vsrv and the must pre-order vmust

coincide (Corollary 3.49).
First, in a series of lemmas, we show that vmust satisfies the three defining

properties of the semantic sub–server relation (Definition 3.34).

Lemma 3.42. Let σ1 vmust σ2. If σ2
τ−→ σ′2 then σ1 vmust σ

′
2.

Proof. Take a contract ρ such that σ1 must ρ and a maximal computation C
performed by σ′2 ‖ ρ. It is easy to see that a maximal computation from σ2 ‖ ρ
can be obtained by prefixing C with the move σ2 ‖ ρ

τ
−→ σ′2 ‖ ρ.

Since σ1 vmust σ2 it follows that this extended computation must be suc-
cessful. However this implies that C itself is successful since ρ does not change
during the initial extending move.

Lemma 3.43. Let σ1 vmust σ2 and σ2 ↓ r. There exists a r′ ∈ Acc(σ1) such
that r′ v r.

Proof. The proof is similar to that of Lemma 3.31, and proceeds by contradic-
tion. Let r1, . . . ,rn, n ≥ 1 be the elements of Acc(σ1) and suppose that ri 6 vr.
This means that for every ri there is αi ∈ ri and a βi such that βi ./ αi and
βi 6./ α whenever α ∈ r.

Let ρ be the contract β1.1 + . . .+ βn.1. The contradiction is established by
showing that

(i) σ1 must ρ while

(ii) σ2 must ρ is false

Both of which we leave to the reader. Intuitively (ii) follows because σ2 ↓ r,

while (i) is a consequence of the fact that if σ1

τ
−→∗ σ′

τ

6−→ then σ′ ↓ ri for some
1 ≤ i ≤ n.

Lemma 3.44. Let σ1 vmust σ2 and σ2
β−→ σ′2. Whenever α ./ β

(i) the set (σ1 after α) is not empty

(ii) the contract
⊕

(σ1 after α) is smaller than σ′2. Formally,⊕
(σ1 after α) vmust σ

′
2

25

Proof. The proof of (i) is analogous to that of (i) in Lemma 3.33, but the
contract to be used in this case is ρ = (1 ⊕ 1) + α.nil.

We prove point (ii) by contradiction. Suppose there is a contract ρ′ such
that

⊕
(σ1afterα)mustρ′ while σ′2mustρ

′ is false. Now consider the contract
ρ = α.ρ′ ⊕ 1. Clearly σ2mustρ is false while σ1mustρ is true. This contradicts
the hypothesis σ1 vmust σ2.

Proposition 3.45. If σ1 vmust σ2 then σ1 4srv σ2.

Proof. The previous three lemmas show that vmust is a semantic sub–server
relation, from which the result follows.

To establish the converse of this result we need to develop some additional
notation. The first is a generalisation of the relation σ after α to σ after u
where u is a non-empty sequence of actions from Act?. This is defined by
induction on the length of u, with the inductive case being

σ after wα =
⋃

σ′∈(σ after w)

σ′ after α

Example 3.46. Let σ =!t1.(?t2.σ1+?t3.σ2)+!t1.nil and ?t3 ./!t2. Then

σafter ?t1!t2 =
⋃
σ′∈(σ after ?t1)

σ′ after !t2
=

⋃
σ′∈{nil,?t2.σ1+?t3.σ2} σ

′ after !t2
= {σ1, σ2}.

Next we generalise the interaction relation α ./ β to non-empty sequences,
u ./ w in the obvious manner; note that this implies that u and w have the
same length. Finally we need the notion of contracts performing sequence of
actions. For u ∈ Act? let σ

u
=⇒ σ′ be the least relation which satisfies

(a) σ
ε

=⇒ σ for every contract σ

(b) σ
u

=⇒ σ1, σ1

a
−→ σ′, where a ∈ Act , implies σ

u.a
=⇒ σ′

(c) σ
u

=⇒ σ1, σ1

τ
−→ σ′ implies σ

u
=⇒ σ′

We have the obvious generalisation of condition (iii) in Definition 3.34:

Lemma 3.47. Suppose σ1 R σ2 for some semantic sub–server relation R and
σ2

u
=⇒ σ′2 for some non-empty u ∈ Act?. Then v ./ u implies that

(i) the set (σ1 after v) is not empty

(ii) the contract
⊕

(σ1 after v) is related by R to σ′2. Formally,⊕
(σ1 after v) R σ′2

Proof. By induction on the non-empty size of u; the base case follows from part
(iii) of Definition 3.34.

26

Theorem 3.48. [Co-inductive characterisation]
The must pre-order is the greatest semantic sub–server relation.

Proof. We have to prove that for all contracts σ1, σ2

σ1 4srv σ2 if and only if σ1 vmust σ2.

Because of Proposition 3.45 it is sufficient to prove σ1 4srv σ2 implies σ1 vmust

σ2. So, suppose σ1 4srv σ2 and σ1 must ρ; we must prove σ2 must ρ.
Consider a maximal computation of σ2 ‖ ρ

σ2 ‖ ρ
τ
−→ σ1

2 ‖ ρ1

τ
−→ . . . (3)

We first examine the case when this is finite, with terminal state σk2 ‖ ρk.
Intuitively this finite computation can be unzipped to give the contributions
from the individual components σ2 and ρ:

σ2
u

=⇒ σk2 ρ
v

=⇒ ρk where v ./ u

We are required to show that one of the derivatives of ρ in ρ
v

=⇒ ρk is
successful. To this aim we will exhibit a suitable computation of σ1 ‖ ρ; in
particular we will show that there exists a σ′1 such that

(a) the composition σ′1 ‖ ρk is stuck

(b) the computation σ1 ‖ ρ
τ
−→∗ σ′1 ‖ ρk exists

(c) the derivatives of ρ in the computation of point (a) are contained in the

computation σ2 ‖ ρ
τ
−→∗ σk2 ‖ ρk

These three points are enough to prove that in ρ
v

=⇒ there exists a successful
derivative: thanks to (a), the computation in (b) is a maximal computation of
σ1 ‖ ρ; the assumption σ1 vmust ρ implies that in that computation there is a

successful derivative ρ̂, and point (c) ensures that ρ̂ is contained in ρ
v

=⇒.
We prove one by one the points above.

(a) Here we show that, for a suitable σ′1, the composition σ′1 ‖ ρk is stuck.

By assumption the state σk2 ‖ ρk is terminal; this implies that

(1) both σk2 and ρk are stuck. A consequence is that their acceptance sets
are singleton; say Acc(σk2) = {r} and Acc(ρk) = {s}

(2) the contracts σk2 and ρk can not interact. Formally

α ∈ r implies β 6./ α for every β ∈ s.

Consider now the contract
⊕

(σ1 after v); Part (i) Lemma 3.47 implies
that the set (σ1 after v) is not empty and part (ii) of the same lemma
implies that

⊕
(σ1 after v) 4srv σ

k
2 .

Part (ii) of Definition 3.34 and (2) above imply that there exists r′ ∈
Acc(

⊕
(σ1 after v)) such that

α ∈ r′ implies β 6./ α for every β ∈ s′. (4)

27

From the definition of acceptance set now follows that
⊕

(σ1afterv)
τ
−→∗σ′1

for some σ′1 such that σ′1 ↓ r′. The latter fact means that σ′1
τ

6−→ and (4)
above means that σ′1 and ρk can not interact; Since (1) above proves that
ρk is stuck we have shown that σ′1 ‖ ρk is stuck.

(b) We are required to exhibit the computation σ1 ‖ ρ
τ
−→∗ σ′1 ‖ ρk.

Since
⊕

(σ1 after v)
τ
−→∗ σ′1 there exists a σ′′1 ∈ (σ1 after v) such that

σ′′1
τ
−→∗ σ′1. From the definition of (σ1 after v) it follows that σ1

w
=⇒ σ′′1

for some such that w ./ v, and this implies that σ1
w

=⇒ σ′1. Zipping this

action sequence together with ρ
v

=⇒ ρk we obtain the computation

σ1 ‖ ρ
τ
−→∗ σ′1 ‖ ρk

τ

6−→

We remark that the computation above is finite and can not be extended,
hence it is maximal.

(c) The derivatives of ρ in the computation

σ1 ‖ ρ
τ
−→∗ σ′1 ‖ ρk

are contained in the computation σ2 ‖ ρ
τ
−→∗ σk2 ‖ ρk because the former

computation has been obtained by zipping ρ
v

=⇒ ρk with a computation
made by σ1.

Now suppose that the maximal computation (3) above is infinite. Then the
result of unzipping gives infinite traces u, v such that

σ2
u

=⇒ ρ
v

=⇒

Let us denote the finite prefixes of these traces of length k by u(k), v(k) re-
spectively. By Lemma 3.47 we know that σ1 after v(k) is non-empty, for every
k ≥ 0. This means that the LTS generated by σ1 is infinite.

Now consider the sub-LTS consisting of all nodes σ which can be reached

from σ1 using a weak move σ1
w(k)
=⇒ σ′ where w(k) is some trace satisfying

w(k) ./ v(k). This sub-LTS is therefore infinite. It is also finite-branching and
so by Kőnig’s lemma it has an infinite path. By following this path from the
root we get σ1

w
=⇒ such that w(k) ./ v(k), for every k ≥ 0.

This infinite computation can now be zipped with ρ
v

=⇒ to obtain an infinite
computation from σ1 ‖ ρ. Since σ1 must ρ it follows that there is some σk2 ‖
ρk in the maximal computation (3) above which is successful, and therefore
σ2 must ρ.

Corollary 3.49. The server pre-order equals the must pre-order. Formally

vsrv =vmust

Proof. It is a consequence of Theorem 3.36 and Theorem 3.48.

28

σ, ρ ::= Session Contracts
1 success∑
i∈I ?li.σ external choice, I finite, non-empty⊕
i∈I !li.σ internal choice, I finite, non-empty

?t.σ input
!t.σ output
x contract variable
µx. σ recursion

We impose the additional proviso that in a term the li’s are pair-wise different.

Figure 9: Session contract grammar.

4 Session Contracts

Here we specialise the contract language, to a sub-language which will be the
target of our interpretation of the session types from Section 2. This is the
topic of the first sub-section. We then go on to re-examine the server pre-order
as it applies to this sub-language; in particular we show that it can also be
characterised co-inductively, this time using purely syntactical criteria. In the
final section we give a similar co-inductive characterisation to a related sub–
client pre-order.

4.1 Session contracts

The syntax for the language LSC is given in Figure 9. We work relative to a
structural equivalence, generated by the following identities 3:

σ ⊕ ρ = ρ ⊕ σ σ ⊕ (σ′ ⊕ σ′′) = (σ ⊕ σ′) ⊕ σ′′

σ + ρ = ρ + σ σ + (σ′ + σ′′) = (σ + σ′) + σ′′

This justifies the use of the general summation constructs for internal and ex-
ternal choices, which emphasises the intended restrictions in the language. We
use SC to denote the set of terms σ of LSC such that σ↓. We refer to these terms
as session contracts. Note that SC is a subset of the more general language of
contracts C, but

• external choices are restricted to inputs on labels

• internal choices are restricted to outputs on labels

Note also that nil is not a session contract. Instead we have chosen 1 to be the
base contract, for reasons which will become apparent. Moreover, we already
reasoned that a server contract 1 has the same behaviour as nil (Proposi-
tion 3.20).

Session contracts, due to the their restrictive syntax, enjoy some properties
which we will use in the next sub-sections, and which we prove now.

3Formally the use of these equalities is justified by the relationship between a and the weak
bisimulation equivalence [Mil99].

29

Lemma 4.1. Let σ be a session contract. Then

(i) σ
X−→ if and only if σ = 1

(ii) σ
τ−→∗ X−→ if and only if unfold(σ) = 1

(iii) σ
α−→ if and only if σ 6= 1

Proof. Part (i) follows from the restrictive syntax of session contract. The
proof of part (ii) requires two arguments. The if side, unfold(σ) = 1 implies

σ
τ
−→∗

X
−→, is justified by part (ii) of Lemma 3.2. The only if side, σ

τ
−→∗

X
−→

implies unfold(σ) = 1, can be proven by induction on the length of the se-

quence
τ
−→∗; the base case being part (i) of this lemma. Part (iii) can be proven

by structural induction.

4.2 The server pre-order

Definition 3.24 applies equally well to session contracts, but it is inappropriate
as it compares session contracts from the point of view of satisfying clients
who may use the more general contracts from Section 3. Instead let us restrict
attention to clients who also only run the more restricted session contracts.

Definition 4.2. [Restricted server pre-order]
For σ1, σ2 ∈ SC let σ1 vSCsrv σ2 whenever ρ a σ1 implies ρ a σ2 for every ρ in
SC.

This relation is more generous than vsrv in that it allows implementation
refinement [Pad10] to happen, as the following example shows.

Example 4.3.
?l1.1vSCsrv ?l2.1+?l1.1

If a session contract ρ can interact with ?l1.1 then, modulo unfolding, it has
to be defined by an internal sum. Moreover this sum can only contain one
summand and therefore ρ complies also with ?l2.1+?l1.1.

Consider now the more general contract ρ′ =!l1.1 + !l2.nil. Then one can
check that ρ′ a?l1.1 whereas ρ′ 6a ?l2.1+?l1.1. It therefore follows that

?l1.1 6vsrv ?l2.1+?l1.1

Example 4.4. [e-vote, ballot refinement]
We give a more concrete instance of the previous example. Recall Example 3.13
and consider the session contract

BallotB =µx. ?Login.(!Wrong.1⊕
!Ok.(?VoteA.1 + ?VoteB.1 + ?VoteC.1 + ?VoteD.1))

BallotB offers to a voter more options than Ballot, and intuitively it should
be possible to use a server that guarantees BallotB in place of a server that
guarantees Ballot. This is not the case if the contracts are compared with vsrv ,
because Ballot 6vsrv BallotB. On the other hand, if we restrict our attention to
session contracts, and thus to the pre-ordervSCsrv , we have Ballot vSCsrv BallotB.

30

When comparing session contracts relative to this pre-order it will be con-
venient to work modulo unfolding, which is possible because of the following
result:

Proposition 4.5. Let σ1, σ2 be session contracts, then σ1 vSCsrv σ2 if and only
if unfold(σ2) vSCsrv unfold(σ2).

Proof. Follows from Proposition 3.22 and 3.23.

Proposition 4.6. [Bottom element]
The pre-order vSCsrv enjoys the following properties,

(i) it has a has bottom element

(ii) if σ⊥ is a bottom element of vSCsrv then unfold(σ⊥) = 1

Proof. To prove (i) we show that 1 is a bottom element of vSCsrv , that is 1 vSCsrv σ
for every session contract σ. Let ρ be a session contract such that ρ a 1. The
session contract 1 offers no interaction. Therefore, because of the restricted syn-
tax of session contracts, ρ must also be, modulo unfolding, the simple contract
1. Now fix a session contract σ. Clearly 1 a σ, therefore from an application of
Proposition 3.23 it follows that ρ a σ.

To prove part (ii) let σ⊥ be an arbitrary bottom element of vSCsrv . We
are required to show that unfold(σ⊥) = 1. From the definition of bottom
element follows σ⊥ vSCsrv 1. An application of the previous proposition gives
unfold(σ⊥) vSCsrv 1. But now an analysis of the possible syntactic structure of
unfold(σ⊥) quickly yields that it must be 1 itself.

Part (ii) is relevant because 1 is not the only bottom element; for example
it is also true that µX.1 vSCsrv σ for every σ.

We now proceed, as in Section 3.2.1, to give a co-inductive characterisation
of this more generous pre-order on session contracts, this time taking advantage
of their restricted syntactic structure.

Definition 4.7. [Syntactic sub–server relation]
Let F4syn

srv
: P(SC2) −→ P(SC2) be defined by letting (σ1, σ2) ∈ F4syn

srv
(R)

whenever one of the following holds:

(i) unfold(σ1) = 1

(ii) unfold(σ2) =?t2.σ
′
2 and unfold(σ1) =?t1.σ

′
1 with t1 4g t2 and σ′1 R σ′2

(iii) unfold(σ2) =!t2.σ
′
2 and unfold(σ1) =!t1.σ

′
1 with t2 4g t1 and σ′1 R σ′2

(iv) unfold(σ2) =
∑
j∈J?lj .σ

2
j and unfold(σ1) =

∑
i∈I?li.σ

1
i with I ⊆ J

and σ1
i R σ2

i

(v) unfold(σ2) =
⊕

j∈J !lj .σ
2
j and unfold(σ1) =

⊕
i∈I !li.σ

1
i with J ⊆ I

and σ1
j R σ2

j

If R ⊆ F4syn
srv

(R) then we say that R is a co-inductive syntactic sub–server
relation. Let 4syn

srv denote the greatest solution of the equation X = F4syn
srv

(X).
We call this solution the syntactic sub–server. The relation 4syn

srv is the greatest
co-inductive syntactic sub–server relation.

31

We first show that the set based relation vSCsrv is contained in 4syn
srv ; this will

follow if we can show the former satisfies the defining properties of the latter.

Lemma 4.8. Let σ1, σ2 ∈ SC, σ1 = unfold(σ1), σ2 = unfold(σ2) and
σ1 vSCsrv σ2. Then

(i) if σ1 =!t1.σ
′
1 then σ2 =!t2.σ

′
2, t2 4g t1 and σ′1 vSCsrv σ′2

(ii) if σ1 =?t1.σ
′
1 then σ2 =?t2.σ

′
2, t1 4g t2 and σ′1 vSCsrv σ′2

(iii) if σ1 =
∑
i∈I?li.σ

1
i then σ2 =

∑
j∈J?lj.σ

2
j , I ⊆ J and σ1

i vSCsrv σ2
i

(iv) if σ1 =
⊕

i∈I !li.σ
1
i then σ2 =

⊕
j∈J !lj.σ

2
j with J ⊆ I and σ1

j vSCsrv σ2
j

Proof. The proof is by case analysis on the structure of σ1 and depends greatly
on the restricted syntax of session contracts. We give the details of the first
case; the others are analogous.

Suppose σ1 =!t1.σ
′
1. Then ?t1.1 a σ1 and because σ1 vSCsrv σ2 it follows that

?t1.1 a σ2. Since ?t1.1 is stuck, σ2 has to engage in an action !t2 such that
?t1 ./c!t2. It follows t2 4g t1. In reason of the syntax and the the hypothesis
σ2 = unfold(σ2), the equality σ2 =!t2.σ

′
2 must hold.

We also have to prove that σ′1 vSCsrv σ′2. Pick a session contract ρ such that
ρ a σ′1. Clearly ?t1.ρ a σ1, and thus ?t1.ρ a σ2. Since ?t1 ./c!t2, we apply rule

[p-Synch] to infer ?t1.ρ ‖ σ2

τ
−→ ρ ‖ σ′2. From the definition of compliance it

follows that ρ a σ′2.

Proposition 4.9. For session contracts, σ1 vSCsrv σ2 implies σ1 4syn
srv σ2.

Proof. We prove that vSCsrv is a pre-fixed point of the function F4syn
srv

of Defi-

nition 4.7, that is σ1 vSCsrv σ2 implies (σ1, σ2) ∈ F4syn
srv

(vSCsrv).

Suppose σ1vSCsrv σ2. Then by Proposition 4.5 it follows that unfold(σ1)vSCsrv
unfold(σ2). Now if unfold(σ1) = 1 by definition (σ1, σ2) ∈ F4syn

srv
(vSCsrv).

Otherwise we can apply Lemma 4.8 to the pair unfold(σ1), unfold(σ2). This
provides the required information to satisfy the requirements (ii) to (v) in Def-
inition 4.7, thereby ensuring that (σ1, σ2) ∈ F4syn

srv
(vSCsrv).

Lemma 4.10. Let R be a co-inductive syntactic sub–server relation and let
σ1 R σ2. If σ2

τ−→ σ′2 then σ1 R σ′2.

Proof. First note that from Definition 4.7 it follows that

unfold(σ1) R unfold(σ2) (5)

There are two different cases to be discussed, depending on the unfolding of σ2

being σ2 itself or not.

(a) If unfold(σ2) 6= σ2 then unfold(σ2) = unfold(σ′2). The equality and
(6) above imply unfold(σ1) R unfold(σ′2); the latter fact means that
σ1 R σ′2.

(b) If unfold(σ2) = σ2 then σ2 must be an internal sum, say σ2 =
⊕

i∈I !li.σ
2
i ,

because σ2 can perform a silent move and can not unfold. This implies that
σ′2 is the internal sum

⊕
k∈K !lk.σ

2
k for some K ⊆ I. From Definition 4.7 it

32

follows that unfold(σ1) =
⊕

j∈J !lj.σ
2
j with I ⊆ J . Since unfold(σ′2) =

σ′2 and K ⊆ I ⊆ J one sees easily that

unfold(σ1) R unfold(σ′2)

and thus σ1 R σ2.

Lemma 4.11. Let R be a co-inductive syntactic sub–server relation. Moreover
let σ1 R σ2 and σ2 ↓ r. Then r′ ∈ Acc(σ1) for some r′ such that r′ v r.

Proof. Using Lemma 3.2 we know unfold(σ2) = σ2, since σ2 6
τ
−→. From Def-

inition 4.7 it follows that unfold(σ1) R σ2. Now, according to the cases
in Definition 4.7 and a case analysis on the form of σ2, one can show that

unfold(σ1)
τ
−→∗ σ′1 for some σ′1 which satisfies the required properties. We

leave the details of the case analysis to the reader.

Finally, the proof that σ1

τ
−→∗σ′1 amounts in two steps. We apply Lemma 3.2,

which ensures that σ1

τ
−→∗ unfold(σ1). Now we know that

σ1

τ
−→∗ unfold(σ1)

τ
−→∗ σ′1

so the transitivity of
τ
−→∗ gives the result.

Lemma 4.10 and Lemma 4.11 proves that the pre-order 4syn
srv enjoys two of

the properties of the pre-order 4srv. The third property of 4srv, though, does
not hold.

Example 4.12. Let σ1 =?l1.1 and σ2 =?l1.1 + ?l2.1 Recall that σ1 4syn
srv σ2.

Then σ2
?l2−→ 1 and !l2 ./c?l2, but (σ1 after !l2) = ∅. As in Example 4.3

the crucial fact is that the pre-order 4syn
srv allows implementation refinement

[Pad10].

Theorem 4.13. [Co-inductive characterisation] For session contracts σ1, σ2,
σ1 vsrv σ2 if and only if σ1 4syn

srv σ2.

Proof. The only if part of the theorem is Proposition 4.9 while the if part, that
is the set inclusion 4syn

srv ⊆ vSCsrv , follows from the fact that the relation

R∆
= { (ρ, σ2) | σ1 4syn

srv σ2 , ρ a σ1 for some σ1 ∈ SC }
contains (ρ, σ2) and is a compliance. We prove the latter.

We have to show that R satisfies the two properties in Definition 3.16. Let
(ρ, σ) ∈R; by definition there exists a σ1 such that ρ a σ1 and σ1 4syn

srv σ.

To prove point (i) of Definition 3.16 assume ρ ‖ σ
τ

6−→. This implies that σ
and ρ are both stuck, so Acc(ρ) = {s} and Acc(σ) = {r}, and that

α ∈ r implies β 6./c α whenever β ∈ s

An application of Lemma 4.11 and of the definition of acceptance set gives a σ′1

such that σ1

τ
−→∗ σ′1 ↓ r′ and r′ v r. The last inequality implies that

α ∈ r′ implies β 6./c α whenever β ∈ s

33

therefore, ρ ‖ σ′1
τ

6−→. Part (ii) of Definition 3.16 and the assumption ρ a σ1

imply that ρ complies with σ′1 so ρ
X
−→.

What we have left to do now is to show that if ρ ‖ σ
τ
−→ ρ′ ‖ σ′ then

(ρ′, σ′) ∈R, that is there exists a σ̂ ∈ SC such that

ρ′ a σ̂, σ̂ 4syn

srv σ′

Assume ρ ‖ σ
τ
−→ ρ′ ‖ σ′. The argument depends on the rule used to infer

this silent move (see Figure 7). If rule [p-Sil-L] was used then σ′ = σ and

ρ
τ
−→ ρ′; let σ̂ = σ1. Then we already know that σ̂ 4syn

srv σ′, and part (ii) of
Definition 3.16 implies ρ′ a σ̂. If rule [p-Sil-R] was applied then ρ′ = ρ and

σ
τ
−→ σ′. In this case an application of Lemma 4.10 implies σ1 4syn

srv σ′. We
know by assumption that ρ a σ1, so the σ̂ we are looking for is σ1.

If rule [p-Synch] was applied then

ρ
α
−→ ρ′, σ

β
−→ σ′, α ./c β.

Since ρ performs an observable action part (iii) of Lemma 4.1 implies ρ
X
6−→.

Let us turn our attention to unfold(σ1). The assumption ρ a σ1 together
with Proposition 3.22 implies that (a) ρ a unfold(σ1). The assumption σ1 4

syn
srv

σ and Definition 4.7 imply that (b) unfold(σ1) 4syn
srv σ.

We know that ρ a unfold(σ1) ((a) above), and that ρ
X
6−→; together with

part (i), these facts force unfold(σ1) to offer an action δ such that δ ./c α.
Thus, for some σ′1,

unfold(σ1)
δ
−→ σ′1

An application of rule [p-Synch] ensures that

ρ ‖ unfold(σ1)
τ
−→ ρ′ ‖ σ′1

Now (a) and part (ii) of Definition 3.16 imply that ρ′ a σ′1. We choose σ′1 as
candidate σ̂.

To finish the proof we have to show that σ′1 4syn
srv σ

′. The argument is a case
analysis on the action β. Four cases are to be discussed, but, as they are all
similar, we give a detailed account only of two of them.

If β =?t2 then (b) above and case (ii) of Definition 4.7 ensure that σ′ is
unique, and so is σ′1 as well. The same definition implies also that σ′1 4syn

srv σ′.
If, for some label l, β =?l then the definition of ./c implies that α =!l, and

the assumption δ ./c α implies δ =?l. We have proven that δ = β. Now (b)
above and case (iv) of Definition 4.7 imply that σ′1 4syn

srv σ′.

We conclude this subsection with a summary of our knowledge on the pre-
orders which compare contracts on the server side of the compliance relation.

Corollary 4.14. The following equalities and inequality hold

vmust = vsrv 6= vSCsrv = 4syn

srv

Proof. It is a consequence of Corollary 3.49, Example 4.3, and Theorem 4.13.

34

4.3 The client pre-order

We introduce a new pre-order which compares the capacity of clients to be
satisfied by servers. The structure of this sub-section is similar to that of the
previous one on the restricted server pre-order.

Definition 4.15. [Restricted client pre-order]
For ρ1, ρ2 ∈ SC let ρ1 vSCclt ρ2 whenever ρ1 a σ implies ρ2 a σ for every σ in
SC.

Also the restricted client pre-order let us reason modulo unfolding.

Proposition 4.16. For every session contract ρ1 and ρ2, ρ1 vSCclt ρ2 if and only
if unfold(ρ2) vSCclt unfold(ρ2).

Proof. Follows from Proposition 3.22 and 3.23.

Example 4.17. We have argued in Example 4.3 that ?l1.1vSCsrv ?l2.1+?l1.1.
A similar argument, this time applied to server-side session contracts, can be
used to show that

?l1.1 vSCclt ?l2.?l2.1+?l1.1

Similarly to what happen for server contracts, if we turn our attention to
general contracts then the session contracts above are no longer related. Let
us see why. The client ?l1.1 complies with the server !l1.1 + !l2.1, because the
action !l2 will never be performed by the server. On the other hand

?l2.?l2.1 + ?l1.1 ‖!l1.1 + !l2.1
τ−→?l2.1 ‖ 1

τ

6−→

and ?l2.1
X
6−→; this proves that

?l2.?l2.1+?l1.1 6a!l1.1 + !l2.1

Had we defined in the obvious way the pre-order vclt on contracts, then the
argument above would have proven that

!l1.1 6vclt?l2.1
X
6−→

We have therefore shown that

vSCclt 6⊆vclt

We have seen in Proposition 4.6 that the session contract 1 is a bottom
element in the restricted server pre-order. The client pre-order enjoys the dual
property.

Proposition 4.18. [Top element]
The pre-order vSCclt enjoys the following two properties,

(i) it has a top element

(ii) if σ> is a top element of vSCclt then unfold(σ>) = 1

35

Proof. Since 1 a σ for every contract σ, the session contract 1 it is a top element
in the restricted client pre-order. Moreover, reasoning as in Proposition 4.6 we
can show that if σ> is an arbitrary top element then unfold(σ>) = 1.

Definition 4.19. [Syntactic sub–client relation]
Let F4syn

clt
: P(SC2) −→ P(SC2) be defined so that (ρ1, ρ2) ∈ F4syn

clt
(R)

whenever one of the following is true:

(i) unfold(ρ2) = 1

(ii) unfold(ρ2) =?t2.ρ
′
2 and unfold(ρ1) =?t1.ρ

′
1 with t1 4g t2 and ρ′1 R ρ′2

(iii) unfold(ρ2) =!t2.ρ
′
2 and unfold(ρ1) =!t1.ρ

′
1 with t2 4g t1 and ρ′1 R ρ′2

(iv) unfold(ρ2) =
∑
j∈J lj .ρ

2
j and unfold(ρ1) =

∑
i∈I li.ρ

1
i with I ⊆ J and

ρ1
i R ρ2

i

(v) unfold(ρ2) =
⊕

j∈J lj .σ
2
j and unfold(ρ1) =

⊕
i∈I li.σ

1
i with J ⊆ I and

σ1
j R σ2

j

IfR ⊆ F4syn
clt

(R) then we say thatR is a co-inductive syntactic sub–clientrelation.
Let 4syn

clt denote the greatest solution of the equation X = F4syn
clt

(X). We
call this solution the sub–clientrelation. The relation 4syn

clt is the greatest co-
inductive syntactic sub–clientrelation.

Lemma 4.20. Let ρ1, ρ2 ∈ SC, ρ1 = unfold(ρ1), ρ2 = unfold(ρ2) and
ρ1 vSCclt ρ2. Then

(i) if ρ2 =!t2.ρ
′
2 then ρ1 =!t1.ρ

′
1, t2 4g t1 and ρ′1 vSCclt ρ′2

(ii) if ρ2 =?t2.ρ
′
2 then ρ1 =?t1.ρ

′
1, t1 4g t2 and ρ′1 vSCclt ρ′2

(iii) if ρ2 =
∑
j∈J?lj.ρ

2
j then ρ1 =

∑
i∈I?li.ρ

1
i with I ⊆ J and ρ1

i vSCclt ρ2
i

(iv) if ρ2 =
⊕

j∈J !lj.ρ
2
j then ρ1 =

⊕
i∈I !li.ρ

1
i with J ⊆ I and ρ1

j vSCclt ρ2
j

Proof. The proof is almost the same of lemma 4.8, the difference being that
here we look at left-hand side of the compliance relation.

Proposition 4.21. For every session contract ρ1 and ρ2, if ρ1 vSCclt ρ2 then
ρ1 4syn

clt ρ2.

Proof. The argument is similar to the one of Proposition 4.9, but here we use
the function F4syn

clt
and Lemma 4.20.

Lemma 4.22. Let R be a co-inductive sub–client relation and let ρ1 4syn
clt ρ2.

If ρ2
τ−→ ρ′2 then ρ1 4syn

clt ρ
′
2.

Proof. The proof is similar to the proof of Lemma 4.10.

Theorem 4.23. [Co-inductive characterisation]
Let ρ, σ ∈ SC. Then ρ 4syn

clt σ if and only if ρ vSCclt σ.

36

Proof. In view of Proposition 4.21 we have to prove only the inclusion 4syn
clt ⊆

vSCclt . It is enough to show that

R∆
= { (ρ2, σ) | ρ1 4syn

clt ρ2, ρ1 a σ for some ρ1 ∈ SC }

is a co-inductive compliance. Let (ρ, σ) ∈R; by definition of R there exists a ρ1

such that ρ1 4syn
clt ρ and ρ1 a σ.

We prove part (i) of Definition 3.16. Assume ρ ‖ σ
τ

6−→; we have to show

that ρ
X
−→.

To this aim it is sufficient to show

unfold(ρ1) = 1 (6)

We explain why this fact suffice. Assume (6). Since unfold(ρ1) 4syn
clt ρ we

know that (ρ1, ρ) ∈ F4syn
clt

(4syn
clt). This is possible only thanks to case (i)

of Definition 4.19, and therefore unfold(ρ) = 1. Since ρ
τ

6−→, part (i) of
Lemma 3.2 implies ρ = unfold(ρ), and so, now, an application of part (ii) of

Lemma 4.1 ensures ρ
X
−→.

We prove (6).The argument revolves around the unfolding of ρ1. To begin
with, note two facts: one, the assumption ρ1 4syn

clt ρ and Definition 4.19 imply
unfold(ρ1) 4syn

clt ρ; and the other, the assumption ρ1 a σ and Proposition 3.22
imply unfold(ρ1) a σ.

The fact that ρ ‖ σ
τ

6−→ can be used to prove

α ∈ r implies α 6./c β for every β ∈ s (7)

From the definition of acceptance set and ρ1

τ
−→∗ unfold(ρ1) (part (ii) of

Lemma 3.2) it follows

Acc(unfold(ρ1)) ⊆ Acc(ρ1) (8)

Now we prove that unfold(ρ1) = 1. Fix a stuck derivative ρ′1 of unfold(ρ1):

unfold(ρ1)
τ
−→∗ ρ′1

τ

6−→

Such a stuck state exists because of the restricted syntax of session contracts.

Further, since ρ1

τ

6−→, by definition we have ρ1 ↓ r for some r. Point (8) implies

that r ∈ Acc(ρ1), and so point (7), together with ρ1

τ

6−→ and σ
τ

6−→, implies

that ρ′1 ‖ σ
τ

6−→. The fact that unfold(ρ1) a σ and part (ii) of Definition 3.16

now imply that ρ′1
X
−→. We can now apply part (ii) of Lemma 4.1 to obtain

unfold(ρ1) = 1.
As yet we have proven that (ρ, σ) respects part (i) of Definition 3.16. The

argument to show that also part (ii) of Definition 3.16 holds is similar to the
one used in Theorem 4.13. The difference amounts to the use of Definition 4.19
in place of Definition 4.7. We leave the details to the reader.

37

5 Modelling session types

The interpretation of session types as contracts is expressed as a function from
the language LST in Section 2 to the language LSC in Section 4. The function
is little more than a syntactic transformation.

Let M : LST −→ LSC be defined by:

M(S) =

1 if S = end

!t.M(S) if S =![t];S

?t.M(S) if S =?[t];S∑
i∈[1;n]?li.M(Si) if S = &〈 l1 : S1, . . . , ln : Sn 〉⊕
i∈[1;n]!li.M(Si) if S = ⊕〈 l1 : S1, . . . , ln : Sn 〉

µx.M(S′) if S = µX.S′

x if S = X

It is easy to see thatM maps session types, ST , to session contracts, SC; indeed
it defines a bijection between these sets:

• for every σ ∈ SC there exists some session type T such that M(T) = σ

• if M(T1) =M(T2) then T1 = T2

where T1 = T2 denotes syntactic identity. Further, substitution is preserved by
M.

Lemma 5.1. Let S, T ∈ ST . Then M(S
{
T /X

}
) = (M(S))

{M(T)/M(X)

}
.

Proof. The proof is by structural induction on S.

The interpretation also commutes with the two functions dpt(−) and unfold(−):

Lemma 5.2. For every T ∈ ST and σ ∈ SC

(i) dpt(T) = dpt(M(T))

(ii) unfold(M(T)) =M(unfold(T))

(iii) unfold(M−1(σ)) = T if and only if unfold(σ) =M(T)

Proof. The proofs of the first two points are by induction on dpt(T), the proof
of (ii) using (i) and the previous lemma. The third point follows immediately
from (ii).

As we have shown, the difficulty is to find a natural pre-order on session
contracts which accurately reflects the sub-typing relation on session contracts.
There are two obvious candidates, the restricted server pre-order and the re-
stricted client pre-order on session contracts. The difficulty lies in the interpre-
tation of end.

Example 5.3. Recall that M(end) = 1. In the restricted server pre-order
the session contract 1 is a least element, being smaller or equal to every other
session contract. On the other hand, for session types end 4st T if and only

38

if unfold(T) = end. Consequently the relation vSCsrv is an unsound model for
sub-typing between session types. For example:

1 vSCsrv !t.1, end 64st ![t];end

The restricted client pre-order presents the dual issue as it relates every
session contract to 1; it is one of the top element. Once again a model based
on vSCclt would be unsound:

!t.1 vSCclt 1, ![t];end 64st end

The main result of the paper is that the bijection M gives a fully abstract
interpretation of sub-typing between session types in terms of session contracts,
provided we combine these two set-based pre-orders.

Definition 5.4. [Session contract pre-order]
For σ1, σ2 ∈ SC let σ1 vSC σ2 whenever σ1 vSCsrv σ2 and σ1 vSCclt σ2.

Example 5.5. It is instructive to see the behaviour of 1, the image of end
under M, relative to this combined pre-order. First suppose σ vSC 1 for some
session contract σ. This implies σ vSCsrv 1 and therefore, as we have shown in
Proposition 4.6, σ must be a bottom element relative to vSCsrv and unfold(σ)
must be 1. A similar argument, using the pre-order vSCclt ensures that if 1vSC σ
then unfold(σ) must also be 1.

In other words modulo unfolding the only session contract related to 1 via
vSC is 1 itself.

Proposition 5.6. [Completeness]
For session contracts, σ1 vSC σ2 implies M−1(σ1) 4stM−1(σ2).

Proof. Let R be the relation over session types defined by

R∆
= {(M−1(σ1),M−1(σ2)) | σ1 4syn

srv σ2, σ1 4syn

clt σ2}

By showing the R is a type simulation, that is it satisfies the properties given
in Definition 2.7, the result will follow because of Theorems 4.13, and 4.23.

The proof proceeds by a case analysis on the structure of unfold(σ1); we
give the details of two of them.

• Suppose unfold(M−1(σ1)) = end. According to Definition 2.7 we have
to show that

unfold(M−1(σ)) = end.

Because of part (iii) of Lemma 5.2 we know that unfold(σ1) = 1; more-
over in Example 5.5 above we have already reasoned that unfold(σ2)
must be 1.

• Suppose unfold(M−1(σ1)) =![t1];S1. We are required to prove that

unfold(M−1(σ2)) =![t2];S2, (9)

for some t2 and S2 such that t24gt1 and (M(S1),M(S2)) ∈ 4syn
srv ∩4syn

clt .

39

Again by Lemma 5.2 (iii) we know that unfold(σ1) =!t1.M(S1). Using
the fact that σ1 4

syn
srv σ2, and by Definition 4.7, we know that unfold(σ2) =

!t2.σ
′
2 for some t1 such that t2 4g t1 andM(S1) 4syn

srv σ
′
2. Now letting S2

denote M−1(σ′2), another application of Lemma 5.2 (iii) ensures that (9)
above is satisfied. By the definition of S2 we also have the requirement
M(S1) 4syn

srv M(S2).

It remains to showM(S1) 4syn
clt M(S2). But this follows from σ1 4syn

clt σ2,
by part (iii) of Definition 4.19.

The proof for the remaining cases are similar and left to the reader.

Theorem 5.7. [Full abstraction]
For all session types, T1 4st T2 if and only if M(T1) vSC M(T2).

Proof. Thanks to the completeness theorem, Theorem 5.6, it is sufficient to
prove that T1 4st T2 implies M(T1) vSCsrv M(T2) and M(T1) vSCclt M(T2). As
an example we outline the proof of the former. Because of Theorem 4.13 it is
sufficient to show that the relation R given by

R = { (σ1, σ2) | M−1(σ1) 4stM−1(σ2) }

is a syntactic sub–server relation, that is R⊆ F4syn
srv

(R), where F4syn
srv

is given
in Definition 4.7.

Suppose (σ1, σ2) ∈R. The proof is a case analysis.

• If unfold(σ1) = 1 we have nothing to prove because condition (i) of
Definition 4.7 does not require anything.

• If unfold(σ1) =?t1.σ
′
1 we have to show that

unfold(σ2) =?t2.σ
′
2

with t14gt2 and σ′1 R σ′2. An application of part (iii) of Lemma 5.2 shows
that unfold(M−1(σ1)) =?[t1];M−1(σ′1). The fact that M−1(σ1) 4st

M−1(σ2) let us use Definition 2.7 to deduce thatM−1(σ2) =?[t2]; .M−1(σ′2)
for some t2 such that t14g t2 and someM−1(σ′2) such thatM−1(σ′1) 4st

M−1(σ′2). From the last inequality and the definition of R it follows that
σ′1 R σ′2. Since we have proven the conditions on the input actions t1,
t2 and on the continuations σ′1, σ

′
2 we have left only to show that the

structure of unfold(σ2) is the required one; this follows from another
application of part (iii) of Lemma 5.2.

The other cases are analogous and left to the reader.

Corollary 5.8. The relation vSC is decidable.

Proof. To begin with, note that M is defined by structural induction, so it is
decidable. The corollary then follows from Corollary 2 of [GH05], which ensures
that the relation 4st is decidable, and our Theorem 5.7, whereby we can prove
the equality M(4st) = vSC .

40

5.1 Examples and applications

In this subsection we give a series of examples in order to discuss the results we
obtained. The first two example are of theoretical nature, whereas the last one
shows an application.

Example 5.9. [Type simulations and the weak simulation relation]
At this stage, a natural question arises, which concerns the relationship between
type simulations and weak simulations [Mil99]. Assume the standard definition
of the weak simulation [Mil99]; we use the symbol . to denote the greatest weak
simulation relation.

We begin by showing that, even though two session types are in a co-
inductive types simulation, their images through M need not be in a weak
simulation. Consider the relation

R= {(⊕〈 l1 : end, l2 : end 〉, (⊕〈 l1 : end 〉), (end,end)}

The standard co-inductive proof technique let one prove that the relation R is
a type simulation. On the other hand, the definition of M implies that

M(⊕〈 l1 : end, l2 : end 〉) =!l1.1⊕ !l2.1

M(⊕〈 l1 : end 〉) =!l1.1

ThenM(⊕〈 l1 : end, l2 : end 〉) 6.M(⊕〈 l1 : end 〉) because !l1.1⊕ !l2.1
τ−→ l2−→,

while !l1.1 6 l2−→∗. We have proven that S1 4st S2 does not imply M(S1) .
M(S2).

Looking at the foregoing argument, one might be tempted to reason that if
S1 4st S2 then M(S2) .M(S1). We prove that this is not the case. We can
prove that

?l1.1vSC ?l2.1+?l1.1

An application of M−1 gives us:

M−1(?l1.1) = &〈 l1 : end 〉
M−1(?l2.1+?l1.1) = &〈 l1 : end, l2 : end 〉

A look at the definition of 4st, Definition 2.7, lets one prove that for every type
simulation R

(&〈 l1 : end, l2 : end 〉, &〈 l1 : end 〉) 6∈ R

and, therefore,
&〈 l1 : end, l2 : end 〉 64st &〈 l1 : end 〉

Example 5.10. [e-vote, revisited]
In this example we use Theorem 5.7 in conjunction with Theorem 2 of [GH05],
in order to show how the set based pre-order vSC can be used to guarantee
that a process Pa can be safely replaced by a suitable process Pb.

Consider two contracts BallotA and BallotB such that BallotA vSC BallotB.
Let BallotA = M−1(BallotA) and BallotB = M−1(BallotB). From Theo-
rem 5.7 it follows that

BallotA 4st BallotB (10)

41

Let ⊥c denote the coinductive duality relation defined as in Definition 9 of
[GH05]. Suppose now that BltSrvA(x+), BltSrvB(x+) and Voter(x−) are
pi calculus processes (as in [GH05]) such that

{x+ : BallotA} ` BltSrvA(x+),
{x+ : BallotB} ` BltSrvB(x+),
{x− : V oter} ` Voter(x−)

for some session type V oter such that V oter⊥cBallotA. By means of the typing
rules of [GH05], it is possible to derive

...
{x+ : BallotA} ` BltSrvA(x+)

...
{x− : V oter} ` Voter(x−)

{x+ : BallotA}, x− : V oter ` BltSrvA(x+) | Voter(x−)
[T-Par]

` (νx : BallotA) BltSrvA(x+) | Voter(x−)
[T-NewS]

Then (10) above and Theorem 2 of [GH05] can be used to guarantee that
if process BltSrvB(x+) is used in place of process BltSrvA(x+), then no
communication error will happen along the channel x.

One can use non-recursive versions of the contracts seen in Examples 3.13
and 4.4 to obtain contracts that satisfy the assumptions above:

BallotA = ?Login.(!Wrong.1⊕ !Ok.(?VoteA.1 + ?VoteB.1))
BallotB = ?Login.(!Wrong.1⊕

!Ok.(?VoteA.1 + ?VoteB.1 + ?VoteC.1 + ?VoteD.1))

V oter = M−1(!Login.(?Wrong.1 + ?Ok.(!VoteA.1⊕ !VoteB.1)))

Example 5.11. [Protocol conformace]
As already remarked, the language for contracts is a sublanguage of ccs without
τ ’s [NH87], and consequently contracts are suitable for specifying communica-
tion protocols.

Assume a protocol Pr to be specified by a contract σ, and let Q be a process
(in the sense of [GH05]), which is well-typed under the environment Γ. Assume
also that Γ(x) = S for some channel x.

We want to answer the following question:

(Q) “Does the session type S conform to the protocol specification σ?”

Clearly, as long as the notion of conformance is not mathematically defined, it
is not possible to give an answer (at least not a meaningful one).

In light of Theorem 5.7, we propose the following definition of conformance.
Assume the standard definition of weak bisimilarity equivalence [Mil99]; we
denote this relation ≈. We say that a session type S conforms to a protocol
specification σ if and only if M(S) ≈ σ.

To answer the question (Q) now one has only to prove thatM(S) ≈ σ or to
show a counter example to this statement.

For example, if we had given a specification of the protocol POP3 [Ros88]
with a contract σ, then we would have been able to check whether the session
type pop3 of [GVR03] conforms to σ.

42

In order for the notion of conformance we have given to be of any practical
consequence, one last thing has to be ascertained. We have to prove that weak
bisimilarity equivalence, when restricted to session contracts, is decidable. We
leave this as an open problem worth further investigation.

6 Conclusions

6.1 Summary

In this paper we have used contracts [CGP09] to give a fully abstract model
for first-order session types ordered by their sub-typing relation [GH05]. This
was achieved by identifying a subset of the standard language of contracts,
[CGP09, Pad10] which we call session contracts. These are ordered using a
combination of two natural pre-orders [Bd10], defined in terms of a contracts
role in constraining the behaviours of servers and clients respectively.

The restriction to first-order session types is a severe limitation on our re-
sults. Despite this we believe that our work provides the first fully abstract
model of session types in terms of contracts. We also intend to extend our re-
sults to the full language of session types in [GH05]. We claim that, contrary
to what was done in [Bd10], this can be achieved without using an higher-order
LTS.

We have already stated in the Introduction that we use a subset of the
language for contracts of [Pad10]; nevertheless, the two languages are essentially
the same, for the terms we lose are of no relevance for the theory. Our compliance
relation coincides with the notion of strong compliance given there, although
the formulation is different. Comparison with earlier work, [LP07, LP08] is
complicated by the fact that in these papers compliance judgements take the
form i1[ρ] a i2[σ] where i1, i2 are finite sets of actions representing in some
sense the interfaces of the processes guaranteeing the contracts; moreover, for
a contract i[σ] to be valid its interface i has to contain all the action names
that appear in the behaviour σ. Let us refer to these pairs i[σ] as constrained
contracts. Using the obvious notation for the compliance relations between
constrained contracts one can show if ρ, σ are in C then

• if i[ρ] alp07 j[σ] for some i, j then ρ a σ

• If i[ρ] alp08 j[σ] for some i, j then ρ a σ

under the assumption that in our definition of compliance the synchronisation
relation ./i is used. Moreover, it is easy to provide counter examples to the
converse of both these points4. We also believe that our result relating the
server pre-order vsrv with the must-testing pre-order, Corollary 3.49, is new,
although a similar result is announced in Proposition 2.7 of [Pad10]; however,
there for a proof the reader is refered to [LP07] where the type of the compliance
relation, and therefore the corresponding pre-order, the subcontract relation,
differs from the type of the compliance of [Pad10].

4 We have ?a.X.nil a!a.X.nil, while X∈names(!a.X.nil) thus ?a.X.nil 6alp07!a.X.nil.
We also have ?a.X.nil+?b.X.nil a!a.X.nil, and from {a, b} 6⊆ {a} it follows

{a, b, X}[?a.X.nil+?b.X.nil] 6a lp08{a, X}[!a.X.nil].

43

Our research has been greatly influenced by the work in [Bd10]. In that
paper the focus is the set of session behaviours, which is a proper subset of
contracts and a proper superset of our session contracts; using this set the
authors provide a sound model for sub-typing on session types. They use an
interpretation function J−K from session types to session behaviours which, in
general, is not invertible. For instance: ?Int.1 + ?l1.1 is a session behaviour
that has no corresponding session type; this because Int is a base type while l1

is a label. Note, though, that J−K =M, so the range of J−K is the set of session
contracts and our Theorem 5.7 proves that J−K provides a complete model. The
completeness of J−K was only conjectured in [Bd10].

Indeed, their approach is very similar to ours, in that they provide a co-
inductive characterisation of the intersection of the sub–server and sub–client
pre-orders over session behaviours. In contrast, we have studied the individual
pre-orders independently.

Finally in [LP08] two interpretations, M1 and Mnil, similar to our M,
are given for pairs of session types into pairs of constrained contracts. Their
proposed full abstraction result, Theorem 2 of [LP08], though, appears not to
be true; what corresponds to our server pre-order in their paper is denoted by
� and is defined in their Definition 2. According to that definition and the
interpretation Mnil

∅[nil] � {`}[`.nil]

Their Theorem 2 therefore implies &〈 ` : end 〉 4st end, which is obviously not
true. On the other hand if M1 is used then there are two issues. According to
Theorem 2 the pair (end,&〈 ` : end 〉) is interpreted as (∅[X.nil], {`}[`.X.nil]).
Then

(a) neither ∅[X.nil] nor {`}[`.X.nil] are constrained contracts, because their
interfaces do not contain all the action names which appear in the respective
behaviours; moreover

(b) even if the interpretation was correct, Theorem 2 would be false because

{X}[X.nil] � {`, X}[`.X.nil]

while, as stated above, &〈 ` : end 〉 4st end is not true.

References

[ACKM04] Gustavo Alonso, Fabio Casati, Harumi A. Kuno, and Vijay Machi-
raju, Web services - concepts, architectures and applications, Data-
Centric Systems and Applications, Springer, 2004.

[BBMR08] Giovanni Bernardi, Michele Bugliesi, Damiano Macedonio, and
Sabina Rossi, A theory of adaptable contract-based service compo-
sition, SYNASC (Viorel Negru, Tudor Jebelean, Dana Petcu, and
Daniela Zaharie, eds.), IEEE Computer Society, 2008, pp. 327–334.

[Bd10] Franco Barbanera and Ugo de’Liguoro, Two notions of sub-
behaviour for session-based client/server systems, PPDP (Temur
Kutsia, Wolfgang Schreiner, and Maribel Fernández, eds.), ACM,
2010, pp. 155–164.

44

[BPZ09] Marco Bernardo, Luca Padovani, and Gianluigi Zavattaro (eds.),
Formal methods for web services, 9th international school on for-
mal methods for the design of computer, communication, and soft-
ware systems, sfm 2009, bertinoro, italy, june 1-6, 2009, advanced
lectures, Lecture Notes in Computer Science, vol. 5569, Springer,
2009.

[CCLP06] Samuele Carpineti, Giuseppe Castagna, Cosimo Laneve, and Luca
Padovani, A formal account of contracts for web services, WS-FM
(Mario Bravetti, Manuel Núñez, and Gianluigi Zavattaro, eds.), Lec-
ture Notes in Computer Science, vol. 4184, Springer, 2006, pp. 148–
162.

[CGP09] Giuseppe Castagna, Nils Gesbert, and Luca Padovani, A theory of
contracts for web services, ACM Trans. Program. Lang. Syst. 31
(2009), no. 5, 1–61, Supersedes the article in POPL ’08.

[CP10] Lúıs Caires and Frank Pfenning, Session types as intuitionistic lin-
ear propositions, CONCUR (Paul Gastin and François Laroussinie,
eds.), Lecture Notes in Computer Science, vol. 6269, Springer, 2010,
pp. 222–236.

[EF02] Rik Eshuis and Maarten M. Fokkinga, Comparing refinements for
failure and bisimulation semantics, Fundam. Inform. 52 (2002),
no. 4, 297–321.

[GH05] Simon J. Gay and Malcolm Hole, Subtyping for session types in the
pi calculus, Acta Inf. 42 (2005), no. 2-3, 191–225.

[GVR03] Simon Gay, Vasco Vasconcelos, and Antonio Ravara, Session types
for inter-process communication, Tech. Report TR-2003-133, De-
partment of Computing Science, University of Glasgow, February 11
2003.

[HVK98] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto
Kubo, Language primitives and type discipline for structured
communication-based programming, ESOP (Chris Hankin, ed.), Lec-
ture Notes in Computer Science, vol. 1381, Springer, 1998, pp. 122–
138.

[LP07] Cosimo Laneve and Luca Padovani, The must preorder revisited,
Proceedings of the 18th international conference on Concurrency
Theory (Berlin, Heidelberg), Springer-Verlag, 2007, pp. 212–225.

[LP08] Cosimo Laneve and Luca Padovani, The pairing of contracts and
session types, Concurrency, Graphs and Models (Pierpaolo Degano,
Rocco De Nicola, and José Meseguer, eds.), Lecture Notes in Com-
puter Science, vol. 5065, Springer, 2008, pp. 681–700.

[Mil99] Robin Milner, Communicating and mobile systems - the pi-calculus,
Cambridge University Press, 1999.

[NH84] Rocco De Nicola and Matthew Hennessy, Testing equivalences for
processes, Theoretical Computer Science 34 (1984), 83–133.

45

[NH87] , ccs without τ ’s, TAPSOFT, Vol.1, Lecture Notes in Com-
puter Science, vol. 249, Springer, 1987, pp. 138–152.

[oasisS11] oasis Standard, Universal Description, Discovery, and Integration,
http://uddi.xml.org/, 2011.

[Pad10] Luca Padovani, Contract-based discovery of web services modulo
simple orchestrators, Theor. Comput. Sci. 411 (2010), no. 37, 3328–
3347.

[PS96] Benjamin C. Pierce and Davide Sangiorgi, Typing and subtyping for
mobile processes, Mathematical Structures in Computer Science 6
(1996), no. 5, 409–453.

[Ros88] M.T. Rose, Post Office Protocol: Version 3, RFC 1081, November
1988, Obsoleted by RFC 1225.

46

http://uddi.xml.org/

	Introduction
	Session types
	Sub-typing

	Contracts
	The contract language
	Client-Server interactions and the compliance relation

	The server pre-order
	Co-inductive characterisation

	Must testing

	Session Contracts
	Session contracts
	The server pre-order
	The client pre-order

	Modelling session types
	Examples and applications

	Conclusions
	Summary

