
Real-Reward Testing for Probabilistic Processes

Yuxin Deng1⇤ Rob van Glabbeek2 Matthew Hennessy3† Carroll Morgan4‡

1 Shanghai Jiao Tong University, China
2 NICTA, Sydney, Australia§

3 Trinity College Dublin, Ireland
2,4 University of New South Wales, Sydney, Australia

We introduce a notion of real-valued reward testing for probabilistic processes by extending the tra-
ditional nonnegative-reward testing with negative rewards. In this richer testing framework, the may-
and must preorders turn out to be inverses. We show that for convergent processes with finitely many
states and transitions, but not in the presence of divergence, the real-reward must-testing preorder
coincides with the nonnegative-reward must-testing preorder. To prove this coincidence we charac-
terise the usual resolution-based testing in terms of the weak transitions of processes, without having
to involve policies, adversaries, schedulers, resolutions or similar structures that are external to the
process under investigation. This requires establishing the continuity of our function for calculating
testing outcomes.

1 Introduction

Extending classical testing semantics [1, 9] to a setting in which probability and nondeterminism co-exist
was initiated in [18]. The application of a test to a process yields a set of probabilities for reaching a
success state. Traditionally, this set of result probabilities is obtained by resolving [7] a system into a non-
empty set of deterministic but probabilistic systems, each representing a possible probabilistic run of the
original system; concepts such as policy [14], adversary [15], scheduler [16] and resolution [7] have been
used for this purpose. Reward testing was introduced in [10] for concurrency, though earlier pioneered
in [11] for sequential programs; here the success states are labelled by nonnegative real numbers—
rewards—to indicate degrees of success, and reaching a success state accumulates the associated reward.
In [17] an infinite set of success actions is used to report success, and the testing outcomes are vectors
of probabilities of performing these success actions. Compared to [10] this amounts to distinguishing
different qualities of success, rather than different quantities.

In [18] and [17], both tests and testees are nondeterministic probabilistic processes, whereas [10]
allows nonprobabilistic tests only, thereby obtaining a less discriminating form of testing. In [7] we
strengthened reward testing by also allowing probabilistic tests. Taking reward testing in this form we
showed that for finitary processes, i.e. finite-state and finitely branching processes, all three modes of
testing lead to the same testing preorders. Thus, vector-based testing is no more powerful than scalar
testing that employs only one success action, and likewise reward testing is no more powerful than the
special case of reward testing in which all rewards are 1. 1

⇤Deng was partially supported by the National Natural Science Foundation of China (61173033, 61261130589, 61033002).
†Hennessy was supported by SFI project SFI 06 IN.1 1898.
‡Morgan acknowledges the support of ARC Discovery Grant DP0879529.
§NICTA is funded by the Australian Government as represented by the Department of Broadband, Communications and the

Digital Economy and the Australian Research Council through the ICT Centre of Excellence program.
1In spite of this there is a difference in power between the notions of testing from [18] and [17], but this is an issue that is

2 Real-Reward Testing for Probabilistic Processes

q
1

τ

a

b

a

b

τ

a

q
2

a

b

1/2 1/2

ω1

ω2

t

Figure 1: Two processes with divergence and a test

In certain situations it is natural to introduce negative rewards; this is the case, for instance, in the
theory of Markov Decision Processes [14]. Intuitively, we could understand negative rewards as costs,
while positive rewards are often viewed as benefits or profits. Consider for instance the (nonprobabilistic)
processes q1 and q2 of Figure 1. Here a represents the action of making an investment. Assuming that the
investment is made by bidding for some commodity, the t-action represents an unsuccessful bid — if this
happens one simply tries again. Now b represents the action of reaping the benefits of this investment.
Wheres q1 models a process in which making the investment is always followed by an opportunity to
reap the benefits, the process q2 allows, nondeterministically, for the possibility that the investment is
unsuccessful, so that a does not always lead to a state where b is enabled. The test t, which will be
explained later, allows us to give a negative reward to action a—its cost—and a positive reward to b.

This leads to the question: if both negative- and positive rewards are allowed, how would the original
reward-testing semantics change?2 We refer to the more relaxed form of testing, using positive and
negative rewards, as real-reward testing and the original one (from [10], but with probabilistic tests as in
[7]) as nonnegative-reward testing.

The power of real-reward testing is illustrated in Figure 1. The two (nonprobabilistic) processes in
the left- and central diagrams are equivalent under (probabilistic) may- as well as must testing; the t-
loops in the initial states cause both processes to fail any nontrivial must test. Yet, if a reward of �1 is
associated with performing the action a, and a reward of 2 with the subsequent performance of b, it turns
out that in the first process the net reward is either 0, if the process remains stuck in its initial state, or
positive, whereas running the second process may yield a loss. See Example 3.8 for details of how these
rewards are assigned, and how net rewards are associated with the application of tests such as t. This
example shows that for processes that may exhibit divergence, real-reward testing is more discriminating
than nonnegative-reward testing, or other forms of probabilistic testing. It also illustrates that the extra
power is relevant in applications.

As remarked, in [7] we established that for finitary processes the nonnegative-reward must-testing
preorder (vnrmust) coincides with the probabilistic must-testing preorder (vpmust), and likewise for the

entirely orthogonal to the distinction between scalar testing, reward testing and vector-based testing. In [17] it is the execution
of a success action that constitutes success, whereas in [1, 9, 18, 10] it is reaching a success state (even though typically success
actions are used to identify those states). In [2, Ex 5.3] we showed that state-based testing is (slightly) more powerful than
action-based testing. The results presented in [7] about the coincidence of scalar, reward, and vector-based testing preorders
pertain to action-based version of each, but in the conclusion it is observed that the same coincidence could be obtained for
their state-based versions. In the current paper we stick to state-based testing.

2One might suspect no change at all, for any assignment of rewards from the interval [�1,+1] can be converted into a non-
negative assignment simply by adding 1 to all of them. But that would not preserve the testing order in the case of zero-outcomes
that resulted from a process’s failing to reach any success state at all: those zeroes would remain zero.

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 3

(vrrmay)
�1 Thm. 3.7

= vrrmust
Thm. 6.4
= vnrmust

[7]
= vpmust

[3]
= vFS

The symbol = between two relations means that they coincide for finitary convergent processes.

Figure 2: The relationship of different testing preorders.

may preorders. The main result of this paper is that restricted to finitary convergent processes, the real-
reward must preorder vrrmust coincides with the nonnegative-reward must preorder, i.e. for any finitary
convergent processes,

D vrrmust G iff D vnrmust G. (1)

Here, as we shall see, convergence is the natural generalisation of the standard concept for nonproba-
bilistic processes to the probabilistic setting; in particular it rules out the processes of Figure 1.

There is also a surprisingly simple proof of the fact that for real-reward testing the may- and must
preorders are the inverse of each other, i.e. that for any processes D and G,

D vrrmay G iff G vrrmust D. (2)

This pleasing symmetry does not hold for the more restrictive nonnegative-reward (or scalar) testing.
Moreover, the analogy of (1) for the may preorder does not hold, i.e. vrrmay does not coincide with
vnrmay (q.v. the end of Section 8).

Although it is easy to see that in (1) the former implies the latter, to prove the opposite is far from
trivial; see more discussion in Section 7. We employ a characterisation of vpmust from [2, 3]. Failure
simulation is a well-known behavioural preorder for nondeterministic processes [8]; in [2] we showed
that it could be adapted to characterise the probabilistic must-testing preorder vpmust, and in [3] this work
was generalised from finite to finitary processes. This involved the generalisation of the standard notion
of (weak) derivations in state-based systems [13], to probabilistic processes, i.e. probability distributions.
By capitalising on this novel notion of derivation between distributions we can show that the failure
simulation preorder vFS is contained in vrrmust. Convergence is essential here, even though it is not
needed to establish that vFS is contained in vnrmust. Recall that vrrmust is defined using resolutions; the
key to proving this containment, the heart of the paper, is showing that certain derivations, which we call
extreme derivations, are essentially the same as resolutions. Combining this with the results from [7]
and [3] mentioned above leads to our required result that vnrmust is included in vrrmust, as far as finitary
convergent processes are concerned. Consequently, in this case, all the relations of Figure 2 collapse into
one.

The rest of this paper is organised as follows. We start by recalling notation for probabilistic labelled
transition systems. In Section 3 we review the resolution-based testing approach and show that the
real-reward may preorder is simply the inverse of the real-reward must preorder. Moreover, using the
example of Figure 1, we show that in the presence of divergence the inclusion of vrrmust in vnrmust is
proper. In Section 4 we recall the notions of derivation and the failure simulation preorder. In Section
5 we show that resolutions can be seen as certain kinds of derivations. Then in Section 6 we show
for finitary convergent processes that real-reward must testing coincides with nonnegative-reward must
testing. We explain in Section 7 why the proof of the coincidence result cannot easily be simplified, and
then conclude in Section 8.

Besides the related work already mentioned above, many other studies on probabilistic testing and
simulation semantics have appeared in the literature. They are reviewed in [6, 2]. An extended abstract
of the current work has appeared as [5]. All the proofs omitted there are now detailed. Section 7 is newly
added to explain the subtle difference between vrrmust and vnrmust.

4 Real-Reward Testing for Probabilistic Processes

2 Probabilistic Processes

A (discrete) probability subdistribution over a set S is a function D : S ! [0,1] with Âs2S D(s) 1; the
support of such a D is dDe := {s2S | D(s) > 0}, and its mass |D| is Âs2dDe D(s). A subdistribution is a
(total, or full) distribution if |D|= 1. The point distribution s assigns probability 1 to s and 0 to all other
elements of S, so that dse = {s}. With Dsub(S) we denote the set of subdistributions over S, and with
D(S) its subset of full distributions.

Let {Dk | k 2 K} be a set of subdistributions, possibly infinite. Then Âk2K Dk is the real-valued func-
tion in S ! defined by (Âk2K Dk)(s) := Âk2K Dk(s). This is a partial operation on subdistributions
because for some state s the sum of Dk(s) might exceed 1. If the index set is finite, say {1..n}, we often
write D1 + . . .+Dn. For p a real number from [0,1] we use p·D to denote the subdistribution given by
(p·D)(s) := p·D(s). Finally we use e to denote the everywhere-zero subdistribution that thus has empty
support. These operations on subdistributions do not readily adapt themselves to distributions; yet if
Âk2K pk =1 for some pk � 0, and the Dk are distributions, then so is Âk2K pk ·Dk.

The expected value Âs2S D(s)· f (s) over a subdistribution D of a bounded nonnegative function f
to the reals or tuples of them is written ExpD(f), and the image of a subdistribution D through a func-
tion f : S ! T , for some set T , is written Img f (D) — the latter is the subdistribution over T given by
Img f (D)(t) := Â f (s)=t D(s) for each t 2 T .

Definition 2.1 A probabilistic labelled transition system (pLTS) is a triple hS,Act,!i, where
(i) S is a set of states,

(ii) Act is a set of visible actions,
(iii) relation ! is a subset of S⇥Actt ⇥D(S).
Here Actt denotes Act[{t}, where t 62 Act is the invisible- or internal action.

A (nonprobabilistic) labelled transition system (LTS) may be viewed as a degenerate pLTS — one in
which only point distributions are used. As with LTSs, we write s a�! D for (s,a,D)2!, as well as
s a�! for 9D : s a�! D and s! for 9a : s a�!, with s 6a�! and s 6! representing their negations.

We graphically depict pLTSs as follows. States are represented by nodes of the form • and distribu-
tions by nodes of the form �. For any state s and distribution D with s a�! D we draw an edge from s to
D, labelled with a . For any distribution D and state s in dDe, the support of D, we draw an edge from D
to s, labelled with D(s). We leave out point-distributions, diverting an incoming edge to the unique state
in its support. See e.g. Figure 4 in the next section for some example pLTSs.

In this paper a (probabilistic) process will simply be a distribution over the state set of a pLTS. A
pLTS is deterministic if for any state s and label a there is at most one distribution D with s a�! D. It
is finitely branching if the set {D | s a�! D, a 2L} is finite for all states s; if moreover S is finite, then
the pLTS is finitary. A subdistribution D over the state set S of an arbitrary pLTS is finitary if restricting
S to the states reachable from D in the graphical representation of the pLTS yields a finitary sub-pLTS.
Similarly, a subdistribution D is finite if restricting S to the states reachable from D yields a finitary
sub-pLTS without loops.

3 Testing probabilistic processes

A test is a finite distribution over the state set of a pLTS having Actt [W as its set of transition labels,
where W is a set of fresh success actions, not already in Actt , introduced specifically to report testing
outcomes.3 For simplicity we may assume a fixed pLTS of processes—our results apply to any choice

3For vector-based testing we normally take W to be countably infinite [17]. This way we have an unbounded supply of
success actions for building tests, of course without obligation to use them all. Scalar testing is obtained by taking |W|= 1.

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 5

t a�!T Q a 62Act

tkp a�! Qkp

p t�!P D
tkp t�! tkD

t a�!T Q p a�!P D a2Act

tkp t�! QkD

Figure 3: Synchronous parallel composition between tests and processes

of such a pLTS—and a fixed pLTS of tests. Since the power of testing depends on the expressivity of
the pLTS of tests—in particular certain types of tests are necessary for our results—let us just postulate
that this pLTS is sufficiently expressive for our purposes — for example that it can be used to interpret
all processes from the language pCSP, as in our previous papers [6, 2, 3]. 4

Although we use success actions, they are used merely to mark certain states as success states,
namely the sources of transitions labelled by success actions. For this reason we systematically ignore
the distributions that can be reached after a success action. We impose two requirements on all states in
a pLTS of tests, namely
(A) if t w1�! and t w2�! with w1,w2 2 W then w1 = w2. uniqueness
(B) if t w�! with w 2 W and t a�! D with a 2 Actt then u w�! for all u 2 dDe. no w-disabling
The first condition says that a success state can have one success identity only, whereas the second
condition is a slight weakening of the requirement from [10] that success states must be end states; it
allows further progress from an w-success state, for some w 2 W, but w must remain enabled. 5

To apply test Q to process D we form a parallel composition QkD in which all visible actions of D
must synchronise with Q. Those synchronisations are immediately renamed into t so that the resulting
composition is a process whose only possible actions are the elements of Wt := W[{t}. Formally, if
hP,Act,!Pi and hT,Act[W,!Ti are the pLTSs of processes and tests, then the pLTS of applications of
tests to processes is hC,W,!i, with C = {tkp | t2T^ p2P} and ! the transition relation generated by
the rules in Fig. 3. Here if Q 2D(T) and D 2D(P), then QkD is the distribution given by (QkD)(tkp) :=
Q(t) · D(p). The resulting pLTS also satisfies (A), (B) above; this would not be the case if we had
strengthened (B) to require that success states must be end states.

We will define the result A (Q,D) of applying the test Q to the process D to be a set of testing
outcomes, exactly one of which results from each resolution of the choices in QkD. Each testing outcome
is an W-tuple of real numbers in the interval [0,1], i.e. a function o : W ! [0,1], and its w-component
o(w), for w 2 W, gives the probability that the resolution in question will reach an w-success state, one
in which the success action w is possible.

Due to the presence of nondeterminism in pLTSs, we need a mechanism to reduce a nondeterministic
structure into a set of deterministic structures, each of which determines a single possible outcome. Here
we adapt the notion of resolution, defined in [7] for probabilistic automata, to pLTSs.

Definition 3.1 [Resolution] A resolution of a subdistribution F2Dsub(S) in a pLTS hS,W,!i is a triple
hR,L,!Ri where hR,W,!Ri is a deterministic pLTS and L2Dsub(R), such that there exists a resolving
function f : R ! S satisfying

(i) Img f (L) = F

(ii) if r a�!R L0 for a 2 Wt then f (r) a�! Img f (L0)

(iii) if f (r) a�! for a 2 Wt then r a�!R .

4In [3] tests are allowed to be finitary, but if two processes are behaviourally different they can be distinguished by some
characteristic tests which are always finite. Therefore, the results in [3] still hold if tests are required to be finite, as we do here.

5This simplifies our treatment of test but, as can be seen from Appendix A of [7], it is not a heavy restriction.

6 Real-Reward Testing for Probabilistic Processes

τ

1/2

τ

ω

τ

(c)

s
s

s

s

2

3

4

1

a

ω

τ

1/2

a

τ

q
1 t

(a) (b)

1/2 1/2

||t q
1

Figure 4: Testing the process q1

The reader is referred to Section 2 of [7] for a detailed discussion of the concept of resolution, and the
manner in which a resolution represents a run of a process; in particular in a resolution states in S are
allowed to be resolved into distributions, and computation steps can be probabilistically interpolated.
Our resolutions match the results of applying a scheduler as defined in [16].

We now explain how to associate an outcome with a particular resolution, which in turn will associate
a set of outcomes with a subdistribution in a pLTS. Given a deterministic pLTS hR,W,!Ri consider the
functional F : (R ! [0,1]W)! (R ! [0,1]W) defined by

F (g)(r)(w) :=

8
><

>:

1 if r w�!
0 if r 6w�! and r 6t�!
ExpD(g)(w) if r 6w�! and r t�! D.

(3)

We view the unit interval [0,1] ordered in the standard manner as a complete lattice; this induces the
structure of a complete lattice on the product [0,1]W and in turn on the set of functions R ! [0,1]W. The
functional F is easily seen to be monotonic and therefore has a least fixed point, which we denote by
VhR,W,!Ri; this is abbreviated to V when the deterministic pLTS in question is understood. Intuitively
ExpL(VhR,W,!Ri) is the result of executing the resolution hR,L,!Ri starting from the initial distribution
L, a vector of probabilities. From Definition 3.1 we see that in general a distribution F gives rise to a
non-empty set of resolutions. Collecting all of the possible results of executing them we get

A (F) = {ExpL(VhR,W,!Ri) | hR,L,!Ri is a resolution of F} . (4)

This notation is most often used in calculating the results of applying a test to a process. To emphasise
this, we will sometimes use the notation A (Q,D) for A (QkD).

Example 3.2 Consider the process q1 depicted in Figure 4(a). When we apply the test t depicted in
Figure 4(b) to it we get the process tkq1 depicted in Figure 4(c). This process is already deterministic,
hence has essentially only one resolution: itself. Moreover the outcome Exptkq1

(V) =V(tkq1) associated
with it is the least solution of the equation V(tkq1) =

1
2 ·V(tkq1)+

1
2
�!w where �!w : W ! [0,1] is the W-

tuple with �!w (w) = 1 and �!w (w 0) = 0 for all w 0 6= w . In fact this equation has a unique solution in [0,1]W,
namely �!w . Thus A (t,q1) = {�!w }. 2

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 7

1/2

τ τ

1/2 1/2

τ

ω

(a)

τ

s1

4

ω

τ

1/2

2
s

ω

(b) (c)

:=s ||t

s5
s6

q
2q

1/2

1/2

2

τ

τ τ

1/2

a
a

t

a

0

1/2

s 3
s

Figure 5: Testing the process q2

Example 3.3 Consider the process q2 and the application of the test t to it, as outlined in Figure 5. For
each k � 1 the process tkq2 has a resolution hRk,L,!Rki such that ExpL(V) = (1� 1

2k)
�!w ; intuitively it

goes around the loop (k�1) times before at last taking the right hand t action. Thus A (t,q2) contains
(1� 1

2k)
�!w for every k � 1. But it also contains �!w , because of the resolution which takes the left hand

t-move every time. Thus A (t,q2) includes the set

{(1�1
2)
�!w , (1� 1

22)
�!w , . . . ,(1� 1

2k)
�!w , . . . ,�!w }

As resolutions allow any interpolation between the two t-transitions from state s1, A (t,q2) is actually
the convex closure of the above set. 2

There are two standard methods for comparing two sets of ordered outcomes:

O1 Ho O2 if for every o1 2 O1 there exists some o2 2 O2 such that o1 o2
O1 Sm O2 if for every o2 2 O2 there exists some o1 2 O1 such that o1 o2

This gives us our definition of the probabilistic may- and must-testing preorders; they are decorated with
·W for the repertoire W of testing actions they employ.

Definition 3.4 [Probabilistic testing preorders]

(i) D vW
pmay G if for every W-test Q, A (Q,D)Ho A (Q,G).

(ii) D vW
pmust G if for every W-test Q, A (Q,D)Sm A (Q,G).

These preorders are abbreviated to D vpmay G and D vpmust G when |W|= 1.

In [7] we established that for finitary processes vW
pmay coincides with vpmay and vW

pmust with vpmust
for any choice of W. We also defined the reward-testing preorders in terms of the mechanism set up so
far. The idea is to associate with each success action w 2 W a reward, which is a nonnegative number in
the unit interval [0,1]; and then a run of a probabilistic process in parallel with a test yields an expected
reward accumulated by those states which can enable success actions. A reward tuple h 2 [0,1]W is used
to assign reward h(w) to success action w , for each w 2 W. Due to the presence of nondeterminism,
the application of a test Q to a process D produces a set of expected rewards. Two sets of rewards

8 Real-Reward Testing for Probabilistic Processes

can be compared by examining their suprema/infima; this gives us two methods of testing called reward
may/must testing. In [7] all rewards are required to be nonnegative, so we refer to that approach of testing
as nonnegative-reward testing. If we also allow negative rewards, which intuitively can be understood as
costs, then we obtain an approach of testing called real-reward testing. Technically, we simply let reward
tuples h range over the set [�1,1]W. If o 2 [0,1]W, we use the dot-product h · o = Âw2W h(w) · o(w). It
can apply to a set O ✓ [0,1]W so that h ·O = {h ·o | o 2 O}. Let A ✓ [�1,1]. We use the notation

F
A for

the supremum of set A, and
d

A for the infimum.

Definition 3.5 [Reward testing preorders]

(i) D vW
nrmay G if for every W-test Q and nonnegative-reward tuple h 2 [0,1]W,F

h ·A (Q,D)
F

h ·A (Q,G).

(ii) D vW
nrmust G if for every W-test Q and nonnegative-reward tuple h 2 [0,1]W,d

h ·A (Q,D)
d

h ·A (Q,G).

(iii) D vW
rrmay G if for every W-test Q and real-reward tuple h 2 [�1,1]W,F

h ·A (Q,D)
F

h ·A (Q,G).

(iv) D vW
rrmust G if for every W-test Q and real-reward tuple h 2 [�1,1]W,d

h ·A (Q,D)
d

h ·A (Q,G).

This time we drop the superscript W iff W is countably infinite.

It is shown in Corollary 1 of [7] that nonnegative-reward testing is equally powerful as probabilistic
testing.

Theorem 3.6 [7] For any finitary processes D and G,

(i) D vnrmay G if and only if D vpmay G.

(ii) D vnrmust G if and only if D vpmust G.

In this paper we focus on the real-reward testing preorders vrrmay and vrrmust, by comparing them with
the nonnegative reward testing preorders vnrmay and vnrmust. Although these two nonnegative-reward
testing preorders are in general incomparable, we have for the real-reward testing preorders:

Theorem 3.7 For any processes D and G, it holds that D vrrmay G if and only if G vrrmust D.

Proof: We first notice that for any nonempty set A ✓ [0,1]W and any reward tuple h 2 [�1,1]W,
G

h ·A = � (
l

(�h) ·A) (5)

where �h is the negation of h, i.e. (�h)(w) = �(h(w)) for any w 2 W. We consider the “if” direction;
the “only if” direction is similar. Let Q be any W-test and h be any real reward tuple in [�1,1]W. Clearly,
�h is also a real reward tuple. Suppose G vrrmust D, then

l
(�h) ·A (Q,G)

l
(�h) ·A (Q,D) (6)

Therefore, we can infer that
F

h ·A (Q,D) = �(
d

(�h) ·A (Q,D)) by (5)
 �(

d
(�h) ·A (Q,G)) by (6)

=
F

h ·A (Q,G) by (5). 2

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 9

Our next task is to compare vrrmust with vnrmust. The former is included in the latter, which directly
follows from Definition 3.5. Surprisingly, it turns out that for finitary convergent processes the latter is
also included in the former, thus establishing that the two preorders are in fact the same. The rest of
the paper is devoted to proving this result. However, we first show that this result does not extend to
divergent processes.

Example 3.8 Consider the processes q1 and q2 depicted in Figure 1. Using the characterisations of
vpmay and vpmust in [3], it is easy to see that these processes cannot be distinguished by probabilistic
may- and must testing, and hence not by nonnegative-reward testing either. However, let t be the test in
the right diagram of Figure 1 that first synchronises on the action a, and then with probability 1

2 reaches
a state in which a reward of �2 is allocated, and with the remaining probability 1

2 synchronises with the
action b and reaches a state that yields a reward of 4. Thus the test employs two success actions w1 and
w2, and we use the reward tuple h with h(w1) = �2 and h(w2) = 4. Then the resolution of q1 that does
not involve the t-loop contributes the value �2 · 1

2 + 4 · 1
2 = �1+ 2 = 1 to the set h ·A (t,q1), whereas

the resolution that only involves the t-loop contributes the value 0. Due to interpolation, h ·A (t,q1) is
in fact the entire interval [0,1]. On the other hand, the resolution corresponding to the a-branch of q2
contributes the value �1 and h ·A (t,q2) = [�1,1]. Thus

d
h ·A (t,q1) = 0 > �1 =

d
h ·A (t,q2), and

hence q1 6vrrmust q2. 2

4 Failure simulations

In this section we explain the characterisation of probabilistic testing from [2, 3]; it depends on a general-
isation of failure simulations [8] to the probabilistic setting. The key ingredient is that of weak derivations
for distributions. To deal with infinite (but finitary) processes, we need to employ the weak derivations
of [3] rather than those of [2].

In a pLTS actions are performed only by states, in that actions are given by relations from states to
distributions. But processes in general correspond to distributions over states, so in order to define what
it means for a process to perform an action, we need to lift these relations so that they also apply to
distributions. In fact we will find it convenient to lift them to subdistributions.

Definition 4.1 Let (S,L,!) be a pLTS and R ✓ S⇥Dsub(S) be a relation from states to subdistributions.
Then R ✓ Dsub(S)⇥Dsub(S) is the smallest relation that satisfies:

(i) s R D implies s R D, and
(ii) (Linearity) Gi R Di for i2 I implies (Âi2I pi ·Gi) R (Âi2I pi ·Di) for any pi2[0,1] (i2 I) with

Âi2I pi 1, where I is a countable set.

An application of this notion is when the relation is a�! for a 2 Actt ; in that case we also write a�!
for a�!. Thus, as source of a relation a�! we now also allow distributions, and even subdistributions. A
subtlety of this approach is that for any action a , we have e a�! e simply by taking I = /0 or Âi2I pi = 0
in Definition 4.1. That turns out to make e especially useful for modelling the “chaotic” aspects of
divergence in [3], in particular that in the must-case a divergent process can mimic any other.

Definition 4.1 is very similar to our previous definition in [2], although there it applied only to (full)
distributions:

Lemma 4.2 G R D if and only if
(i) G = Âi2I pi ·si, where I is an index set and Âi2I pi 1,

(ii) For each i 2 I there is a subdistribution Di such that si R Di ,
(iii) D = Âi2I pi ·Di.

10 Real-Reward Testing for Probabilistic Processes

Proof: Straightforward. 2

An important point here is that a single state can be split into several pieces: that is, the decomposition
of G into Âi2I pi ·si is not unique.

Definition 4.3 [Weak derivation] Suppose we have subdistributions D,D!
k ,D⇥

k , for k � 0, with the fol-
lowing properties:

D = D!
0 +D⇥

0

D!
0

t�! D!
1 +D⇥

1...
D!

k
t�! D!

k+1 +D⇥
k+1

Then we call D0 := Â•
k=0 D⇥

k a weak derivative of D, and write D =) D0 to mean that D can make a weak
derivation to its derivative D0.

There is always at least one weak derivative of any subdistribution (the subdistribution itself) and there
can be many.

Proposition 4.4 [Transitivity, linearity and decomposition of weak derivations [4]]
(i) If D =) D0 and D0 =) D00 then D =) D00.

Let pi 2 [0,1] for i2 I with Âi2I pi 1.

(ii) If Di =) D0
i for all i2 I then Âi2I pi ·Di =) Âi2I pi ·D0

i.

(iii) If Âi2I pi ·Di =) D0 then D0 = Âi2I pi ·D0
i for subdistributions D0

i such that Di =) D0
i for all i2 I.

We now use these weak derivations to define, in the standard manner of [13], weak action relations
between derivations; these, together with the refusal relations 6A�! for A ✓ Act are the key ingredients in
the definition of the failure-simulation preorder.

Definition 4.5 Let D and its variants D0,Dpre,Dpost be subdistributions in a pLTS hS,Act,!i.
• For a 2 Act write D a=) D0 whenever D =) Dpre a�! Dpost =) D0, for some Dpre and Dpost. Extend

this to Actt by allowing as a special case that t=) is simply =), i.e. including identity (rather than
requiring at least one t�!).

• For A ✓ Act and s2S write s 6A�! if s 6a�! for every a 2A[{t}; write D 6A�! if s 6A�! for every
s2dDe.

• More generally write D =) 6A�! if D =) Dpre for some Dpre such that Dpre 6A�!.

Definition 4.6 [Failure simulation preorder] Define �FS to be the largest relation in S⇥Dsub(S) such
that if s �FS D then

(i) whenever s a=) G0, for a 2Actt , then there is a D0 2Dsub(S) with D a=) D0 and G0 �FS D0,

(ii) and whenever s =) 6A�! then D =) 6A�!.

Any relation R ✓ S⇥Dsub(S) that satisfies the two clauses above is called a failure simulation. The
failure simulation preorder vFS ✓ Dsub(S)⇥Dsub(S) is defined by letting D vFS G whenever there is a
D\ with D =) D\ and G �FS D\.

Note that the simulating process, D, occurs at the right of �FS, but at the left of vFS. The following
lemma will bee needed in Section 6.

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 11

Lemma 4.7 If G �FS D and G =) G0 then there is a matching transition D =) D0 such that G0 �FS D0.

Proof: G �FS D implies by Lemma 4.2 that G = Â
i2I

pi · si, si �FS Di, D = Â
i2I

pi ·Di.

By Proposition 4.4(iii) there are G0
i 2 Dsub(S) for i2 I with si =) G0

i and G0 = Âpi2I pi ·G0
i. For each

i2 I we infer from si �FS Di and si =) G0
i that there is a D0

i2Dsub(S) with Di =) D0
i and G0

i �FS D0. Let
D0 := Âi2I pi ·D0

i. Then Definition 4.1(2) and Proposition 4.4(ii) yield G0 �FS D0 and D =) D0. 2

The failure simulation preorder is preserved under parallel composition with a test and it is sound and
complete for probabilistic must testing of finitary processes.

Theorem 4.8 [3] For finitary processes D and G,

(i) If D vFS G then for any W-test Q, QkD vFS QkG.

(ii) D vFS G if and only if D vpmust G.

5 From derivations to resolutions

In this section we explain how resolutions, on which the definitions of the testing preorders in Defini-
tions 3.4 and 3.5 are based, can be seen as certain kinds of derivations.

Definition 5.1 [Extreme derivatives] A state s in a pLTS is called stable if s 6t�!, and a subdistribution
D is called stable if every state in its support is stable. We write D =)� D0 whenever D =) D0 and D0 is
stable, and call D0 an extreme derivative of D.

Referring to Definition 4.3, we see this means that in the extreme derivation of D0 from D at every stage a
state must move on if it can, so that every stopping component can contain only states which must stop:
for s 2 dD!

k +D⇥
k e we have s 2 dD⇥

k e if and now also only if s 6t�!.

Lemma 5.2 [Existence and uniqueness of extreme derivatives]

(i) For every subdistribution D there exists some (stable) D0 such that D =)� D0.

(ii) In a deterministic pLTS if D =)� D0 and D =)� D00 then D0 = D00.

Proof: We construct a derivation as in Definition 4.3 of a stable D0 by defining the components Dk,D⇥
k

and D!
k using induction on k. Let us assume that the subdistribution Dk has been defined; in the base case

k = 0 this is simply D. The decomposition of this Dk into the components D⇥
k and D!

k is carried out by
defining the former to be precisely those states which must stop, i.e. those s for which s 6t�!. Formally
D⇥

k is determined by:

D⇥
k (s) =

(
Dk(s) if s 6t�!
0 otherwise

Then D!
k is given by the remainder of Dk, namely those states which can perform a t action:

D!
k (s) =

(
Dk(s) if s t�!
0 otherwise

Note that these definitions divide the support of Dk into two disjoints sets, namely the support of D⇥
k and

the support of D!
k . Moreover by construction we know that D!

k
t�! Q for some Q; we let Dk+1 be an

arbitrary such Q.

12 Real-Reward Testing for Probabilistic Processes

This completes our construction of an extreme derivative as in Definition 4.3 and so we have estab-
lished (i).

For (ii) we observe that in a deterministic pLTS the above choice of Dk+1 is unique, so that the whole
derivative construction becomes unique. 2

Subdistributions are essential in the definition of extreme derivations. Consider a state t that has only
one transition, a self t-loop t t�! t. Then it diverges and it has a unique extreme derivative e , the empty
subdistribution. More generally, suppose a subdistribution D diverges, that is there is an infinite sequence
of internal transitions D t�! D1

t�! . . .Dk
t�! Then one extreme derivative of D is e , but it may have

others.
In the extreme derivative D =)� D0, the subdistribution D0 may be viewed as a final result of an

execution starting in D and dynamically resolving nondeterministic choices as the execution proceeds.
We can tabulate the outcome of this execution in the following manner:

Definition 5.3 [Outcomes] The outcome $F 2 [0,1]W of a stable subdistribution F is given by $F(w) =
Â{F(s) | s 2 dFe, s w�!}. For any distribution F we write V (F) for the set of possible outcomes
{$F0 | F =)� F0} via extreme derivatives.

Let pi 2 [0,1] for i2 I with Âi2I pi 1, and let Di,Fi, for i 2 I, be subdistributions. We use Âi2I pi ·V (Di)
as shorthand for {Âi2I pi ·ni | ni 2 V (Di)}. By construction, $Âi2I pi ·Fi = Âi2I pi ·$Fi. Using this, we
establish the linearity of V :

Lemma 5.4 Let pi 2 [0,1] for i2 I with Âi2I pi 1. Then V (Âi2I pi ·Di) = Âi2I pi ·V (Di).

Proof: Suppose n 2 V (Âi2I pi ·Di). Then n = $F for some stable F with Âi2I pi ·Di =) F. By Propo-
sition 4.4(iii) F can be written as Âi2I pi ·Fi for subdistributions Fi such that Di =) Fi for all i2 I;
moreover, the Fi must be stable. Hence ni := $Fi 2 V (Di) and thus n = Âi2I pi ·ni 2 Âi2I pi ·V (Di).

Conversely, suppose n 2 Âi2I pi ·V (Di), i.e., n = Âi2I pi ·ni with ni 2 V (Di). Then for all i 2 I there
are stable subdistributions Fi with ni := $Fi and Di =) Fi. So Âi2I pi ·Di =) Âi2I pi ·Fi by Proposi-
tion 4.4(ii). Moreover Âi2I pi ·Fi is stable and n = Âi2I pi ·ni = $Âi2I pi ·Fi 2 V (Âi2I pi ·Di). 2

The following two examples illustrate that this manner of calculating outcomes often gives the same
result as when resolutions are used.

Example 5.5 (Revisiting Example 3.2.) The pLTS in Figure 4(c) is deterministic and therefore from
part (ii) of Lemma 5.2 it follows that tkq1 has a unique extreme derivative L. Moreover L can be
calculated to be Âk�1

1
2k · s3, which simplifies to the distribution s3. Therefore, since $s3 =

�!w , it follows
that V (tkq1) = {�!w }. This is exactly the same result as obtained in Example 3.2, using resolutions. 2

Example 5.6 (Revisiting Example 3.3.) The application of the test t to processes q2 is outlined in Fig-
ure 5(c). Consider any extreme derivative D0 from s0 = tkq2. Using the notation of Definition 4.3, it is
clear that D⇥

0 and D!
0 must be e and s0 respectively. Similarly, D⇥

1 and D!
1 must be e and s1 respectively.

But s1 is a nondeterministic state, having two possible transitions:

(i) s1
t�! L0 where L0 has support {s0,s2} and assigns each of them the weight 1

2

(ii) s1
t�! L1 where L1 has the support {s3,s4}, again dividing the mass equally among them.

So there are many possibilities for D2; from Definition 4.3 one sees that in fact D2 can be of the form

p ·L0 +(1� p) ·L1 (7)

for any choice of p 2 [0,1].

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 13

Let us consider one possibility, an extreme one where p is chosen to be 0; only the transition (ii) above
is used. Here D!

2 is the subdistribution 1
2 s4, and D!

k = e whenever k > 2. A simple calculation shows
that in this case the extreme derivative generated is Le

1 =
1
2 s3 +

1
2 s6 which implies that 1

2
�!w 2 V (tkq2).

Another possibility for D2 is L0, corresponding to p = 1 in (7) above. Continuing this derivation
leads to D3 being 1

2 · s1 +
1
2 · s5; thus D⇥

3 = 1
2 · s5 and D!

3 = 1
2 · s1. Now in the generation of D4 from D!

3
again we resolve a transition from the nondeterministic state s1, by choosing some arbitrary p 2 [0,1] in
(7). Suppose we choose p= 1 every time, completely ignoring transition (ii) above. Then the extreme
derivative generated is

Le
0 = Â

k�1

1
2k · s5

which simplifies to the distribution s5. This in turn means that �!w 2 V (tkq2).
We have seen two possible derivations of extreme derivatives from s0. But there are many others. In

general whenever D!
k is of the form q · s1 we have to resolve the nondeterminism by choosing a p 2 [0,1]

in (7) above; moreover each such choice is independent. It turns out that every extreme derivative D0

of s0 is of the form q ·Le
0 +(1�q) ·Le

1 for some choice of q 2 [0,1], which implies that V (tkq2) is the
convex closure of the set {1

2
�!w ,�!w }.

Again this is similar to the results obtained using resolutions, in Example 3.3. 2

Unfortunately there is not an exact agreement between using resolutions and extreme derivations, as the
next example shows.

Example 5.7 Let p be a process that first does an a-action, to the point distribution q, and then diverges,
via the t-loop q t�! q. Let t be the test used in Examples 3.2 and 3.3. It is easy to see that the distribution
pkt has a unique resolution, with expected outcome �!w ; thus A (t, p) = {�!w }.

It turns out that tkp also has a unique extreme derivative; unfortunately this turns out to be e . Since
$e = 0 this means that V (tkp) =

�!
0 ; so in this case, which is actually nonprobabilistic, there is a

difference between the use of resolutions and extreme derivations. 2

To rectify this anomaly, we restrict our attention to a subset of pLTSs.

Definition 5.8 [w-respecting] A pLTS hS,W,!i is said to be w-respecting when it satisfies the unique-
ness requirement (A) from Page 5, and s w�!, for any w 2 W, implies s 6t�!.

It is straightforward to modify the pLTS of applications of tests to processes into one that it is w-
respecting, namely by removing all transitions s t�! D for states s with s w�!; we call this pruning.
We denote the result of pruning the pLTS hS,W,!i by hS,W, [!]i, and the distribution F in this pruned
pLTS by [F].

Example 5.9 (Revisiting Example 5.7) Let p,q and t be as in Example 5.7. As we have already seen,
tkp has the unique derivative e . But by pruning it we obtain a different extreme derivative. If we denote
the state reachable from t with the outgoing w-transition, in Figure 5(c), as w also, then [tkp] has the
unique extreme derivative [wkq]. Since $[wkq] = �!w , we obtain V ([tkp]) = {�!w }; this is exactly the
result obtained using resolutions. 2

Note that pruning has no effect on Examples 5.5 and 5.6, as the pLTSs concerned are already w-
respecting. It also has no effect on the closure of the failure simulation preorder under parallel com-
position:

Lemma 5.10 [4] For finitary processes D and G, if D vFS G then for any W-test Q, [QkD]vFS [QkG].

14 Real-Reward Testing for Probabilistic Processes

In the remainder of this section we show that, at least in w-respecting pLTSs, using resolutions
to calculate outcomes, as used in the definition of testing (Definitions 3.4 and 3.5), leads to the same
results as using extreme derivations. In the former a set of deterministic structures are associated with
a distribution, while in the latter nondeterministic choices are resolved dynamically as the derivation
proceeds. We start by showing that resolution-based testing is insensitive to pruning. Let A p(F) denote
the set of vectors

{ExpL(VhR,W,!Ri) | hR,L,!Ri is a resolution of [F]} .

Proposition 5.11 For any distribution F in a pLTS hS,W,!i we have that A p(F) = A (F).

Proof: “◆”: Let hR,L,!Ri be a resolution of F. Then, following Definition 3.1, hR, [L], [!R]i is a
resolution of [F] and, by (3), Exp[L](VhR,W,[!R]i) = ExpL(VhR,W,!Ri).

“✓”: Let hR,L,!Ri be a resolution of [F] with resolving function f . We construct a resolution
hR0,L,!0

Ri of F as a random extension of hR,L,!Ri. For every pair (s,a)2S⇥Wt with s a�! pick
a distribution Y(s,a)2D(S) such that s a�! Y(s,a). Now define R0 := R

.
[(S ⇥), where

.
[denotes

the disjoint union operation, and obtain !0
R from !R by adding (A) a transition (s,k) a�!0

R Y(s,a)
k+1 for

each k2 and each s2S with s a�!, and (B) a transition r t�!0
R Y(f (r),t)

0 for each r2R with f (r) t�!
as well as f (r) w�! for some w 2W. Here Y(s,a)

k+1 2 D(S⇥{k+1}) is given by Y(s,a)
k+1 (t,k+1) = Y(s,a)(t)

for all t2S. The resolving function f is extended by f (s,k) := s. Using Definition 3.1 it follows that
hR0,L,!0

Ri is a resolution of F and, again by (3), ExpL(VhR0,W,!0
Ri) = ExpL(VhR,W,!Ri). 2

The rest of this section is devoted to showing that V ([F]) = A p(F) for any composition F = QkD of a
test Q and process D; this amounts to showing

{$F0 | F =)� F0}= {ExpL(VhR,W,!i) | hR,L,!i is a resolution of F}

for any distribution F in an w-respecting pLTS hS,W,!i.
Let us see how an extreme derivation can be viewed as a method for dynamically generating a reso-

lution.
Proposition 5.12 [Resolutions from extreme derivatives] Let F =)� F0 in a pLTS hS,W,!i. Then
there is a resolution hR,L,!Ri of F, with resolving function f , such that L =)�R L0 for some L0 for
which F0 = Img f (L0).

Proof: Consider an extreme derivation of F =)� F0 as given in Definition 4.3 where all F⇥
k must be

stable:
F = F0, Fk = F⇥

k +F!
k , F!

k
t�! Fk+1, F0 = Â•

k=0 F⇥
k .

By Lemma 4.2, F!
k

t�! Fk+1 implies that there are states sik2S and distributions Fi(k+1)2D(S), such
that

F!
k = Âi2Ik

pik ·sik, sik
t�! Fi(k+1) for each i 2 Ik and Fk+1 = Âi2Ik

pik ·Fi(k+1) .

Let F⇥
ik(s) :=

⇢
Fik(s) if s 6t�!
0 if s t�! . Since F⇥

k (s) =
⇢

Fk(s) if s 6t�!
0 if s t�! it follows that F⇥

k+1 = Âi2Ik
pik ·F⇥

i(k+1).

We will now define the resolution hR,L,!Ri and the resolving function f . The set of states R is
(S⇥)[

S
k2 (Ik ⇥{k}). The resolving function f : R ! S maps (s,k)2S⇥ to s and (i,k)2 Ik⇥{k} to

sik2S. The second component k of a state counts how many transitions have fired already: each transition
in !R goes from a state (i,k) or (s,k) to a distribution over (S[Ik+1)⇥{k+1}.

Define the subdistributions L⇥
k 2Dsub(S⇥{k}) and L!

k 2Dsub(Ik ⇥{k}) by L⇥
k (s,k) = F⇥

k (s) and
L!

k (i,k) = pik. Let Lk := L⇥
k + L!

k and L := L0. Furthermore, for all k > 0 and i2 Ik�1, define

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 15

Lik2Dsub((S[Ik)⇥{k}) by

Lik(s,k) = F⇥
ik(s) and Lik(j,k) = p jk ·

Fik(s jk)

Fk(s jk)

for j2 Ik. We introduce the transitions (i,k) t�!R Li(k+1) for k � 0 and i2 Ik. Moreover, for each state
s2S and label a 2Actt such that s a�!, pick a transition s a�! Y, and add the transition (s,k) a�!R Yk+1
to !R, for all k2 . Here Yk+1 is the distribution with Yk+1(t,k+1) = Y(t) for all t2S. Likewise,
for each k 2 , i2 Ik and w 2W such that sik

w�!, pick a transition sik
w�! Y, and add the transition

(i,k) w�!R Yk+1 to !R. This ends the definition of the resolution hR,L,!Ri and the resolving function
f . By construction, hR,W,!Ri is a deterministic pLTS. We now check that f satisfies the requirements
for a resolving function of Definition 3.1.

(i) Img f (Lk)(s) = Lk(s,k)+ Â
sik=s

Lk(i,k) = L⇥
k (s,k)+ Â

sik=s
pik = F⇥

k (s)+F!
k (s) = Fk(s)

for all s2S, so Img f (Lk) = Fk, and in particular Img f (L) = F.
(ii) Let r a�!R G for a 2Wt . In case r = (s,k) it must be that G = Yk+1 and f (r) = s a�! Y =

Img f (Yk+1). Likewise, in case r=(i,k) and a 2W it must be that G = Yk+1 and f (r) = sik
a�! Y =

Img f (Yk+1). The remaining case is r=(i,k), a = t and G = Li(k+1). Then f (r) = sik
t�! Fi(k+1),

so it suffices to show that Img f (Lik) = Fik for all k2 and i2 Ik. For any s2S we have

Img f (Lik)(s) = Lik(s,k)+ Â
s jk=s

Lik(j,k) = F⇥
ik(s)+ Â

s jk=s
p jk ·

Fik(s jk)

Fk(s jk)
= F⇥

ik(s)+
Fik(s)
Fk(s)

· Â
s jk=s

p jk .

In case s 6t�! we have s jk = s for no j2 Ik, so Img f (Lik)(s) = F⇥
ik(s) = Fik(s).

In case s t�! we have F⇥
ik(s) = 0 and Âs jk=s p jk = F!

k (s) = Fk(s), so again Img f (Lik)(s) = Fik(s).

(iii) Let f (r) a�! for a 2Wt . By construction there is a Yk+1 such that r a�!R Yk+1.
Hence hR,L,!Ri is a resolution of F. We have:

Â
i2Ik

pik ·Li(k+1)(s,k+1) = Â
i2Ik

pik ·F⇥
i(k+1)(s) = F⇥

k+1(s) = L⇥
k+1(s,k+1) = Lk+1(s,k+1)

Â
i2Ik

pik ·Li(k+1)(j,k+1) = Â
i2Ik

pik · p j(k+1) ·
Fi(k+1)(s j(k+1))

Fk+1(s j(k+1))
= p j(k+1) = L!

k+1(j,k+1) = Lk+1(j,k+1).

Hence Lk+1 = Âi2Ik
pik ·Li(k+1). Since also L!

k = Âi2Ik
pik ·(i,k) and (i,k) t�!R Li(k+1), Lemma 4.2

yields L!
k

t�!R Lk+1. Let L0 = Â•
k=0 L⇥

k . Then, by Definition 4.3, L =)�R L0.
By construction Img f (L⇥

k) = F⇥
k for all k2 . Hence Img f (L0) = Â•

k=0 Img f (L⇥
k) = Â•

k=0 F⇥
k = F0.

2

The converse is somewhat simpler.

Proposition 5.13 [Extreme derivatives from resolutions] Let hR,L,!Ri be a resolution of a subdis-
tribution F in a pLTS hS,W,!i with resolving function f . Then L =)�R L0 implies F =)� Img f (L0).

Proof: The definition of Img f implies that Img f (Âi pi ·Yi) = Âi pi · Img f (Yi). Furthermore Y t�! Y0

implies Img f (Y) t�! Img f (Y0). Namely, by Lemma 4.2, Y t�! Y0 implies

Y = Âi2I pi ·si, si
t�! Yi for each i 2 I and Y0 = Âi2I pi ·Yi

which, using Definition 3.1, entails

16 Real-Reward Testing for Probabilistic Processes

Img f (Y) = Âi2I pi · f (si), f (si)
t�! Img f (Yi) for each i 2 I and Img f (Y0) = Âi2I pi ·Img f (Yi).

Hence Img f (Y) t�! Img f (Y0).
Now consider any derivation of L=)�R L0 along the lines of Definition 4.3. By systematically apply-

ing the function f to the component subdistributions in this derivation we get a derivation Img f (L) =)
Img f (L0), that is F =) Img f (L0). To show that Img f (L0) is actually an extreme derivative it suffices to
show that s is stable for every s 2 dImg f (L0)e. But if s 2 dImg f (L0)e then by definition there is some
t 2 dL0e such that s = f (t). Since L =)�R L0 the state t must be stable. The stability of s now follows
from requirement (iii) of Definition 3.1. 2

Our next step is to relate the outcomes extracted from extreme derivatives to those extracted from
the corresponding resolutions. This requires some analysis of the evaluation function V applied to w-
respecting deterministic pLTSs. We show that the function F defined in (3) on Page 6 and its least fixed
point V are continuous with respect to the standard Euclidean metric.

Definition 5.14 [Continuous functions] An w-chain in a complete lattice L is a sequence of elements
{cn | n � 0} satisfying ci ci+1. Since the lattice is complete, w-chains have least upper bounds; we
denote them by

F
n�0 cn. A function f : L ! L is said to be (w)-continuous [19] if it preserves the least

upper bounds of w-chains:
f (

G

n�0
cn) =

G

n�0
f (cn) .

Lemma 5.15 [Exchange of suprema] Let function g : ⇥ ! be such that it is

(i) monotonic in both of its arguments separately, so that i i0 implies g(i, j) g(i0, j) for all j, and
j j0 implies g(i, j) g(i, j0) for all i, and

(ii) bounded above, so that there is a c 2 �0 with g(i, j) c for all i, j.

Then
lim
i!•

lim
j!•

g(i, j) = lim
j!•

lim
i!•

g(i, j).

Proof: Conditions (i) and (ii) guarantee the existence of all the limits. Moreover, for a non-decreasing
sequence its limit and supremum agree, and both sides equal the supremum of all g(i, j) for i, j 2 . In
fact, (,) is a complete partial order (CPO), and it is a basic result of CPOs [19] that

G

i2

(
G

j2

g(i, j)) =
G

j2

(
G

i2

g(i, j)). 2

The following technical proposition states that some real functions satisfy the property of bounded con-
tinuity, which allows the exchange of limit and sum operations. It plays a crucial role in proving the
continuity of F .

Proposition 5.16 [Bounded continuity] Given a function f : ⇥ ! �0 which satisfies the follow-
ing conditions:

C1. f is monotonic in the second parameter, i.e. j1 j2 implies f (i, j1) f (i, j2) for all i, j1, j2 2 ;

C2. for any i 2 , the limit lim j!• f (i, j) exists;

C3. the partial sums Sn = Ân
i=0 lim j!• f (i, j) are bounded, i.e. there exists some c 2 �0 such that

Sn c for all n � 0;

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 17

then it holds that
•

Â
i=0

lim
j!•

f (i, j) = lim
j!•

•

Â
i=0

f (i, j).

Proof: Let g : ⇥ ! �0 be the function defined by g(n, j) = Ân
i=0 f (i, j). It is easy to see that g is

monotonic in both arguments. By C1 and C2, we have that f (i, j) lim j!• f (i, j) for any i, j 2 . So
for any j,n 2 we have that

g(n, j) =
n

Â
i=0

f (i, j)
n

Â
i=0

lim
j!•

f (i, j) c

according to C3. In other words, g is bounded above. Therefore we can apply Lemma 5.15 and obtain

lim
n!•

lim
j!•

n

Â
i=0

f (i, j) = lim
j!•

lim
n!•

n

Â
i=0

f (i, j). (8)

For any j2 , the sequence {g(n, j)}n�0 is nondecreasing and bounded, so its limit Â•
i=0 f (i, j) exists.

That is,
lim
n!•

n

Â
i=0

f (i, j) =
•

Â
i=0

f (i, j). (9)

In view of C2, we have that, for any given n2 , the limit lim j!• Ân
i=0 f (i, j) exists and

n

Â
i=0

lim
j!•

f (i, j) = lim
j!•

n

Â
i=0

f (i, j). (10)

By C3 the sequence {Sn}n�0 is bounded. Since it is also nondecreasing, it converges to
•

Â
i=0

lim
j!•

f (i, j).
That is,

lim
n!•

n

Â
i=0

lim
j!•

f (i, j) =
•

Â
i=0

lim
j!•

f (i, j). (11)

Hence the left-hand side of the desired equality exists. By combining (8)-(11) we obtain the result that•

Â
i=0

lim
j!•

f (i, j) = lim
j!•

•

Â
i=0

f (i, j). 2

Lemma 5.17 Let R be a set and h : R ! [0,1]W. Furthermore, let D0 D1 · · · be an w-chain of
subdistributions over R — here D D0 iff D(r) D0(r) for all r 2 R. Then ExpF

n�0 Dn
h =

F
n�0 ExpDn

h.

Proof:
�
ExpF

n�0 Dn
h
�
(w) =

�
Âr2R(

F
n�0 Dn)(r)·h(r)

�
(w)

=
�

Âr2R(
F

n�0 Dn(r))·h(r)
�
(w)

=
�

Âr2R
F

n�0(Dn(r)·h(r))
�
(w)

= Âr2R
F

n�0(Dn(r)·h(r)(w))
= Âr2R limn!•(Dn(r)·h(r)(w))
= limn!• Âr2R(Dn(r)·h(r)(w)) by Proposition 5.16
=

F
n�0 Âr2R(Dn(r)·h(r)(w))

=
�F

n�0 Âr2R(Dn(r)·h(r))
�
(w)

=
�F

n�0 ExpDn
h
�
(w).

In the above reasoning, Proposition 5.16 can be applied because we can define f : R⇥ ! �0 by
letting f (r,n) = Dn(r) ·h(r)(w) and checking that f satisfies the three conditions in Proposition 5.16. If
R is finite, we can extend it to a countable set R0 ◆ R and require f (r0,n) = 0 for all r0 2 R0\R and n 2 .

18 Real-Reward Testing for Probabilistic Processes

1. f satisfies condition C1. For any r 2 R and j1, j2 2 , if j1 j2 then D j1 D j2 . It follows that
f (r, j1) = D j1(r) ·h(r)(w) D j2(r) ·h(r)(w) = f (r, j2).

2. f satisfies condition C2. For any r 2 R, the sequence {Dn(r) ·h(r)(w)}n�0 is nondecreasing and
bounded by h(r)(w). It follows that the limit limn!• f (r,n) exists.

3. f satisfies condition C3. For any finite R00 ✓ R, the partial sum Âr2R00 limn!• f (r,n) is bounded
because

Âr2R00 limn!• f (r,n) = limn!• Âr2R00 f (r,n) = limn!• Âr2R00 Dn(r) ·h(r)(w)
 limn!• Âr2R00 Dn(r) limn!• Âr2R Dn(r) limn!• 1 = 1. 2

Lemma 5.18 Consider a deterministic pLTS hR,W,!i. The function F defined in (3) is continuous.
Proof: Let f0 f1 ... be an increasing chain in R ! [0,1]W. We need to show that

F (
G

n�0
fn) =

G

n�0
F (fn) (12)

For any r 2 R, we are in one of the following three cases:
1. r w�! for some w 2 W. We have

F (
F

n�0 fn)(r)(w) = 1 by (3)
=

F
n�0 1

=
F

n�0 F (fn)(r)(w)
= (

F
n�0 F (fn))(r)(w)

and
F (

G

n�0
fn)(r)(w 0) = 0 = (

G

n�0
F (fn))(r)(w 0)

for all w 0 6= w .
2. r 6!. Similar to the last case. We have

F (
G

n�0
fn)(r)(w) = 0 = (

G

n�0
F (fn))(r)(w)

for all w 2 W.
3. Otherwise, r t�! D for some D 2 D(R). Then we infer that, for any w 2 W,

F (
F

n�0 fn)(r)(w) = ExpD(
F

n�0 fn)(w) by (3)
= Âr2dDe D(r) · (

F
n�0 fn)(r)(w)

= Âr2dDe D(r) · (
F

n�0 fn(r))(w)
= Âr2dDe

F
n�0 D(r) · fn(r)(w)

= Âr2dDe limn!• D(r) · fn(r)(w)
= limn!• Âr2dDe D(r) · fn(r)(w) by Proposition 5.16
=

F
n�0 Âr2dDe D(r) · fn(r)(w)

=
F

n�0 ExpD(fn)(w)
=

F
n�0 F (fn)(r)(w)

= (
F

n�0 F (fn))(r)(w) .

In the above reasoning, Proposition 5.16 can be applied because we can define the function f :
R⇥ ! �0 by letting f (r,n) = D(r) · fn(r)(w) and checking that f satisfies the three conditions
in Proposition 5.16. If R is finite, we can extend it to a countable set R0 ◆ R and require f (r0,n) = 0
for all r0 2 R0\R and n 2 .

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 19

(a) f satisfies condition C1. For any r 2 R and j1, j2 2 , if j1 j2 then f j1 f j2 . It follows
that

f (r, j1) = D(r) · f j1(r)(w) D(r) · f j2(r)(w) = f (r, j2).

(b) f satisfies condition C2. For any r 2 R, the sequence {D(r) · fn(r)(w)}n�0 is nondecreasing
and bounded by D(r). It follows that the limit limn!• f (r,n) exists.

(c) f satisfies condition C3. For any R00 ✓ R, the partial sum Âr2R00 limn!• f (r,n) is bounded
because

Â
r2R00

lim
n!•

f (r,n) = Â
r2R00

lim
n!•

D(r) · fn(r)(w) Â
r2R00

D(r) Â
r2R

D(r) = 1. 2

The continuity of F implies that its fixed point V can be captured by a chain of approximants. The
functions Vn, n � 0 are defined by induction on n:

V0(r)(w) = 0 for all r 2 R and w 2 W
Vn+1 = F (Vn)

Now V=
F

n�0 Vn. This is used in the following result.

Lemma 5.19 Let L be a subdistribution in an w-respecting deterministic pLTS hR,W,!Ri. If L =)� L0

then ExpL(VhR,W,!Ri) = ExpL0(VhR,W,!Ri).
Proof: For simplicity let us write V(D) for ExpD(VhR,W,!Ri) for any D. Since the pLTS is w-respecting
we know that s t�! D implies s 6w�! for any w . Therefore, from the definition of the functional F we
have that s t�! D implies Vn+1(s) = Vn(D), whence by lifting and linearity we get:

if D t�! D0 then Vn+1(D) = Vn(D0) for all n � 0.

Now suppose L =)� L0. Then

L = L0, Lk = L⇥
k +L!

k , L!
k

t�! Lk+1, L0 =
•

Â
k=0

L⇥
k .

Using in the base case that V0(D)(w)=0 for each D, a straightforward induction on n yields, for all `�0,

Vn(L`) =
n

Â
k=0

Vn�k(L⇥
`+k) . (13)

Namely Vn+1(L`) = Vn+1(L⇥
` +L!

`) = Vn+1(L⇥
`)+Vn+1(L!

`) = Vn+1(L⇥
`)+Vn(L`+1)

induction
=

Vn+1(L⇥
`)+Ân

k=0Vn�k(L⇥
`+1+k) = Vn+1(L⇥

`)+Ân+1
k=1 Vn+1�k(L⇥

`+k) = Ân+1
k=0 Vn+1�k(L⇥

`+k).
Since L⇥

k is stable, we have

Vm(L⇥
k) = V(L⇥

k) for every k,m � 0. (14)

We conclude by reasoning

V(L) =
F

n�0Vn(L) by continuity of F
=

F
n�0 Ân

k=0Vn�k(L⇥
k) from (13) above, taking `= 0

=
F

n�0 Ân
k=0V(L⇥

k) by (14)
=

F
n�0V(Ân

k=0 L⇥
k) by linearity of V

= V(Fn�0 Ân
k=0 L⇥

k) by Lemma 5.17
= V(Â•

k=0 L⇥
k)

= V(L0) . 2

20 Real-Reward Testing for Probabilistic Processes

We are now ready to compare the two methods for calculating the set of outcomes associated with a
subdistribution:

• using extreme derivatives and the reward function $ from Definition 5.3
• using resolutions and the evaluation function V from page 6.

Theorem 5.20 In an w-respecting pLTS hS,W,!i, the following statements hold.

(a) If F =)� F0 then there is a resolution hR,L,!Ri of F such that ExpL(VhR,W,!Ri) = $F0.

(b) For any resolution hR,L,!Ri of F, there exists a F0 such that F=)�F0 and ExpL(VhR,W,!Ri)= $F0.

Proof: Suppose F =)� F0. By Proposition 5.12, there is a resolution hR,L,!Ri of F with resolving
function f and a subdistribution L0 such that L =)� L0 and F0 = Img f (L0). By Lemma 5.19, we have

ExpL(V) = ExpL0(V). (15)

Since L0 is an extreme derivative, all the states s in its support are stable, so V(s)(w) = 0 if s 6w�!, for all
w 2W. Hence

ExpL0(V)(w) = Â
s2dL0e

L0(s) ·V(s)(w) = Â
s2dL0e, s w�!

L0(s) = $L0(w) . (16)

Furthermore, for all t2dF0e, F0(t) = Img f (L0)(t) = Â f (s)=t L0(s), so, for all w 2 W,

$F0(w) = Â
t2dF0e, t w�!

F0(t) = Â
t2dF0e, t w�!

Img f (L0)(t) = Â
t2dF0e, t w�!

Â f (s)=t L0(s) = Â
s2dL0e, f (s) w�!

L0(s) = $L0(w) ,

where in the last step we the use the property of resolutions that f (s) w�! iff s w�!. Combining this with
(15) and (16) yields that ExpL(V) = $F0.

To prove part (b), suppose that hR,L,!Ri is a resolution of F with resolving function f , so that F =
Img f (L). We know from Lemma 5.2 that there exists a (unique) subdistribution L0 such that L =)� L0.
By Proposition 5.13 we have that F =)� Img f (L0). The same arguments as in the other direction show
that ExpL(V) = $(Img f (L0)). 2

A direct consequence of the above theorem is that V (F) = A (F) for any subdistribution F in an w-
respecting pLTS hS,W,!i. This implies that V ([F]) = A p(F) for any subdistribution F in a pLTS
hS,W,!i. This, in turn, together with Proposition 5.11, implies the following result.

Corollary 5.21 For any subdistribution F in a pLTS hS,W,!i we have that V ([F]) = A (F). 2

6 Agreement of nonnegative- and real-reward must testing

In this section we prove the agreement of vnrmust with vrrmust for finitary convergent processes, by using
failure simulation [3], recalled in Definition 4.6, as a stepping stone.

Because we prune our pLTSs before extracting values from them, we will be concerned mainly with
w-respecting structures. Moreover, we require the pLTSs to be convergent in the sense that there is
no wholly divergent state s, i.e. with s =) e . It follows from Theorem 8 in [3], in combination with
Lemma 4.4(iii), that on a finitary convergent pLTS, if D =) D0 with D a full distribution, then D0 is a full
distribution.

Lemma 6.1 Let D and G be full distributions in an w-respecting finitary convergent pLTS hS,W,!i. If
distribution G is stable and G �FS D, then $G 2 V (D).

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 21

Proof: We first show that if s is stable and s �FS D with D a full distribution, then $s 2 V (D). Since s is
stable, we have only two cases:

(i) s 6! Here $s=
�!
0 , where

�!
0 (w) = 0 for all w 2 W. Since s �FS D we have D =) D0 with D0 6!,

whence in fact D =)� D0 and $D0 =
�!
0 . Thus $s =

�!
0 2 V (D).

(ii) s w�! G0 for some G0 Here $s=�!w , and since s �FS D we have D =) D0 w�!. As remarked above,
also D0 is a full distribution. Hence $D0=�!w . Because the pLTS is w-respecting, in fact D =)� D0

and so again $s =�!w 2 V (D).
Now for the general case we suppose G �FS D. By Lemma 4.2 there is an index set I and states si,
subdistributions Di and probabilities pi for i 2 I, with Âi2I pi 1, such that

G = Âi2I pi ·si, si �FS Di for each i 2 I and D = Âi2I pi ·Di.

Since D is full, Âi2I pi = 1 and the Di are full distributions. Since G is stable, each state si is stable. From
above we have that $si 2 V (Di) for all i 2 I, and so $G = Âi2I pi ·$si 2 Âi2I pi ·V (Di) = V (D), using
Lemma 5.4. 2

Lemma 6.2 Let D and G be full distributions in an w-respecting finitary convergent pLTS hS,W,!i.
Then D vFS G implies V (D)◆ V (G).
Proof: Let G,D 2 D(S). We first claim that

(i) If D =) D0 then V (D0)✓ V (D).
(ii) If G �FS D, then we have V (G)✓ V (D).

The first claim holds because if D0 =)� D00 then D =) D0 =)� D00, i.e. every extreme derivative of
D0 is also an extreme derivative of D. For the second claim, we assume G �FS D. For any G =)� G0

Lemma 4.7 gives a matching transition D =) D0 such that G0 �FS D0. By definition G0 is stable and since
hS,W,!i is finitary and convergent D0 and G0 must be full. It follows from Lemma 6.1 and Claim (i) that
$G0 2 V (D0)✓ V (D). Consequently, we obtain V (G)✓ V (D).

Now suppose D vFS G. By definition there exists some D0 such that D =) D0 and G �FS D0. By the
above two claims we obtain V (G)✓ V (D0)✓ V (D). 2

This lemma shows that the failure-simulation preorder is a very strong relation in the sense that if D is
related to G by the failure-simulation preorder then the set of outcomes generated by D includes the set of
outcomes given by G. It is mainly due to this strong property that we can show that the failure-simulation
preorder is sound for the real-reward must-testing preorder. Convergence is a crucial condition in this
lemma.

Theorem 6.3 For any finitary convergent processes D and G, if D vFS G then we have that D vrrmust G.

Proof: We reason as follows.

D vFS G
implies [QkD]vFS [QkG] Lemma 5.10, for any W-test Q
implies V ([QkD])◆ V ([QkG]) [·] is w-respecting; Lemma 6.2
iff A (Q,D)◆ A (Q,G) Corollary 5.21
implies h ·A (Q,D)◆ h ·A (Q,G) for any h 2 [�1,1]W

implies
d

h ·A (Q,D)
d

h ·A (Q,G) for any h 2 [�1,1]W

iff D vW
rrmust G .

22 Real-Reward Testing for Probabilistic Processes

Note that in the second line above, both [QkD] and [QkG] are convergent, since for any convergent process
X and finite process Q, by induction on the structure of Q, it can be shown that the composition QkX is
also convergent. Furthermore, since processes D,G and tests Q are defined to be full distributions, also
[QkD] and [QkG] are full. 2

The proof of the above theorem is subtle. The failure-simulation preorder is defined via weak derivations
(cf. Definition 4.6), while the reward must-testing preorder is defined in terms of resolutions (cf. Defini-
tion 3.5). Fortunately, we have shown in Corollary 5.21 that we can just as well characterise the reward
must-testing preorder in terms of weak derivations. Based on this observation, the proof was carried out
by exploiting Lemmas 5.10 and 6.2.

This result does not extend to divergent processes. One witness example is given in Figure 1. A
simpler example is as follows. Let D be a process that diverges, by performing a t-loop only, and let G
be a process that merely performs a single action a. It holds that D vFS G because D =) e and the empty
subdistribution can failure-simulate any processes. However, if we apply the test t from Example 3.2
again, and the reward tuple h with h(w) =�1, then

d
h ·A (t,D) =

d
h ·V ([tkD]) =

d
h · {$e} =

d
{0} = 0d

h ·A (t,G) =
d

h ·V ([tkG]) =
d

h · {�!w } =
d
{�1} = �1

As
d

h ·A (t,D) 6
d

h ·A (t,G), we see that D 6vrrmust G. Since V ([tkG]) = {�!w } but �!w 62 V ([tkD]), this
also is a counterexample against an extension of Lemma 6.2 with divergence.

Finally, by combining Theorems 3.6(ii) and 4.8(ii), together with Theorem 6.3, we obtain the main
result of the paper which states that, in the absence of divergence, nonnegative-reward must testing is as
discriminating as real-reward must testing.

Theorem 6.4 For any finitary convergent processes D and G, it holds that D vrrmust G if and only if
D vnrmust G.

Proof: The “only if” direction is obvious (cf. Definition 3.5). For the “if” direction, suppose D and G
are finitary convergent processes. We reason as follows.

D vW
nrmust G

iff D vW
pmust G Theorem 3.6(ii)

iff D vFS G Theorem 4.8(ii)
implies D vW

rrmust G . Theorem 6.3 2

7 Discussion

Below we give a characterisation of vrrmust in terms of the set inclusion relation between testing outcome
sets. As a similar characterisation for vnrmust does in general not hold for finitary (non-convergent)
processes, hopefully this gives some indication of the subtle difference between vrrmust and vnrmust, and
we see more clearly why our proof of Theorem 6.4 involves the failure simulation preorder.
Theorem 7.1 Let D and G be any finitary processes. Then D vrrmust G if and only if A (Q,D)◆A (Q,G)
for any W-test Q.

Proof: (() Let Q be any W-test and h 2 [�1,1]W be any real-reward tuple. Suppose A (Q,D) ◆
A (Q,G). It is obvious that h ·A (Q,D)◆ h ·A (Q,G), from which it easily follows that

l
h ·A (Q,D)

l
h ·A (Q,G).

Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan 23

As this holds for an arbitrary real-reward tuple h, we see that D vrrmust G.
()) Suppose for a contradiction that there is some W-test Q with A (Q,D) 6◆ A (Q,G). Then there

exists some outcome o 2 A (Q,G) lying outside A (Q,D), i.e.

o 62 A (Q,D). (17)

Since Q is finite, it contains only finitely many elements of W, so that we may assume wlog that W is
finite. Since D and Q are finitary, it is easy to see that the pruned composition [DkQ] is also finitary.
By Theorem 1/Corollary 1 in [3], the set {F | [DkQ] =) F} is convex and compact. With an analogous
proof, it can be shown that so is the set {F | [DkQ] =)� F}. It follows that the set

{$F | [DkQ] =)� F}

i.e. V ([QkD]), is also convex and compact. By Corollary 5.21 the set A (Q,D) is thus convex and
compact. Combining this with (17), and using the Separation Hyperplane Lemma [7, 12], we infer the
existence of some hyperplane whose normal is h 2 W such that h · o0 > h · o for all o0 2 A (Q,D). By
scaling h, we obtain without loss of generality that h 2 [�1,1]W. It follows that

l
h ·A (Q,D) > h ·o �

l
h ·A (Q,G)

which is a contradiction to the assumption that D vrrmust G. 2

Note that in the above proof the normal of the separating hyperplane belongs to [�1,1]W rather than
[0,1]W. So we cannot repeat the above proof for vnrmust. In general, we do not have that D vnrmust G
implies A (Q,D)◆ A (Q,G) for any W-test Q and for arbitrary finitary processes D and G, that is finitary
processes which might not be convergent. However, when we restrict ourselves to finitary convergent
processes, this property does indeed hold, as can be seen from the first four lines in the proof of Theo-
rem 6.3. Note that in that proof there is an essential use of the failure simulation preorder; in particular
the pleasing property stated in Lemma 6.2. Even for finitary convergent processes we cannot give a direct
and simple proof of that property for vnrmust, analogous to that of Theorem 7.1.

8 Conclusion

We have studied a notion of real-reward testing which extends the traditional nonnegative-reward testing
with negative rewards. It turned out that the real-reward may preorder is the inverse of the real-reward
must preorder, and vice versa. More interestingly, for finitary convergent processes, the real-reward must
testing preorder coincides with the nonnegative-reward testing preorder. In order to prove this result,
we have capitalised on a characterisation of nonnegative-reward testing in terms of a derivation based
simulation preorder. Relating derivations to resolutions, on which the testing theories are based, involved
proving some analytic properties such as the continuity of a function for calculating testing outcomes.

Although for finitary convergent processes real-reward must testing is no more powerful than non-
negative-reward must testing, the same does not hold for may testing. This is immediate from our result
that (the inverse of) real-reward may testing is as powerful as real-reward must testing, that is known
not to hold for nonnegative-reward may- and must testing. For finitary processes we know from [3]
that vnrmay and vnrmust correspond to the simulation and failure simulation preorder respectively, and
without divergence the latter is strictly more discriminating than the former.

24 Real-Reward Testing for Probabilistic Processes

References
[1] R. De Nicola & M. Hennessy (1984): Testing equivalences for processes. Theoretical Computer Science 34,

pp. 83–133, doi:10.1016/0304-3975(84)90113-0.
[2] Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan (2008): Characterising testing preorders for finite

probabilistic processes. Logical Methods in Computer Science 4(4):4, doi:10.2168/LMCS-4(4:4)2008.
[3] Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan (2009): Testing finitary probabilistic processes.

In: Proc. CONCUR’09, LNCS 5710, Springer, pp. 274–288, doi:10.1007/978-3-642-04081-8 19.
[4] Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan (2009): Testing finitary probabilistic processes.

Full version of [3]. Available at http://www.cse.unsw.edu.au/˜rvg/pub/finitary.pdf.
[5] Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan (2011): Real Reward Testing for Probabilistic

Processes. In: Proc. QAPL’11. EPTCS 57, pp. 61–73, doi:10.4204/EPTCS.57.5.
[6] Y. Deng, R.J. van Glabbeek, M. Hennessy, C.C. Morgan & C. Zhang (2007): Remarks on Testing Probabilis-

tic Processes. ENTCS 172, pp. 359–397, doi:10.1016/j.entcs.2007.02.013.
[7] Y. Deng, R.J. van Glabbeek, C.C. Morgan & C. Zhang (2007): Scalar Outcomes Suffice for Finitary Proba-

bilistic Testing. In: Proc. ESOP’07, LNCS 4421, Springer, pp. 363–368, doi:10.1007/978-3-540-71316-6 25.
[8] R.J. van Glabbeek (1993): The Linear Time – Branching Time Spectrum II; The semantics of sequential

systems with silent moves (extended abstract). In: Proc. CONCUR’93. LNCS 751, Springer, pp. 66–81,
doi:10.1007/3-540-57208-2 6.

[9] M. Hennessy (1988): An Algebraic Theory of Processes. MIT Press.
[10] B. Jonsson, C. Ho-Stuart & Wang Yi (1994): Testing and Refinement for Nondeterministic and Probabilistic

Processes. In: Proc. FTRTFT’94, LNCS 863, Springer, pp. 418–430, doi:10.1007/3-540-58468-4 176.
[11] D. Kozen (1985): A Probabilistic PDL. JCSS 30(2), pp. 162–178, doi:10.1016/0022-0000(85)90012-1.
[12] J. Matousek (2002): Lectures on Discrete Geometry. Springer.
[13] R. Milner (1989): Communication and Concurrency. Prentice-Hall.
[14] M.L. Puterman (1994): Markov Decision Processes. Wiley, doi:10.1002/9780470316887.
[15] J.J.M.M. Rutten, M.Kwiatkowska, G. Norman & D. Parker (2004): Mathematical Techniques for Analyzing

Concurrent and Probabilistic Systems, P. Panangaden and F. van Breugel (eds.). CRM Monograph Series 23,
American Mathematical Society.

[16] R. Segala (1995): Modeling and Verification of Randomized Distributed Real-Time Systems. Ph.D. thesis,
MIT.

[17] R. Segala (1996): Testing Probabilistic Automata. In: Proceedings CONCUR’96, LNCS 1119, Springer, pp.
299–314, doi:10.1007/3-540-61604-7 62.

[18] Wang Yi & K.G. Larsen (1992): Testing Probabilistic and Nondeterministic Processes. In: Proc. PSTV’92.
IFIP Transactions C-8, North-Holland, pp. 47–61.

[19] Glynn Winskel (1993): The Formal Semantics of Programming Languages: An Introduction. The MIT Press.

http://dx.doi.org/10.1016/0304-3975(84)90113-0
http://dx.doi.org/10.2168/LMCS-4(4:4)2008
http://dx.doi.org/10.1007/978-3-642-04081-8_19
http://www.cse.unsw.edu.au/~rvg/pub/finitary.pdf
http://dx.doi.org/10.4204/EPTCS.57.5
http://dx.doi.org/10.1016/j.entcs.2007.02.013
http://dx.doi.org/10.1007/978-3-540-71316-6_25
http://dx.doi.org/10.1007/3-540-57208-2_6
http://dx.doi.org/10.1007/3-540-58468-4_176
http://dx.doi.org/10.1016/0022-0000(85)90012-1
http://dx.doi.org/10.1002/9780470316887
http://dx.doi.org/10.1007/3-540-61604-7_62

	Introduction
	Probabilistic Processes
	Testing probabilistic processes
	Failure simulations
	From derivations to resolutions
	Agreement of nonnegative- and real-reward must testing
	Discussion
	Conclusion

