
Acceptance Trees

M. HENNESSY

Oniversity of Edinburgh, Edinburgh, Scotland

Abstract. A simple model, AT, for nondeterministic machines is presented which is based on certain
types of trees. A set of operations, 2, is defined over AT and it is shown to be completely characterized
by a set of inequations over 2. AT is used to define the denotational semantics of a language for defining
nondeterministic machines. The significance ofthe model is demonstrated by showing that this semantics
reflects an intuitive operational semantics of machines based on the idea that machines should only be
differentiated if there is some experiment that differentiates between them.

Categories and Subject Descriptors: F.3. I [Logics and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs--log& of programs; F.3.2 [Logics and Meanings of Programs]:
Semantics of Programming Languages-algebraic approaches to semantics; denotational semantics

General Terms: Theory

Additional Key Words and Phrases: Axioms, nondeterministic machines, testing equivalence, trees

1. Introduction

There is a well-developed and very successful theory of (nondeterministic) machines
based on their ability to accept strings. For the most part, this has been developed
by formal language theorists who view machines as formal mechanisms for recog-
nizing languages. A large body of work exists relating various methods of generating
languages, in the form of grammars, with methods of recognizing languages, in the
form of machines [20]. Indeed, it can be argued that this connection with grammars
has greatly influenced our traditional view of machines.

Consider the three finite automata, MI, it42, A43, in Figure 1. We use the notation
of [20] so that q. is the initial and final state in each machine. Each accept the
same language, which can be described as the language represented by the regular
expression (a(b + c))*. Consequently, the machines are deemed to be equivalent.
To be more precise, the semantic domain for interpreting these machines consists
of sets of strings over the input alphabet. One associates with each machine an
object of that domain, namely, the set of strings that it accepts. Note that this
semantic mapping, from machines to domain, is operational in nature; to find out
the semantic object associated with a particular machine, one must know how to
run the machine. Then one says that two machines are equivalent if they denote
the same semantic object. The three machines M1, Mz, MS are equivalent since
they denote the same set of strings.

Author’s address: Department of Computer Science, University of Edinburgh, James Clark Maxwell
Building, The Kings Buildings, Maytield Road, Edinburgh EH9 352, Scotland.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

0 1985 ACM 0004-541 l/85/1000-0896 $00.75

Journal of the Association for Computing Machinery, Vol. 32, No. 4, Octokr 1985, pp. 896-928

897 Acceptance Trees

b

(a)

(b)

b b

FIG. 1. Three finite automata. (a) Machine Ml. (b) Machine Mz. (c) Machine Ms.

898 MATTHEW HENNESSY

However, there are many ways in which they are not equivalent. For example,
MI and M2 have a different number of states, and MZ and M3 may traverse different
sequences of states when accepting certain strings, such as ab. These are internal
differences and should not necessarily imply inequivalence. Inequivalence should
only come about from behavioral differences that have external manifestations.
However, it can be argued that the three machines MI, Mz, M3 have differences
that are detectable by an external observer.

Consider a user of these machines. He “uses” it by giving some string as input
and waiting for an answer-either YES, the string is accepted, or NO, the string is
not accepted. For example, if the user proffers the string ab to the machine MI,
then, since it starts in state qo, it

-accepts a and moves to state ql,
-accepts b and moves to state qo.

Since the input has been exhausted and qo is an accept state, the string ab is said
to be accepted. Note that there is only one possible sequence of states that M, can
go through when accepting ab. On the other hand, M3, when presented with ab,
can either

-accept a and move to state ql,
-accept b and move to state qo;

or

-accept a and move to state q2,
-accept b and move to state qo.

However, both possibilities lead to an accepting state and therefore, like MI,
M3 always accepts the string ab, although its response is nondeterministic.

When M2 is presented with ab it can

-accept a and move to state ql,
-accept b and move to state qo;

or

-accept a and move to state 42.

In state 92, b cannot be accepted, so this possible sequence of events leads to a
rejection of ab. We can sum up these experiences by saying that, when presented
with the string ab

-the machines MI and M3 will always accept,
-the machine M2 may accept or reject.

This may be rephrased by saying that, at least for the input ab, M2 is more
nondeterministic than MI and M3.

A similar difference may be seen between M, and M3 for the input UC; M, will
always accept it, whereas A43 may accept or may reject. Indeed, if one wanted a
machine that accepts the language a(b + c)*, then MI is infinitely superior to either
M2 or MS for the simple reason that MI will always accept any string in the
language. On the other hand, the response from M2 (or M3) is more nondetermin-
istic; it may accept the string proffered or it may not. M3 is also to be preferred
over A42 since its behavior is less erratic. There is a subset of the language that M3
will always accept, whereas with M2 the response to any input may either be YES
or NO. These ideas lead to a more stringent comparison between machines. For

Acceptance Trees 899

each potential input string, one can say whether a machine may accept it or must
accept it. The latter may be more correctly rendered as “may not reject it.” Then
machines are compared by collating both the set of strings it may accept and the
set of strings it must accept. This form of comparison will distinguish between Mi ,
M2, and M3.

Before developing a theory of machines, one must have a clear idea of what
external behavior is to be considered important. It should now be apparent that
the traditional theory of machines, as exemplified by [20], only takes into consid-
eration the set of strings that may be accepted. It has been argued elsewhere (for
instance, [24]) that this is inadequate for many applications. In particular, in
recently developed theories for communicating machines [6, 19,241, it is important
to be able to distinguish between machines such as MI, A&, Ms. Informally, the
reason is as follows: If MI and M2 are to be equivalent, then it should be possible
to replace MI, when it is used as a subsystem of a larger system, by Mz, without
affecting the overall behavior of the larger system. However, it is easy to construct
a deadlock-free system that uses MI as a subsystem such that, if M1 is replaced by
M2, then a possible deadlock is introduced into the overall system.

In this paper we explain a new theory of machines that takes into account both
the strings that may be accepted and the strings that must be accepted, together
with some information about possible deadlocks. In Section 2, we introduce the
semantic domain. Sets of strings will no longer be adequate to represent machines;
they retain too little information. Instead, they are replaced by certain kinds of
labeled trees. These have a particularly simple structure. There are some minor
complications due to the fact that we wish to represent machines that may only be
partially defined. Such partially defined objects have greatly facilitated the elabo-
ration of semantic theories for the X-calculus [31]. In the present context, their
presence enables us to show that our model, AT (Acceptance Trees), is a continuous
partial order (cpo). The ordering on AT is designed to represent the intuitive notion
of “less deterministic than.” A machine A4 will be more nondeterministic than
machine M’ if (approximately)

(i) they both may accept exactly the same set of strings,
(ii) M must accept a string, then M’ must accept it also.

We also define various continuous operations over AT. The set of operators
will be denoted by Z. The most important are two nondeterministic operators
+ and @.

In Section 3, we explain one of the main results of the paper, the Algebraic
Characterization Theorem. We show that AT is in fact the initial Z-cpo in the class
of Z-cpos that satisfy a particular set of equations. This result has some interesting
consequences. For example, it shows that AT is isomorphic to the model II in [151.
This, in turn, is fully abstract with respect to an operational semantics based on
the idea of communicating processes experimenting on each other. This is explained
in Section 4.2 in which the Operational Characterization Theorem is given. More
important, the Algebraic Characterization Theorem gives a complete proof system
for AT. This consists of the set of axioms, together with a very general form of
induction, called General Znduction in [8]. Indeed, this is the main import of
initiality. This proof system is analogous to those given in [30] for regular expres-
sions. The system F, of that paper also consists of a set of axioms and a simple
inductive rule. If we restricted our attention to simple subsets of AT, such as that
corresponding to finite machines, one might also be able to restrict the form of
induction used to something, such as tixpoint induction [34].

900 MATTHEW HENNESSY

These consequences are not elaborated on in the paper. Instead, we address the
problem of how one uses the model AT to give semantics to machines. With the
simpler model, one merely associated with each machine the set of strings it may
accept. This operational approach is not strictly necessary. In [8], a language for
machines was given, and it was shown how one could associate with each machine
a set of strings in a more abstract way, using fixpoint semantics: Each machine
gives rise to an equation over the model and one then associates with the machine
the least solution of the corresponding equation. Moreover, it was shown that this
solution coincided with the set of strings that one obtains in the more operational
semantics. In Section 4, we mimic this approach for a simple language for
nondeterministic machines. With each expression in the language, which represents
a machine, we associate an object in AT, in the usual denotational way [10, 121.
We then try to formalize an operational semantics. To do this, we must say which
strings a machine may accept, which strings a machine must accept and which
machines are underdelined. In Section 4.2, we formalize this using the idea of
performing experiments on machines and thereby trying to detect differences
between specific machines. As stated previously, this leads to the Operational
Characterization Theorem. In Section 4.3, we give an alternative formalization
based on a property language 2 a modal language, and two satisfaction relations
between machines and properties. The first one states when a machine may satisfy
a property and the second when it must satisfy a property. These properties deal,
of course, with the ability to accept strings but they also capture some information
about possible deadlocks. If we let 9,(M), P&V) be the set of properties that a
machine M may (respectively, must) satisfy, then these two sets encapsulate an
operational semantics of the machine. The third main result of the paper, the
Modal Characterization Theorem, states that the denotational and operational
semantics coincide; that is, two machines MI, MZ denote the same object in AT if
and only if P&V,) = .P,,(M$ and .9&V,) = 9&V&). These results indicate that our
model adequately reflects the behavioral aspects of machines that we deemed
important.

The first three sections may be read without any knowledge of previous work in
this area. However, some acquaintance with abstract algebra and continuous
algebras is assumed, particularly to understand the proofs. The required prerequi-
sites may be found in [131. Section 5, which contains the proofs of the three main
theorems, relies heavily on knowledge of the results and techniques in [151. This
has the advantage of keeping the section extremely short. It is followed by a brief
comparison between our work and other models recently proposed.

2. A Description of the Model

2.1. The model consists of certain kinds of rooted trees. Both the branches and
the nodes are labeled. In this informal introduction to the model, we assume a
nonempty set of actions A, which the machines under consideration can perform.
Alternatively, if we view the machines as accepting automata A may be taken to
be the input alphabet. The branches of the trees are labeled by elements of A.

The tree

,

Acceptance Trees 901

could be taken to represent a machine that performs the action a and then can
perform either the action b or the action c but not both. We view this machine as
being deterministic. At each point in time, its behavior depends entirely on the
user or, more generally, on its environment. Initially, it can only accept the input
a. Then, if presented with the input b, it must accept it, and if presented with the
input c, it must accept it. Thus, its behavior will depend entirely on the input string
it is asked to accept. Trees of the form

will not be allowed even though they can represent machines with inherently
nondeterministic behavior. Instead, we stipulate

(Sl) For every a E A, every node in the tree has at most one successor branch
labeled by a.

Because of this condition every node in the tree is uniquely identified by a string
in A*. If t is a tree, we let L(t) denote this set of strings and, for s E L(t), we let t(s)
denote the node uniquely identified by s. Note that L(t) is always prefix-closed.
The set of actions labeling the successor branches of a node n is called its successor
set and is denoted by S(n). To model the nondeterministic behavior, we label the
nodes by nonempty subsets of P(S(rt)), the set of subsets of the set S(n). The tree

is a typical example. This represents a machine that accepts the strings ab, ac. After
accepting the symbol a, it can be in one of two internal states represented by the
sets {b, c), {bj, respectively. If the machine is in the state represented by (b, c), then,
when presented with b or c as input, it must accept. If it is in the state represented
by {b], then, when it is presented with b as input, it must accept; however, in this
state, it will not accept c. Consequently, it must accept the string ab, whereas it
may or may not accept ac.

The tree

a

i,

{(b, c))

6 c

on the other hand, represents a machine that will accept the same two strings, but
is more deterministic; after accepting a, there is only one internal state represented

902 MATTHEW HENNESSY

by the set lb, c), which must accept when one of b and c is presented to it. Thus, it
must accept both ab and ac, which makes it less uncertain than the previous
machine.

The sets that label the nodes are called acceptance sets, and the acceptance set
of a node n is denoted by a?(n). Acceptance sets satisfy certain consistency
requirements.

(Al) SE a?(n) implies S G S(n).

This is understandable since every S in d(n) represents an internal state and we
identify an internal state with the set of symbols that can be accepted when the
machine is in that state.

(A2) If a E S(n) then there exists S E d(n) such that a E S.

This just means that, if a is a successor label of a node, then there is at least one
internal state associated with the node that can accept a.

(A3) d(n) is closed under union, that is, if Si, SZ E d(n) then Si U SZ E d(n).

This condition is to ensure that the ordering “is less deterministic than” is in fact
a partial order on trees. If we did not have this condition, then the tree tl

a t(b). {c>)

A b c

would be allowed and would be a different tree than t2

However, both t, and t2 both accept the same language, and the only string that
either must accept is a. Consequently, each is trivially “less deterministic than” the
other. So this relation would not be antisymmetric.

(A4) d(n) is convex-closed; that is, if X, 2 E d(n) and X G Y G Z, then
YE d(n).

‘This has the same justification as A3. If it were allowed, we would have trees that
‘were different but that could not be differentiated using the comparison “less
deterministic than.”

Conditions A3 and A4 are summarized by saying that a?(n) is saturated: A set
.a’ G 9(A) is saturated if it is nonempty, closed under union, and convex-closed.
We let Sat(A) be the saturated subsets of 9(A) and, for 9 C B(A), we let c(P) be
the least saturated set containing 9.

The condition that d(n) be saturated has as a consequence that S(n) E a?(n). If
this is the only set in a’(n), then the tree is deterministic at that node. When

Acceptance Trees 903

describing trees, we have used the convention that if it is deterministic at a node
(i.e., the only label is (S(n)]), we omit the label from the node. This makes the
trees more readable. Note that the trivial tree consisting of a single node

0

is in fact under this convention representing the tree

l I(@})

Saturated sets tend to be large in comparison to the amount of information they
contain. When describing trees, we generally do not list out all the elements of
d(n), but instead give a minimal subset that generates, that is, a minimal 9 such
that c(Y) = d(n). So, for example,

respectively. To make these enumerations more readable we give, when possible,
the minimal sets that generate an acceptance set as sequences. So the two examples
will be rendered as

(a, b, 4, lb, c, a4

Partially defined trees are defined using a new type of node o. The node l is
called closed, whereas o is called open. The first requirement on open nodes is that

(01) Open nodes are not labeled by any acceptance sets.

Intuitively open nodes describe parts of machines that are not fully defined. Since
they are not fully defined, the internal states at that point cannot be elaborated.

For example, the tree

describes a machine whose behavior is not fully defined. In particular, what happens
after it performs an a action is not fully defined. All we know is that, after
performing a, it may (in certain unknown circumstances) perform c and d. We
have two further conditions about open nodes.

(02) Every descendant of an open node is open.
(03) If S(n) is infinite, n is open.

For the moment, we are only interested in machines that exhibit bounded
nondeterminism. If such a machine can accept an infinite number of different
symbols, then it can also spend all of its time deciding which one to accept; that
is, it can diverge. In our framework, this internal behavior will have no explicit
representation except that “internal divergence” will be represented by open nodes.
As an immediate consequence of these assumptions, we have condition 03. Note
that 03 implies that, for every closed node IZ, d(n) is finite.

904 MATTHEW HENNESSY

An alternative way of stating 02 is to say that the subset of L(t), which identifies
‘closed nodes, must be prefix-closed. We use CL(t) to denote this set and OL(t) to
<denote L(t)/CL(t). Condition 02 is somewhat more difficult to motivate than 03.
The reason for it will be seen more clearly in the next section in which we define
a partial order on trees. Roughly speaking, we can improve on a tree by adding
new subtrees at an open node. In general, such additions will have the effect of
improving on successors of the open node in question. For these effects to be
represented in the model, these successor nodes must be open.

We have now completed our informal description of the model. To conclude
this section, we recapitulate on the definition.

Definition 2.1.1. For a set of symbols A, let AT(A) be the set of rooted, finite,
or infinitely branching trees such that

(i) every branch is labeled by an element of A,
(ii) every node is either open (0) or closed (o),
(iii) every closed node is labeled by a saturated subset of P(A),

and which satisfies the conditions Sl, Al, A2, 02, and 03, given above.

Since A will remain fixed, AT(A) will be abbreviated by AT. The variables t, n, a,
s will be used to range over AT, the set of nodes, A and A*, respectively. Throughout
the paper, we use the notation introduced in this section. In addition, if a labels a
branch from the root oft, that is, a E S(t(t)) or a E L(t), then t/a will denote the
subtree of t whose root is the node t(u). Also, by a slight abuse of notation, we
write S(t), s’(t) in place of S(t(t)), d(t(c)). These notations make it very easy to
define precisely a particular tree in AT. Every tree is uniquely determined by

-L(t), a nonempty prefix-closed subset of A*, representing the nodes of the tree,
-CL(t), a prefix-closed subset of L(t), representing the closed nodes,
-A total mapping &: CL(t) + Sat(A).

Consequently, to define a tree, we need only give these two sets and an appropriate
mapping. However, we must ensure that the conditions Al, A2, and 03 are
satisfied.

2.2. In this section we describe a partial order 5 on AT that will, in fact, turn
out to be a complete partial order, that is, directed sets of trees will have least upper
bounds.

We are primarily interested in totally defined trees, that is, trees that contain no
open nodes. So we begin by describing the partial order as applied to these. In the
introduction, we stated that for two nondeterministic machines M1, Mz, the
machine MI would be less deterministic than M2 if

(i) both MI and Ml accept the same language, and
(ii) for a given string in the language, there are fewer uncertainties about MZ

accepting the language than there are about MI.

The first condition will be formalized by demanding that, if tl 5 t2, then

(Cl) Wl) = W2).

The second condition will be rendered as

(C2) For s E L(t& d’(tl(s)) > -@‘(h(s)).

That is, at each pair of corresponding points in the trees tl and t2, the acceptance
sets of t2 are contained in the acceptance sets of tl . If one thinks of the correspond-
ence between acceptance sets and internal states this seems natural.

Acceptance Trees

(4

(b)

FIG. 2. Examples of trees with closed nodes. In (a) and @I, tl 5 h.

Cl and C2 completely determine the partial order over trees that have no open
nodes. This implies that, if two such trees are comparable, they must have the
same structure; only the acceptance sets are different. Examples are given in
Figure 2.

The presence of an open node indicates that the tree is not fully defined at that
point. So it can be improved upon at an open node by grafting on any subtree.
This leads to the demand that, if tl 5 t2, then

(01) WI) c W2).

For trees that contain only open nodes, 01 will completely determine the partial
order. Examples are given in Figure 3.

In general, trees will have both open and closed nodes and the definition of I is
a mixture of the conditions 0 1, C 1, and C2. The definition is obtained by seeing
what these conditions demand at each individual node and from the extra require-
ment that “open nodes are less defined than closed nodes.”

DeJinition 2.2.1. For t,, t2 E AT, tl I t2, if

(i) UtJ G W2),

(ii) CL@,) G CL(t2),
(iii) for every s E CL(tJ, d(t2(S)) C d(tds)).

906 MATTHEW HENNESSY

c

0

tr
(4

FIG. 3. Examples of trees with open nodes. In (a) and (b), t, ZG t2.

One can show that if tl contains only closed nodes, that is, L(tl) = CL(tr), and
t, 5 t2, then t2 only contains closed nodes and the conditions Cl and C2 are
satisfied. Conversely, if both tl and t2 contain only closed nodes and they satisfy
Cl and C2, then t, 5 t2. Similarly, if t, and t2 contain only open nodes (i.e., CL(t,)
= CL(t2) = 0), then tl 5 t2, if and only if they satisfy 01. Examples of 5 between
trees that have both open and closed nodes are given in Figure 4.

THEOREM 2.2.2

(a) (AT, 5) is a complete partial order.
(b) (AT, 5) is an algebraic complete partial order whose finite elements are all

those trees that have a finite number of nodes.

PROOF

(a) To show that 5 is a partial order is a matter of simple calculation.
Let D be a directed set of trees. Define a new tree t as follows:

(i) L(t) = (s 1 s E L(t’) for some t’ E O),
(ii) CL(t) = (s 1 s E CL(t’) for some t’ E 01,

Acceptance Trees

(4

t1

(b)

t2

FIG. 4. Examples of trees with open and closed nodes. In (a) and (b), t, 5 fz.

We must also associate with each closed node of the tree, t(s), an acceptance set
d(t(s)). Ifs E CL(t), then we let

s’(t(s)) = {A 1 A ~d(t’(.s)) for all but a finite number oft’ ED].

Some routine calculations suffice to prove that d(t(s)) is indeed an acceptance
set.

To show that we have, in fact, defined an element of AT, we must show that
conditions A 1, A2, and 03 are satisfied. These are easily deduced from the remarks

(i) S(t(s)) = U {S(t’(s)) 1 t’ ED, s E L(t’)J,
(ii) if t(s) is closed, then d(t(s)) = d(t’(s)) and S(t(s)) = S(t’(s)), for all but a

finite number oft’ in D.

Having defined the tree t, we must now show that it is the least upper bound of
D; that is, if t ’ I u for every t’ in D, then t 5 u. This however follows in a
straightforward manner from remarks (i) and (ii).

908 MATTHEW HENNESSY

Finally, the least element of (AT, I) is the trial tree o.
(b) Left to the reader. The arguments are straightforward but rather

lengthy. 0

We can isolate at least two interesting subsets of AT. Let DAT be the set of
deterministic trees, that is, those trees whose acceptance sets at every node is a
singleton set. More formally, t E DAT if, for every s E CL(t), d(t(s)) consists of
the unique element S(t(s)). Elements of DAT have no internal behavior. It is quite
easy to show that (DAT, 5) is also a complete partial order. Let FDAT be the set
offully defined trees, that is, those trees all of whose nodes are closed; if t E FDAT,
then L(t) = CL(t). (FDAT, 5) is not a complete partial order since it lacks a
minimal element. We end this section with another set of examples, given in Figure
5, of trees tl, t2 such that tl $ t2.

2.3. In this section, we describe some operations on trees.
The first operation is of prefixing a tree by a specific action a. This may be

d.escribed diagrammatically as [I
A t b A t

Following the conventions of the previous sections, this indicates that the
acceptance set associated with the root of the new tree is simply ((a)). We now
describe this operation more formally.

For a E A, t E AT, let at be the new tree described by

(i) L(a.t) = (t) U (us 1 s E L(t)),
(ii) CL(u.t) = (E) U {us 1 s E CL(t)),

(iii) &(u.t(t)) = {(a)]
2z(u.t(us)) = ti(t(s)).

It is easy to check that this does indeed define a tree. In fact we have

PROPOSITION 2.3.1. For every a E A, the operation a. _: AT + AT is continuous.

We shall usually render u.t as at.
The next operation takes two trees and “glues” them together at their roots. The

acceptance set, when it exists, at the new root is simply the closure of the union of
the acceptance sets at the roots of the original two trees. For example, when the
operation is applied to

Acceptance Trees 909

(b)

t2

(4

FIG. 5. Three examples of trees in which t, # t2.

we obtain the tree

If either of the roots are open, then the root of the constructed tree is also open
This is a reflection of the fact that open nodes are considered to be “less defined”
than closed nodes. The only problem occurs when we try to glue together two trees

910 MATTHEW HENNESSY

that have an initial action in common. For example,

In this case, we proceed as before gluing together the two trees at the root.
H.owever, the a-subtree of the new tree is now obtained by applying the same
operation to the two a-subtrees of the original trees. This results in the following
tree:

where t is the tree obtained by gluing together the subtrees

A I c d e

So t is

This new operation is therefore seen to be recursive in nature. However, it can
be defined quite straightforwardly in the following way: If tl , t2 are trees, let tl Cl3 t2

be the tree t where

L(t) = L(t) u L2(0,

CL(t) = 1s E L(t), for i = 1, 2, s E L(t) implies s E CL(t;)},

-@w)) = d-wlW) u Ntz(m

with the convention that if s 4 CL(ti) then d(ti(s)) = 0.

Acceptance Trees

PROPOSITION 2.3.2. 6% AT x AT + AT is continuous.

PROOF. Straightforward. 0

911

We can define a slightly different operator, +, that represents external nondeter-
minism; the machine represented by tl + t2 will once more act either like tl or t2,
but the choice will depend on what symbol the machine is asked to accept (or what
action it is asked to perform). A simple example will explain the difference beween
these two operators

Let t,, t2 be

a I I 6

Then tl @ t2 is

and tl + t2 will be

Note that tl G3 t2 is nondeterministic, whereas t, + t2 is deterministic. The definition
of + is nearly identical to that of Gl3. The only difference occurs at the root when
both the parameters have closed nodes.

If tl , t2 are trees, let tl + t2 be the tree t where

L(t), CL(t) are as in the definition of tl @ t2,
d(t) = (A, U AZ, AI E -@‘(t,), A2 E 4tz)L

.~~(t(s)) is as above in the definition of tI @ t2, whenever s # t.

PROPOSITION 2.3.3. +: AT x AT-, AT is continuous.

PROOF. Straightforward. 0

Examples of these operators are given in Figures 6 and 7. It should be pointed
out that + does not always preserve determinism; that is, if tl , t2 are deterministic,
then t, + t2 may in general be nondeterministic. However, if A”@,) rl S(t2) = 0,
determinism is preserved.

3. Characterization of the Model

The operations defined in the previous section satisfy many interesting properties.
For example, G3 satisfies the axioms

Xc3(Ye3Z)=(Xcl3 Y)@Z,
X@Y=YcBX,
X@X=X.

MATTHEW HENNESSY

(4

FIG. 6. Application of the operator 8. (a) Trees t, and f2. (b) Tree t, 0 t2.

These three axioms can be summarized by saying that

1. (AT, 43) is an idempotent Abelian semigroup.

Equivalently one can say that (AT, .i) is a semilattice when t 4 t’ if there exists a
t N such that t CI3 t N s t ‘. For details, see [2 11. The operator + also satisfies these
axioms. In addition, if we use the nullary operator (D to denote the trivial tree

0

we also have the axiom

x+0=x.

Acceptance Trees

(4

11 + 11

W

FK;. 7. Application of the new operator. (a) Trees t, and tz. (b) Tree tl + tz.

So we can say that

2. (AT, +, a>) is an idempotent Abelian semigroup with zero.

Moreover, each of the binary operators distribute over the other. This can be
expressed by saying that AT satisfies the following axioms:

(Dl) XCB(Y+Z)=(X@Y)+(Y@Z).
(D2) X+(Y@Z)=(X+ Y)$(X+Z).

914 MATTHEW HENNESSY

All of these remarks are easily checked by examining the constructions of $ and
+. Similarly, we have, for each a E A,

(NI) aX+ aY= a(XCl3 Y).
(N2) aX$ aY = a(X@ Y).
(N3) XCB YEx+ Y.

If we introduce a further nullary operator D to denote the trivial tree

0

we also have the axioms

(Ql) ncx.
(Q2) x+ Q!zXc-B f-2.

There are many other properties of the operators that one might wish to consider,
but this set is particularly interesting in that it completely determines AT. This can
be explained as follows: If we let Z denote the set of operators (0, Q, a (for all
a E A), @, +I, then AT can be considered as a 2;-cpo (Z-complete partial order).
We then have that

THEOREM 3.1. THE ALGEBRAIC CHARACTERIZATION THEOREM. (AT, r) is
i&morphic, as a Z-cpo, to the initial Z-cpo that satisfies 1, 2, D l,D2, NI, N2, N3,
and Q21, fl2.

The proof relies on a knowledge of [141. It is given in Section 5.

This theorem has a number of interesting corollaries. For example, every finite
tree can be denoted by a term over the operator set Z. Moreover the set of axioms
gives a complete proof system for the relation 5 between trees. In fact, every tree
can be considered to be a limit of such terms and, therefore, the axioms, together
with a very general form of induction called general induction in [8], give a
complete proof system for I over arbitrary trees. The rule of general induction is
not finitary, but if one replaces it by some tinitary approximation to it, such as
Scott Induction, then one obtains an effective proof system. Another immediate
result of the characterization theorem is that AT is isomorphic to the model II of
[151. This gives an operational significance to AT, which is discussed in Section
4.2. We do not have a corresponding characterization of DAT or FDAT.

4. Using the Model as a Semantics

4.1. We have shown how AT can be considered as a Z-cpo. Using the approach
of [lo], [121, and [131, we can now interpret a language, which only uses these
operators, in AT in a very straightforward way. For completeness sake, we define
the language and its interpretation in this section, although it already has been
given in [15, sect. 1.21.

Let X be a set of variables, ranged over by x. The set of recursive terms over Z,
RF&, ranged over by t, is then defined by the following BNF-like schema:

t ::= x 1 op(t1, . . .) t/J, op E Zk] ret x.t.

The term ret x.t denotes a recursive definition that might also be rendered as

x e= t.

We have the usual notions connected with this syntax. The operator, ret x.,
binds occurrences of x in the subterm t of ret x.t to ret x.t itself. This gives rise, in

Acceptance Trees 915

the usual way, to the definition of free and bound occurrences of variables in
terms. CREC, denotes the set of closed terms, that is, terms with no free occurrences
of variables. We use p, q to range over closed terms. FRECz denotes the set of
terms with no occurrence of ret x.-, that is, the finite terms. A substitution is a
mapping from X to RECz and we use p to range over substitutions. If each p(x) is
in CRECx, it will be called a closed substitution. We let tp denote the result of
substituting p(x) for each free occurrence of x in t and t[u/x] the result of
substituting u into each free occurrence of x in t.

Given any Z-cpo D, we can give a denotational semantics to our language in a
natural way, following [lo]. To cope with terms that are not closed, we need the
notion of D-environments: let ENVD be the set of mappings from X to D. Then
the denotational semantics is in the form of a mapping:

AD: RECx + (ENVD + D).

It is defined by induction on terms. If e is a D-environment, then e[d/x] is a new
environment that differs from e only at x where it is defined to be d.

DEFINITION 4.1. I. Define J%~ as follows:

(9 &(x>(e) = e(x),
(ii) ddop(t)>(e) = op&fdtJe) - . . ~dtk)(4>,

(iii) AD(rec x.t)(e) = Y Xd.JD(t)(e[d/x]),

where Y represents the least fixpoint operator.

Note that, if t is a closed term, then dD(t) is a constant function from ENVD to
D, which we identify with an element of D.

For any Z-cpo D we now have an interpretation MD. We are, of course, only
interested in the interpretation in our model AT. In Figure 8, we give three simple
instances of dAT. It is very easy to see that, if p does not contain an occurrence of
the operator @, then AAT is in fact a deterministic tree. Another interesting set
of trees we have previously discussed is FDAT, the set of fully determined trees; a
tree is in FDAT if all of its nodes are closed. We now elaborate a condition on
terms that ensure that they are interpreted as fully determined trees. The crucial
point is already exhibited in Figure 8; the first two trees differ only in the color of
the nodes. The open nodes in the second tree arise because of the presence of +x
in the recursive definition. Such an occurrence of a variable is called unguarded;
the other two occurrences of x are guarded, the first by the action a, the second
by b.

Definition 4.1.2. A closed term is fully guarded if

(i) it contains no occurrence of a,
(ii) in every subterm of the form ret x.t, every free occurrence of x in the t is

guarded, that is, occurs within a subterm of the form a.u.

So, for example, ret x.ux + bx is fully guarded but a(rec x.ax + x) is not, since in
the subterm ax + x the second occurrence of x is not guarded. Since D is interpreted
in the same way as ret x.x, the first condition in the definition is reasonable.

THEOREM 4.1.3. JAM isfully determined if and only ifp is fully guarded.

PROOF. An arbitrary term t is called fully guarded if, for every closed substitu-
tion p such that p(x) is fully guarded for every x in X, tp is fully guarded.

916 MATTHEW HENNESSY

(a)

(b)

(4

FIG. 8. Three simple instances Of d&T. (a) A&T (reC x.ax + bX). (b) AT (reC

x.ux + bx + x). (c) AiT (ret x.Luc CB bx).

Suppose t is fully guarded. Then one can show by induction on t that AAT
Ei FDAT whenever e is such that e(x) E FDAT for every x in X. Since FDAT is
closed under the operations +, @, and a.-, the only nontrivial case is when t is of
the form ret X.U. In this case, we use the fact that AA&)(e) = V(dAT(t”)(e),
n 1 01, where t” is obtained by unwinding the recursive definition n times. One
can now prove by induction on n that all nodes of depth less than n in dAT(t”(e))
are closed. It follows by the construction of limits in AT that JAT(t)(e) E FDAT.

Conversely, suppose p is not fully guarded. First note that if t has an unguarded
occurrence of x, then JAT(rec x.t)(e) has an open root, for any environment e.
Now if p is not fully guarded, it has a subterm whose denotation in AT has an
open node. By induction on the depth of the occurrence of this subterm, one can
also show that A*T(P) contains an open node, that is, AAT B FDAT. 0

One would not naturally write terms involving unguarded recursions since they
involve purely circular definitions. This proposition states that, so long as we stick
to “natural” terms, we will always obtain fully determined trees; or, in other words,

Acceptance Trees 917

the underdefined trees are only needed to take care of certain “unnatural” terms
that we are allowed syntactically, but that are not the prime concern of the language.

4.2. The model AT equates certain terms in the language REG and distin-
guishes others. For the model to be of interest, there should be some computational
or operational justification for these identifications and distinctions. This is the
subject of this section.

In fact, we have already given such a justification in [141. There we considered
a language that was an extension of the present REG, in which we could model
communicating processes. A number of operational preorders were defined, all
based on the general idea of processes conducting experiments on each other. As
was noted in the previous section, AT is isomorphic to the model Ii of [151 and,
consequently, Theorem 3.2.1 of that paper gives an operational justification for
AT in terms of communicating processes.

To keep at least the expositary part of this paper self-contained, we now give an
outline of this operational justification. It is based on the idea that closed terms
represent machines for accepting strings of symbols. For example ret x.ux + bx
represents a machine that can accept any string over (a, b). Indeed, the standard
semantics for finite automata [20] are usually given in these terms. We may also
think of this semantics in terms of experiments. To perform an experiment, we
present a machine such as ret x.a(bx + cx) with a string to accept, such as abaca.
In this case the machine accepts the string; that is, the experiment is successful.
The standard semantics now identifies a machine with the set of strings it accepts.
A more precise rendition would be that it is identified with the set of strings that it
may accept. For example, (ret x.abx + acx) accepts the string aba although there
are computations from this machine that can deadlock when trying to accept this
string. In other words, it is not true that ret x.(abx + acx) must accept aba. On the
other hand, ret x.a(bx + cx) must accept aba. Whereas the standard semantics
uses only the notion of “may accept,” we use both “may accept” and “must
accept.” In fact, our operational view will allow us to perform more complicated
experiments than simply “try to accept the string x.” The langauge used in [151 is
a superset of the present one and, within it, one can express the interaction between
the experimenter and the machine. The experimenters are also machines. They
may be simple deterministic ones performing the string-based experiments dis-
cussed above, or they may be more complicated, for example, by presenting
alternatives to the machine being experimented upon. Here we explain this general
notion of experimentation without recourse to the language of [151. To do so, we
need to introduce a number of concepts.

The first one is the notion of “accepting a symbol.” For each symbol a E A, we
define a binary (infix) relation 5 with the intention that p 5 p’ means that p
may accept the symbol a and thereby transformed in p’.

For example, it will be true that

abOLW>,

ret x.(ux + w>) S, ret x.(ax + MD).

To define the relations 5, we need the notion of a state: A process accepts a
sequence of symbols by starting in some state, accepting the first symbol and
changing to a new state, accepting the next symbol and changing to a new state,
etc. The operator 6B is intimately connected with the idea of state. For example,
the term a0 @ MD represents a machine that is in one of two states a0 or &D. If it

918 MATTHEW HENNESSY

is in the former, then it can accept the symbol a; if in the latter, it can only accept
b. On the other hand, the term a0 + &D represents a machine that has only one
possible state in which it can accept a if it is offered and b if it is offered. The
following definition formalizes the concept of “state.”

Definition 4.2.1. For each term t, let ds(t), the set of terms representing states
oft, be defined by:

(i) ds(t G3 U) = ds(t) U ds(u),
(ii) ds(at) = (at), ds@) = (01, ds(x) = (xl, ds(Q) = (Q],

(iii) ds(t + U) = (t’ + u’, t’ E ds(t), u’ Eds(u)),
(iv) ds(rec x.t) = (u[rec x.t/x], u E ds(t)l.

So, for example, if t is ret x.ax G3 bx, then ds(t) = (at, bt). We may now define the
next state relations A.

Definition 4.2.2. For each u.A, let & be the least binary relation of CRECz
that satisfies

(i) ap-%p’ ifp’ Eds(p);
(ii) (a)p9,p’ impliesp+ q9,p’

Pm&P’;
(b) q 5 q’ implies p + q 5 q’

pw.$+q’;
(iii) t [ret x.t/x] -% q implies ret x.t S, q.

As stated above, a machine accepts a string by starting in some state and then
moving from state to state by virtue of accepting individual symbols. To show this,
we extend the relations 5 to relations -k where $ ranges over A* in the obvious
way:

(i) pAqifqEds(p),
(ii) p 2 q is p f, p1 and p1 A q.

The notions “may accept the string s” and “must accept the string s” can be
defined in terms of these relations 5. For example, if p is ret x.abx + ucx, then
p may accept ubu since p % bp, whereas it is not true that p must accept aba
since p A cp and the term cp cannot accept ba.

However, these relations will still not be able to distinguish terms such as (D and
S1, or a and a”. In the model they are differentiated by the color of the nodes of
the corresponding tree. Syntactically they differ because in each pair one is fully
guarded and the other is not. We can axiomatize the absence of unguarded variables
at the topmost level in the following way.

Definition 4.2.3

(i) Let 5 be the least (postfix) predicate over closed terms that satisfies
(a) 04, UP&
(b) ~4, 44 implies (P + q)J, (P @ q)J;
(c) t[rec x.t/x]J implies ret x.tJ.

(ii) Let t denote the complement of 1.

As examples, we have that uQl (ret x.ux + bx)i and (ret x.ux + bx + x)t. The
relation 1 can be extended in a natural way to define 4s by

13) pie ifpk,
(ii) pJas if pJ. and p 4, p’ implies p’is.

Acceptance Trees 919

So p J s if one cannot uncover unguarded recursions or occurrences of Q by
performing the actions in s. Incidentally, 4 can be used to give a more formal
definition of fully guarded since it is easy to see that p is fully guarded if and only
if pJs for every s in A*.

We are now ready to give our operational view of experimentation. Let w be a
new distinguished action symbol. Intuitively performing the action w can be
interpreted as reporting successes. Then an experiment is any closed term of the
language that may also use this special symbol w. So, for example,

abwCD>, Cd
a(bw0 + CWO),

I:; a(bw0 + CO),

are all experiments. For example, e2 will report success if the machine being
examined can perform either of the string of actions ab or ac. To apply the
experiment e to the machine p, we use the notation

e II P.

The application of this experiment proceeds by both e and p evolving (because
of interaction between them) until e reaches a state in which it can report success.
The rules that govern this evolution are

(i) ifeAe’andp>p’,thenelIp+e’lIp’;
(ii) ife-+e’,thenellp+-ellp’.

The definition of a successful application is somewhat complicated by the
presence of partial machines, such as abfi.

A computation

ellp-a IIPI -+ a.- -+enIIpn
is successful if

(i) it is maximal, that is, there exists no e’ 11 p’ such that

41pn+e’Il~‘;
(ii) e,, can report success, that is, e,, : e’ for some e’.

If, in addition, pnJ, then it will be called strongly successful.

Examples

(i) abw0 II (ab0 + ad) + bwa II bCD +- wCD 110 is strongly successful, whereas
abw0 II (ab0 + ac0) + bwa II c(D is not.

(ii) awed 11 aO + wCD 11 Q is successful. There is no strongly successful application
of the experiment awed to au. Cl

In general, there are various outcomes to the application of an experiment to a
machine. So machines can be compared by tabulating those possible outcomes.

Definition 4.2.4

(i) p may e if there exists a successful computation from e 1) p.
(ii) p must e if every computation from e II p is successful.

(iii) p musti e if every computation for e 1) p is strongly successful.
(iv) For two closed terms p, q, p G,,~ q, if for every experiment e,

(a) p may e implies q may e,
(b) p must e implies q must e,
(c) p mustl e implies q mustJ e.

9210 MATTHEW HENNESSY

Examples

(:i) a&D + aca EOP a(b0 + CO) but a(bCD + c(D) gOP a&D + ac0. To see the
latter, consider the experiment e = abwa. Then a(&D + CO) must e whereas
ab0 + aca) m& e because of the computation abwCTlI1 a&D + aca +
bwal 11 Cal.

(ii) Let p, q, e d enote a&D + a(b0 + 0) + a&D>, a(b0 + CO) + adO,
a(cw0 + dwO), respectively. Then p E,,~ q but q qOP p. The latter follows
because q must e, whereas p m& e.

(iii) aO GOP a0 but a0 gOP aQ because aCD must4 aw, whereas awed II aQ +
w0 11 aQ is not strongly successful. Cl

We are now ready to state the second characterization theorem, which states
informally that the model AT differentiates between two machines if and only if
they can be differentiated using experiments.

THEOREM 4.2.5. OPERATIONALCHARACTERIZATIONTHEOREM

&r-XT(P) < AAT ifand only if P Eop 4.

The proof is outlined in Section 5 and requires detailed knowledge of [151.
Each of the components of the definition of G,,~ is required for the theorem

to be true. If the may component were omitted, then abdl + ad would be
considered less then ab0, whereas, interpreted in AT, this is not true. If the must
component were omitted then abf2 would be less than a& + abo, which is not
true in AT. Without the must4 component, we would have (D less than Q, which is
also false in AT. Finally, note that for fully guarded terms, which are interpreted as
elements of FDAT the relations must and mustl coincide. These two variations
are required only to deal with partial machines.

4.3. In this section we give an alternative characterization based on a modal
language. It is formulated in terms of processes having certain properties (e.g., the
ability to accept a string of symbols). These properties are defined as formulas of a
property language G? We then define two satisfaction relations KO, l=, over CREG
x 9’; p & $ means that p may (optionally) satisfy the property expressed by $ and
p l=, $ that p must (compulsorily) satisfy the property. The most interesting property
is that of accepting a string. However, to capture the model exactly, we need to be
able to ask simple questions about what happens after the string has been accepted.
As explained in [191, when describing the failures model for processes, these
questions are concerned with the possibility of deadlocks within the machine.

Let 2 be the language defined by

(i) true E 2;
(ii) @ EPforeveryaEA;

(iii) $,, lc/Z 2 implies $i V J/z E LX

Let 9 be the set of formulas of the form

@* where s E A* and + E 2

Definition 4.3.1

(i) p l= true for every p E CREG.
(ii) p l= * implies p I= rC, V *‘, p I= *’ V I).

(iii) p l= @ ifp f, p’ for some p’.

Acceptance Trees 921

(iv) For &C E 9

(a) P Lo Q$ if p A p’ for some p’ such that p’ I= 9,

(b) p l=C & if p 4 s and p 2 p’ implies p’ I= yi.

Examples

(i) Let pi, p2 denote ret x.(abx + acx), ret x.a(bx + cx), respectively. Then
p2 lz, 9, p, & $, where J/ is @@. One can show, however, that for any + E
2 p1 & + if and only if p2 & 9.

(ii) Let p3 denote ret x.a(bx CD cx). Then it is also true that p3 I& $. One can also
show that pI & $ if and only if p3 kc J/, for any 1c, in 2

(iii) Let p4 denote ret x.a(bx + cx) + x. Then p4 & $. The reason for this is that
p4 is a machine that is not fully defined because of the presence of unguarded
recursion. It would be possible to “improve” on p4 by giving it an extra
capability to accept a. However, this capability might leave p4 in a state that
cannot accept the symbol b. In short, one can improve on p4 in such a way
that the improved machine need not accept ab.

(iv) 0 t=, @ true, whereas Q l& @ true. This is another example of the phe-
nomenon in Example 3.

(v) abed Q4, @ true. Informally, we can deduce from this that, if the machine
represented by the term ab(D is offered the string ac, it will deadlock. cl

The satisfaction relation l=C is more discriminating than l=O. Note, however, that
“must accept the string s” is not a primitive notion and cannot be represented by
a formula in G@ Its effect can be obtained by a number of different formulas, whose
composition depends on the composition of s itself. Informally, one can say, for
example, that

p “must accept a” if and only if p & @,

p “must accept ab” if and only if p t=C @

and p k @@,

Let

p “must accept abc” if and only if p & @

and p I=, @@

and p FC a@.

%(P) = w E 9 P klk%
%(P) = M E 9 P k 4%

The third main result of the paper is

THEOREM 4.3.2. MODAL CHARACTERIZATION THEOREM

-hT(P) < ‘hT(d ifand only if G%(P) !i Z(q) and 9(p) !i 9(q).

We end this section with a discussion of the formulation of the language G? If
we omitted the formulas @ from the language 2 we could not distinguish aba> +
acal from a(b(D + c(D). We also need V as a connective in 2 for, otherwise, we
could not distinguish (a0 + b(D) CB cCD from a0 CD (bCD + c(D). If @@ were not
in 2, we would have cCD approximating a0 + ~0. In short, all of the power of 2
is needed. On the other hand, if we try to obtain a more natural language by
amalgamating the definitions of -?Z and 9 then we gain too much power. For

922 MATTHEW HENNESSY

example, if we allow V as a connection in 2 the axiom N3 would no longer be
valid. If ic, denotes @(@@ u @@), then

(c&D + bc0) + (ac0 + be(D) & t+b,

(am + bc) + (acal + beaq i#c l#b.

5. Proof of the Characterization Theorems

In this section we assume detailed knowledge of the notation and results of [151
and the algebraic constructions of [lo], [121, and [341. We let Fz be the finite terms
over the operator set Z and < denote provability from the axioms of Section 3. To
be more precise, < is the least relation that satisfies these axioms and that is
preserved by all of the operators in Z. We let = denote the equivalence generated
by <.

5.1 This section is devoted to proving Theorem 3.1. In the terminology of [131
the initial Z-cpo which satisfies the axioms can be described as (F,/<)“. We must
show that this is isomorphic, as a Z-cpo, to AT. The results of [15, sect. 4.31 enable
us to give a much simpler description of (F,/<). Let N denote the set of normal
forms, defined in [15, def. 4.3.21 and cl the relation over N defined in [15, def.
4.3.41. Then, (F&) is isomorphic as a Z-PO to N/c,. This follows from [15,
corollary 4.3.8 and lemmas 4.3.5 to 4.3.71. Consequently, it is sufficient to show
that AT is isomorphic to (N/Q”. Now both of these are algebraic Z-cpos, which
are determined completely by their finite elements. Let FAT denote the set of finite
trees. Then we must show that FAT is isomorphic as a I;-po to N/<r .

LEMMA 5.1.1. NT satisfies all of the axioms of Section 3.

PROOF. It is sufficient to show that FAT satisfies the axioms. To prove that 2.
and 1; hold, it is necessary to use induction on the size of trees. The axioms Nl,
N2, N3, Ql, Q2, all follow by simple calculations. This leaves Dl, D2.

(1~1) To show that tl @ (t2 + t3) has the same acceptance set at the root (if it
exists) as (t, @ t2) + (tl @ t3) one needs that for arbitrary saturated sets
-@+I, .e, J-G:

cwl u (A u A2, A, E 335, A2 E 4)

= WI U B2, B, E 44 U &), B2 E c@‘, u ~45)).

This is easily derived from the fact that

B E 4% u -5~6) if and only if U(A;, i E Z] G B G U(Aj, j E JJ (*)

where Z, J are finite index sets and for each i E I, j E J

AiEcdl U&y AZUd, u&5.

Now to show that tl @ (t2 + t3) is the same as (tl 6B t2) + (tl @ t3) is a simple
case analysis on whether or not the intersections of the three sets S(ti),
i = 1, 2, 3, are empty.

(D2) In this case also, the nontrivial part is to show that the acceptance sets on
the respective roots are identical. The necessary result, which is derivable
from *, is that for any saturated sets tii, i = 1, 2, 3,

(A I U AZ, A r E &r and A2 E c(& U 2~5)) = ~(523’1 U 522’2)

Acceptance Trees 923

where

98, = (B, U Bz, B; E &), 92 = (B, U B3, Bi E &i]. 0

Every normal form (and indeed finite term) can be considered as an object in
the language REG. This gives a natural mapping, h, from N to FAT, defined by

h(n) = -+?dO.

LEMMA 5.1.2. h induces a Z-homomorphism from N/C, to FAT.

PROOF

(i) We must show that h preserves cl. Suppose n cl n’. Then n < n’ and, by the
previous lemma, it follows that h(n) < h(n’).

(ii) We must show that h preserves every operator in Z, that is, opAT(h(nl), . . . ,
hh)) = htopdn,, . . . , nk)). If nf denotes the normal form function on finite
terms, then opN can be defined by op&n,, . . . , nk) = nf(op(ni, . . . , nk)). Now
htoph, . . . , a)) = opthtnd, . . . , h(nk)) and, therefore, the result follows once
more by the previous lemma. 0

We now define an inverse for h. Let k: FAT + N be defined by

(i) if t(f) is open, then

k(t) = Q + Z(ak(t/a), a E S(t)).

(ii) if t(t) is closed, then

k(t) = a(z(ak(t/a), a E L) L E &(t(t))).

LEMMA 5.1.3. k induces a Z-homomorphism from FAT to N/q.

PROOF

(i) It is necessary to show that, if tl E t2, then k(tl) cl k(t2). A simple case analysis
will show that k(t,) <1 k(t2) and the result then follows by induction.

(ii) It is also necessary to show that

ktopxrtt,, . . . , tn)) = opdktt,, . . . , tn));

that is,

ktopdt,, . . . , td = nftdkttl, . . . , td).

For the operator a. This is straightforward, but for the binary operators + and
G3 this requires structural induction on terms and knowledge of the procedure
for reducing terms to normal forms, which is given in [15, Appendix 1.1 Cl

COROLLARY 5.1.4. (THEOREM 3.1). (F&C)” is isomorphic to AT as a Z-cpo.

PROOF. As noted above, it is sufficient to show that (N/<J is isomorphic to
FAT. This now follows from the previous two lemmas since h and k are in-
verses. 0

The notion of testing used in [141 is slightly different than that outlined in
Section 4 of this paper. This led to the relation ET between terms, which has a
different formulation from our relation 5 op. However, the differences are not
significant, since they can both be shown to coincide with a third relation 5;
defined in [151. Using this fact, the proof of the Operational Characterization
Theorem is straightforward.

!324 MATTHEW HENNESSY

COROLLARY 5.1 S. (THEOREM 4.2.5)

AAT@) < AAT@ if and only if P SW 4.

PROOF. Consider the relation CI between terms defined in [15, sect. 4.11.
From [15, theorems 3.1.2 and 4.1. l] and our Algebraic Characterization Theorem,
it follows that

dAT(P) < AAT if and only if P 5’4.

However, the proof of [15, theorem 4.1. l] can easily be adapted to show that

P GoPq if and only if P Gq. cl

5.2. In this section, we prove the modal characterization theorem. We rely very
heavily on the results of [15, sect. 4.11, where an alternative characterization of the
rnodel AT is given in terms of preorders of, i = 1, 2, 3. In fact, the modal
characterization theorem will follow from the fact that p 54 q if and only if
:a(p) G 9$(q) and p G q if and only if gc(p) G gc(q).

PROPOSITION 5.2.1. ZfS%(p) C 9%(q) and gc(p) C PC(q), then MAT(p) < d,&q).

PROOF. We know from [151 that AAT(P) < AAT if and only if p 5; q.
However, ~1 is simply the intersection of 5; and 51. Consequently, it is
sufficient to prove that p 5; q and p F; q. We leave it to the reader to prove that
:F,,(p) G g,,(q) implies p 55 q, and we show that PC(p) G PC(q) implies p ~1 q.
Suppose p 1 s. We show by induction on s that

(9 9 1 s,
#(ii) S(s, q) C S(s, p), and

(iii) -4s, 4) il -@Ys, P).

(a) s is E.
(i) Let a be such that a 4 S(E, p) and b not appear in q. Then vacuously p t=c

@@. Since PC(p) G gc(q), it follows that q l=, @@, that is, qJ.
(ii) Suppose a E S(E, q). If a 4 S(c, p) we can proceed as in (i) to obtain a

contradiction.
(iii) Let A E &(E, q). Suppose that for every B E B?(c, p) there exists some aa

such that aB E B, aB 4 A. Then p l==c @, q l=, @, where J/ denotes
I’(@, B E JZZ’(E, p)]. This, however, contradicts the fact that 9=(p) G
PC(q). It follows that, for some B E &(E, p), B C A; that is, &(s, q) G

4% P).
(b) s is s’a.

If S(s’a, p) is empty (i.e., a 4 S(s’, p)), then it follows by induction that
S(s’a, q) is empty and the results are vacuously true. So we can assume
S(s’a, p) is not empty and, in this case, the proof is similar to part (a) with
s’a in place of E. cl

PROPOSITION 5.2.2. Zf &,&p) < AAT(then go(p) C go(p) and 9=(p) C
~~&I).

PROOF. Once more, we leave it to the reader to show that p 6; implies 9!(p)
G B,,(q) and we prove p ~1 implies 9=(p) C PC(q). The proposition then follows
from the characterization of AT in [151. Suppose p ~4 q and p & @$. We show

4 k w

Acceptance Trees 925

(i) * is true.
Since p 1 s, if and only if p l=C @ true and p 54 q, it follows that q I=, @ true.

(ii) Otherwise, $ canabe taken to be v(@, 1 I i d n). We must show that, if
q + q’, then q’ 4 q” for some i, 1 I i 5 n. Since p 51 q, there exists some
p’ such that S(p’) G S(q’). It follows that p’ % p” for some i and, therefore,

9’ 3 4”. 0

The modal characterization theorem now follows from these two propositions.

6. Conclusion

We have presented a simple model for nondeterministic machines called AT, which
is based on particular kinds of trees. By defining some basic operations on AT, we
have seen that it can be characterized by a simple set of axioms. Finally, we have
tried to motivate the model from an operational point of view by examining the
semantics of a simple language in the model. We have shown that this semantics
reflects behavioral properties of programs that can be written in a simple modal
language.

Our model represents a particular view of the behavior of machines. A very
different viewpoint motivates another type of model, based on the notion of
bisimulation. These models appear in [161 and [24-261. In general, they are much
more discriminating than AT. For example, if applied to our language of Section
4, they would differentiate

a(bc0 + bd0), abc0 + abd0.

Some of these models, such as [24-261, are based on the notion of equivalence
between processes. However, these models do not have any algebraic characteri-
zation or representation that is independent of their operational definitions. For
example, in [24], synchronization trees are not fully abstract with respect to strong
equivalence. More recently, attempts have been made to use metric spaces to
elucidate these kinds of equivalences [1, 2, 6, 1 I]. For example, in [I], complete
metric spaces that satisfy some natural axioms are discussed. So far, the operational
significance of these models have not been investigated, but they should illuminate
the various modifications of the basic notion of observational equivalence from
[161 and [24].

In [141 and [171, observational preorders, based on the notion of bisimulation,
are studied. These lead to fully abstract models, which are, in fact, term models.
These may be characterized equationally, but they have no satisfactory represen-
tation. All we know about these models is that they can be obtained by factoring
trees using equations. This factoring process is rather complicated, and one has no
idea what the objects in the model actually look like.

In [151, six different models for processes were introduced, three synchronous
models I,, 12, Z3 and three asynchronous models Jr, J2, J3. We have chosen to
concentrate on I, in this paper and, in fact, we have shown that AT is a represen-
tation of I,. The other two synchronous models 12 and Z3 also have convenient
representations, which we now outline. Let WAT (weak acceptance trees) be the
set of trees with no closed nodes. Elements of WAT are essentially sets of sequences,
and the ordering given by Definition 2.2.1 is simply subset inclusion. Thus, WAT
is a Z-cpo, which is isomorphic (as a cpo) to the traces model of [191. Its algebraic

926 MATTHEW HENNESSY

characterization can be obtained in the same way as that of AT by adding the
axiom

XEX@ Y. WN3)

As might be expected, the presence of this axiom is quite powerful. For example,
one can use it in conjunction with the other axioms to prove

X@Y=X+ Y, a&Y+ Y)=ux+aY.

An operational characterization of the denotational semantics of our language
in WN3 can be obtained as in Theorem 4.2.5 by omitting the must and must4
clauses from the definition of hop.

On the other hand, let SAT (strong acceptance trees) be the set of all trees in AT
with the property that only leaves may be open. SAT can be made into a cpo by
omitting clauses (i) and (ii) from Definition 2.2.1. The algebraic characterization
of SAT is obtained by adding the axiom

x63 YEX. (SN3)

The axiom can be used in conjunction with the others to derive

X@fl=0, X+D=Q,

which shows that, in this model, these operators are strict. Similarly, an operational
characterization can be obtained by omitting the may clause from the definition

of 5op.
The asynchronous models Ji (and, indeed, RTi of [S]) are very similar to those

models. The differences occur because, in these models, it is necessary to model
the internal behavior of processes definable in asynchronous CCS.

The refusal sets model for communicating processes was introduced in [5] and
is discussed, together with its variations, in [3], [191, [22], [23], [27], and [29]. This
is quite similar to AT, except that they label the nodes of the trees with refusal sets
instead of acceptance sets. Consequently, this model is much larger than necessary
in that there are many elements that cannot be defined in the languages they
consider. The refusal sets model lack an equational characterization and because
of the point just mentioned would be difficult to obtain.

If we assume that the set of actions isfinite then one can prove that the refusal
sets model is isomorphic to SAT as cpos. Moreover, in this case, the usual operations
on refusal sets [5] are quite similar to ours. Their a + is the same as our prefixing
and their q coincides with +. However, their operation 0 differs from @ in the way
that they treat the least element. As indicated previously, @ is strict on SAT,
whereas n is not strict. It has been suggested in [3] and [7] that the properties of
the least element in the refusal set model, CHAOS, be changed so as to make it
more amenable to equational reasoning. The net effect would be to make @ and n
coincide, thereby making SAT and this model isomorphic as Z-cpos (at least, when
A is finite). In general, when A is infinite, the refusal set model could be modified
so that it only contains elements that, when viewed as trees, have bounded out-
degree. So they correspond to processes that exhibit bounded nondeterminism.
This modified model, bounded by refusal sets, is then isomorphic to SAT. For
details, see [7]. Finally, we should point out that no connection has been made
between the original refusal sets model and the operational behavior of machines.
H:owever, this point is discussed in [3] and [27].

A modal characteristic of observational equivalence is given in [161 and is further
elaborated in [4] and [32]. Our modal characterization theorem is modeled on
[35], but is actually a minor variation on a result first proved by C. Stirling [33].

Acceptance Trees 92’7

REFERENCES

(Note: References [181 and [28] are not cited in text.)
1. BERGSTRA, J. A., AND KLOP, J. W. Fixed point semantics in process algebras. Tech. Rep. IW

206/82, Mathematisch Centrum, Amsterdam, The Netherlands, 1982.
2. BERGSTRA, J.A., AND KLOP, J. W. Process algebra for communication and mutual exclusion.

Tech. Rep. IW 218/83, Mathematisch Centrum, Amsterdam, The Netherlands, 1983.
3. BROOKES, S.D. A model for communicating sequential processes. Ph.D. dissertation. Oxford

Univ., Oxford, England, 1983.
4. BROOKES, S. D. AND ROUNDS, W. C. Behavioural equivalence relations induced by programming

logic. In Proceedings oJICALP 1983, Lecture Notes in Computer Science, vol. 154. Springer-
Verlag, New York, 1983.

5. BROOKS, S. D., HOARE, C.A.R., AND ROSCOE, A. W. A theory of communicating sequential
processes. J. ACM 31, 3 (July 1984), 560-599.

6. DE BAKKER, J. W., AND ZUCKER, J. I. Processes and the denotational semantics of concurrency.
Tech. Rep. IW 209/82, Mathematisch Centrum, Amsterdam, The Netherlands, 1982.

7. DE NICOLA, R. A complete set of axioms for a theory of communicating sequential processes. In
Proceedings of FCT ‘83. Lecture Notes in Computer Science, vol. 158. Springer-Verlag, New York,
1983, pp. 115-126; InJ Control, to appear.

8. DE NICOLA, R., AND HENNESSY, M. Testing equivalences for processes. Theor. Comput. Sci. 34,
1, 2 (1984), 83-135.

9. GINSBURG, S., AND RICE, H.G. Two families of languages related to ALGOL. J. ACM 9, 3 (July
1962) 350-371.

10. GOGUEN, J. A., THATCHER, J. W., WAGNER, E.G., AND WRIGHT, J.B. Initial algebra semantics
and continuous algebras. J. ACM 24, 1 (Jan. 1977), 68-95.

11. GOLSON, W. G., AND ROUNDS, W. C. Connections between two theories of concurrency: Metric
spaces and synchronisation trees. InJ: Control 57 (1983), 102- 124.

12. GORDON, M. The Denotational Description of Programming Languages, Springer-Verlag, New
York, 1979.

13. GUESSARIAN, I. Algebraic semantics. In Lecture Notes in Computer Science, vol. 99. Springer-
Verlag, New York, 198 1.

14. HENNESSY, M. A term model for synchronous process. InJ: Control 51, 1 (Oct. 1981), 58-75.
15. HENNESSY, M. Synchronous and asynchronous experiments on processes, InJ Control 59, 1-3

(1983), 36-83.
16. HENNESSY, M., AND MILNER, R. Algebraic laws for nondeterminism and concurrency, J. ACM

32, 1 (Jan. 1985), 137-162.
17. HENNESSY, M., AND PLOTKIN, G. A term model for CCS. In Lecture Notes in Computer Science,

vol. 88. Springer-Verlag, New York, 1980, pp. 261-274.
18. HOARE, C.A. R. Communicating sequential processes. Commun. ACM 21, 8 (Aug. 1978),

666-676.
19. HOARE, C.A.R. A model for communicating sequential processes. Tech. Monograph Prg.-22.

Comput. Lab., Univ. of Oxford, Oxford, England, 1981.
20. HOPCROFT, J., AND ULLMAN, J. Formal Languages and Their Relation to Automata. Addison-

Wesley, Reading, Mass., 1969.
2 1. HOWIE, J. An Introduction to Semigroup Theory. Academic Press, Orlando, Fla., 1976.
22. KENNAWAY, J. K. Formal semantics of nondeterminism and parallelism, Ph.D. dissertation. Univ.

of Oxford, Oxford, England, 198 1.
23. KENNAWAY, J. K., AND HOARE, C. A. R. A theory ofnondeterminism. In Proceedings of ICALP

1980. Lecture Notes in Computer Science, vol. 85. Springer-Verlag, New York, 1980, pp. 338-350.
24. MILNER, R. A calculus of communicating systems. In Lecture Notes in Computer Science, vol.

92, Springer-Verlag, New York, 1980.
25. MILNER, R. On relating synchrony and asynchrony, Tech. Rep. CSR-75-80, Univ. of Edinburgh,

Edinburgh, Scotland, 1980.
26. MILNER, R. Calculi for synchrony and asynchrony. Theor. Comput. Sci. 25, (1983), 267-310.
27. OLDEROG, E. R., AND HOARE, C. A. R. Specification-oriented semantics for communicating proc-

esses. In Lecture Notes in Computer Science, vol. 154. Springer-Verlag, New York, 1983.
28. PLOTKIN, G. A structural approach to operational semantics, Lecture Notes. Aarhus University,

Aarhus, Denmark, 198 1.
29. ROUNDS, W. C., AND BROOKES, S. D. Possible futures, acceptances, refusals, and communicating

processes. In Proceedings of the 22nd Foundations of Computer Science Annual Symposium
(Nashville, Term., Oct.). IEEE, New York, 198 1.

928 MATTHEW HENNESSY

30. SALOMAA, A. Two complete axiom systems for the algebra of regular events. J. ACM 13, 1 (Jan.
1966), 158-169.

3 1. SCOTT, D. Data types as lattices. SIAM J. Comput. 5 (1976), 522-587.
32. STIRLING, C. A proof theoretic characterisation of observational equivalence, Tech. Rep. CSR-

132-83. Univ. of Edinburgh, Edinburgh, Scotland, 1983; Theor. Comput. Sci., to be published.
33. STIRLING, C. Unpublished manuscript.
34. STOY, J. Denotational Semantics: The Scott-Strachey Approach to Programming Language

Theory. MIT Press, Cambridge, Mass., 1977.
35. WINSKEL, G. On powerdomains and modality. Theor. Comput. Sci. 36 (1985), 127-137.

RECEIVED JULY 1983; REVISED FEBRUARY 1985; ACCEPTED MARCH 1985

Journal of the Association for Computing Machinery, Vol. 32, No. 4, October 198%

