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In this paper we present a Process Algebra for the specification of concurrent,
communicating processes which incorporates operators for the refinement of
actions by processes, in addition to the usual operators for communication, non-
determinism, internal actions, and restrictions, and study a suitable notion of
semantic equivalence for it. We argue that action refinements should not, in some
formal sense, interfere with the internal evolution of processes and their application
to processes should consider the restriction operator as a “binder.” We show that,
under the above assumptions, the weak version of the refine equivalence introduced
by Aceto and Hennessy ((1993) Inform. and Comput. 103, 204-269) is preserved by
action refinements and, moreover, is the largest such equivalence relation contained
in weak bisimulation equivalence. We also discuss an example showing that, con-
trary to what happens in Aceto and Hennessy ((1993) Inform. and Comput. 103,
204-269), refine equivalence and timed equivalence are different notions of equiv-
alence over the language considered in this paper. € 1994 Academic Press, Inc.

1. INTRODUCTION

Action refinement occurs naturally in the development of specifications
for processes or systems. At one level of abstraction the specification might
look like

SPEC <= ...; input; output; ...

where input and output, at this level of abstraction, may be considered as
uninterpreted or unanalyzed actions. At some stage during the refinement
of the specification, it may be appropriate to describe in more detail how
these actions are supposed to occur. These descriptions could be in terms
of processes, say, P and Q, so that the new specification may look like

NSPEC<=..; P;Q; ...
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In this case, the more detailed specification NSPEC is obtained from the
more abstract one SPEC by action refinement, refining the action input to
the process P and the action outpur to the process Q.

Process algebras have been developed as prototype specification
languages for concurrent systems, see [35, 32, 10], but, as pointed out in,
e.g., [14,27], they do not support this mechanism of action refinement.
The object of this paper is to develop a reasonable process algebra which
incorporates such a refinement operator and to suggest a suitable notion of
semantic equivalence for specifications written in this process algebra. This
should be viewed as a contribution to the theoretical foundations of pro-
cess algebras which may eventually allow their use as the basis of formal
specification methodologies which support action refinement.

We take as our basic language a cross of finite CCS [35] and ACP
[10, 8]. This language is based on a set of actions Act and contains, as
usual, the binary choice combinator +, the restriction operator\a, where a
is an action, and the binary parallel combinator |; p| g means that the pro-
cesses p and g are running in parallel and they may synchronize using com-
plementary actions. In order to support action refinement, the usual action-
prefixing operator from CCS is replaced by sequential composition *;.” The
introduction of this operator has further implications. As pointed out in
[4], in the presece of sequential composition and restriction it is no longer
sufficient to have only one notion of terminated process as in CCS. So we
also have in the language a constant for the successfully terminated pro-
cess, nil, and one for the completely deadlocked process, 4. The result is a
very rich and expressive language which only lacks a facility for recursive
definitions for it to be considered a standard process algebra.

The first question we ask is: what action refinements, i.e., substitutions of
actions by processes, should be allowed in this rich setting? There are two
somewhat opposing constraints. The first has to do with the issue of what
action refinements are useful in practice, in the sense that any action refine-
ment which might be used in practice should be allowed by our definition.
The second is that the allowed refinements should be restricted so that a
reasonable semantic theory can be developed. One constraint that we
impose is that actions can not be refined into terminated processes. This is
unlikely to constrain practical applications and, as we shall see, the
presence of such refinements would make the development of an adequate,
abstract semantic equivalence which is preserved by action refinements
very difficult. The other constraints we impose have to do with complemen-
tation of actions and thus with the synchronization potential of processes.
Recall that in CCS the set of actions has the structure Act=Au AU {1},
where A is a basic set of actions, A is the set of their complements, and ©
is a distinguished action meant to denote internal and unobservable
actions. In view of the nature of t it is reasonable to say that it cannot be
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refined. Once more this is very natural from the point of view of applica-
tions, although from a theoretical standpoint we might have allowed the
refinement of t© by processes that can only perform internal actions. Finally,
we require that if action a is refined to the process p then its complement
a is refined to some “complement of p,” i.e., some process which is capable
of communicating indefinitely with p until both are successfully terminated,
in the same way that the primitive unrefined process a can communicate to
completion with @ One way of obtaining a complement of p is to replace
each action with its complement in p. At the moment it is very difficult to
say if this constraint will be restrictive in practice as there is very little
experience of refining CCS specifications. However, it will be very con-
venient in developing our semantic theory.

The second question we address is how action refinements are to be
applied. For the language considered in [3] the answer is straightforward
because of the absence of restriction: an action refinement is applied to a
process by syntactically substituting for each action symbol its correspond-
ing refinement. However, this is no longer adequate in this enriched setting.
For example, consider the process p,

((4; p"+ o5 g)| & r)\ax,

where A does not occur in p’, ¢, and r. If we now refine 4 to the process
a; w then, intuitively, we do not wish the result of the application of this
refinement to p to be the process

(((a; w); p’ + a5 q) [ & rP\e

In p the action « is a local action which is known only internally to the
process. It is a “bound action” and semantically p should be equivalent to

(A p'+ B; )| B; \B,

at least assuming that « and f do not appear in p’, ¢, and r. In other
words, restricted actions should not be allowed to “capture” actions in the
refining process. In defining the application of an action refinement we
shall appeal to the standard theory of a-conversion and substitution; see,
e.g., [38], where the restriction operator is viewed as a binder. So, for
example, the effect of refining A by «; w in p will be (((a;w); p'+ B; q)|
B; r)\B, up to a-conversion.

The final problem we address is the development of an adequate notion
of semantic equivalence over the language considered in this paper. One
property we require of such an equivalence is that it abstract from the
internal evolution of processes; i.e., that it interpret t-actions as being inter-
nal or unobservable. A well-established and useful equivalence with this
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property is weak bisimulation equivalence, ~ [35]. This is defined in terms
of an operational semantics for the language which defines next-state rela-
tions for each action g; intuitively, p == ¢ implies that p may perform the
action a, possibly interspersed with internal actions, and be transformed
into ¢. Then the defining characteristic of the equivalence relation = is that
if p ~ ¢ then every move from p, p = p’, can be matched by a correspond-
ing move from g, ¢ == ¢’, such that the potential for further computation
is retained, i.e., p'~¢q’. In a setting where there are no internal, invisible
moves, one may analogously define an equivalence relation called strong
bisimulation equivalence, ~, using the next-state relations — in place of
=>; intuitively, p —% ¢ means that p may evolve to g by performing the
action a. The transition relations - are sometimes called the strong trans-
ition relations and => the weak transition relations.

However, as is well-known (see, e.g., [ 14, 21]), & is not adequate in the
presence of action refinement. For if a semantic equivalence is to be of any
use, it should be such that if two equivalent processes are refined the result-
ing processes should also be equivalent. This property does not hold for ~.
In fact, a|b=xa; b+ b; a, but if a is refined to a,; a, the resulting processes
are not equivalent with respect to x. (The details may be found in [3].)
On the other hand, bisimulation equivalence has many appealing properties
and its form is such that there are simple, but powerful proof techniques
associated with it. Our main aim in this paper will thus be to define
a reasonable “bisimulation-like” equivalence for the language we consider
which is a congruence with respect to all the combinators in the algebra,
including the action refinement combinator.

In [3], we gave a characterization of the largest congruence contained
in strong bisimulation equivalence for a simple language without com-
munication and restriction. The basic idea of such a characterization is
straightforward. One immediate consequence of refining an action is that it
is no longer atomic. Indeed, a minimal refinement is to refine every action
a to a process, begin(a); finish(a), capable of performing two atomic subac-
tions, the beginning of action a and the end of a. A “bisimulation-like”
equivalence based on these subactions is called “(strong) timed equiv-
alence” in [3] and is denoted by ~,. In {3] we showed that ~, gives a
behavioural characterization of the largest congruence over the simple
language contained in ~. In other words, for two simple processes to be
strong bisimulation equivalent under all action refinements it is sufficient
for them to be so under the minimal refinement described above.

The corresponding theorem is no longer true for the richer language with
communication and restriction. An example was provided by van Glabbeek
and Vaandrager [23] in a slightly different setting and its formulation for
our language is discussed in Section 6. In some sense, the fact that ~, is
the largest equivalence contained in ~ which is preserved by action
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refinements over the simple language considered in [3] is accidental. The
proof given in [3] proceeds by showing that the above property is true of
a more subtle, but more natural version of ~,, called strong refine equiv-
alence, ~ . Subsequently, ~, and ~_ are shown to coincide for the simple
language. It is the latter step which breaks down for the richer language.
However, we shall show in this paper that the appropriate version of refine
equivalence which takes silent moves into account, denoted by =, is
preserved by action refinement over the richer language and moreover is
the largest such equivalence relation contained in weak bisimulation
equivalence.

For p=, ¢ to be true it is necessary that p=, g, i, p and g must be
weak bisimulation equivalent using the (weak) transition relations based
on the subactions begin(a), finish(a), but, in addition, in the bisimulation
the beginnings and endings must be properly matched. More specifically, if

. begin(a) , . . begin(a) ,

we match the action p === p’ from p with the action § ==—= ¢ then,
when subsequently establishing that p'~, g¢', we can only match the
ﬁ"'fg,(ﬂ)) associated with p Leginta) p’ with the finish(a) associated with
q g' and not with the end of some other ¢ action which might have
subsequently started. Intuitively, this equivalence is more natural than =~ _,
as it conforms more readily to our intuition about comparing the ability of
processes to perform actions which happen to be nonatomic. However, the
formulation of =, is more complicated than that of x,, as the history of
actions which have started and not yet finished must be taken into account.
Technically, =, is defined in terms of a family of bisimulations =~,, where
h records associations between unfinished actions.

The first major result of this paper is that the appropriate version of
refine equivalence which takes internal moves into account, =,, is indeed
preserved by action refinement over the richer language. It is then a simple
matter to characterize the largest congruence over the richer language con-
tained in =, =,:

T
p=,q iff p+a=,q+ afor some action a not occurring in p and ¢.

Readers familiar with the theory of weak bisimulation equivalence will
recognize the need for the new action a; it is necessary because, in general,
weak bisimulation equivalence is not preserved by +.

In [3], we showed that, for a simple language P,, ~, gave a behavioural
characterization of the largest congruence over P, contained in strong
bisimulation equivalence. Namely, for each p, ge P,, we proved that

p~.q iff for all P -contexts C[-], C[p]~C[q].

In other words, ~, is the largest equivalence relation which on the one
hand is preserved by all the operators in the language and on the other is
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contained in strong bisimulation equivalence. A similar result holds for the
weak version of ~_, = ,. Of course, for the usual reasons =, is not preserved
by the + operator and therefore the result has to be expressed in terms
of =,. The second major result then states that, for each p, ¢ in the richer
language,

p =, q iff for every context C[-], C[pl~C[q].

This indicates that =, is a natural candidate for a semantic theory of pro-
cess algebras which support action refinements.

We now give a brief outline of the contents of this paper. In Section 2 we
introduce the language which will be studied in this paper and present
several semantic equivalences for it based on variations on the notion of
bisimulation. In setting up our semantic framework, we shall rely on work
presented in [3,4]. Section 2.2 is entirely devoted to the discussion of a
suitable notion of action refinement for the language we consider. There we
also introduce our technique for the application of action refinements to
processes. The essential idea is to consider the restriction operator as a
binding operator and to adapt the notion of substitution presented in [38]
to our setting. A natural “weak” version of the refine equivalence intro-
duced in [3], =,, is then presented and analyzed in detail in Section 3. In
the following section we show that =, and its closure with respect to
+-contexts, =,, are both preserved by action refinements. In Section 5 we
prove the characterization of =, as the largest congruence contained in =~.
Section 6 is devoted to a discussion of an example from [23] showing that
~, and =, are different equivalences over the language considered in this
paper. We end with a section of concluding remarks, where we briefly
compare our results with related ones in the literature.

2. THE LANGUAGE

2.1. The Basic Language

Let A denote a countable set of basic uninterpreted symbols ranged over
by o, 8,7, o, ... The set of actions over A, Act(A), is delined to be
AuAdu {t}, where A=, {a|oe A} and 7 is a distinguished symbol not in
Au A For each ae A, & will be called the complement of . The com-
plementation ° is extended to the whole of Act(A4) by d=« and T=r1.
Intuitively, 4 may be thought of as a set of channel names to be associated
with communicating processes, in which case xe A< Act(A) may be
viewed as the action of receiving a synchronization signal from the channel
a, & as the action of sending a synchronization signal to « and t as an inter-
nal or invisible action. We shall use y to range over Act(4) and a, b over
AU A, the set of observable actions which we sometimes denote by V(A).
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Given A, the set of processes over Act(A), P4, is given by the following
BNF definition:

pi=nil|é|u(ue Act(A)}| p; plp+ plpl pl p\a (x€ A).

We shall use p, g, p’, ... to range over P ,. The language for processes given
above is a mixture of CCS [34, 35] and ACP [9, 10]. The operators #il,
+, |, and \« are taken from CCS, but the CCS action-prefixing operator
is replaced by sequential composition “;.” As explained in [4], in the
presence of a general sequential composition operator and of restriction it
is necessary to have in the language a symbol for both successful termina-
tion, for which we use nil, and unsuccessful termination, which we repre-
sent by 6. We shall usually abbreviate P, to P. We also use X to refer to
the set of operators used in the definition of P and a P-context will be a
term in the language which contains one “hole” into which a subterm may
be slotted, C[ - ].

The operational semantics for P is given in terms of a collection of next-
state relations ~» = P x P, one for each action p, and a successful termina-
tion predicate \/ . These are given in Fig. 1 and are taken directly from [4].
The definition of the transition relations uses the predicate admits defined
by

o admits p iff y+#a, a

There are numerous variations which one could apply to these definitions
(see, e.g., [5, 28, 7]), but in this paper we shall follow the approach in [4].
With these definitions we have a particular instance of a labelled transition
system. A labelled transition system with termination is a quadruple

{P,A, -, \/>, where

1. P is a set of processes,

2. Ais a set of actions of the form V' u {1}, where 7 is a distinguished
action symbol,

3. — < Px A x P is a next-state relation, and
4. \/ < P is a successful termination predicate.
This is a slight extension of the usual notion of labelled transition system
which suits our language. In such an LTS a strong bisimulation is a sym-
metric relation # < P x P which satisfies, for each {p,g)> e # and uecA,
(i) if p—5 p’ then there exists ¢’ such that ¢ > ¢’ and (p’, ¢’ > e R,
(ii) if py/ then q/.
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(T1) nily/
(T2) pv/and gy imply p@gy (©€ {;,+,1})
(T3) pv/ implies p\ ay/

(ACT) p -2 nil

(SUM) p-tp implies p+ ¢ -2 p’

gtp=p

(5C1) p-2p implies p; ¢ %> p';q
(5C2) py/ and g -2 ¢ implies p; g £+ ¢’

(PAR) p5 ¢/ implies plg - p'lg

implies qlp — qip’
SYN) p—>pandg—2+q¢  imply plg—pl¢
q
(RES) p-%p and aadmitsp imply pla -5 p'\a

FiG. 1. Termination predicate and transition relations for P.

The second clause of the definition of strong bisimulation over an LTS
with termination explicitly requires the matching of the termination poten-
tial of two processes, as expressed by the predicate \/ . This is needed to
capture semantically the difference between successfully terminated and
deadlocked processes.

A weak bisimulation is defined in essentially the same way by replacing
£ and \/ by their “weak” counterparts, => and J respectively.
Formally,

p=>qiffp—*p, -5 p,—S*g,

for some p,, p,, and pv/ iff for all p’, p~—* p’ > implies p’\/. The exact
definition of weak bisimulation also uses the relation ==, the reflexive and
transitive closure of —, —*, and the notation g, where 4 is simply @ and
t=¢. Then a symmetric relation Z< P x P is a weak bisimulation if, for
cach {(p,q>e X and peA,

(i) if p—5 p’ then there exists ¢’ such that ¢ N q and {p',q'>eR,
(ii) if py/ then g/

We use ~, called strong bisimulation equivalence, to denote the largest
strong bisimulation and =, called weak bisimulation equivalence, to denote
the largest weak bisimulation. We shall be primarily interested in these
equivalence relations as applied to the LTS (P, Act(A), —, \/ >. Bisimula-
tions have been studied in depth and we assume that the reader is familiar



ACTION REFINEMENT IN PROCESS ALGEBRAS 187

with them. The basic reference is [35], where both strong and weak
bisimulations are explained at length. However, they are not applied to our
version of LTS with a successful termination predicate \/ , although much
of the standard theory carries over. Bisimulation theory for languages with
various forms of successful termination and deadlock have been studied for
many years (see, e.g., [5, 6, 42]), but, as we have already stated, we are
adopting the approach in [4], where a bisimulation preorder based on ~
is investigated and characterized equationally for a minor variation of P. In
the following, when referring to bisimulations or bisimulation equivalence
we mean weak bisimulations or =, respectively. The following proposition
can be proven following standard lines.

ProposiTiON 2.1 (Congruence Properties of ~ and =). The relation ~
is a Z-congruence over P and =~ is preserved by all the operators in X, apart
from +.

Another variation on the theme of bisimulation, which has been
investigated in [29, 3] for simple languages, is obtained by splitting each
visible action g into two subactions S(a), the start of a, and F{(a), the end
or finish of a. To define an operational semantics based on these actions,
we need to enlarge the set of terms in order to describe states of processes
in which, for example, actions @, and a, have started but have not yet
finished.

The set of states &, or more formally %,, is the set of terms generated
by the following BNF definition, where as usual p ranges over processes,

su=nil|d|p(ue Act(A)) | Fla) (ae V(A))|s; plp+ pls|s|s\a(ae A)

which satisfy the following constraint:
(CR) s\ae ¥ implies that F(x) and F(&) do not occur in s.

The naturality of this constraint will become clear after the definition of the
operational semantics for . Note that P is a subset of &; we shall use
s, ', .. to range over &. Let Act (A), the set of subactions, be given by

Act (A) =4 {S(a), Fla)|ae V(A)} U {1}].

The operational semantics for & is given in terms of a collection of next-
state relations — <. x.%, where ee Act,(A). These are defined as
follows:

o The next-state relation —», over . is obtained by simply adapting
the axiom and relevant rules presented in Fig. 1 to . (Note that this also
involves defining next-state relations ——, for ae V(A4).)
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1) nily/

sv/ implies s\ ay/
pv and ¢/ imply p+gy/
sv/and py/  imply  s;py/
s1y/ and s2¢/ imply  sy]sey/

B
~—

P

51 a2, F(a)
F(a) E(—a), nil

(52) p—S0 ¢ implies p+ ¢ —~>,p
gtp—"p
(8§3) s~ implies s;p —5¢ s';p
(54) sy/and p—5 & imply  s;p 5 ¢
(85) s~ 8% implies s1]s2 —>¢ 8|52

salsy S s208]

(S6) s~%, s and cadmitse imply s\a > s\«

Fic. 2. Termination predicate and observable next-state relations for &.

» For each e in Act,(A) other than 7, the next-state relations -, over
& are given in Fig. 2, where the predicate admits is extended so that

o admits e iff e # S(a), F(a), S(&), F(&).

The definition of — is very similar to that of —%, except that we have the
new clauses

a—>2, Fla) and  Fla)—2% nil

Intuitively, the process a can start the action ¢ and be transformed into the
state F(a). This is a state in which action a is active and may terminate at
any time, which corresponds to performing action F(a). Note that the sub-
actions cannot synchronize and therefore it is inaccurate to view P with
this operational semantics as processes in P, , where 4, is some collection
of basic subactions.

The termination predicate \/ , defined in Fig. 1 on P, is extended in the
obvious way to the set of states . (see Fig. 2).

PROPOSITION 2.2. Let s€ ¥ and e Act(A). Then s - s implies s' € &.



ACTION REFINEMENT IN PROCESS ALGEBRAS 189

We have already remarked that, for each process p, pe ¥. Thus, by the
above proposition, each state s reachable from a process p is in .% and thus
satisfies condition (CR). This justifies our use of condition (CR). We are,
in fact, interested in states only as means of defining the operational seman-
tics for processes using subactions and terms built using the grammar for
states which do not satisfy (CR) are not reachable from processes using the
transition relations —% .

We now have a new labelled tranmsition system with termination
(¥, Act (A), —, \/>. In this structure we let ~ and =z denote the result-
ing strong and weak bisimulation equivalence, respectively. The subscript t
refers to “time” as the equivalences are obtained by assuming that actions
take nonzero time. They have been studied for sublanguages of P in
[29, 3] and similar equivalences have been called “split-equivalences” in
[22, 20, 19, 26].

PROPOSITION 2.3. The relation ~, is a congruence with respect to all the
combinators in P and =, is preserved by all the combinators in X, apart
from +.

It is interesting to note that the definitions of the split-equivalences ~,
and =, given above do not require the matching of actions in V(A). The
addition of such a requirement to their definition would give rise to dif-
Jerent equivalences. This will be demonstrated in Section 6 by means of an
example.

2.2. Action Refinements

An action refinement may be considered to be simply a mapping from
Act(A) to P and the effect of applying an action refinement to a process is
a new, more detailed, process obtained by substituting for each action the
corresponding refining process. In this section we formalize these ideas for
the language P.

We first put some natural conditions on action refinements, or more
prosaically substitutions. We shall use p, p’, ... to range over them. Since 1
is an internal, unobservable action, it makes no sense to be able to refine
it. So, in effect, action refinements are functions from the set of visible
actions V(4) to P. One may also argue that if actions are allowed to be
refined by successfuily terminated processes then all occurrences of the sup-
posedly internal and invisible action t will have a significant effect on the
behaviour of processes. For example, let p and ¢ denote (a;t)+ b and
a+ b, respectively. One would expect p to be equivalent to ¢ with respect
to most “reasonable” notions of equivalence which abstract from internal
transitions. However, if an equivalence were to be preserved by refinements
of actions by successfully terminated processes then p # ¢. For let p denote

643/115/2-2
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a refinement such that p(a)=nil and p(b)=»h. Then pp and gp should be
(nil; t) + b and nil + b, respectively, which are not bisimulation equivalent,
nor indeed they would be equivalent with respect to most reasonable
notions of equivalence.

As a further example, let p and g be a; t; b and a; b, respectively. These
two processes are again considered to be equivalent with respect to most
reasonable semantic equivalences. However, under the same refinement we
obtain nil; t; b and nil; b, respectively. Once more, these two processes are
not equivalent, at least if we use equivalences which are preserved by all
language contexts. For example, ¢ + (nil; 7; b) and ¢ + (nil; b) would be dis-
tinguished by most reasonable semantic equivalences.

A further constraint we impose on refinements is that they should not,
in some sense, interfere with the internal evolution of processes. Let
us explain this point with an example. Let p and ¢ denote «|%+t and
a| &, respectively. Then, once more, we would consider these two processes
to be semantically equivalent. However, if we apply a refinement such as
p(a)=p and p(&)=f’, the resulting processes |+t and #|f" will not
be equivalent. The problem is that p has interfered with the communica-
tion potential between the complementary actions o and & We shall forbid
such refinements by demanding that any action refinement p satisfy the
requirement

(ComPres) For each ae V(A) there exists 7 such that p(a)|p(a) = r
and r\/.

This means that actions and their complements must be refined to
processes which can communicate indefinitely until they have successfully
terminated. This restriction is satisfied by the most common form of refine-
ment in the literature, namely relabelling of actions (see [35] for details).
More generally, (ComPres) may be enforced by demanding that, for each
action a,

o p(a)-5 r for some process r and action pe Act(4), and

e p(a@)=p(a), where, for each process p, p is the process obtained
from p by substituting each action by its complement.

In this case, an action refinement p would be uniquely determined by how
it behaved on the set of channel names A.

DEerINITION 2.1 (Action Refinements). An action refinement is a map-
ping p: V(A) — P with the following properties:

(i) for all a, not p(a)./ and
(ii) p satisfies (ComPres).
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ExampPLE 2.1. Let p: ¥(A)— P be the substitution which maps each a
to 1, ie, p(a)=r1 for all a. Then p is an action refinement. In fact, for all
a, p(a) is not successfully terminated and

pla)|p(@)=t|t = nil|nil/.

Similarly, it is easy to check that CCS-relabellings [34, 35] are action
refinements.

The following property derived from axiom (ComPres) will be most use-
ful in our technical analysis of the operational properties of processes of the
form pp. First of all, for each 6 =a, ---a, € V(A)*, let = denote the trans-
ition relation given by

p == qiff there exist py, ..., p, such that p,= p, p, = q and,
foreachi<n, p, = p;, ,.

We shall assume that the complementation of actions is homomorphically
extended to strings in V(A)*u {1}.

Fact 2.1.  Ler p be an action refinement. Then, for each ae V(A), there
exist g€ V(A)* U {1}, ry, r, € P such that p(a) = r,, p(a@) = r,, r,\/ and
T

We now turn our attention to the effect of applying an action refinement
p to a process p. The resulting process we denote by pp and, intuitively, it
should be the process which results from substituting each occurrence of a
by the process p(a) in p, for each a. However, because of the presence of
restriction, care must be taken in order to preserve the intended purpose of
this combinator, namely the scoping of channel names. In this setting,
restriction is a “binding operator” and, in order to take this into account,
it is appropriate to define pp by adapting to our setting a theory of sub-
stitution in the presence of binders. In what follows, we shall use the theory
of substitution developed in [38].

For each process p let FC(p), the set of free channel names in p, be
defined by

FC(nil)=FC(8)=FC(t)=
FC(x)=FC(a)= {a}
FC(p; q)=FC(p+q)=FC(plq)=FC(p) v FC(q)
FC(p\a)=FC(p)— {a}.
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As in [38], we define the function new by

new app = 4o { Blforeach B’ e FC(p) — {«}, B¢ FC(p(B'))u FC(p(B'))}.

That is, new app returns the set of innocuous channel names, none of which
will capture any of the free channel names which appear when p is being
applied to p.! The definition of substitution given below uses a choice func-
tion which takes such a set and returns some element. For example, if 4
were well-ordered we could choose the least element in the set. We also use
the standard notation for the modification of substitutions: p[a — p] is the
substitution which is identical to p except that it maps a to p. As a varia-
tion, p[a+— f7] will denote the substitution identical to p except that « is
mapped to f and & to . We shall use 1 to denote the identity substitution.

DEerFINITION 2.2 (Application of Action Refinements). For each peP
and action refinement p, pp is the process defined by

(1) ap=p(a), tp=1, nilp=nil, dp=45
(i) (pO@p=ppOap (Oe{s, +,1})
(i) (p\a)p = (pp[e+— B\P where B = choice(new app).

This is exactly the definition given in [387] except that there the binding
operator is the A-abstraction of the A-calculus and the only operator is
application. However, all of the results in [38] apply equally well here and
their proofs are more or less identical. For example, suppose that for two
action-refinements p, and p, we define the new refinement p,-p, by
propi(a)=p(a) p,. (We shall show that p,op, so defined is indeed a
refinement at the end of this section.) Then, by Theorem 3.2 of [38]
(p. 321), we have

LEMMA 2.1 (Substitution Lemma). (pp,) p.= p(p,°op,)

An example of the application of an action refinement to a process is
now in order.

ExaMPLE 2.2. Let us assume, for the purpose of this example, that
A= {o;}ie N} and that, for all i, je N, a; < o, iff i < j. We assume, moreover,
that for each subset X of A, choice(X) is the least element of X with respect
to <. Consider the process p=({a,; %, +23){&,)\o, and the action refine-
ment p =1[as—>a,;]. Then we have that new o ((2,; 2, + 23)|&,) p =
{o;|i=3} and choice({a,|i=3})=ua;. Thus

pp=(((oy; 2+ a3)|&y) ploy = ay ] )N\ay = ((ors; oy oty ) [ %)\

! Note that the definition of new takes into account the fact that in CCS the restriction
operator « binds both « and its complement .
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In general, as made clear by the above example, the application of an
action refinement to a process changes the restricted channel names and, in
such a setting, it is more appropriate to replace syntactic identity with the
so-called “a-conversion™ (or a-congruence), =,. This is defined to be the
last Z-congruence over P which satisfies

(x) B¢ FC(p)and pifar ] =, q imply p\a=, ¢\p.

From Corollary 3.10 of [38, pp. 322-323] we obtain a useful syntactic
characterization of =,.

PrROPOSITION 2.4 (Syntactic Characterization of =,). If p=, g then one
of the following conditions holds:

(1) p and g have the form op(p,, .., p.) and oplq,, ..., q.), respectively,
for some ope X of arity k and p,=, q;, for all i, or

(2) p and q have the form p'\a and q'\p, respectively, where

B¢ FC(p')and prilo— Bl =, 4"

Other important properties of substitution and a-congruence also follow
more or less directly from [38]:

LeMMA 2.2 (Properties of Substitution and = ).

(a) For each peP, p=, p1

(b) For each p,qeP, if p=,q then, for every action refinement p,
pp = qp, where = denotes syntactic identity.

(c}) For each peP and action refinements p, p', if p(a)=p'(a) and
p(x) = p'(&) for each a € FC(p) then pp = pp’.

(d) For each peP and action refinement p, if p(a)=o, p(x)=a, and
p is such that a¢ FC(p(f))w FC(p(f)) for every BeFC(p), then
po\x =, (p\a)p.

Proof. Statements (a) and (c) follow from parts (vi) and (v) of
Lemma 3.1 of [38], respectively. Statement (b) follows from Theorem 3.5
of [38]. The proof of the final statement is a simple application of state-
ment (c). For let (p\a)p be (pp[ar— BINS. If §is a then (ppla+ BINS
coincides with pp\a. Otherwise, ¢ FC(pp) and, therefore, by the syntactic
characterization of =,

po\a =, ((pp) tLa— BINS.
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However, by the substitution lemma, (pp)i[ar f]= p(i[a+> f]-p) and
since, by the proviso of the statement, the substitutions (i[a+— 1. p) and
pla— f] coincide on FC(p), it follows, by statement (c), that

(pp)i[a— Bl1=ppla—p1 1

The last statement of the above lemma will be applied in the “whence
theorems” presented in Section 4. The following useful result states that the
set of free channel names of a process never increases under derivations.

Fact 2.2. Let peP. Then:

(1) p\/ implies FC(p)= ;
(2) for each pe Ac(A), qe P, p—+> q implies that FC(q) € FC(p).

We have so far studied several useful syntactic properties of substitution
and =,. However, many of the arguments we shall apply will not only be
syntactic, but will also involve semantic reasoning. For this reason it will
be useful to develop behavioural properties of =,. For our purposes, it will
be sufficient to prove that =, is contained in strong bisimulation, ~. First
of all, we establish a lemma about relabellings. A relabelling ¢ is a mapping

from A to A. It is extended to a refinement by letting ¢(&) = g(«). For con-
ciseness of notation we shall assume that, for every relabelling g, 9(7) =4 7.

LEMMA 2.3. For each peP, relabelling ¢ and pe Act{(A), p > p' implies

po el(p) rf()" some r such that p’Q =,r

Proof. By induction on the proof of the derivation p— p’. The only
nontrivial case is when p=g\a > ¢'\a = p’ because ¢ ¢’ and o admits
u. In this case, pg has the form (go[a+> B])\S for some B such that
B#o(B'), o(B'), for each B e FC(q)~— {a}. This means that f admits o(u).
We may now apply the inductive hypothesis to g ¢’ to obtain that
go[ar ] W, for  some r=,q¢[ar—pB]. This is because
ela— f1(u)=0(p), as a admits y. By the operational semantics, we then
have that

(¢\2)e = (go[a> FINB 2L r\B.

We are thus left to show that (¢"\a)o =, r\B. However, by Fact 2.2(2),
we have that Benewag’'e and the claim follows easily from this
observation. ||

The following lemma studies the relationships between the termination
predicate \/ and =,.

LEMMA 2.4. For each p, geP, p\/ and p=_q imply q\/.
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Proof. By induction on the termination predicate \/ . The details are
omitted. |

PROPOSITION 2.5. For each p,qeP, p=, q implies p~ q.

Proof. It is sufficient to show that the relation of a-congruence, =,, is
a strong bisimulation. First of all, let us note that =_ is symmetric by
definition. Assume now that p=,g¢. Then, by the previous lemma, p
implies q\/ . We are thus left to show that

p—> p’implies g - ¢’, for some ¢’ such that p' =, ¢’.
We shall prove this statement by induction on the relation of a-congruence,
=,. The proof proceeds by a case analysis on the structure of p and the
syntactic characterization of =, given in Proposition 2.4 will be most useful
in the proof. We briefly examine two of the cases of the inductive proof.

« p has the form p,| p,. By Proposition 2.4, ¢ must have the form
q.1q, with p,=_¢q,, i=1, 2. We now examine why p - p’. There are three
possibilities; we analyze only one, when u=1, p’ has the form pi| p5,
p % p\, and p,—% p; for some a. By the inductive hypothesis, we then
have that g, ~% ¢} and g, % ¢, for some ¢} and ¢, such that p;=, g/,
i=1,2. It follows that ¢,| ¢, — ¢iq% and p}| p5b=.,4114>5.

» p has the form p,\a. By Proposition 2.4 there are two possible forms
for g¢:

(1) ¢ has the form ¢,\a with p,=_q,, or
(2) g has the form ¢,\f with ¢ FC(p,) and pi[a+— f]=,9,.

We only examine case (2). Assume that p,\a - pi\a. Then p, < p} and
o admits u; ie., p#a, & Now, i[ar ] is a relabelling and thus we may
apply Lemma 2.3 to obtain that p,i[a+— 8] r for some r such that
r=, p,i[a— B]. By the inductive hypothesis, g, - ¢} for some ¢\ =, 7=,
pii[a— B]. Since B¢ FC(p,) and o admits u we have that u# B, f. Thus
B admits y and, by the operational semantics, g,\f —> ¢;\B. Moreover, by
4\ =, pitla— ] and B¢ FC(p,) 2 FC(p}), we have that ¢\\f =, pi\a by
applying rule («) of the definition of =,. |

We may now prove that the composition of refinements defined pre-
viously is indeed an action refinement. Let us recall, for the sake of clarity,
that the composition of two action refinements, p, and p,, denoted by
p,°p,, is the refinement given by (p,°p,)(a)=p,(a) p,. In order to prove
that p,op, is indeed a refinement it is sufficient to show that

(1) p,°p,(a)is not terminated and
(2) p,op, satisfies (ComPres).
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The following result is an important consequence of the fact that, for
cach refinement p, p(a) is not terminated.

FacT 2.3. For each pe P and action refinement p, pp\/ iffp\/.

In view of the above result it is then easy to see that p, - p, satisfies con-
dition (1) above. In order to prove that p, - p, satisfies (ComPres), we shall
need the following lemma.

Notation 2.1. For each binary relation # over P, we shall write
p %> #q iff there exists p’ such that p—5 p’ and p’#q. A similar notation
will be used with respect to the weak transition relations =2,
ge Act(A)* v {t}.

LEMMA 2.5, Let peP and p be an action refinement. Then:
(1) p-* g and p(a) = .\'\/, ceV(A)T v {t}, imply pp = ~qp;
(2) p => q implies pp => ~qp.

Proof. Let peP and p be an action refinement. We prove the two
statements separately.

(1) By induction on the proof of the derivation p - ¢q. We proceed
by a case analysis on the last rule used in the proof and examine only two
possibilities.

o p=a- nil=gq. Then pp = p(a) == x ~ nil = qp because x\/.

e p=p\a—> p\a=gq because p, > p] and a admits a. By
the definition of substitution, (p\a)p=(p,plar— FI\L with f=
choice(new ap, p). This implies that § admits . By the inductive hypothesis,

2. piand plars B](a)=pla) = x\/ imply that
piplars Bl = ~piplar 1.

By the operational semantics and the substitutivity of ~,

(p\@)p=(piplars BINE = ~(piplar BINB.

As FC(p}) € FC(p,), we have that new ap, p S new ap| p. We then have that
{(p1\)p =, (pipLar— BI\B. The result now follows because =,< ~ and
by the transitivity of ~.

(2) By induction on the length of the derivation p = g.

» Base case: p— 4. The proof proceeds by a subinduction on the
length of the proof of the derivation p —» g. We only examine the most
interesting case, which relies on axiom (ComPres).
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Assume that p=p,| p,—> g,|g, =g because p; —*> g, and p, % g,. As
p satisfies (ComPres), we have that p(a) -—1>x,\/ and p(a) = xz\/ for
some o€ V(A)* U {t}, x; and x,. By statement (1) we then get that
p1p = ~q,p and p,p==> ~q,p. By the operational semantics and the sub-
stitutivity of ~,

(P P2)p=pipIP2p == ~q,p192p=(4,1492)p.
« Inductive step, p — p’ == ¢, for some p’. Immediate. |

Statement (2) of the above lemma may be seen as a formal version of the
intuitive idea that action refinements should not interfere with the internal
evolution of processes. The fragment of its proof that we have presented
highlights the fundamental role played by the axiom (ComPres). We may
now show that p,op, is indeed an action refinement.

Fact 24. Let p, and p, be action refinements. Then p,-p, is also an
action refinement.

Proof. We have already seen that, for each a, (p,°p,)}(a) is not ter-
minated. We are left to show that p, - p, satisfies (ComPres). Now, for any
ae V(A),

(p2op @) (prop)a)=(pi(a) p;)|(pia) pr)=(pi(a)| pi(@)) ps.

As p, satisfies (ComPres), we have that p,(a)|p,(d) = r\/, for some r. By
the above lemma, we then have that

(pla)| pi(@)) p, = X~7rp,

for some x. Moreover, as r\/, we have that rpz\/. This implies that x\/.
Hence p,o p, satisfies (ComPres). |

2.3. Extending the Language

Let the set of extended processes, P,, be the set of all those processes
which are definable by adding action refinements to the basic language P
as extra operators:

pu=nil|d|ulp; plp+plplplpral plp]

It is within a language such as this (of course extended at least with recur-
sive definitions) that the development of process specifications could take
place and we are interested in a semantic theory for it. However, we
shall not give an operational semantics directly for it as, intuitively, the
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behaviour of p[p] should be identical to that of the process which results
from applying p as a substitution to p. So, for any process p in P,, we can
define the basic process in P, red(p), which intuitively captures the
behaviour of p by:

(i) red(p[p]l)=red(p)p
(ii) red(op(p,, ..., pr)) = op(red(p,), .., red(pk)) (ope X).

In this way, any semantic equivalence Eq defined over P is automatically
extended to P, by

{p,q> € Eqiff (red(p), red(q) ) € Eq.

In particular, this gives a definition of ~, ~,, &, and =, over P,. We are
interested in developing a reasonable semantic equivalence for P,, in par-
ticular one which abstracts from internal actions. A minimal requirement is
that it should be preserved by all P -contexts. This immediately rules out
=, as we know from [3] that it is not preserved by action refinements. For
example, albzxa; b+ b;a, but if we use a refinement p such that
play=a,;a, then (a|b)p % (a;b+ b;a)p. In [3] it was shown that, for a
simple subset of P, without communication, internal actions, and restric-
tion, ~, is a reasonable equivalence, namely, one which may be charac-
terized by

p ~, g iff for every simple context C[ -], C[p]~ C[q]-
In the extended language, one would hope to have the analogous result:
p = qiff for every context C[ -], C[pl = CLq]. (1)

This is not true for the trivial reason that &, in common with most forms
of bisimulation equivalence, is not preserved by “+ contexts”: for instance,
ax,t;a, but b+a #,b+1;a. However, even the restricted statement

p =, qonly if for every action refinement p, pp =, gp 2)

is not true. In fact, =, is not preserved by action refinement over the
language P. The counterexample is due to van Glabbeek and Vaandrager
[23], who originally developed it to show that, in general, the equivalence
obtained by splitting an action in two is different from that obtained by
splitting it in three. This example is discussed in Section 6.

In the next section we define a modified version of =,, called weak refine
equivalence and denoted by =,, for which (2) and an appropriate version
of (1) are true. This equivalence is essentially the weak version of ~.
defined in [3].
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3. REFINE EQUIVALENCE

The original motivation for developing the timed equivalences ~, and
=, was to develop a bisimulation theory for processes where actions are no
longer atomic. The intention was to “match up” actions from equivalent
processes in the usual way required for bisimulation-like equivalences, but,
in addition, to allow them to take some time. However, by simply requiring
that the subactions S(a) and F(a) be matched up properly, there is no
guarantee that the original complete (but nonatomic) actions are also
properly matched. In fact, it may be that the finish of a particular action
is matched to the finish of a different action with the same name which
started either before or after it. The equivalence ~, of [3] was designed to
ensure that this cannot occur and that therefore the complete actions are
indeed properly matched. We shall now develop a weak version of ~,
which will be denoted by ~,.

The definition requires us to distinguish all occurrences of actions in a
process and therefore technically we use labelled actions obtained from the
actions in Act(A). Let LAct(A) denote the set of actions {a;|ae V(A1)
ieN} U {7} ranged over by A. We use LP and L¥ to denote the sets of
labelled processes and labelled states, respectively obtained by using
LAct(A) in place of Act(A) in the definition of P and &, subject to the
following restrictions:

1. each index i occurs at most once in each labelled process and
labelled state, and

2. each labelled state of the form c\a in LY satisfies the constraint
that, for each i, F(a,) and F(&,) do not occur in ¢ (this constraint is the
natural labelled version of condition (CR)).

Note that, in this case, restriction is still with respect to a channel name
from A and not a labelled channel name. We use n, 7', ... to range over
labelled processes and ¢, 4, ... to range over labelled states. In what follows,
we shall often refer to the processes in P as “unlabelled processes.”

The next-state relations % and +~“% and the termination predicate
\/ are inherited directly from the rules in Fig. 2, provided the admits
predicate is extended so that:

(i) o admits t
(i) « admits a,, S(a;), Fla;) iff a#a, &

Moreover, the transitions - and — are obtained by simply adapting
the axiom and rules presented in Fig. 1 to LY, where rule (SYN) in Fig. 1
is replaced with

(LSYN) ¢+ ¢ and d+2> d’ imply c|d 5 ¢'|d".
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The net effect of these modifications is quite natural; restriction applies
to all occurrences of actions using the channel name in question and com-
munication may occur between any occurrences of complementary actions.
We say that a labelled state ¢ is stable iff ¢ —. The weak termination
predicate V/ over LY is then defined as in Section 2.1.

Notation 3.1. The set of labelled subactions, LAct(A), is given by
LAct(A)={S(a,), F(a;)|a;e LAct(A)} U {1}.

The weak transition relations &=, for e LAct(A)*u LAct(A)*, are
defined in the standard way.

To ensure that complete actions, consisting of the occurrence of a start
subaction S(a;) and of the corresponding finish subaction F(a;), are
properly matched we need to retain information about which occurrences
of actions have already been started and to whom they have been matched.
Such information is recorded in what was called a history in {3]. A history
h is a V(A)-indexed family of partial bijections over N. We use # to
denote the set of all histories (4, ¢, @ will be used to range over ).
Labelled states will be equivalent or inequivalent with respect to a given
history. For ¢ and d to be equivalent with respect to A we require that:

(1) 4 must be a history compatible with ¢ and d. In other words, all
actions which have started in ¢ or d and have not yet finished must be
recorded in the history A. Formally, let Places(a, ¢) = {i| F(a;) occurs in c¢}.
We then say that / is compatible with ¢ and 4 iff for all a, Places(q, ¢)=
dom(h,) and Places(a, d) = range(h,).

{2) Start moves have to be matched. For example, every start move
of ¢, c 2%, ', must be matched by a corresponding move dv=2 d' of d
such that ¢’ and d’ are equivalent with respect to the augmented history
hu {{a, i, j)}. This is the way histories are built up dynamically.

(3) Finish moves must be matched in a way which is consistent with
the history h. For example, every finish move from ¢, ¢ =% ¢’, must be
matched by the proper finish move from 4, ie., d P2 4" for some d’ and
j such that (i, j)eh, and ¢’ and d’ are equivalent with respect to the

diminished history #— {(a, i, j)}.
(4) Silent moves must be matched as usual.
(5) Successful termination must be matched as usual.
This is the motivation underlying the following definition. First of all, let

us say that a family of binary relations {#,|he # } over LY is symmetric
iff {c,d>e R, implies {d, c) € Ry», where h”? = {(a, j, i)|(a, i, jyeh}.
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DermNITION 3.1 (Weak Refine Bisimulation). A symmetric family of
binary relations {#,|hec # } over LY is called a weak refine bisimulation
whenever it satisfies, for each (¢, d) e %, and a,e LAct(A),

(1) A is compatible with <{¢, d>,

(2) ol implies d=2 4" for some j and d' such that
(c',d' YeRy,, {(a.i j)}>

3) ¢ LT implies d =2 &’ for some j and d’ such that A (/)=
and (', d">eRy_ (0>

(4) ¢+ ¢ implies d ¥ d’ for some d’ such that {¢’,d’ >e #,,
(5) c\,/ implies dJ .

For the standard reasons it turns out that there is a largest refine bisimula-
tion, which we denote by =, = {x,|he #}, and in fact the relations =,
can be defined by

~, =\ {#| {#,| he #} is a refine bisimulation }.

Of course, we are only interested in = 4 in so far as it induces an equiv-
alence relation on unlabelled states and, in particular, unlabelled processes.
For ce L% let un(c) be the unlabelied state obtained by replacing each
occurrence of a; and F(a;) by a and F(a), respectively. We may then define

s=,s' iff for some ¢, d, h, un(c)=s, un(d)=3s' and c~, d.

If un{c) is a process, i.e., is in P, then ¢ must be in LP and any history com-
patible with labelled processes must be empty. Thus this definition spe-
cializes to:

p=~,q iff there exist labelled processes # and =’ such that
(a) wn(n)=p,un(n’)=g and
(b) m=, 7.

The reader familiar with [20, 22, 26] will have noted the formal
similarities between =, and ST-bisimulation equivalence. Indeed, both
these equivalences use information on the matchings between actions in an
essential way. However, =, only maintains the associations between the
actions which are currently being executed, whilst ST-bisimulation uses the
whole history of associations between actions. Refine equivalence is the
central semantic equivalence of the paper, the remainder of which is
devoted to showing that it has many natural properties and to convincing
the reader that it is an appropriate equivalence for process algebras which
support refinement.
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DEerINITION 3.2. For each c e L%, the history associated with ¢, id(c), is
given by

id(c) =g {{a, i, i)|ae V(A) and i e Places(a, ¢)}.

Fact 3.1. (1) For each ae V(A), the following statements hold:

(a) Places(a, n)= &, for each ne LP;
(b) Places(a, c; n) = Places(a, ¢), for each ¢; n e LY;

(c) Places(a, ¢,|c,) = Places(a, ¢;) v Places(qa, ¢,), for each
¢ lc,e LY; and

(d) Places(a, c\a)=Places(a, ¢), for each c\ae LY.
(2) The following properties of id(c), ce LY, hold.

(a) id(n)=,
(b) id(c; =) =id(c),
(¢) id(c|d)=1id(c)wid(d) and
(d) id(c\o)=id(c).
Proof. The verifications of all the properties are straightforward. The
only interesting point to note is that statements (1d) and (2d) depend on

the natural condition (CR) that we have imposed on states and labelled

states of the form c\a. This restriction ensures that, whenever ¢ %, and
A\aeL¥, one has that a#a, & and thus c\a %5, |

The following properties of =, will be useful in proving that =, is an
equivalence relation over &.

LemMa 3.1. For each ¢, d, ¢’ e LY the following statements hold:

(1) ey 6
() cx,diff d=-c,

(i) ex,c¢ and ¢' =, dimply cx, ,d.

ProOPOSITION 3.1. =, is an equivalence relation over &.

Proof. Reflexivity of =, follows by Lemma 3.1(i) and the fact that, for
each se ¥, there exists ce L¥ such that s =un(c). Symmetry and trans-
itivity of =, are simple consequences of parts (ii) and (iii) of Lemma 3.1,
respectively. ||

In the definition of weak refine bisimulation we did not require the
explicit matching of moves labelled by complete actions a;. A natural ques-
tion to ask is whether the addition of a clause requiring the matching of
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such moves in the definition of ~, changes the resulting notion of equiv-
alence. We shall now prove that, as argued informally above, ~, does
ensure that complete actions are matched. The proof of this fact makes use
of two useful “commuting transitions” results which will also find applica-
tion in the proof of the refinement theorem. First of all, we define a version
of =, which explicitly requires the matching of transitions labelled by
complete actions. It will then be shown that this new relation coincides
with =~ .

DermNiTION 3.3 (Augmented Weak Refine Bisimulation). A symmetric
family of binary relations {#,|he#} over L¥ is called an augmented
weak refine bisimulation whenever it satisfies, for each he #,{c,d) e R,
and a,e LAct(A), clauses (1)-(5) of the definition of ~ , and

(6) c+2> ¢ implies de%d’ for some j and d’ such that
(c',d' YeR,.

x4 = {~f|he #} will denote the largest such relation.

We shall now prove the first of the “commuting transitions” results. This
result formalizes the intuition that if ¢ 2% ¢ 12 d for some ¢’ and
labelled action A, then the move ¢’ +2» d does not depend on the occurrence
of action a;. Hence it could have occurred before the start of action a;

without influencing the resulting target state d. Formally:

ProrosiTioON 3.2 (Commuting Start-Moves and Complete Moves). Let
ce LY and Ae LAct(A). Assume that ¢ P o w25 d. Then there exists

¢e LS such that c v ¢+, g,
Proof. By induction on the structure of ¢. [

The following result is an immediate corollary of the above proposition.
In its statement we shall use the notation /(c ¥ d) to denote the length of
the derivation ¢ =% d.

COROLLARY 3.1. Let ceL¥ and aelLAct(A)*. Assume that
29, ' & d Then there exists ce€ LY such that ¢ ¥ ¢ %% d and

i(c' ¥ d)=l(c ¥ ©).

The following proposition and associated corollary state dual results to
Proposition 3.2 and Corollary 3.1, respectively, for end-transitions.
Intuitively, if ¢ o ¢’ v 4 then the move ¢’ —“2 4 does not depend
on the occurrence of action 4. Hence the finish action F(a;) might
have occurred before the action i without influencing the resulting target
state.
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ProrosITION 3.3 (Commuting End-Moves and Complete Moves). Let
ceL¥ and le LAct(A). Assume that ¢ > ¢ V245 4 Then there exists
ce LY such that ¢ ¥ ¢ s d.

Proof. By structural induction on ¢. |1

COROLLARY 3.2. Let ceL¥ and oe LAct(A)*. Assume that ¢ &>
¢ V4 4 Then there exists ¢ such that ¢ V25 ¢ 2 d and (¢ ¥ ¢') =

HE = d).

The following lemma relates the transition relation associated with a
complete action a; with those associated with its subactions S(q;) and F(a;).

LemMA 3.2, Let ¢,de LY. Then c v d iff there exists ¢’ such that
S(a;) Fla;)
? i d

crH—">c

Proof. The “only if” implication is proven by induction on the proof of
the transition ¢+ 4. The “if” implication can be shown by structural
induction onc. §

We can now prove that ~, and =, coincide over L¥.

ProrosiTION 3.4. For each ¢, de LY and he #, cx,d iff cx}d.

Proof. The “if” implication follows immediately by the definitions of
the two relations. For the “only if” implication it is sufficient to show that
~ , is an augmented weak refine bisimulation. The only interesting thing
to check is that, for cx, d,

¢+ ¢ implies d = d’ for some d' and j such that ¢’ ~, d".

Assume then that ¢, d and ¢ +Z> ¢’. By the above lemma, there exists 7
such that ¢ =9 7124, ¢ As ¢ =, d, there exist j and d such that

(a_])

d == d—and C“’hu{(al/]}d

Again, as ¢ LN ¢, there exists d’ such that

dE2 3" and ' ~, d'.

Thus we have that d s c? Z%. d' for some d' such that ¢’ ~, d'. We are
now left to prove that ded'. By Corollaries 3.1 and 3.2, there exist d,
and d, such that

S(ay)

dess d, 22 389 g, e g,
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By the above lemma, d, - d 2, 4, implies d, =~ d,. Thus we have
a
that d == d’.
We have thus shown that ~, is an augmented weak refine bisimu-
lation. |

This finishes our examination of the definition of ~,. Let us now turn
our attention to some of its properties. We shall prove, first of all, that ~,
is preserved by all the combinators in X apart from the nondeterministic
choice operator +. This statement will follow from some useful properties
of ~, studied in the following lemma.

Lemma 33. (1) Letc,d, ny, nye LY be such that cx, d, n, =4 n, and
an,dyn,e LS. Then c;n,~,d, n,.
(2) Letc,,d;eL¥,i=1,2, be such that ¢, ~, c,,d, =, d,and ¢,|d,,
cy|ds e LS. Then cyldy =, 4 ¢alds.
(3) Let c,de LY and ae A be such that c~,d and c\a, d\ae LY.
Then c\a=, d\a.

Proof. We only give the proof of statement (3). Assume that ¢ =, d and
c\a, d\ee L%. In order to prove that c\a=x, d\, it is sufficient to show
that the family of relations {%,|he # } given by

#,={{A\a, d\a)y|cx, dand A\a, d\ae L¥}

is a weak refine bisimulation. We check that the defining clauses of ~ - are
met by {#,|he #}. Assume that {c\a, d\a) e R,. Then:

e h is compatible with {c\a, d\a> € Z&,. In fact, for each ae V(4),
Places(qa, c\o) = Places(a, ¢) = dom(h,) and Places(a, d\a) = Places(a, d) =
range(h,).

S(a; S(a; _
» Assume that c\a F-% ¢'\a. Then ¢ K5 ¢’ and a#a, & As c~, d,

there exist d' and j such that dr—=d’ and '~ d’, where
W' =hu {(a,i,j)}. By the operational semantics, d\o == d'\o. As c\q,
d\ae LY, we then have that ¢'\a, d'\ae LY. Thus {c'\a,d'\a) e X, .

» Clauses {3) and (4) are checked in similar fashion.
« Assume that c\ad . Then it is easy to see that

c\cxd <> CV/

=>dv// ascr,d
< d\ay.

Hence {#,|he # } is a weak refine bisimulation. |}

643/115/2-3
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PROPOSITION 3.5. =, is preserved by the operators in ¥ — {+}.

Proof. The claim is an immediate consequence of the above lemma. For
example, assume that s, ~, s, and s,\2, 5,\a € .¥. By the definition of =,
there exist c;e L%, i=1, 2, and he # such that ¢, x, ¢, and un(c¢;) =s,,
i=1,2. Itis easy to see that, as s \ae ¥, cjaeL¥ (i=1,2). Then, by the
above lemma, ¢ \x =, ¢;\a. Thus s\a=, s>\, ||

As it is the case with many forms of weak bisimulation relations, =, is
not preserved by +. In fact, it is easy to see that a=, t1;a4, but
a+b %,.1,a+ b However, we are mainly interested in the operator of
action refinement and this brings us to the first major theorem of this

paper.

THEOREM 3.1 (The Refinement Theorem). Let p, geP. Assume that
p=,q. Then, for any action refinement p, pp = qp.

The proof of this theorem is quite complex and is relegated to the follow-
ing section. It involves decomposing moves from labelled states of the form
¢p into moves from ¢ and the components of p and the converse, combin-
ing moves from ¢ and the components of p to form moves of cp.

With this theorem we have that =, modified in the usual way to com-
pensate for +, is preserved by all extended (ie., P,) contexts. Let

p =, q iff for some action a not appearing in p and ¢, p+a=,qg+a.

THEOREM 3.2. Let p, g€ P. Then:

(a) p=,q iff for every P ,-context C[-], C[p]=, Clq].
(b) p=,q iff for every P ,-context C[-], C[p]=, Clq].

Proof. We prove the two statements separately.

(a) The “if” direction is immediate by taking the empty context. For
the converse, one can easily show that =, unlike =, is preserved by +.
For the other operators in X, the proofs that they are preserved by =~ may
be trivially adapted to =, since these relations only differ for initial
moves. So it remains to prove that p =, q implies pp =, gp, for any action
refinement p. Let ae V(A4) be an action not appearing in pp and gp and,
for convenience, assume also that a does not occur in p and ¢q. We prove
that pp +a=~, gp +a. Let p’ be defined to coincide with p on all the free
channels of p and ¢, but map a to itself. Since p =, g, we have that p+a =,
q + a. By the refinement theorem it follows that (p+a) p' =, (g +a) p/, ie,
pp’ +a=,qp + a. The result now follows because pp = pp’ and gp = qp’ by
Lemma 2.2(c).
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(b) The “only if” direction follows from (a) because =, is contained
in =,. The converse is trivial since =, is defined using the context

[-1+a |

In Section 5 we shall see that this theorem can be strengthened con-
siderably, giving a characterization of =, in terms of =.

4, THE REFINEMENT THEOREM

This section will be entirely devoted to a detailed proof of Theorem 3.1
(the refinement theorem). Let us recall, for the sake of completeness,
that the refinement theorem states that, for all p, ge P and action refine-
ment p,

p =, q implies pp =, qp. (3)

Naturally enough, given the fundamental role played by labelled states in
the definition of =, the proof of statement (3) will rely upon a detailed
analysis of some operational properties of labelled states and we shall pre-
sent labelled counterparts to several properties of processes and states
studied in the previous sections. The proof of (3) will be given in several
stages. First of all, a suitable notion of labelled action refinement is intro-
duced as a labelled counterpart of the action refinements given in Defini-
tion 2.1. The application of labelled action refinements to labelled processes
and states will be defined following the approach outlined in Section 2.2 for
processes. We shall then prove a series of composition/decomposition
results for moves of labelled terms of the form cp, where ce LY and p is
a labelled action refinement. These results will allow us to decompose
moves of cp into moves of ¢ and of the components of p and, conversely,
to compose moves of ¢ and of the components of p to obtain moves of cp.
Finally, the technical material developed in the stages outlined above will
be used to prove a labelled version of (3) from which the unlabelled one
follows immediately.

We shall now introduce the labelled counterpart of the action
refinements presented in Section 2.2. The definition of these labelled action
refinements is somewhat technical; the technicalities, however, are needed
to deal with the added complexity introduced by the labelling on terms. In
the following definition, we shall borrow some notation from the uniabelled
calculus; we use p(a,) =, p(a;) to signify that p(a,)+ b, = pla;) + b, for
some action b and index k not occurring in p(a;) and p(a,). This ensures
that any t-move performed by p(a;) must be matched by a corresponding
7-move from p(a;) rather than the empty move.



208 ACETO AND HENNESSY

DerFINITION 4.1 (Labelled Action Refinements). A labelled action refine-
ment p is a map p: LAct(A)u {F(a;)|a,e LAct(A)} — LY which satisfies:

(a) for all a,e LAct(A), p(a;)eLP and p(a,-)¢\/ (i.e., labelled
actions are mapped to nonterminated labelled processes),

(b) p satisfies (ComPres), and

(c) forallae V(A), i, jeN, pla,) = pla,) (1., instances of the same
action are mapped to congruent labelled processes).

Note that, unlike labelled actions, labelled action refinements may map
states of the form F(a,) onto terminated processes. The application of
labelled action refinements to labelled states can now be defined following
the approach outlined in the previous section. For each labelled state ¢, let
FC(c), the set of free channel names in ¢, be defined in exactly the same way
as for processes, except that the labelling of actions is ignored. In par-
ticular, we have that FC(F(a;))= FC(F(d;))= {a}. In order to simplify the
definition of the function new, we now introduce some useful notation.

Notation 4.1. For each ce LY, the set of symbols in ¢, Sym(c), is given
by

Sym(c)=q4er {a;€ LAct(A)|a; occurs in ¢} u {F(a,)| F(a,) occurs in c¢}.

For each ee LAcH{A)u {F(a;)|a,e LAct(A)}, v(ie)e A will denote the
underlying channel name of e.

Following [38] and our development in the previous section, we define
the function new by

new acp =g, { flforall f'e FC(c) — {a},
B & FC(p(e)) for all e € Sym(c) such that v(e)=f'}.

Note that the set new acp is always infinite because A is infinite and, for
each ¢, Sym(c) and FC(c) are both finite sets. The result of applying a
labelled action refinement p to a labelled state ¢ can now be defined,
following Definition 2.2. In the following definition we shall use the nota-
tional conventions about substitutions from the previous section, with the
understanding that, for each labelled action refinement p and channel name
a, p[ar= ] will denote the substitution identical to p except that «; is
mapped to §, and &, to f,, for all i.

DeFmNITION 4.2 (Application of Labelled Action Refinements). For
each ceL¥ and labelled action refinement p, cp is the labelled state
defined by:
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(i) a,p=pla), tp=1, nilp=nil, bp =49, Fla,)p=p(Fla,));
(i) (sm)p=cpimp, (M +m)p=mp+72p, (c/lc1)p=c,p|c,p;
(iii) (A\x)p=(cp[a+> B1)\B, where i = choice(new acp).

All the definitions and results regarding «-congruence and action
refinements apply equally well to labelled action refinements. In particular,
in what follows we shall often make use of the Substitution Lemma and
Lemma 2.2 applied to labelled action refinements. Moreover, following the
lines of the proof of Proposition 2.5, it is possible to prove that =, is a
strong bisimulation over the LTS with termination (L%, -,
LAct (A), \/ >. By an abuse of notation, the largest strong bisimulation
over that LTS will also be denoted by ~. For the sake of clarity, we state
the following proposition.

PropPoSITION 4.1. =, is a strong bisimulation over (LY, >,
LAct(A), /.

As pointed out above, the proof of the refinement theorem will make an
essential use of several composition and decomposition results which relate
the moves of a labelled term of the form ¢p to those of ¢ and of the com-
ponents of p. These results always apply to ¢ and p which are compatible
with each other.

DEFINITION 4.3. Let ce LY and p be a labelled action refinement. Then
p 1s compatible with ¢ iff cpe LY.

We shall now present a series of results which analyze the origin of the
moves of labelled states of the form cp in terms of moves of ¢ and of the
components of p. The following lemma will be useful in the decomposition
results presented below.

LemMa 4.1 (From Start to Complete Moves). Let ce LY. Then:

(1) ¢ 22 g implies ¢+ ¢ for some ¢ such that
¢ =, di[Fla;)— nil];

(2) o, ¢, 2, g implies ¢ v+ ¢’ for some ¢’ such that ¢’ =,
@[ Fla,) - nil, F(a@,) - nil].

Proof. We limit ourselves to giving a proof of the second statement.

(2) By induction on the structure of ¢. We examine only one
possibility, namely the one corresponding to the restriction operator.

e ¢c=c\o. Assume that é\a 2, e N Then, by the opera-

. R .. oS . S(a) _
tional semantics, this is because ¢ P, o 2, d',d=d'\o, and a#42, 4.
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By the inductive hypothesis, ¢+ ¢, for some ¢, such that c¢,=,
d"1[ F(a;) — nil, F(a;) - nil]. By the operational semantics, &\a > c,\a.
We are thus left to prove that

e\t =, (d"\«) [ F(a,) - nil, F(a@,) — nil ],

which follows from Lemma 2.2(d). |

The following theorem gives a decomposition of the moves of labelled
processes of the form np in terms of those of = and of the components of
p. In what follows, with abuse of notation, we shall use e to range over the
set of labelled subactions {S(a;), F(a;)|a;e LAct(A)} v {1}.

THEOREM 4.1 (“Whence Theorem” for Labelled Processes). Let n be a
labelled process and p be a labelled action refinement compatible with m.
Then np v ¢ implies that

(1) there exist a,e LAct{(A) and c,xe LY such that G

pla) = x and ¢ =, cp[Fla,))—> x], or

(2) e=1t and there exist a‘ be LAct(A), xeV(A) and c, d, x,
yeL¥ such that n 2% ¢ l—-—-(~'->d pla) Hs x, p(b) v y and
c=,dp[Fla;) - x, F(b;)— y], or

(3} e=tand n v+ 7', for some n' such that c=,7'p.

Proof. By induction on the structure of n. We shall only present the
details of two selected cases.

e n=mn,|n,. Assume that (n,|n,)p=7n,p|n,p > ¢. By the operational
semantics, there are three possibilities to examine:
(A) mp|n,p+> ¢ because m,p +— ¢, and ¢=¢|m,p, or
(B) m,plm,p+> ¢ because n,p V> ¢, and ¢=m,p|¢,, or

(C) m,p|myp > ¢ because m,p 2 ¢, ,p = ¢, and é=¢,|C,.
We examine each possibility in turn.

(A) In this case, we may apply the inductive hypothesis to
7, p V> ¢, to obtain that

(A.1) there exist a,e LAct(A) and ¢, xe LY such that m, 2%, ¢,

pla)yvr>> xand ¢, =, cp[Fla,)— x], or

(A.2) e=1 and there exist a,, b,eLAct(A) ae V(4) and
¢, d, x, ye LY such that =, RPN d, p(a;) 2 x, p(b;) - y and
=, dp[F(a,) - X, F(bj) - .V:L or

(A.3) e=rt and n, v n}, for some 7} such that ¢, =, n}p.
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If (A.1) holds then, by the operational semantics, 7|7, F2s ¢|7,.

Moreover,

(clmy) p[Fla;)—» x]= (cp[Fla;) = x| {(n2p[Fla) - x])
=, ¢, | (myp[Fla;) = x]).
Now, as F(a;) does not occur in 7,, it is easy to see that m,p[ F(aq;,) > x] =
n,p. Thus we have that (¢|n,) p[Fla;)—>x]=,¢,|m,p=¢. Clause (1) of

the statement of the theorem is then met. s
@)

If (A 2) holds then, by the operational semantics, 7n,|n, ——
clnﬂ—‘—’—»d!nz Moreover,

(d|m,) p[Fla) = x, F(b;) — y]
= (dp[Fla;,) - x, F(b)) » y)|(n,p[F(a,) > x, F(b;) > y])
=, ¢ | (myp[Fla,)) — x, F(b;) — y]).

Now, as F(a;) and F(b;) do not occur in 7, it follows that 7, p[ F(a,) — x,
F(b))—» y]=mp. Hence (d|n;)p[Fla;)—x, F(b)) > yl=,¢mp=C.
Clause (2) of the statement of the theorem is then met.

If (A.3) holds then, by the operational semantics, n,|n, — 7}|7,.
Moreover,

(milmy)p=(myp|myp) =, C [ 7ap.
Clause (3) of the statement of the theorem is then met. This completes the
verification of case (A).
(B) Symmetrical to the one above.

(C) By the inductive hypothesis, n,p+—— ¢, implies that
T, = ¢y, pla;) 2> x and ¢, = clp[F(a ) — x], for some a;, ¢,, and x.
Again by the inductive hypothes1s T,p > &, implies that =, LN s,
pb) =y and ¢,=, c,p[F(b;)— y], for Some b;, ¢,, and y. By the

a;

operational semantics, 7, |%, LGN ¢y |m, LN ¢y Icz. Moreover,
(ciler) pLF(a) = x, F(bj) > y]
= (c;p[Fla;) > x, F(b)) = yDI(c,p[Fla) = x, F(b;) — y]1)
=(¢,p[F(a;) » x| {(c,p[F (b)) > y]),

because F(a,) does not occur in ¢, and F(b,) does not occur in ¢,. By the
inductive hypothesis, we then have that

(cr]er) pLF(a) = x, F(b)) —~ y]1=,¢,1¢,.

Clause (3) of the statement of the theorem is then met.
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o m=m,\o.. Assume that (7 \a)p v ¢ First of all, note that

(m\a) p= (7, pla— BINS,

where f§ = choice(new am,p). By the operational semantics, we then have
that =, p[a+— ]+~ &, e# B, ff and ¢=c,\p, for some ¢,. By the induc-
tive hypothesis, n, p[2+ ] > ¢, implies that

(A) there exist a;e LAct(A) and ¢, xe L¥ such that =, RILUNY

plar— fHa)+> x, and ¢, =, cpla— f}[F(a,) - x], or
(B) e=t and there exist a,,b;eLAct(A), yeV(A) and

¢,d x,yeL¥ such that 7, 2% 2% g pla B](a,) His x,

plar> p1(b) = y, and ¢, =, dp[a > B[ F(a;) > x, F(b;) > y], or

(C) e=r1t and =, +=> n|, for some =} such that ¢, =, n\plar—f].
We proceed by examining the three possibilities separately.

(A) As e#p, f§ and p[a+ f](x;) =B, for all i, it must be the case

that a#a, &. Thus « admits S(a;) and, by the operational semantics, we

S( -
have that 7,\a 2> ¢\a. Moreover, as a # a, 4,

pla;)=plor— fl(a;) ¥ x.
We shall now show that

c\B=, (c\a) p[Fla;) > x], (4)
where ¢, =, cp[ar> B[ F(a;) — x]. In order to prove (4), note that

(e\a) p[Fla;) > x] = (cp[F(a,) = xJ[ar— B ING,
where B’ = choice(new acp[ F(a,;) - x]). We proceed by distinguishing two
cases, depending on whether §=f’ or not.
If f=f' then
cplFla;) > x][a— 1= cplars PI[Fla)»x] as a#a,d
=,¢.

The claim then follows by the substitutivity of =,.
Assume now that fB#p. Then it is easy to see that
fenewacp[ F(a;) » x]. This implies that

p¢ FC(cp[Fa) = x][a—f7]).
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By the substitution lemma, we then have that

(cp[Fla;) = x Lo 1)1l — Bl= c([B' '+ B p[Fla)— x][ar> B'])
cp[Fla)) = x][a— ]

£ cplar fI[Fla,) > x]

-—acl.

il

Equality £ is justified by the fact that a #a, &. The claim then follows by
rule (a) of the definition of =,. By =n,\a+—"5 c\a pla;) = x and
cA\B =, (c\a) p[ F(a;) » x], we now have that clause (1) of the statement
of the theorem is met.

(B) First of all, note that, because f e new am, p, pla— f1(a;) s x
and p[a— $](h;) > y imply that

(a) a,b#a,&or
(b) by symetry, we may assume that, wlo.g, a=a and b=4

We examine the two possibilities separately.

(a) Assume that a, b # o, a. Then, by the operational semantics,
\a el c\& PRI d\o. Moreover, we have that p(a;)=pla— ]
(a,) +2> x and p(b,) =p[o+— B1(b,) > y. A simple argument will show
that

(d\a) p[F(a,) = x, F(b)) > y1=¢\B,
where ¢, =, dp[a— B][F(a;) — x, F(b;) — y] and we therefore have that
clause (2) of the statement of the theorem is met.

(b) Assume that a=u, and b, -oz Note that we then have that
my el ¢ LNy ) p[aHB](a B - nil=x and plar ()=
[3, LR nil = y. Moreover,

¢y =, dp[ars B[ F(o;) — nil, F(&;) - nil ).

We shall prove that clause (3) of the statement of the theorem is then met.

First of all, note that, by Lemma 4.1, &, NN | implies that

T+ W=, di Flay) - nil, F(&,) — nil ]
for some n|. By the operational semantics, 7, — 7} implies that

n\a - wi\a=, (di[ F(a;) - nil, F(&,) - nil ] )\o.
In order to show that clause (3) of the statement of the theorem is met, it
is sufficient to show that

c\B =, (11\2)p,
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which again follows by a simple analysis of the result of applying p to
(n'\a) and by applying Lemma 2.2(b).
The verification of case (B) is thus complete.
(C) In this case, by the operational semantics, we have that
m\o > mi\o. In order to prove that clause (3) of the statement of the
theorem is met, it is sufficient to show that

C\B =, (m)\a)p.

This verification follows the same pattern as the similar ones given above
and is thus omitted. ||

We shall now work towards a “whence theorem” for configurations of
the form cp. Such a result will allow us to decompose moves of a configura-
tion of the form ¢p into moves of ¢ and of the components of p. In order
to deal with action refinements mapping states of the form F(a,), or places,
to terminated processes, we shall adapt the definition of the map #, defined
for the simpler language in [3], to the richer setting we are now working
in. For each labelled state ¢, n(c) will be a nonempty collection of pairs of
the form (X, d), where X € {F(a,)|a;€ LAct(A)}. Intuitively, if (X, d)en(c)
then, for every action refinement p mapping each element of X to a ter-
minated process, ¢p “behaves like” dp. The presence of condition (CR) on
states of the form ¢\« will allow us to give a neat compositional definition
of the map #.

DEeFINITION 4.4. The map 5 is defined by structural induction on ¢ as
follows:

(i) n(n)={(<, )}

(ii) n(Fla))={({F(a)}, nil)}

(i)  nle;m)={(X, s m)[(X, ) en(c)}

(iv)  nleld)={(X, c'|d)(X, ") en(c)} v {(Y,cld)|(Y,d")en(d)}
V{(XuY,c|d)(X,c)en(c)and (Y, d")en(d)}

(v)  nle\e)={(X, c"\a)| (X, ') enlc)}.

We shall now study some basic properties of # which will find applica-
tion in what follows.

—

LemMma 4.2, Let ce LY. Then
(1) (X, d)en(c) implies X< {F(a;)|a;e LAct(A)};
(2) there exists d such that (&, d)en(c) iff ¢ is a labelled process;
3y (X,d)en(c)and Z#Y< X imply (Y, d Yen(c) for some d'.
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Condition (CR) plays an important role in the proof of the following
lemma, which states a useful interaction between the map » and the opera-
tional semantics for labelled states.

LEMMA 43. Let ceL¥ and assume that ({F(a,)},d)en(c). Then
Flay) d.

Proof. By structural induction on ¢. We only give the case in which
condition (CR) is used.

s c=c,\a. Assume that ({F(a;)}},d)en(c,\a). Then d=d\o and
{{F(a;)}, d,) e n(c,). By the inductive hypothesis, ¢, +242, g, . By condition
(CR), ¢,\aeL¥ implies that a#a, & Hence o admits F(a;) and, by the
operational semantics, ¢\« o), dha=d ]

We shall now investigate the relationships between the map u and the
function new. More precisely, we shall prove that whenever (X, d)en(c)
and p is a labelled action refinement such that p(X )\/ then, for each chan-
nel name a, new acp = new adp.

LEMMA 44. Let ceLY and p be a labelled action refinement. Then
(X, d)en(c) and p(X)\/ imply that new acp = new adp, for all ae A.

Proof. By induction on the structure of c. We shall examine only three
of the possible forms of ¢ and leave the remaining ones to the reader.

e ¢=F(a;). By the definition of 5, (X,d) must be ({F(a,)},ni).
Moreover we have that p(F(a,-))\/. By the definition of new, for all a € 4,

new akF(a;)p=A1
= new a nil p,
because p(F(a,))/ implies that FC(p(F(a,))) = &.
e ¢=c,; 7. Assume that (X, d)en(c,; n) and p(X)\/. By the definition

of n, it must be the case that (X, c¢})en(c,) and d=c};=n, for some c}.
Now, by the definition of new, it is easy to see that

new oc,; P = New ac, p N new amp
= new acip M Hew anp by induction
= new acy; Tp.

e c=c¢\B. Assume that (X, d)en(c,\f) and p(X)\/. Then it must be
the case that, for some ¢}, (X, c))en(c,) and d=c{\f. Let ac 4. We
proceed by distinguishing two possibilities, depending on whether o = f or
a# B
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Assume, first of all, that « = 8. Then it is easy to see that
new f(c\f)p =new fc, p
=new fBcip by induction
=new B(ci\B)p.
If o # B then, by the definition of new it is easy to see that

new a(c,\B)p = (new ac,p)—J {FClp(e))| e € Sym(c), v(e)= B}

= (new aci p) — | {FC(p(e))|e€ Symlc,), v(e) = B}
by induction
=new a(c\B)p. 1

The above proposition will be very useful in proving that, for all
¢, de LY, whenever (X, d)en{c) and p(X)\/ cp “behaves like” dp. In fact,
we shall now show that, under the above assumptions, there is a close syn-
tactic relation between cp and dp; namely, cp and dp are syntactically the
“same process” up to renaming of successfully terminated processes.

DeFmITION 4.5. =, denotes the least congruence over L&Y which
satisfies the following axioms:

(TER1)  nil; nil = nil
(TER2)  nil|nil=wnil
(TER3) nil+nil=mnil
(TER4) nil\o = nil.
The following lemma is easily established by induction on the
relation \/
LeMMa 4.5. For each ce LY, c\/ implies ¢ =, nil.
Using = ,, we are now able to formalize the syntactic relationship

between c¢p and dp whenever (X, d)en(c) and p(X)\/

PROPOSITION 4.2. Let ce LY and p be a labelled action refinement com-
patible with c¢. Assume that (X, d)en(c) and p(X)\/. Then the following
statements hold. ’

(1) id(cp)=id(dp) and
(2) cp=_dp.
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Proof. Both statements can be shown by structural induction on ¢. We
only give the proof of the case ¢ = ¢\« for statement (2).

e« c=c,\o. Assume that (X, d)en(c,\«) and p(X)\/. Then, by the
definition of #, it must be the case that d=c}\a and (X, ¢})en(c,), for
some c}. Now, letting S = choice(new ac,p),

(c\a)p=(crplar>BING
=/ (cip[a—BINB by the inductive hypothesis,

which is applicable because, as for each F(a;)e X we have that a#a, &,
p[rxr—»ﬁ](X):p(X)\/. By Lemma 4.4, new a(c \a)p =new a(ci\a)p. It is
now easy to see that (¢ p[ar— INS=(c\a)p. |

As we have seen, for each (X, d)en(c) and labelled action refinement p
such that p(X )\/ , the relationship between dp and cp can be expressed syn-
tactically in terms of = ;. However, in what follows, we shall often need
to use = in conjunction with the relation of a-congruence and a
behavioural characterization of = , would be of considerable help. We
already know that =, is a strong bisimulation over the LTS (L%, -,
LAct(A), \/>. As it may be expected, = , will also turn out to be a strong
bisimulation and this will allow us to exploit standard properties of ~ in
reasoning about the syntactic relations =, and = . The reader may easily
establish that:

PROPOSITION 4.3. = J is a strong bisimulation over the LTS (L%, >,
LAct(A), /.

We can now prove the promised “whence theorem” for moves of con-
figurations of the form cp. Intuitively, if cp v ¢ then one of the following
situations occurs:

e ¢ is capable of starting action a; and the component of p corre-
sponding to &, p(a;), is capable of performing e. From that moment
onwards, F(a,) acts as a place-holder for what remains to be executed of
the process p(a;); or

« the move is due to one of the components of p of the form p(F(a,)}),
or

« there is a pair (X, d) associated to ¢ by n with the property that p
maps all the places in X to successfully terminated processes and dp is
capable of performing e, or

» ¢=1 and the move is due to an internal move of ¢, or

+ e=1 and the move is generated by a synchronization between dif-
ferent components of p. (Clauses (3), (6) and (7) in the statement of the
theorem below cater for all the possible interactions of this kind.)
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Formally:

THEOREM 4.2 (“Whence Theorem” for Configurations). Let ce L%,
ee LAct(A), and p be a labelled action refinement compatible with c. Then
cp v ¢ implies that

(1) there exist ¢',xeL¥ and a,e LAct(A) such that LN

pla) v x and c=, c'p[Fla,) - x], or

(2) e=r1 and there exist a;, b;e LAct(A), xe A and ¢, d, x, ye LY
such that a,#b;, c ped, o S0, d, p(a,) 2 x, p(b)) sy and
&=, dp[Fla,) - x, F(b;)— y], or

(3) there exist a,e LAct{A) and x€ LY such that F(a;) occurs in c,
p(Fla)) V> x and ¢ =, cp[Fla,) — x], or

(4) e=71 and c v+ ¢’ for some ¢’ such that c=,¢'p, or

(5) e=1 and there exist a,, b;e LAct(A), a’'e V(A) and x, ye LY
such that ¢ V4% ¢, F(b)) occurs in c, p(a,-)i——"""—+ X, p(F(bj))l—fil—» y and
¢=,c'p[Fla;)— x, F(b)) > y], or

(6) e=rt and there exist a;, b;e LAct(A), x, ye LY such that a;#b;,
Fla;) and F(b;) occur in ¢, p(Fla))r>x, p(F(b))+—>y and
¢=,cp[Fla)— x, F(b)}~ y], or

(7) there exists (X, ¢')en(c) such that X # &5, p(X)\/ and ¢'p s ¢.

Proof. By structural induction on ¢. The proof is very similar to the one
of Theorem 4.1. Its only new feature is the use of clause (2) in dealing with
moves of configurations of the form ¢p; np in which cp\/, but not c\/. The
details of the proof are omitted. |}

The “whence theorems™ proven above give us a compiete picture of the
possible origin of moves of labelled processes and states of the form np and
¢p, respectively. We also need a “converse theorem.” More precisely, we
shall need results that allow us to derive moves of ¢p from those of a
labelled state ¢ and of the components of a labelled action refinement p.
This information will be provided by the following “whither theorem.” An
example of such a result would be:

¢ = d implies cp == dp.

We shall show that this is indeed true if we work up to strong bisimulation
equivalence. In the proof of the “whither theorem” extensive use is made of
the fact that both =, and = , are strong bisimulations over the LTS
(LY, >, LAct(A), \/>.

The statement of the “whither theorem” is in terms of the weak moves,
&=, rather than the strong moves, +%». This is because, in proving the
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refinement theorem, we shall be required to reconstruct a move of ¢p from
weak moves of ¢ and p, whereas it is sufficient to decompose strong moves
of ¢p into strong moves of ¢ and p. This is a natural consequence of the
definition of a bisimulation where strong moves are matched by weak ones.
The “whither theorem” provides a converse for each possibility which
arises in the “whence theorem” except the last one, which deals with F(a,)’s
instantiated with terminated processes. In the refinement theorem this case
will be handled by induction.

THEOREM 4.3 (Whither Theorem). Let ce LY and let p be a labelled
action refinement compatible with it. Then:
(1) ¢ ¢ and p(a;) > x imply cp => ~c'p[F(a;) — x].
S(a) |, Sl

(2) Assume  that  a;#b,, cv¥==>c+==d, pla) = x, and
p(b;) = y. Then cp E> ~dp[F(a )= x, F(b,) - y].

(3) Assume that F(a;) occurs in ¢ and p(F(a;)) e x. Then
cp ¥ ~cp[Fla,) — x].

(4) ¢ == d implies cp &> ~dp.

(5) Avsume that ¢ =22 ¢, F(b)) occurs in c, p(a,-)tirx and

p(F(b))) — y. Then cp = ~c'p[Fl(a;) - x, F(b;) - y].
(6) Assume that a; ;éb Fa,) and F(b;) occur in c, p(a,) = x and
pF(b) > y. Then cp E> ~cp[F(a )= x, F(b;) = y1.

Proof. The proof of each of these results is relatively straightforward,
but tedious. For example, the proof of (4) is very similar to that of
Lemma 2.5. (We should point out that (4) is required in the proof of most
of the other results.) Structural induction is used in proving (3) and (6)
while the proofs of the remaining statements use induction on the length of
the derivations involved. As an example, we briefly examine the proof of
statement (5). The interested reader is referred to [1] for more details.

(5) By induction on the length of the derivation ¢ e

S .
s Base case, ¢ +“L ', The proof proceeds by a subinduction on

the length of the proof of the derivation ¢ P24, ' We examine only two
of the possible cases, leaving the remaining ones to the reader.

Sta) ;
—e=c, ey 2 ey = ¢ because ¢ 2 o). We distinguish

two possibilities depending on whether F(b,) occurs in ¢, or c,.

If F(b;) occurs in ¢, then we may apply the subinductive hypothesis to
obtain ¢,p &= ~c\p[F(a;)— x, F(b;)— y]. By the operational semantics
and the substitutivity of ~,

(erler)p=ciplesp = ~(c plFla) - x, Flb) - y1leyp.
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Moreover, as F(a;) and F(b;) do not occur in c¢,,

(crp[Fla)) = x, F(b)) = y ) e;p = ¢\ ] ¢;) p[Fla;) = x, F(b;) > y].

If F(b;) occurs in ¢, then, by statement (1), ¢, LN ¢'26, and p(a;) I-i-h# X

imply clpﬂraz"» ~cyplFla;) ~ x]. By statement (3), F(b;) occurs in ¢, and
p(F(b;)) s y imply ¢, s c,p[F(b;) = y]. By the operational semantics
and the substitutivity of ~

(ciler)p=ciplesp 'é”V(CQP[F(ai)“’x]”(Czp[F(bj)—’ y1

Moreover, as F(a;) and F(b;) do not occur in ¢, and ¢, respectively, we
have that

(crplFla,) = x(c2p[Fb)) = y]) = (ci]e2) p[Fa;) = x, F(b) = p].

—e=c\f L ¢\B = ¢’ because ¢, L ¢ and a # B, B. First

of all, note that

(e\B)p = (c;pLB—> B ING,

where B’ = choice(new Bc,p). As F(b;) occurs in ¢\, by axiom (CR) we

have that also b # 8, . Moreover F(b;) occurs in c¢,. By these observatlons

we have that p[B— f'](a;)=p (a,)|=>x and p[f— B 1(F (b))
p(F(b))) e y. We may then apply the subinductive hypothesis to

Sta; .
¢ 24, ¢ to obtain

c1plBr> B ] = ~cipl B B 1L F(a)) — x, F(b)) > y].

By the operational semantics and the substitutivity of ~, we then have that

(e\BYp=(c,p[ B> B ING = ~(cip[ B> B 1 Fla;) - x, F(b) - y]\B"

A simple case analysis of whether or not ' = choice(new fc)p[F(a;) — x,
F(b;)— y]) will establish that

(ci\B) pLF(a;) = x, F(b;) = y] =, (ci PI\F, (5)

where g =p[f+— B'1[Fla,) — x, F(b;) — y]. The claim then follows for the
fact that =_ is a strong bisimulation and the transitivity of ~

« Inductive step, ¢ =, ¢ and I(c o, ¢')> 1. By Coroliary 3.2, we
may assume, w.lo.g that ¢ &> ¢” r—gﬁ«» ¢’ for some c¢”. By repeatedly
applying statement (4), we have that ¢ = ¢’ implies cp B> ~c"p while the

base case, applied to ¢” LN gives ¢"p = ~c'p[F(a,) — x, F(b )= y].
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By combining these two derivations we then have that
cp w=>~c'p[Fla,) = x, F(b) - y]. |

As a useful corollary of the whither theorem we have the following result,
which will find application in the proof of Theorem 4.4.

COROLLARY 4.1. Let ¢, d E]LV and p be a labelled action ref nement
compatible with c¢. Then ¢ 2 d and p(Fla; )) [S24 x\/ imply cp = ~dp.

Proof. Assume that ¢ P, 4 and p(Fla;)) = x\/ By Corollary 3.2, we
may assume, without loss of generality, that for some d, cv=2h g s d. Tt
is now sufficient to prove that

F9, dand p(F(a,)) B> x,/ imply cp > ~dp. (6)

In fact, by using (6), we have that cp = ~dp. By repeated application of
statement (4) of the whither theorem, d == d implies dp = ~dp. It is now
easy to see that cp > ~dp and dp &> ~dp imply that

cp = ~dp.

We are thus left to prove (6). The proof of this statement is by induction
on the length of the proof of the derivation ¢ +~“%» 4 We examine only
two of the cases which arise in such a proof and leave the remaining ones

to the reader.

o c=F(a) =L nil=d. Then cp=p(F(a,)) > x ~nil, because x,/
by the assumptions of the statement.

Fla))

o c=c\o 25 d’'\a =d because ¢;
recall that

F(a,)

—> d" and a # a, & First of all,

(e\a)p={(c,pla BING,
where f = choice(new ac,p). As a#a, d, we have that p[ar— ](F(a;))=
p(Fla;)) )-:vx\/ . We may then apply the inductive hypothesis to

a;)

e, V2 g and pla— B1(Fla,)) > x\/ to obtain that, for some y,

eiplars Bl y~d'plars .
By the operational semantics and the substitutivity of ~,

(e \a)p=(c,plars BINB == p\B~(d'plox— FINA.

As Benewac,p, it follows that Benew ad'p. It is now easy to see that
(d'\a)p=,(d'p[a— B])\B. The claim now follows from the fact that =,
is a strong bisimulation and from the transitivity of ~. ]

643/115/2-4
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The whence and the whither theorems will enable us to prove a labelled
version of the refinement theorem which states that mx n' implies
np x5 w'p for any labelled action refinement compatible with both 7 and
n’. However, we shall have to prove a much more general statement
because, as np and n'p evolve, the labelled processes = and =’ evolve to
labelled states and the two copies of p may evolve into different labelled
action refinements. However, these two copies must remain compatible
with each other, at least up to refine equivalence. The precise form of this
compatibility is captured in the following technical definition, which may
be viewed as a pointwise extension of =z, “modulo a history ¢.”
Intuitively, for two labelled action refinements p and p’ to be “equivalent
modulo ¢,” we shall require that, for each action g, they map occurrences
of a to congruent processes and whenever F(a,) and F(a;) are related to
each other by ¢, p(F(a,)) and p’(F(a;)) are equivalent with respect to some
history ¢(a, i, j). For use in the proof of the refinement theorem, we shall
collect the histories ¢(aq, i, j) for (a, i, j)€ ¢, in a ¢-vector 6. Formally:

DermNITION 4.6. (1) For each he 3, an h-vector ¢ is a map o: h — .
For each (q, i, j)e h, 6" will denote the history associated with it by a.

(2) Let p and p’ be two labelled action refinements. Then, for each
he # and h-vector g, p =, ,, p' iff for each ae V(A1),

(@) pla;)=gp'(a), for all i, j,
(b) for each iedom(h,), p(F(a,;)) = u.n p'(F(a;)), where j=h(i).

Note that, in this definition, we require not that p(a,) = 4 p(a;), but the
stronger property that p(a;) =, p(a;). We recall that this ensures that any
-move performed by p(@;) must be matched by a corresponding t-move
from p(a;) rather than the empty move. This stronger property is required
as we wish to prove that c=~,d and p=,, p’ imply cp=x,dp’, for an
appropriate history ¢. This would not be true if we simply required p(a;)
and p(a;) to be equivalent. For example, let pla,)=a,, p(b,)=b,,
p'(a;)=1;a, and p'(h,)=b,. Then p(a,) = p'(a,), but not (a, + b,)p x4
(@, +b5) "

Part of the task of establishing a refine bisimulation is to compare the
termination capabilities of the related processes. This is the subject of the
following theorem which relates the termination capabilities of ¢p and dp’,
where cx;d and p =, p’ for some ¢ € # and ¢-vector . Unfortunately,
the proof of the theorem is rather involved because, in general, there is no
simple relationship between the termination potential of a labelled state ¢
and that of cp. For instance, it is easy to see that not a,~+b_,-\/, but
(a,+b,) py/, for any p such that p(a,)=1 and p(h,)=b,. On the other
hand, a,~+r$ﬂ, but not (a;+ 1) p/ for any labelled action refinement p
such that p(a,)=r1; 0.
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THEOREM 44. Let c,deL?, ¢eH and p,p’ be labelled action
refinements such that p= ., p' for some ¢-vector o. Assume that c=,d.
Then cp\/ implies dp’\[/ .

Proof. By induction on the relation <, which is defined as follows:

For all ¢;,, d;e LY, ¢,€ # and labelled action refinements p,, p;, i=1, 2,
we write {¢,p;, ;020 <, {d,p},dyp3) iff ¢; =, ¢y, dyry,d, and there
exist a ¢,-vector o, and a ¢,-vector g, such that p, = ,,p, and
P1=(42.ay P2 and the following conditions hold,

(1) e, ) +lex) <)d,| +1d,) or
(2) eyl +leal =\dil +1d,) and |c,p\| + |e2p2]| < |d,pi| + |d, 051,

where, for each ce L%, |c| denotes the depth of its derivation tree.

We assume, as inductive hypothesis, that the claim holds for all
{eypyyeaprd =<, {cp,dp’) and prove that it holds for {cp, dp’>, where
cx4d and p=,,p', for some ¢-vector o. Assume that cpJ. We shall
prove that dp.// by distinguishing two possibilities:

(A) c¢p > and dp’ +, ie., both cp and dp’ are stable, or
(B) either cp or dp’ is not stable.

We examine the two possibilities in turn.

(A) Assume that c¢p and dp’ are stable. As ch[/ by the hypothesis of
the theorem, we then have that cp\/ . We shall prove that dp'\/ . First of
all, it is easy to check that cp\/ implies that p(F a,-))\/ for all F(a;) occur-
ring in ¢ and that, for each (X, ¢'}en(c), p(X)./ and c’p\/. Moreover, by
the whither theorem, we have that dp’ - implies

(1) d+- and
(2) p'(Fla)) +—, for all F(a,) occurring in d'.

Let (X, ¢')en(c). (Note that such a pair always exists because n(c) is
nonempty.) We distinguish two possibilities depending on whether X is
empty or not.

If X= ¢ then, by Lemma 4.2(1), ¢ is a labelled process. It is easy to see
that, for labelled processes, cp\/ implies that c\/ . As c¢x4d by the
hypothesis of the theorem, we have that dJ . Hence, by (A.1), d\/ and this
implies that dp'\/ .

Assume now that X # . Then there exist F(a;)e X. By Lemma 4.2(3),
there exists ¢ such that ({F(a,)}, ¢)en(c). By Lemma 4.3, e, & As
p(F(a,-))\/, we may apply Corollary 4.1 to obtain that

cp = x ~ ¢p, for some x.
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As cp is stable, we have that cp~cp and Cp\/ As cx,d, we have that
e ¢ and d stable imply that d —=» d* for some j and d’ such that
¢ i)=j and ¢=, d', where ¢'=¢— {(a,i,j)}. As P—wa)ﬂ by the
hypotheses of the theorem and p(F(a, ))\/, we have that p'( F(a))\,/
Moreover, by (A.2), it follows that p’(F(a))\/. We may then apply
Corollary 4.1 to obtain that, as dp’ is stable, dp'~d’p’. Note now that
P =(s..y p' implies that p=. ., p’, where ¢’ is the restriction of ¢ to a
¢’'-vector. Moreover, as |¢|+|d'| <lcl+|d|, {(¢,d > <, {c,d). We may
then apply the inductive hypothesis to ¢x, d’, p= ., p and ép
obtain that d’p’V/ As dp'~d'p’ and dp is stable, we then derive that
dp’\/. This completes the proof of case (A).

(B) Without loss of generality, we restrict ourselves to examining the
case in which dp’ is not stable. (The case in which dp’ is stable and cp is
not can be dealt with in a similar fashion.) In order to prove that dp’
it is sufficient to show that dp’ - j=> y and p stable imply y\/. By
Theorem 4.2 and the fact that =_ is a strong bisimulation, dp’'+— y
implies

(1) there exist a,e LAct(A) and d’, xe LY such that d > 4/,
p'la)r—> x and F~d'p'[Fla,) > x], or

(2) there exists (X,d")en(d) such that X # &, p’(X)\/ and
d'p'+— y, or

(3) there exist s a; b, eLAct(A) aed and d,d,x;,x,eL¥
such that dv> 327 @', pl{a) v x,, p'(b)r2s x, and F~

p'[Fla)— x, F(b;))— x,], or
(4) there exist a,€ LAct(A) and xe LY such that F(a;) occurs in
p' (Fla)) > x and y~dp'[F(a;) > x], or
(5) there exists ¢’ € LY such that d+*> d’ and y~d'p’, or
(6) there exist a,, b,e LY and d', X1y x,€ LY such that d >4, g7,

r’ i
F(b,) occurs in d, p'(a,) ) 2 Xy, p "(F(b))) > x, and j~d'p'[Fa,) - x,,
F(b,)— x,], or
(7) there exist a; b,eLAct(A) and x,,x,eL% such that
F(a;), F(b;) occur in d, p(F(a))l——» x, and p'(F(b;))+> x, and
y~dp'[Fla;) = x,, F(b)) - x,].

We proceed by showing that y\/ in each of the following possibilities.
We shall only examine three representative cases, leaving the remaining
ones to the reader.

Sed, o, p(a)r—»x and

(1) Assume that dp’+— j because dr——
Sta;
y~d’p’[F( = x] As ¢, d, we then have that cn:» ¢’ for some i,

and ¢’ such that ¢'~, d’, where ¢'=¢ U {(a, i,,1)}. As p=,,, p', we have
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that pla; )= p'(a;). Hence there exists x’ such that pla;) == x' and
S{a;

x'xxx. By statement (1) of the whither theorem, ¢ =—=> ¢’ and
pla,) = x" imply cp = X~ c'p[Fla;,)— x'], for some %. As ch/ we then
have that ¢'p[F(a,) = x']/.

It is easy to see that, as p=,,, p’, we have that p[F(a;) — x' 1=
p'[F(a;) —» x], where ¢’ is the ¢'-vector given by

o' bk [02) if (bohk)=(ai,,i)
def § - tb.hk) otherwise.

As |¢'| +|d'] <]c| +|d|, we may now apply the inductive hypothesis to
¢ xpd, plFa,)—x' 1=y, 0 [Fla)~>x] and ¢p[Fla,)»x1y/ to
obtain that d'p'[F(a,) » x] /- As ¥ ~d'p'[F(a,) — x], we then have that
7/ This implies that y./.

(2) Assume that dp’ +— § because there exists (X, d’)en(c) such
that X # (7, p’(X)\/ and d'p’ +> J. As X # (7, there exists F(a;)e X. By
Lemma 4.2(3), ({F(a;)}, d) e n(d) for some d and, as p’(X)\/, p’(F(a_,))\/.
By Proposition 4.2, we have that

dp/ :\‘,“ dlp' :\/ dp/

MoreoveFr by Lemma 4.3, dr4 4 As_cz¢ d, there exist i and ¢’ such
that ¢=5¢', g,(i)=), and '~y d where ¢'=¢—{(ai])}. As
P =s.q P and p'(F(a,)),/, we have that

« p(F(a;)) = p'(F(a))) and p(F(a,))/, and
* p= 4.0 p > where ¢’ is the restriction of ¢ to a ¢’-vector.

As p(F(a,-))J, there exists x such that p(F(a;)) &> x\/. By Corollary 4.1,
¢ 2 o and p(F(a,)) L:ijr»x\/ imply cp & ~c’p. As cpJ, we have that

Clﬂ‘cﬂ- We may now apply the inductive hypothesis to ¢’z d, p=45 4, p'
and c'py/ to obtain that dp'y/. As dp’=,dp’ and =_ is a strong
bisimulation we then have that dp’v/ . Hence y\/ .

(4) Assume that dp'+> 7 because F(a;) occurs in
d, p'(Fla;)) v x and j~dp'[F(a;)—> x]. Then, as c¢x,d, there exists j
such that ¢,(j) =/ and F(a;) occurs in ¢. Moreover, as p =, ,, p', we have
that p(F(a;)) = s p'(F(a;)). Thus there exists x’ such that p(F(q,)) = X'
and x'=_w,» x. By statement (3) of the whither theorem, we have that
cp o ~cp[Fla)—x') As cpy, cp[Fla) —»x'1y/. Moreover, as
P =40, P, we have that p[ F(a,) - x'] =, ,, p'[ Fla;,) = x]. Note now that,
as |dg'[Fla;) - x]| <|dp’l,

lep[Fla;) = x| + |dp’[Fla;) = x]| < |cp| + |dp’l.
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We may then apply the inductive hypothesis to obtain that
dp'[Fla;)— x1/. As j~dp'[F(a;)— x], we then have that j/. This
implies that y./.

The proof of (B) can be completed by checking the remaining cases in
a similar way. |

We are now ready to prove the labelled version of the refinement
theorem.

DEeFINITION 4.7. For each ¢ e #, let 25 be defined as follows:

R = ger { {ep, dp’> ? (i) there exists ¢ € # such that c =~ d,

(ii) cp, dp’ € L¥, and

(iit) there exists a ¢-vector o such that p =, ,, p" and

o= | G(u.«xﬂ}_

(a.i, ) e

THEOREM 4.5 (Labelled Refinement Theorem). For each ¢e #,
(ep, dp'y € R implies cp~ 4 dp'.

Proof. 1t will be convenient to prove a slightly more complicated state-
ment. For each ¢ e o, let & be given by

Sy ={<cp,dp'>|cp~xand y~dp' forsome {x, y>e R}

We show that {1 e s#} is a weak refine bisimulation; i.e., we work “up
to strong bisimulation.” The claim will then follow because, for each ¢,
R < %, by the definition of #5'° and the reflexivity of ~.

It is straightforward, but tedious, to check that {¥|ge#} is a sym-
metric family of relations and, moreover, that the compatibility
requirements are met. So it remains to show that moves of ¢p may be
matched by corresponding moves of dp'. This we prove by induction on the
combined size of ¢ and d. We shall limit ourselves to proving the claim for
{cp, dﬂ)eﬂ‘;“b. The more general claim will then follow immediately
from the definitions of ~ and 9?;“". The general nature of this argument is
to use the composition/decomposition results. For example, given
{ep,dp’ € 9?;“" and a move of ¢p, we shall use Theorem 4.2 to decompose
this move into a move from ¢ and move(s) of the components of p. The
equivalence of ¢ and 4 with respect to some history and the pointwise
equivalence between p and p’ will then be used to derive “matching moves”
from d and the components of p’. These moves will then be composed by
means of the statements of the “whither theorem” to obtain a move of dp’,
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which will be shown to match the original move of cp with respect to
(lpe ).

Assume now that {cp, dp’> € #3™°. Then, by the definition of #5™°, we
have that

(A} c¢=,d, for some ¢,
(B) ¢p,dp’e L¥, and
(C) there exists a @-vector o such that p=, ,, p’ and

¢ — U glehd),

(@i jleo

We shall now show that the defining clauses of =, are met by
{ep,dp'y € #". We shall limit ourselves to giving the proof for two of the
clauses.

S(ay)

« Assume that cp ——> ¢. We shall prove that dp’ —, d, for some d
and j such that (c',d)ey; By Theorem 4.2, cp —— S(“' ¢ implies
that

u{lai )}

(l.a) there exist b,, ¢’ and x such that ¢ IR ¢, p(b,) —=

and ¢~ c'p[F(b,)— x], or
(1.b) there exists (X,c')en(c) such that X#@, p(X) )/ and

’ S{a;)

Sla,

(l.c) there exist b, and x such that F(b,) occurs in
¢, p(F(b,)) %% x and ¢ ~ cp[F(b,) — x].

(None of the other possibilities in Theorem 4.2 applies to start-moves.)
We proceed by examining each possibility in turn,

(l.a) Assume that there exist b,, ¢’ and x such that ¢ plbnd, o

p(b,) F, x and ¢~ c'p{F(b,)— x]. Then, as c =, d by (A), we have that

d 2221 4" for some m and d’ such that ¢’ ~, d', where ¢’ =@ u {{b,n, m)}.
As p=,,.,, p by (C), we have that p(b, )—g p'(b,,). Thus there exist j and

y such that p'(b,, )r—s——)»y and x=,,,;; y. By statement (1) of
S(bm)

Theorem 4.3, d == d’ and p’(b,,) — y imply that

dp' 2 d~d'p! [F(b,) — y],

for some d. It remains to be checked that <& d) €%, . - It is suf-
ficient to prove that

(c'p[F(b,) > x), d'p'[F(b,) > ¥1> € RFE iy
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We have already scen that ¢’ =~ d', where ¢'=¢ U {(b, n, m)}. Consider
now the ¢’-vector o, given by

O_(b"[./')= {(0, l’l)} lf (b,’ l’l’)z(ba R, m)
! g!?-hn otherwise.

As p=, ., p and x=,,, ¥, it is easy to see that
p[F(bn) -')X] =l¢,o'.r7|) pI[F(bm) - y:l

Moreover, we have that

(b 1Yy __ [N (b,n,m)
U ore=( oy ai)ual
{(b,m)}

(b'.1.1'Ye o’ (b' 1 1Ye @

=¢ui(aij} by(Clando"™™ ={(a, i j)}.

Hence we have shown that <{c'p[F(b,)—>x], d'p'[F(b,)—y])>e
R (i yy- This completes the verification of subcase (1.a).

(1.b) Assume that there exists (X, c¢")en(c) such that X# ¢,
p(X)\/ and ¢’p —— 2, & Then, by Proposition4.2, cp= ,c'p. As = ,is a
strong bisimulation, we have that cp ~ ¢'p. By the definition of &, we have
that (c'p, dp'> € ¥,. As the combined size of ¢’ and d is less than tfql(at of
¢ and d, we may apply the inductive hypothesis to obtain that dp’ —= d
for some d such that (¢,d>e Lo 1ani )

(1.c) The proof of this subcase is similar to that of (2.b) below and
is thus omitted.

Flai)

» Assume that cp ——> ¢ We shall prove that dp’ s d, for some d

and j such that ¢,(i)=/ and (¢ d)e; By Theorem 4.2,
cp F22% ¢ implies that

(2.a) there exists (X, c¢')en(c) such that X # ¢, p(X)\/ and

;L Fla) | s
dpr—-">¢, or

{a, i, j} )

(2.b) there exist @, and x such that F(g,) occurs in
¢, p(F(a,)) % x and ¢ ~ cp[F(d,) = x].

(None of the other possibilities in Theorem 4.2 applies to end-moves).
We proceed by examining the two possibilities separately.

(2.a) Assume that there exists (X, c')en(c) such that X # F,
X)\/ and ¢’p V%2, & Then, by Proposition 4.2, cp=,cp. As = /s a
strong bisimulation, we have that cp ~ ¢’p. By the definition of &, we have
that {c'p, dp’) € %;. As the combined size of ¢’ and d is less than that of
¢ and d, we may apply the inductive hypothesis to obtain that dp’ =— —
for some d such that ¢,(i)=j and (7, dd> €S (4. -
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(2.b) Assume that there exist a, and x such that F(a;) occurs in
¢, p(F(a{,))l—'«'f'i)—»x, and ¢ ~cp[Fla,)—>x]. As ¢x,d by (A) and Fla,)

occurs in ¢, we have that F(a,,) occurs in d, with m=¢,(n). As p=, . p’
Fla;

by (C), we have that ﬂp(F(a,',))zamr.n.m.p’(F(a:,,)). Thus p(F(af,))}——'+x
implies that p'(F(a,,)) AN y, for some y such that ¢(*"")(i) = j and

XX glanm _ ((aijyy Ve

£la)

By statement (3) of Theorem 4.3, F(a,,) occurs in d and p'(F(a,,)) =}

imply that dp’ s d~ dp'[F(a,,)— v], for some d. We are left to prove
that (¢, d)> €S _ (. ;- By the definition of S _ . ;. it is sufficient to
show that

(ep[Fla,)— x], dp'[Fla,,) = y1> € R} (i iy
We know that ¢ =, d Consider now the @-vector o, given by

Gl — o' — {(a, i, j)} it (&,L1")y=(a, n,m)
1 PR otherwise.

Then, as p =, p' and XX wmm _ (4, V- it 18 €asy to see that

pLH(a,) = x]1= (4.0 P’ [Fla}) = y].

Moreover, we have that

U O.(lb',l.l')=( U O.(b'./,l')>UG.(la’,n,m)
(b LINep (bl lveo — {(a’ . nom))}

( U(h',/y/')) w (o.la'.n.m)_ {(Cl, l‘, ])})
('L 1'Ye o — {(a',n,m}}

= U " —{(ai))}

(b, 1,{")e @
=¢— {(a’ i~ J)}

Step = in the above verification is justified by the fact that (a, i, j) ¢ c*"*"

for (b', 1, I') # (a’, n, m). This completes the verification of (2.b). ]

The refinement theorem for ~, is now an obvious consequence of the
previous result.
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THEOREM 4.6 (The Refinement Theorem). Let p,qeP and p be an
action refinement. Then px, q implies pp ~, qp.

Proof. For the sake of simplicity, we shall restrict ourselves to giving
the details of the proof for an action refinement p which acts like the iden-
tity on all actions but ae V(). Let p be such that

pla)=r
pla)y=r'
pb)y=»~b forall b#aq,a.

The general case is only notationally more cumbersome. Assume that
p,qeP and px g Then there exist labelled processes m,, 7, such that
un(n,;)=p, un(n,)=¢q and n, =~ n,. We shall now construct a labelled
action refinement p' compatible with both n, and =, (see Definition 4.3)
such that, for each i, un(p'(q;)) = p(a) and un{p’'(a,)) = p(a).

Let {i,, .., i} be the set of indices of occurrences of a in =, and =,.
Similarly, let {J,, .., j,} be the set of indices of occurrences of & in 7, and
n,. Correspondingly, let {n,,..,n,,n} and {7, .., 7,, 7} be sets of pro-
cesses with pairwise disjoint labellings such that

(a) forall 1<n<k, un(n,)=un(1)=r, and

(b) forall I<n<h un(z,

The labelled action refinement p": LAct(A) v {F(a;)|a;€ LAct{A)} - L& is
now given by:

)=un(7)=r.

e p'la,)=m, ifn=i,, n otherwise;
» p'la,)=m; if n=j,, ® otherwise;
e p' is the identity everywhere else.

By the construction of p’ and the fact that p is an action refinement, it is
easy to see that p’ is a labelled action refinement and that p’ = , p’. By
construction, p’ is compatible with both =, and =,. Moreover,
(myp',myp' > e Ry and, therefore, by Theorem4.5, it follows that
m,p =y myp'. By definition this means that un(m p’)=~, un(n,p’); ie,
po=x.qp. 1

In fact, the labelled refinement theorem enables us to prove a more
general theorem for the unlabelled calculus. For action refinements p and
o', let p=_p' if for all ae V(A), p(a) =, p’(a). Then it is straightforward to
establish that

p=.q and p=, p’ imply that pp=_qp’.
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5. WEAK BISIMULATION EQUIVALENCE DETERMINES
WEAK REFINE EQUIVALENCE

In this section we show that the congruence determined by weak refine
equivalence, =, is the largest congruence with respect to all the operators
in our language which is contained in weak bisimulation equivalence; i.e.,
that for every p,geP,,

p=,q if and only if for all P -contexts C[-], C[p]l~C[q]

This result makes weak refine equality, =,, a reasonable candidate for a
semantic equivalence for process algebras which support action refinement.
For it is preserved by action refinement and at least all of the other
operators of CCS. In addition it is contained in weak bisimulation equiv-
alence and therefore inherits many of the reasonable properties of this
equivalence which has been much used in the literature. If these are the
only constraints which we impose on a desired equivalence then the above
result shows that =_ is the largest relation which satisfies them; i.e., it
satisfies the constraints and apart from that it makes the most identifica-
tions.

In one direction the above-stated characterization result for =, is
straightforward; it follows from Theorem 3.2 because =, is contained in ~.
To prove the converse we design a specific action refinement ¢ which
depends slightly on p and ¢ such that

po = go implies p=, g. ()]

As might be expected from the role played by the labelling of actions and
subactions in the definition of ~,, claim (7) will follow from an analogous
result for the labelled calculus. This involves extending action refinements
to refinements which act on labelled states, i.e.,, mappings from labelled
actions to processes.

We choose as the range of the specific action refinement an instantiation
of P, obtained by choosing a particular A. Recall that A is the basic set
of action symbols used in the definition of the set of processes P,. We
choose a derived set of action symbols defined by

4={S(a;), Fla)lae Au A, ieN}u A

We use P, which inherits an operational semantics from Fig. 1, as the
range of our refinement. Note that here the complement of the actions

S(a;) and F(a;) is not S(a;) and F(a,), respectively, but S(a;) and F(a,).

DEFINITION 5.1. A standard refinement ¢ is a mapping from LAct(A) v
{F(a;)|a;e LAct(A)} to P, which satisfies, for each ae V(A4),
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1. for every i, j, o(a;)=0(a;)=a+3 {S(a,); Fa,)|1 <k<K} for a
sufficiently large K,
2. for every i there exists a 1 << K such that ¢(F(a;)) = F(a;).

We say that a standard refinement ¢ is suitable for a labelled state ¢ if K
is greater than any index occurring in c.

The idea behind this refinement is that the operational semantics of a
labelled state ¢ on which refine equivalence is based can be simulated by
the ordinary operational semantics of the unlabelled process co on which
bisimulation equivalence is based.? Note for example, that communication
is not allowed between any pair o(F(a;)), 6(F(b;)) and is only allowed
between o(a;), o(b;) if @ and b are complementary, in which case it
corresponds to one actually performing the action @ and the other its com-
plement. This simulation works sufficiently well provided we choose our
labellings carefully. For labelled states ¢, d we say that they are separated
if the sets of indices occurring in ¢ and d are disjoint. Qur aim is to prove
the following theorem:

THEOREM 5.1. Let n, n’ be separated labelled processes and let o be a
standard refinement suitable for n and w'. Then no=xn'c implies that
LEP

For the moment let us assume that we can prove this theorem. By con-
vention we may also view standard refinements as ordinary action
refinements,

0. Act(A) — P,

by letting o(a) be a(a;) for any i. Note that this satisfies the requirements
of an action refinement. Moreover, it is easy to see that for any labelled
process 7, 7o =un{n)g. From this we immediately obtain:

COROLLARY 5.1.  For all processes p, g€ P, po = qo implies p =, q.

From this corollary we also obtain the main result of this section:

COROLLARY 5.2. For all processes p, qe P, p=, q if and only if, for every
P, -context C[-], C[p]l~C[q].

2 A similar idea underlies the refinements used by Vogler in [40, 39] to prove “largest-con-
gruence” theorems for failures equivalence and weak bisimulation equivalence over safe Petri
nets and prime Event Structures, respectively. However, working at a syntactic, operational
level, we also have to take into account synchronization among actions. The problem does not
arise if action refinement is defined on semantic models like Petri nets or Event Structures.
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Proof. As stated above it is sufficient to prove the if direction, i.e., that
p+a=_ g+ a, where a does not appear in p and ¢, on the assumption that
C[p]= C[q] for every P ,-context C[-]. To prove this we apply the above
corollary to the context ([-]+a)c where ¢ is a suitable standard
refinement. |}

So it remains to prove Theorem 5.1 and this involves defining a weak
refine equivalence. Let us say that the standard refinement o is compatible
with the history /4 if

(a, i, j)e h implies o(F(a,}) = a(F(a;)) = either F(a,) or F(a,).

Then, for every history A, let #, be the set of pairs of labelled states ¢, d
which satisfy

1. (c, d) is compatible with A,
2. (c, d) are separated,
3. there is a standard refinement o, suitable for ¢ and d, such that

(a) o is compatible with 4 and
(b) co=do.

We show that {#,|he #} is a weak refine bisimulation, at least “up to
strong bisimulation.” Theorem 5.1 then follows since every ¢ is compatible
with the empty history. Before starting our analysis of the proof of this
theorem, we give a lemma which states a fundamental property of standard
refinements which are compatible with histories relating separated labelled
states.

LEMMA S.1. Let he # and o be a standard refinement compatible with
h. Assume that {i|(a, i, j)eh, for some a,j}n{i|(a,j, i)eh, for some
a, j} =. Then, for every aeV(A), o is injective on both dom(h,) and
range(h,).

The proof that {#,|he #} is a weak refine bisimulation depends on
particular properties of weak bisimulation equivalence over %, which we
now explain. All the arguments revolve around the application of the
Whence and Whither theorems of the previous section. Strictly speaking,
these apply to the operational semantics of Section 3, using the next state
relation ~ rather than the relation — of Section 2. However, they can be
trivially adapted to the latter and here it is this version of these theorem
which we apply.

The next two lemmas are direct applications of the Whither and Whence
theorems to standard refinements. The first states that moves from ¢ can
be accurately reflected in moves from co, whereas the second implies the
converse.
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LEMMA 5.2. For every configuration c¢ and standard refinement o suitable

for c:

1. e 24 ¢ implies co L ~c'a[Fla,) » Fla,)];

5 Hed, o implies co —Ls ~c'a, where o(Fla,)) = F(a,);

3. cv> ¢ implies co —> ~('o.

Proof. Each result follows by an application of the Whither theorem.

1. Suppose ¢ +2%), ' Then, as o is suitable for ¢, K is greater than

any index occurring in ¢ and this implies that a( a;) =, F(a,). Therefore,

by statement (1) of the Whither theorem, co —— S, e ‘a{ F(a;) = F(a,;)].

2. Suppose P ANy By statement (3) of the Whither theorem,

co =25 ~¢ ‘o[ Fla, ) —nil]. But the result now follows since
c'olFla;)—nil]~c'o.

3. Immediate by applying statement (4) of the Whither theorem. |

LEmMMA 5.3, For every Iabelled state ¢ and standard refinement o:

. co 22 x implies ¢ = o for some j and ¢ such that
x~c'e[Fla;)— Fla,)];

Sta;) Al
2. co == x implies ¢ 2 . ' for some j and ¢’ such that F(a;) occurs

in ¢, o(F(a;)) = F(a,;) and x ~ ¢'o;

3. co = x implies ¢ => ¢'c such that x ~c'o.

Proof. These statements follow by applying the Whence theorem and
we prove them in turn. We start by proving statement (3), which is used
in the proof of the others.

3. It is sufficient to prove this for the case when ca — x, as the more
general case, co == x, will follow by induction on the number of moves in
this derivation. So suppose that ca —— x. Because of the form of o, only
two of the possibilities in the Whence theorem apply to co — x, namely
(2) and (4). Since (4) is exactly what we want, we concentrate on (2). Here
there must be some a such that ¢ rﬁ]—» D e o(a;) > nil,

o(@) - nil, and x~c"o[Fla;)—nil, F(a;)— nil]. By Lemma 4.1,
¢+ ~c"t[ Fla;) - nil, F(a,)— nil]. The result now follows since, by the
substitution lemma, (c”z[F(a ) nil,  F(a,)—nil])o=c"c[F(a,} - nil,
F(a;) — nil].

2. Again it is sufficient to consider the simple case when co 4, x
because the more general case will follow from it and Case (3). The only
case of the Whence theorem which can apply here is case (3), from which
we obtain some F(a;) occurrmg in ¢ such that ¢(F(a;))= F(a;) and
x~ca[F(a))—nil]. Let ¢’ be such that Py LNy By induction on this
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derivation it is easy to prove that ¢'=, ca{ F(a;) - nil]. The result now
follows from Lemma 2.2(b) and the fact that, by the substitution lemma,
ca[ Fla;) —» nil] = (al F(a,) = nil])o.

1. Similar to the statement above. §

We now state a useful lemma relating the termination potential of a
labelled state ¢ with that of the process co, where ¢ is a standard refine-
ment. Because of the particular structure of our standard refinements, such
a correspondence takes a very simple and natural form. (Compare with
Theorem 4.4.)

LEMMA 5.4. For every labelled state ¢ and standard refinement ¢ suitable
Jor c, c\,y if and only ifcaw/.

Proof. First note that ¢ is stable if and only if co is stable. For an
application of Lemma 5.2 implies that if ¢ can perform a t move then so
can co and if co is not stable then an application of Lema 5.3 gives a
move from c. Also if c\/ then, for any refinement p, cp\/ . But the converse
is also true for standard refinements. More generally, if the range of p con-
tains only nonterminated processes, then cp\/ implies c\/ . This can be
shown by induction on the proof that cp\/ . In other words we have that
¢/ if and only if ca\/ . Let us now prove the result.

(Only if) Suppose CV/ and co = x for some stable x. We must
show that x\/ . By repeatedly applying Lemma 5.3, it follows that ¢ == ¢’
for some ¢’ such that ¢’o ~ x. Since x is stable, co is also stable and there-
fore so is ¢’. Since CV/ we have that c’\/ . Therefore c’o\/ and also x\/ .

(If) Let us assume that caw and ¢ = ¢’ for some stable ¢’. By
Lemma 5.2, we have that co = ~c¢'c and therefore ¢’c is stable. This
implies that c’a\/, from which it follows that c\/.

Combining all of these lemmas we may now prove the required result:

PROPOSITION 5.1. For all he #, {c,d) e R, implies c =, d.
Proof. We shall prove that the family of relations {#;,|he # } given by

&, = {{c, d)|there exist {x, y> e R, such that c~x and y~d}

is a weak refine bisimulation. The claim will then follow by the reflexivity
of ~. It is easy to see that {2} |he # '} is symmetric because, by definition,
so is {&,| he # }. The compatibility requirements are also easily checked
by calculation. Also, the termination requirements follow from Lemma 5.4.
So it remains to check that moves are properly matched and we shall limit
ourselves to considering the case (¢, d) € #,. (The more general claim will
then follow immediately by the properties of ~.)
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L? )(c d>eR, and suppose that ¢ H), ¢’ Then by Lemma 5.2,
ca—F—m—)» ~c'o, where o(F(a;))= (aj). Since coxdo it follows that
do —= x for some x such that xxc ‘6. Now applying Lemma 5.3 we may
assume that x~d’c, where d =% @' for some k such that a(F(ak))—
F(a;). 1t follows from the construction of #, that (a, i, k)eh. For let i’
denote the label such that (a4, i, i’)e h. Then a(F(a;)) =o(F(a;))=o(Fa,)).
But the fact that ¢ and d are separated and that ¢ is compatible with A
ensures that ¢ is injective on both the domain and range of A,, by
Lemma 5.1; so i’ =k. Now let h'=h— {(a, i, k)}. Then it is easy to check
that (¢, d' > e A,.

The proof that the other forms of moves from ¢, ¢ P4, o and

¢ K4, ¢ are matched by moves from d is equally straightforward. }

6. AN EXAMPLE DISTINGUISHING =, FROM =X/,

In this section, we shall present an example showing that ~, and =, are
different equivalences over the language P. The example is based on a
similar one devised by van Glabbeek to show that, in general, splitting an
action into three gives rise to a different equivalence from =,. What van
Glabbeek’s example, called the owl-example by its author, essentially shows
is that ~, and =, are not preserved by action refinements over a language
which is rich enough to describe the processes used in it. It turns out that
a slightly modified version of the processes used in the owl-example can
indeed be described in the language P considered in this paper. As a
corollary of van Glabbeek’s result we then have that

FacT 6.1. =, is not preserved by action refinement over P.

In the remainder of this section we shall use van Glabbeek’s owl-example
[23] to prove that =, and =, are different equivalences over P. The ver-
sion of the owl-example which is presented below is due to Vaandrager,
who translated the original example into CCS.* Let P be the process given
by

P=(a.(Bl(& +c.(xe+y. PONIb(&](F+c.(B.d+a' PN\ \B\y,

where P,=d|c.t.e and P,=¢]|c.7.d. Let Q be identical to P, but with the
roles of d and e interchanged. We shall show that P=, Q, but P #_ Q. The
arguments given below will hopefully be made more comprehensible by
working with a semantic representation of the processes P and Q. The
labelled transition systems denoted by the processes P and Q are given in

3 We thank Frits Vaandrager for making this example available to us.
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Process Graph for P

Process Graph for Q

d

FiG. 3. The process graphs for P and Q.

Fig. 3. Intuitively, in this representation of processes, confluence in the pro-
cess graph represents concurrency between actions, whilst absence of con-
fluence stands for conflict. Note that only the labels of the transitions along
the edges of the graph are explicitly given; the labels of the inner transitions
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Process Graph for P

Process Graph for

F1G. 4. The timed process graphs for P and Q.

1

can be obtained by assigning the same label to
graph.

We shall now prove that 4(P)=x, 4(Q), where 4(P) and %(Q) denote
the process graphs for P and Q, respectively. In order to make our

‘parallel edges” in the
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argument clearer, we refer the reader to Fig. 4, where the interesting parts
of the process graphs associated with P and Q with respect to the timed
operational semantics are given. There the dotted arrows stand for begin-
nings and endings of the actions labelling the transitions which will be used
in the arguments to follow. Before arguing informally that ¥(P)~,  4(Q),
it will be useful to introduce some notation.

Notation 6.1. Given a graph ¢ and a node n of 4, ¢, will denote the
subgraph of % whose root is n. Isomorphism between graphs will be
denoted by =~.

We shall now informally sketch the construction of a timed bisimulation
between 4(P) and %(Q). The core of such a bisimulation is given by the
relation

R = {{n, m)|nis anode of (P), m is a node of 4(Q),
and 9(P), =9(Q)m}-

Note that, for instance, # relates the node labelled x in 4(P) to the one
labelled z in 4(Q) and, conversely, the node labelled z in 4(P) to the
labelled x in 4(Q). Moreover, {y, v)> and {(w, w) are in Z. It is easy to
see that # is a timed bisimulation between 4(P), and 4(Q),. We shall now
extend # to a timed bisimulation between 4(P) and 4(Q). Note that any
timed bisimulation between 4(P) and 4(Q0) must relate the nodes labelled
x and those labelled z in the two graphs, i.e.,, must contain the pairs {x, x>
and {z, z). This is because

o the nodes labelled x in %(P) and %(Q) are the unique ones
reachable from the roots of these graphs via the sequence of subactions
S(b) F(b) S(c) F(c) S(a) F(a) in which the start of an e-action and of a
d-action are both possible, and

« the nodes labelled z in %(P) and %(Q) are the unique ones reachable
from the roots of these graphs via the sequence of subactions S(a) F(a)
S(c) F{c) 8(b) F(b) in which the start of an e-action and of a d-action are
both possible.

An exhaustive analysis of all the possible transitions originating from the
nodes labelled x and z in the two graphs shows that 4(P),~, %(Q), and
4(P),~,%(Q),. We are thus left to extend the bisimulation relation to the
nodes in %(P) and %(Q) lying above those labelled x, v, and z. Again, an
exhausitve argument shows that “nodes in the same position” in the two
graphs are indeed timed bisimilar. We have thus informally hinted at how
to construct a timed bisimulation between %(P) and %(Q). Hence
%4(P)=~,%(Q), as claimed.
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Process Graph for P

Process Graph for Q

d

€

Fig. 5. (Parts of) the labelled process graphs for P and Q.

We now turn our attention to proving that 4(P) %, 4(Q). In order to
clarify our argument, we refer the reader to Fig. 5, where the occurrences
of action ¢ relevant to proving the claim are labelled. Note, first of all, that
any weak refine bisimulation between %(P) and 4(Q) must relate the nodes
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labelled » and ¢ in Fig. 5 with respect to the history {(c, i, j)}. This is
because n and ¢ are the unique nodes in %(P) and %(Q), respectively,
reachable from the roots by performing the sequences S(b) F(b) S(c;)
S(a) F(a) and S(b) F(b) S(c;) S(a) F(a), respectively. However, we argue
that n and ¢ cannot be refine equivalent with respect to this history. For,
when in the state corresponding to node n, the process denoted by %(P)
can perform S(c,) and enter state x. This would have to be matched by ¢
performing S(c,) to enter state y. However, x and y are not equivalent with
respect to the history ¢ = {(c, i, j), (¢, h, k}}. In fact, we can get from state
x to state w in 4(P) by performing the end of action ¢,, F(¢;), and in state
w it is possible to start a weak d-move. But none of the states reachable
from y in ¥(Q) by performing the end of action ¢;, the one associated with
¢, by the history ¢, can start a d-move. Hence there is no refine bisimula-
tion between %(P) and 9(Q); i.e,, 9(P) #,%(Q). It is easy to see that =,
is contained in =,. We then have that

FacT 6.2. =, is strictly contained in =~ over P.

The same example can be used to prove that the definition of timed
equivalence is not robust, in the sense that slight modifications in its defini-
tion give rise to different notions of equivalence. In Section 4.3, Proposi-
tion 3.4, we proved that adding a clause requiring the matching of complete
actions to the definition of =, does not change the resulting notion of
equivalence. A natural question to ask is whether the same is true of =,.
We shall now argue that the addition of a clause requiring the matching of
complete actions in the definition of ~, gives rise to a different notion of
equivalence by showing that the resulting equivalence distinguishes the
processes P and Q above. Again, it will be convenient to use the process
graph representation of P and Q. Consider the state w’ in Fig. 4 reachable
from the root in %(P) via the sequence ¢ = bS(c) ac. Any timed bisimula-
tion requiring in addition the matching of complete actions should reiate
w' to some state with equivalent potential reachable from the root of 4(Q)
via g. There are only two states reachable from the root of #(Q) via a weak
o-transition. These states are labelled w and v in Fig. 4. We claim that w’
can be equivalent to neither w nor v. In fact, w' can perform a weak
e-move, while w and v cannot do so. This shows that there can be no timed
bisimulation between %(P) and 4(Q) which requires the matching of com-
plete actions.

The situation described above does not present itself with respect to =,.
In fact, in the definition of =, complete actions are not allowed to occur
atomically and the transition o from the root of ¥(P) to the state w' con-
sidered above corresponds to performing the sequence ¢'F(c), where ¢’ =
S(b) F(b) S(c) S(a) F(a) S(c). The only state reachable from the root of

643/115/2-6
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%(P) by performing ¢’ is state y in 4(P). Similarly, the only state reachable
from the root of 4(Q) by performing ¢’ is state y in 4(Q). We have already
seen that %(P), =~ %(Q),. Hence the transition from y to w’ in %(P) can
indeed be matched, up to =, by a transition in 4(Q).

7. CONCLUDING REMARKS

This paper has been devoted to the development of a process algebra for
the specification of concurrent, communicating systems, which incorporates
an operator for the refinement of actions by processes, and to the study of
a suitable semantic equivalence between specifications written in this
language. As we have seen, the syntactic and semantic treatment of action
refinement for such a language is much more delicate than it was the case
for the simple language considered in [3]. In particular, synchronization
between complementary actions, the internal nature of the t action, and the
“scoping” of channel names induced by the restriction operator have to be
taken into account both in the definition of a suitable notion of action
refinement for the richer language considered in this paper and in the
application of action refinements to processes.

At the semantic level, a suitable notion of equivalence for the language
we have considered can still be obtained by assuming that the actions that
processes perform during their evolution are not atomic. However, due to
the expressive power of the language under consideration, the formaliza-
tion of a suitable notion of bisimulation equivalence for it based on this
intuition has turned out to be more involved than for the language con-
sidered in [3]. In particular, the natural weak version of the refine equiv-
alence introduced in [3] turns out to play a more fundamental role than
weak timed equivalence.

The treatment of action refinement for a language with communication,
an internal action and restriction presented in this paper is, at least to the
authors’ knowledge, new. Most of the studies of action refinement in the
literature deal with this operator at the semantic level and do not address
syntactic issues like the treatment of binders. (See, e.g,, [21, 24, 15, 20, 40,
39, 33].) Moreover, synchronization between concurrent activities does not
require special treatment when dealt with at the semantic level only. As an
example, consider the processes p=al|a and ¢= p+ 7. Semantically, ie,
when interpreted as objects such as event structures, these two processes
are identical, as a T-summand would be present in the semantic representa-
tion of p. Thus when action refinements are studied at this level there is no
need to apply restrictions which ensure that they preserve intuitive seman-
tic properties which are already represented in the semantic model, such as
being able to perform an internal synchronization. On the other hand in



ACTION REFINEMENT IN PROCESS ALGEBRAS 243

our treatment of action refinement, the action refinement operators are
applied to syntactic descriptions of processes and thus have had to be
restricted to those which, in some formal sense, preserve the intended
semantics of processes. As an example, we have to restrict ourselves to con-
sidering action refinements which satisfy the axiom (ComPres) in order to
ensure that action refinements do not interfere with the internal evolution
of processes.

In this paper we have not addressed the issue of proof systems for refine
equality over the language P. However, the second author has recently
developed a complete proof system for refine equality over a language
which extends a sublanguage of P with the left-merge and communication
merge operations from ACP. The interested reader is invited to consult
[31] for more details.

The refinement theorem presented in this paper is related to the ones for
ST-bisimulation over Prime Event Structures [43] presented in [20, 39].
In fact, ST-bisimulation and refine equivalence, although defined in slightly
different ways and on different domains, are both attempts to formalize the
idea of a bisimulation-like relation between processes based on the match-
ing of nonatomic actions. In [20], van Glabbeek only considers Prime
Event Structures without internal t-actions. Moreover, because of the
chosen system model, he restricts the class of refinements to the finite, con-
flict-free ones, i.e., for each action a, p(a), the process used to refine q, is
a finite, conflict-free Event Structure. These restrictions on the allowed
refinements are also present in [39]. In that reference, Vogler has shown
that the ideas underlying ST-bisimulation can be used to turn, in a uniform
way, several bisimulation-based equivalences over Prime Event Structures
with internal actions into congruences with respect to action refinement,
The relations so obtained are indeed the largest equivalences contained in
the original ones which are preserved by action refinement.

The ideas underlying our refinement theorem and the ones presented in
[20,39] are closely related to those upon which the failures semantics
based on interval semiwords proposed in [40] is based. There the author
proposes a notion of failures semantics [13] for safe Petri Nets [37],
which is the largest congruence with respect to action refinement contained
in the standard, interleaving failures equivalence. This result of Vogler’s has
been recently generalized, mostly regarding the class of nets which are
allowed as refinements of actions, in [33]. Related results are presented in
[30], where a notion of concurrent testing of processes based upon the
ST-idea is developed for a very expressive process algebra, essentially an
extension of the one considered in this paper with recursive definitions of
processes. The resulting ST-testing preorder is shown to be preserved by a
rich class of syntactic action refinements and, moreover, is the largest such
precongruence contained in the standard testing preorders [16]. A bridge
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between the results presented in [39, 33] and those in [30] is provided by
the paper [41]. In that reference, interval semiwords, which underlie the
models in [39, 337, have been shown to be closely related to the so-called
ST-traces [20], which are used in [30] to characterize the ST-testing
preorder.

A syntactic theory of action refinement for a process algebra without
communication and restriction/hiding operators has been presented in
[36, 18]. There the authors provide a natural fully abstract model with
respect to the largest congruence over their simple language contained in
standard trace equivalence [32]. A similar result, but in the setting of
failures equivalence, has been presented in [2].

In this paper we have been concerned with the study of operations which
allow one to refine actions by processes. A dual approach is that of turning
(executions of) processes into atomic actions. This has been studied at
length in, e.g., [25, 17] in terms of atomic action refinements. Syntactically
these are similar to our action refinements but the refined processes must
be executed “atomically” and therefore the intention is very different; con-
ceptually these kinds of action refinements are more easily construed as
mechanisms for abstracting processes to atomic actions. Process algebras
with mechanisms for “declaring” computations to be atomic actions have
been presented in, e.g., [12, 27, 11], where several examples of the power
and flexibility of such conmstructs can also be found. In particular, the
approach followed in [12, 11] seems to be promising for the description
and analysis of object-based systems by means of process algebraic
techniques.
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