INFORMATION AND COMPUTATION 107, 202-236 (1993)

A Theory of Communicating Processes
with Value Passing

M. HENNESSY AND A. INGOLFSDOTTIR

School of Cognitive and Computing Sciences, University of Sussex,
Falmer, Brighton, Sussex BN1 9HQ, United Kingdom

A semantic theory of process algebras which allows processes to communicate
values is described. A behavioural theory of testing is given for such processes and
is modelled by an extension of Acceptance Trees. A proof system is also given for
this model and is shown to be both sound and complete. Finally, the model is
shown to be fully abstract with respect to the behavioural theory. 1993 Academic

Press, Inc.

1. INTRODUCTION

A semantic theory of pure processes has been presented in [He88]. By
“pure processes” we mean processes whose only form of communication is
pure synchronization: processes can only communicate by simultaneously
performing uninterpreted synchronization actions or events. The theory has
three different but complementary aspects which may most easily be
explained as different methods for intepreting a range of process descrip-
tion languages or so-called process algebras. These enable one to give
recursive definitions of processes in terms of a given set of combinators;
each process algebra is characterized by a particular set of combinators.
Those based on CCS [Mil80], assume a given set of uninterpreted
actions Act, over which a complementation function, , is defined. The
simultaneous occurrence of an action, a, and its complement, a, is
considered to be a pure synchronization. A large number of combinators
for processes have been suggested. These considered in [He88] include
external nondeterminism, +, internal nondeterminism, @, the paraliel
operator, |, the action restriction operator, \c, and action renaming, [R].

The first interpretation of this language is behavioural and consists of
two parts, an operationl semantics and a theory of testing based on this
operational semantics. This leads to a behavioural equivalence on
processes, p <,, ¢, meaning that both p and g pass exactly the same tests.
The second interpretation is denotational; a denotational model for the
language is given, called Acceptance Trees. Briefly, these are finite-

202

0890-5401/93 $5.00

Copyright (1 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.

VALUE-COMMUNICATING PROCESSES 203

branching trees where each branch is labelled by an action or event. They
are deterministic in that from each node there is at most one branch
labelled with a given event. Nondeterminism is modelled by labelling the
nodes with Acceptance sets of events. These are finite sets of events and
each individual set models a possible internal state of the process being
interpreted. The third and final interpretation is equational or axiomatic.
A set of equations over the combinators is presented and they, together
with a powerful form of induction, give rise to a transformational proof
system for deriving identities between processes. For pure processes all of
these three different interpretations coincide; ie., two processes are
behaviourally equivalent if and only if they are interpreted as the same
Acceptance Tree if and only if they can be proved equal.

The aim of this paper is to extend this theory to processes which not
only may synchronize with each other but also may transfer data between
processes during synchronization. The extended language we consider may
be viewed as a decription language for communicating agents which send
values to each other over virtual communication channels, In this setting
the set of actions Acr is now interpreted; each action represents either the
sending of a value v to a channel ¢, ¢!v, or the reception of a value v from
a channel ¢, ¢?v. Moreover, these actions are complementary to each other
so that a synchronization now consists of the simultaneous transmission
and reception of a value v along a channel ¢. Whereas in the pure language
one may define processes such as

P=a.(b.P+c.P),

where a, b, and ¢ are primitive actions, in the extended language we can
define processes such as

P=in?x.If Even(x) Then out1!x.P
Else out2\x. P,

where in, outl, and out2 are the names of the channels. In addition, we
have a typical collection of process combinators such as |, +, @, and \aq,
with the result that the language being investigated is quite powerful.

The behavioural interpretation of this extended language is straight-
forward. The operational semantics of full-CCS [Mil89] is suitably
modified for our setting and using the general definitions of testing from
[He88] we obtain a behavioural equivalence, or, more generally, a
preorder. A denotational interpretation for the extended language may also
be given by extending the idea of Acceptance Trees. The model we present
is a minor variation on that defined originally by Milne in [Miln88].
An Acceptance Tree is still a finite-branching tree where each branch is

204 HENNESSY AND INGOLFSDOTTIR

labelled deterministically by an event. For pure processes an event is simply
an element of Act, the predefined set of actions. In the extended setting
there are two kinds of events, input events of the form ¢? and output events
of the form ¢!, where ¢ is a channel name. Nondeterminism is once more
modelled by labelling the nodes with Acceptance sets of events. However,
there is a subtlety. In the pure case a branch in an Acceptance Tree always
leads to another Acceptance Tree, a subtree. Now events have more
complicated sequels. If a branch is labelled by an output event its sequel
is a finite partial function from values to Acceptance trees. On the other
hand, the sequel to an input event is a function, associating with each
possible value an Acceptance Tree. The result is a well-behaved algebraic
cpo in which our extended language may be interpreted. We prove that
every finite element in this model is definable and that two processes are
behaviourally equivalent if and only if they are interpreted as the same
Acceptance Tree.

The final interpretation of the language is obtained by augmenting the
original proof system. Most of the original equations remain unchanged
and a few are generalized in an obvious manner. For example, the original
equation

aX®a.Y=a.(X®Y)
is replaced by the pair
!X X@cMx.Y=c?x.(X®Y)
cle. X®@cle.Y=cle. (X®Y).
The equation

aX+aY=a XPaY

is also generalized in a similar manner; but there is an extra ingredient. For
input guards we obtain

cMx X+c?x. Y=¢?xX®c?x. Y
but for output guards we obtain the more general
cle. X+cle' . Y=cle. X®cle'.Y.

Here the output channels must be the same but ¢ and ¢’ may be different
expressions. We also need some obvious equations for boolean values such
as

If T Then X Else Y =X.

VALUE-COMMUNICATING PROCESSES 205

In addition we need a new form of induction because the collection of
values Val/ may be infinite. We use the infinitary rule:

plv/x]=¢g[v/x], for every vin Val
¢tx.p=clx.g

With these new rules (and some further obvious additions) we may once
more prove that two processes are behaviourally equivalent if and only if
they can be proved equal in the extended proof system.

In Section 2 we describe the language and its behavioural theory. This
consists of a structural operational semantics, in Section 2.2, and a theory
of testing based on it, in Section 2.3. In this section we also give an alter-
native characterization of the resulting preorder on prcesses. In Section 3
we describe the denotational semantics. The first section is devoted to the
definition of general models suitable to our language. These are called
natural interpretations. In the next section, 3.2, we show how to generalize
the model AT, from [He88] to take value-passing into account. This
model was originally suggested in [Miln88]. In Section 3.3 we show that
the extended model, called AT", is a natural interpretation, and develop
some of its properties. In Section 4.1 we describe the proof system for the
language and show that it is sound with respect to the model AT.". In the
next section we show that it is also complete. Finally, in Section 4.3, we
show that the model AT" is fully abstract with respect to testing; ie., it
identifies and only identifies processes which cannot be distinguished via
testing. The paper concludes with a comparison with other approaches to
modeling value-passing. In particular we show why the standard model
AT, is not adequate for this purpose.

2. THE LANGUAGE

In this section we give the syntax for the language and its operational
semantics. It is essentially full CCS [Mil80], but with 7 replaced by inter-
nal nondeterminism, @&, although the theory to be presented may also be
used to explain other forms of parallelism such as that used in CSP
[Hoa85], and LOTOS [Bri86]. In Section 2.3 we quickly present the
theory of testing as it applies to our language. We also give a generaliza-
tion of the alternative characterization from [He88] and state further
properties of the preorder which will be required in later sections.

2.1. The Syntax

The language we consider is rather abstract as we wish to concentrate on
its parallel aspects. For this reason we simply assume some predefined

206 HENNESSY AND INGOLFSDOTTIR

syntactic category of expressions, Exp, ranged over by e. This should
include, at least, a set of variable symbols, Var, ranged over by x, and a
nonempty countable set of value symbols, Val, ranged over by v. As an
example the reader might keep in mind the case where Val is the set of
numerals, N, and Exp is obtained from N and Var using operators such
as Succ, Pred, etc. We also assume a notion of closed expression, one
containing no occurrences of variables, and substitution, e[¢’/x], a new
expression which is obtained from ¢ by substituting the expression ¢’ for all
occurrences of the variable x. We also assume a separate syntactic category
of boolean expressions BExp, ranged over by be. Here the set of boolean
variables is denoted by BVar and ranged over by bx and the only values
are the constants 7 and F. Of course we expect the language for
boolean expressions to use that for expressions and one crucial result,
Proposition 2.8, depends on the expressive power of BExp with respect to
the set of values Val

The set of allowed operators is NIL, Q2 of arity 0, ¢, where ¢ ranges over
a predefined set of channel names, Chan, and [R], where R ranges over
renamings, i.€., finite permutations of Chan, all of arity one, and @, +, and
| of arity two. We use X' to denote this collection of operators and £, those
of arity k. We also need a predefined set of process names, PN, ranged over
by upper-case letters such as P, O, etc. The set of (process) terms is then
defined by the BNF-definition

ti=op(t, .., t),opeX, | P| pre.t|recP.t
| {f be Then t Else t

pre i=cle|c?x.

The construction recP. . binds occurrences of process names which gives
rise in the usual way to free and bound names and to closed and open
terms. We use f[4/P] to denote the term which results from substituting
the term u for every free occurrence of P in ¢. We will sometimes use a
more general form of substitution. If § is a mapping from PN to the set of
terms then 70 is the term which results from simultaneously substituting
A(P) for each free occurrence of P in ¢. Value-variables may also be bound
in process terms with construction ¢?x. _, giving rise to free and bound
variables. Substitution of value-expressions for value variables is also
extended to process terms in the obvious way: r[e/x] is the process term
which results from substituting the value-expression ¢ for every free
occurrence of the value-variable x in the process term .

DErINITION 2.1, Let VPL (Value Passing Language) denote the set of
all process terms which contain no free occurrences of value-variables. By

VALUE-COMMUNICATING PROCESSES 207

a closed term in VPL we mean a term in VPL which contains no free pro-
cess names. These will often be referred to as processes. The set of processes
will be denoted by Proc and ranged over by p, g, r, etc.

Note that the process names are not parameterized by value-expressions.
Adding this feature would undoubtably give a more usuable language but
for convenience we omit it. However, all for our results could easily be
extended to this more powerful language.

A finite term is one that contains no occurrences of rec. . Every term
determines a set of finite terms, its finite approximations, App(t), in the
usual way:

DeriNITION 2.2, For any term ¢ the sth finite approximation, ", is
defined inductively as:

(i) "=Q
(iiXa) (op(e))"*'=op(r"*")
(b) (pre.t)y'*'=pre.s""!
(¢} (recP.t)y"*'=¢"*"[(recP.1)"/P]
(d) (If be Then t Else u)"* ' =1If be Then 1" "' Else 1" *".

The semantic theory we develop is such that the meaning of every
process p is completely determined by that of its finite approximations,
fpln=01.

We end this section with some examples. When writing terms in VPL

we use the usual syntactic conventions of CCS and assign the usual
precedences to the operators.

ExaMmpLE 2.3. Consider the process

recP.in?7x.If x=0
Thenc?y.out!y. NIL
Else ¢?y.(in!(x—1).NIL| P)\in.

It uses three channels, in, out, and c¢. It first inputs a number, »n, from
channel in and outputs along channel out the nth value received along
channel c¢.

ExaMpLE 2.4. The process
recX.in?x left!x.((in)(x+ 1}.NIL | X)\in)

uses two channels, i and /eft. It first inputs a number, #, from in and sub-
sequently outputs on /eft the infinite sequence of values n,n+ 1, n+4 2, ...

208 HENNESSY AND INGOLFSDOTTIR

2.2. Operational Semantics

The language VPL is given an operational semantics in the usual way
using labelled transition systems. We define an extended labelled transition
system < Proc, Act, —, >> >, where

« Act is a set of actions
e — C Procx Act x Proc

s >— < Proc x Proc.

(p, a, q)e — 1s usually written p— g and intuitively it means that the
process p may perform the action ¢ and thereby be transformed into
q.p > q may be read as “p may evolve spontancously to ¢.”

The set Act consists of all input events of the form ¢?v and all output
events of the form c¢!c where ¢ € Chan and ve Val. The relations —- and
> are defined to be the least relations which satisfy the rules given in
Figs. 1 and 2. These rules presuppose an evaluation mechanism for closed
expressions: [c¢] gives the value in Val of the expression ¢ and [bc] returns
either 7 or F. In a less abstract language we would have to elaborate on
these evaluation mechanisms. The rule for communication, Rule 2, Fig. I,
uses a complementation notation for actions: ¢?v is ¢!v and ¢'v is ¢ ?v. The
rules for channel hiding also use the obvious notation name(a)#c
to indicate that the action ¢ does not use the channel ¢. In the rule for
renaming R(a) denotes the action obtained by replacing the channel in a
by R(name(a)).

The rules themselves are quite straightforward. Those for boolean
expressions and input/output are taken from [Mil80] and the remainder
are directly from [He88]. The resulting labelled transition system is not in

L c?x.p—" p[v/x] for any ve Val
cle.p—<lel, p
2. p— p’implies pt+qg—p'
gtp-—=p
3. p—%» p’implies pla—p'la
glp—qlp
4. p— p'implies phe—5 phe

if name(a) # ¢
5. p—= p’implies p[R]1 2SS p'[R]

6. [be] =T, p—~ p'implies If be Then p Else g — p’
[be] = F, g% g’ implies If be Then p Else g — g’

Fic. 1. Rules for 5.

VALUE-COMMUNICATING PROCESSES 209

1. p—*p.q-5q impliesplqg>p'| ¢

2. pdg—>p
p®g —q

22— Q2
recP.t > t{recP.1/P]
p, > p;impliesop(---, p,,---) >>op(---, p/,---Vforope {+,|. ¢, [R]}

o v AW

[be] =T, p > p'implies If be Then p Else g > p’
[be] = F, g > ¢’ implies If be Then p Else g > g’

FiG. 2. Rules for >—.

general finite branching, at least if the set of values Val is infinite. In this
case any process ¢?x.p will have an infinite number of derivations since
for every ve Valc?x.p—"%> p[v/x]. However, certain aspects of the
transition system are finitary. First some notation:

InC(p)={c|3p’,v.p—== p'}
OuwtD(p)={p'|3c,v.p —"— p'}
IntD(p)={p’'| p > p'}
D(p.a)y={p'| p— p'}.

THEOREM 2.5. For every p in VPL, InC(p), OutD(p), IntD(p) and
D(p, a) are finite.

Proof. By structural induction on p. Note that the case recP.t is trivial
since IntD(recP.t)= {t[recP.t/P]} and InC(recP.t)= OutD(recP.t)= .
Indeed the only nontrivial case is when p has the form p | ¢. In this case
we show that IntD(p) is finite, leaving the rest to be checked by the reader.
If g | r > p’ then there are three possibilities:

(1) p'isq]|r wherer >—r
(ii) p'is q'|r where g > ¢’
(ili) p'is q'|r where ¢—%» ¢’ and r - r’ for some action a.

By induction cases (i) and (ii) only give rise to a finite number of
possibilities. In the third case either @ or @ must be an output action. Since
OutD(q) and OwtD(r) are finite, by induction there are also a finite number
of ¢’ | ' in this case. |

210 HENNESSY AND INGOLFSDOTTIR

2.3. Testing

In this section we apply the general theory of testing from [He88] to
VPL. concentrating on the MUST case. It is straightforward and holds no
surprises.

A test is any process from VPL which may use in addition to the chan-
nels in Chan a special channel w for reporting success. We say p must e,
where p is a process and ¢ is a test, if in every complete computation

ple=poles=—pile-pileg =
there exists some # >0 such that ¢, —~* for some value v. By a complete
computation we mean a maximal sequence of derivations; i.e., either it is

infinite, or if it is finite and p,, | e, is the finite element then p, | ¢, = ¢ for
no ¢. Then p T ¢ if for every test e,

p must e implies g must e.

This relation is extended to arbitrary terms in VPL by letting 1 &, u if for
every closed substitution, 6, ie., a mapping from PN to Proc, 10 T, uf.
We take the preorder T and its kernel <, to represent the primary
semantic theory for our language and in later sections we give denotational
and equational characterizations of them. At this point it is not straight-
forward to show that T, is a well-behaved relation; for example that

= it is preserved by all the constructs in the language

« for any test ¢, p must e if and only if p”" must e for some finite
approximation p".

To prove results such as these we need more technical machinery. One use-
ful fact is an alternative characterization of T, in terms of the operational
semantics of processes. This is essentially the same as the alternative
characterization in [He88] with one change. There Acceptance sets are
used; these are finite collection of finite sets of actions, each finite set
intuitively representing the possible internal states. Here actions are of the
form ¢?v or ¢!v. However, when representing internal states using
Acceptance sets, we need only remember the names of the channels along
which an output can be sent or an input received but not the actual values
themselves. These will be called events:

Ev={c!|ceChan}u {c?]|ce Chan}.

Now Acceptance sets will be finite collections of finite sets of events.
To define the alternative characterization we need some notation:

VALUE-COMMUNICATING PROCESSES 211

e For se Act* define p = q by

(i) p==qif p>—>*yg

(i) p === g if for some p', p", p => p', p'—> p” and p” = gq.
o L(p)={s|for some ¢q, p = q}.
» Define |, |s, T and s by

(i) p | if there is no infinite internal computation
P=pPo > Py >
(i) pleifpl
(iii) plas’if pland if p == p' then p'|s’
(iv) ptif plis false and p1sif plsis false.
e Define S(p)< Ev by

clr clr
S(p)={c?|forsomewv, p ==} u {c!|forsomerv, p ==}

« Define .«/(p, 5), the Acceptance set of events of p after s, by
A(p.s)={S(p')| p==p'}.

DerisiTioN 2.6, For p, ge VPL, p <, g if for every se Act*

pls=(a) qls
(b) forevery A e.</(qg, s) there is some
Be o/(p, s)such that B< A4.
Condition (b) will often be abbreviated as .«/(q, s) € & (p, 5).

In the remainder of this section we show that
p<yqifand only if p &y q. (1)

This characterization makes the analysis of T,, much more straight-
forward. For example, we have the following corollary.
COROLLARY 2.7. =, is preserved by all the operations in X.

Proof. 1In view of (1) it is sufficient to check the result for <, which
is straightforward but tedious. |

The proof of (1) follows closely the proof of the corresponding result in
[HeB88]. We omit the proof that p <, ¢ implies p Ty g as the interested

212 HENNESSY AND INGOLFSDOTTIR

reader may easily construct it from Theorem 2.2.12 on p. 73 of [He88].
Instead we give the proof of

PROPOSITION 2.8. p Ty g implies p <y 4.
Proof. For each se Act* and a e Act define the tests con(s) and rej(s, a)
as follows:

(i) con(e)=w®w
con(c?v.s)=clv.con(s)+ (wPw)
con(c'v.s)=(c¢?x. If x=v Then con(s) Else wB w)+ (wPw)

(1) rej(e, c?v)y=clo. NIL+ (w®w)
rej(e.clv)y=(c?x. If x=v Then NIL Else w® w)+ (w® w)
rej((c?v)s,a)=clv.rej(s.a)+ (wdw)
rej((clv)s, a)=(c?x. If x=v Then rej(s, a) Else w ®w) + (w@® w).
With these definitions one can show that
p must con(s)ifand onlyif p|s
and
if plsthen p must rej(s, a)if and only if sa ¢ L(p).
As a corollary we have
if p Svgand plsthengls
and
if p Sy g then plsand se L(g) implies se L(p). (2)
Now suppose p &=\ q. We show that p <, g. Assume that pls. This
implies g|s. Let 4€.9/(q, s). Because of (2) &/(p, s) is not empty. Also
since pls it follows from Theorem 2.5 that «/(p,s) is finite, say
{B,, .., B,}. We have to show, that B, = 4 for some i. Assume that this is
not true. This means B\A # (J for all / and we can choose b,e B\A for
i=1,.,n Now for ee Ev and L < Ev let ac(e) be defined by
ac(c?)=c!0.w!0.NIL
ac(c)=c?x.w!0.NIL
and ac(s, L) by
ac(e, Ly=%{ac(a) |ae L}
ac({c?v)s, LYy=clv.ac(s, LY+ (wP w)

ac({c'v)s, LY=(c?x.If x=v Then ac(s, L)
Else w!0.NIL)+ (w@® w).

VALUE-COMMUNICATING PROCESSES 213

Then p must ac(s, B), where B= {b,, .., b,}, but g mast ac(s, B) because of
the unsuccessful computation

ac(s, B)| g >>* ac(e, B) | r,
where ¢ = r and S(r)c 4. |

Note that this characterization of &,,, which is crucial for the
remainder of the paper, depends on the ability to test for equality between
elements of Val.

3. DENOTATIONAL SEMANTICS

In this section we give a mathematical model for the language VPL. The
section is divided into three subsections. In the first subsection we describe
a general class of mathematical models for the language. This consists of a
natural generalization of the idea of X-cpo. The generalization is required
in order to interpret the input and output operations which cannot be
accommodated within the framework of X-cpos. Following [HP80] these
more general structures are called ratural interpretations. In the next two
subsections we describe a particular natural interpretation called Strong
v-Acceptance Trees, AT'. They are a natural extension of the Strong
Acceptance Trees, AT, in [He88]. In Section 3.2 the original domain AT,
is reformulated and this reformulation facilitates its extension to a domain
suitable for interpreting processes with value-passing, AT"!. In Section 3.3
we show that this extension is a natural interpretation by defining the
appropriate functions over it. Throughout this section we assume that the
reader is familiar with denotational and algebraic semantics. Details may
be found in [Smt86, He88, Gue81].

3.1. Natural Interpretations

VPL consists of recursive terms constructed using the operator symbols
Z and two forms of prefixing, c?x and c!e. To interpret the standard
operators in X, we use a 2-cpo which consists of a carrier. D, a cpo, and
for each symbol op in X a continuous function op, over D of the
appropriate arity. However, the prefixing operations cannot be interpreted
in a similar manner. For example, ¢?x does not take a process and return
a process; it is a binding operator which takes an open term and returns
a process, at least if x is the only free value variable in its argument.
Semantically the operation of input has the type

Chan x (Val - D) — D,

214 HENNESSY AND INGOLFSDOTTIR

where D is the proposed interpretation of processes. Similarly output has
the type

Chan x Valx D — D.

Such general structures, consisting of a 2-cpo and input and output
functions of these types, have previously been used in [HP80], where they
are called natural interpretations. We adopt this terminology.

DerINITION 3.1, A natural interpretation (for the language VPL)
consists of a triple, (D, out,, in, >, where
(1) Disa X-cpo
(1) outy: (Chanx Valx D — D) is a total function continuous in its
third argument.

(ili) inp: (Chanx (Val - D) — D) is a total function continuous in its
second argument, where Val/— D inherits the natural pointwise ordering
from D.

Given such a natural interpretation, which we informally refer to as D,
we can define a semantics of VPL following the usual approach of denota-
tional semantics. Recall that terms in VPL contain no free value variables
but they may contain free process names. So the semantic mapping only
requires as a parameter environments for interpreting the latter. We let
Env,, be the set of D-environments, i.e., mappings from PN to D, ranged
over by p. Then the semantics is given as a function,

D[]:VPL— [Env,— D],
and is defined by structural induction on VPL:

(1) D[P]p=p(P)
(i) Dlop()lp=o0pp(DLi]p)
(iii) D[recP.t]p=Yid.D[t] p[d/P]
(iv) D[Ifbe Thent Else u]l p=D[t]pif [be]=T
D[If be Then t Else ulp=D{u]pif [be] =F
(v) Dfcle.t]lp=outy(c, [e], D[] p)
(vi) D[c?x.f]p=iny(c.iv.D[t[v/x]]p).

This is only a mild generalization of the usual algebraic semantics and
most of the usual results also remain true. For example, the meaning of a
term is the limit of the meaning of its finite approximations:

Dlrlp=|] {DPL"]p | n>0}.

VALUE-COMMUNICATING PROCESSES 215

We wish to construct a particular natural interpretation which properly
refects the testing preorder &, . This is the subject of the next subsection.

3.2. Strong Acceptance Trees

We start with a brief review of the Strong Acceptance Trees, AT,
defined in [He88]. We then give an alternative description which
faciliatates the generalization to value-passing.

The definition presupposes a set of actions Acr. Then a Strong
Acceptance Tree is a finite-branching tree in which the branches are
labelled by actions and the nodes are noted either as open, denoting a
divergent computation, or closed, in which case they are labelled by an
Acceptance set, i.e., a finite nonempty collection of finite subsets of Act;
intuitively each Acceptance set represents a possible internal state. An
example may be found in Fig. 3. There are some simple conditions on these
trees:

(1) Determinancy: from any node there is at most one successor
branch from that node labelled by a particular action.

(ii) The Acceptance sets are saturated: they satisfy

(a) Ae o/, Be o implies AU Be o
(b) Aes/,Bed, A= C< B implies Ce &¥.

(i11) If a node is open it has no successors.

(iv) Acceptance sets contain only actions from successor branches:
let Act(/)=1) {4 | Ae .o/} and Succ(n) denote the set of actions labelling
successor branches of the node n. Then if .o/ labels node n, Succ(n)=
Act(7).

(o tn

FiG. 3. A standard Strong Acceptance Tree.

643:107.2-4

216 HENNESSY AND INGOLFSDOTTIR

The first condition is there because nondeterminism is reflected in the
Acceptance sets. The second and third are required in order to properly
reflect the testing preorder. The fourth is a natural consequence.

Each such tree is entirely determined by the partial function, which given
an action returns the sequel with respect to this action, i.e., the subtree
obtained by following the branch labelled by the action. The generalization
of Acceptance Trees to hand value-passing processes is obtained by
modifying the possible sequels and replacing Act by a more general set of
events. Let Ev be an arbitrary set of events and SEQUELS an arbitrary cpo
whose elements we refer to as “sequels.” We use .o/(Ev) to denote the
collection of saturated Acceptance sets over Ev and for .of € o/ (Ev) we use
Ev(/) to denote |) .o/. Also 4 — B denotes the set of partial functions
from A to B and Fin(A — B) the set of partial functions with a finite but
nonempty domain.

Given such a set Ev and SEQUELS let

H(Ev, SEQUELS)= {(.</, f)]| o € o/(Ev),
/€ Ev— SEQUELS,
and domain(f) = Ev(4)}.

Elements of H(Ev, SEQUELS) can be ordered by

(o, [)<(HB, g)if (i) B
and (i) f<g

In the second condition the partial functions f and g are ordered in a
nonstandard fashion: f<g if domain(g)<domain(f) and for every
eedomain(g), f(e)< g(e). Here condition (i) ensures that domain(g)c
domain(f) but this ordering on partial functions will also be used
in situations where this is not automatically the case. This makes
H(Ev, SEQUELS) into a partial order and all directed sets have limits. But
it lacks a least element. Let H(Ev, SEQUELS), denote the result of adding
a bottom element, with the ordering extended in the natural way. Then
H(Ev, SEQUELS), is a c¢po. The standard Strong Acceptance Trees with
respect to a set of actions Act can now be obtained as the least solution to
the equations

Ev=Act (as sets)
AT, = H(Ev, SEQUELS)
SEQUELS = AT .

VALUE-COMMUNICATING PROCESSES 217

To ensure that a solution exists we must extend AH(Ev,) to a functor in
the category of cpos with embeddings, CPO (see [Plo81, SP82]), and
ensure that it is continuous. However, this is straightforward.

To model VPL we need more general events and more general sequels.
We have already seen that two kinds of events are necessary:

Ev=1{c?|ceChan}u {c!| ce Chan}.

Unfortunately the different kinds of events require different kinds of
sequels, to allow for which we need to introduce a somewhat clumsy nota-
tion. Let @ denote disjoint union of sets. Then (4, w 4, —~ B,w B,) is used
to denote the set of all type respecting partial functions f from A, w A4, to
B, w B,, ie, functions with the property that ae A, implies f(a)e B,
whenever f(a) is defined. Now let 4T denote the least solution in CPQ of

Ev=1{c?|ceChan} v {c!| ce Chan}
AT = H(Ev, SEQUELS) |
SEQUELS =(Val » AT) w Fin(Val —~ AT).

Note that here we now expect the functions in H to be type respecting. So
the sequel to an event ¢? is a total function from Val to AT whereas that
of the event ¢! is a finite partial function from Val to AT!. Intuitively if f
is the sequel to ¢? then for every value v f(v) describes the behaviour of the
process after it receives v along channel ¢. If f is the sequel to ¢! then for
every v in its domain f(v) describes the behaviour of the process after it
transmits v along the channel ¢. In this case f is a finite partial function
since intuitively in any state a process may only transmit a finite number
of values along the channel. Here the nonstandard definition of the
ordering on partial functions play a significant role. Intuitively it means
that a process can be “improved” in the ordering by restricting the set of
values it may send along a particular channel.

THEOREM 3.2. AT is an w-algebraic cpo.

Proof. The equation above is solved in the category CPO. F, defined by

F: X - H(Ev, (Val - X) w Fin(Val —~ X)),

is transformed into a functor in the obvious way. Since it is continuous
functor AT at least exists. Moreover if D is an w-algebraic cpo then,
because Val is countable, Val - D and Fin(Val— D) are w-algebraic as
well and therefore so is F(D). It follows that F preserves w-algebraicness
and so AT" is w-algebraic. (See [Plo81, Sect. 6].) |

218 HENNESSY AND INGOLFSDOTTIR

It turns out that we can reformulate the partial order on AT so that it
is very similar in spirit to the preorder <, on processes, which is the basis
of the alternative characterization of T,,. This reformulation will be
used in Section 4 to prove the full-abstractness result. As with standard
Acceptance Trees, elements of 47! may be characterized by sequences
of actions and Acceptance sets. To define these we use the canonical
isomorphism pair

fold : F(AT) AT"
unfold : AT — F(AT?").

This enables us to introduce the useful notion of an a-successor to a tree
in AT!. For each action a in Ac¢t we define an infix partial function — by

TS5 Tif (1) aisclv, unfold(T)= (o4, f), and
T"is fc!)(v)

or (ii) aisc?v, unfold(T)= (<, [), and
T'1s f(c?)(v).

We can now define «/(7T, s), the Acceptance set of T after s, by

A if unfold(T)= (o, f)

(%) otherwise, L., unfold(T)= 1

(T, s) if 77T

%) otherwise, i.e., unfold(T)= L.

(1) d(T,E)={
(i) (T, as)={

It will also be useful to define convergence predicates over trees, similar to
those defined over processes. Let |5 be the predicate over AT defined by

(1) TleifT#1L
(i) Tlasif T |eand T—> T implies T | s.

Then it is easy to check that T} s and se L(T') implies «/(7, s) is not empty.

In analogy with the alternative characterization of &, in the previous
section we may now use the acceptance sets of trees to define an ordering,
also called <, over AT".

DerNITION 3.3, For T, Ue AT! let T <y U if for every se Act*,

Tls= (i) Uls
(i) (U, s)e.d(T,s).

VALUE-COMMUNICATING PROCESSES 219

Note that T <, U implies that if 7| and U~ U’ then T— T’ and
T’ <€y U'. This property is useful in the following theorem.

THEOREM 34. For T, U in AT, T< U if and only if T <, U.

Proof. (=-): Suppose T < U. We use induction on s to show that T'|s
implies both U | sand .o/ (U, s)< &/(T, s). If T | ¢ this means that unfold(T)
has the form (&, /). So wnfold(U) must have the form (4, g), where
#B<.o and f< g This in turn means that U] and «/(U,¢e)< .&/(T,¢).
Suppose T |as. Then T| and therefore U]. Now suppose U~ U'. Then
T T' for some T’ such that T'<U’. We know that 7']s and by
induction on s, this is sufficient to ensure that U’ls, e, Ulas and
AU, s)s AT, s), e, (U, as) <./ (T(as)).

(=) In this direction we need to appeal to some general results
about initial solutions in CPO. For any T in AT let

iy T°=1
(ii) (a) funfold(T)=LthenT" '=1
(b) otherwise unfold(T)= (o, f)and T"*"' = fold((, f,))
where f, 1s defined pointwise by

Lol ={o, (fle o))" > | vedomain(f(c!))}
Sule?) = 2w (f(e)w))"

Then, because AT is the limit of the functor F, if for every n20 T" < U"
it follows that T< U. However it is straightforward to show, by induction
on n, that T <, U implies T" < U" for every n20. |

We now have a relation <, defined on processes and on trees; the
former characterizes the behavioural preorder &, while the latter
characterizes the semantic ordering. In Section4 we prove that for all
processes p, q, p<y g if and only if AT, [p] <M AT [q]] where AT [p]
is an interpretation of p in AT, thereby proving full-abstraction of
the model with respect to testing. In the next section we explain how to
interpret processes in the model.

3.3. Strong Acceptance Trees as a Natural Interpretation

The language VPL can be interpreted in any natural interpretation and
so in order to use AT to model VPL it is sufficient to show how it can
be viewed as a natural interpretation. This amounts to giving a continuous
function, op ,,+, for each operator symbol in 2" and in addition input and
output functions of the correct type. To ease the notation difficulties in this
subsection we abbreviate AT! to AT. To make the definitions more
compact we introduce the following convention: if # is a function from

220

AT" - AT we also use h

HENNESSY AND INGOLFSDOTTIR

(Val > AT)" — (Val > AT) defined by

collection

ext(h)(fys s L) 0)=h(f1(0), oy £ (0)).

We also use ¢/(X) to denote the least saturated set containing the finite
of finite sets X. We refrain from offering motivation for the
definitions to follow. This may be found in [He88], although we borrow

much of the notation from [Miln88].

Output.

Input.

NIL.

Q.

Define out ,: Chan x Val x AT - AT by
out gy (e, v, 1) = (el
where
domain(f)= {c!}

]
flet)y={{u 15

Define in 44 : Chanx (Val > AT)— AT by
an7-(('. g): <‘{(9}}»/>

where
domain(f)= {c?}

fle)=g.

Let NIL ,; be the tree {{{ }}, />, where
f is the empty function.

Let 2,,be 1 ,;.

Internal Nondeterminism.

Define @ ,+: ATx AT — AT as
YAl At Au. ift=L1Loru=_1
then L
else let
(A, fH=1
{HA g>=u
in (e(of WA, N>
where h 1s defined by

he?)=1I(f(c?), g(c?))if ¢? e domain()~ domain(g)
= fle?) if ¢? € domain(f }\domain(g)
= g(c?)if c? € domain(g) \domain(f')

and

hic!) = f(c")if ¢! € domain{ f)\domain(g)
= g(c")if ¢! € domain(g)\domain(f)
=k if ¢! e domain(') ~ domain(g)

to denote the natural extension exit(h):

VALUE-COMMUNICATING PROCESSES 221

where
k(v)=I(f(c!)r), gle)(r))
if v € domain{ f(c!)) ~domain(g(c'))
= f¢"W) if v € domain(f(c 1)) \domain(g(c'))
= gle!'We) if ve domain(g(c)) domain(f(e))).
External Nondeterntinism.
Define + ,;: ATx AT - AT by
t+ yu=ift=4Loru=1
then L
else let
(ol fr=t
(A, 8>=u
inoAvh h>
where
ArB={A0B| Ae./, Be A4}
and h is defined by
hla) = fla) if a € domain([)\domain(g)
= g(a) if a e domain(g)\domain(f)
h(e?)=fle)D 4 gle?) if ¢? € domain() N domain(g)
and for ¢! e domain(f) n domain(g), h(c!)is defined by
Alc!)v) = f(e)v)D 47 glc!)(v)
if v € domain(f(c!)) ~domain(g(c!))
= fe")(v) if ve domain(f(c)) \domain(g(c'))
= gle)v) if v e domain(g(c!)) \domain(f(c!)).
Restriction.
For each ¢e Chan let, ;¢ : AT — AT denote
Y/R.it. ift=1 then L
elselet (.o, f>=1
in A, g>

where
B={A\{c?%c'} | Aed}
and
gle)= R(f(e))for e € Ev(A).
Renaming.

For any finite permutation, R, of channel names, let
[R],7: AT — AT denote
YiF At ift=1 then L
else let (.o, > =unfold(1)
in fold({A. g>)

A={{R(¢)|ecA}Ac .o/}

gle)=F(f(R '(e)))foree Ev(#).

222 HENNESSY AND INGOLFSDOTTIR

Parallel.
Define | ,;7: ATx AT — AT as
YAF. At du. ift=1Loru=1

then 1
else let
(e, fH=1t
(A, 8)=u
in¥y {t,g| Aec o/, Be #}
where
tis=if INT(A4, B)= &
then sumext(A, B)
else (sumext(A, B) + sumint(A, B)) ® sumint(A, B)
where

sumext(A, B)=Y EXT(A, B)
sumint(A, B)=3% INT(A, B)
where INT(A, B), EXT(A, B) are defined by
INT(A, B)={F(f(c?(v), gc)(v))| c?€A,cleB
and v € domain(g(c!})}
U{F(f(cD(v), gle)v)) | cled, c?eB
and v e domain(f(c'))}
EXT(A, B)= {in7(c, A F(f(c?)v),u) | c?e 4}
w {in (e, v F(1, g(¢?)(v)) | ¢?€ B}
w {out 47(c, v, F(f{c")(v), u) | cle A,
v € domain(f(c!))}
u {out 4 (c, v, F(1, glc!)(v)) | cleB,
ve domain(g(c!))}.

These definitions are notationally quite complex but the reformulations
of Acceptance Trees enable us to be much more precise than in [He88].

PrROPOSITION 3.5. AT is a Natural Interpretation.

Proof. It is necessary to show that each of the functions defined above
is continuous, This is rather tedious and is omitted. [J

To end this section we show that each finite element in the w-algebraic
cpo AT" is definable in our language. Let NDL denote the sublanguage of
VPL obtained by omitting the operators \¢, [R], |, recP.

THEOREM 3.6. For each finite element d in AT there is a term t in NDL
such that

AT [1] =D.

VALUE-COMMUNICATING PROCESSES 223

Proof. In CPO AT! is the limit of the sequence of domains AT", n =0,
where

AT ={1},
AT”+1=F(AT"),

and the finite elements of AT are simply the union of the finite elements
of each AT". The unique finite element of AT° is obviously definable. So
assume that the finite elements of AT* are definable. We show that those
of AT**! are also definable.

Note that any element of AT**! can be characterized by an acceptance
set ./ and a list containing a unique entry for each ae Ev(.</), of the form

<Cl ?* f] >a ey <C/?’ «fl)a <Cll !w g1 >~ (] <C:n!’ gm>’

where each f; is finite element in Val —» AT* and each g, is an element of
Fin(Val — AT*) whose range is contained in the subset of finite elements of
AT*. First consider a typical f,. It sends almost ali values to 1 and
therefore can be characterized by a finite nonrepeating list (v, f; (v)), ...,
(v,,, f; (v,)), where {v,,.., v, }={veVal|f (v)# L} Each f (v) is a
finite element in AT* and so by induction we may assume that it is denoted
by a term g,. Then let ¢(c,?) denote the term

c;?x. Ifx=v, Thenq,
Else If x=v, Then ...

Else Q.

Now let us consider a typical g,. Once more this can be characterized by
a finite nonrepeating list

(vy, g; (), (l’//~ g; (L"/,)L

where domain(g)={v,, .., v,l}. Once more each g, (v;)) is a finite element
in AT" and by induction we may assume it is denoted by a term r;. In this
case let #(c;!) be the term

clopri+ - +elor,.

Then the finite element of AT**! described above is denoted by the term

% {Z{’(f’) lee A} | AE.Q’},

where Y is the usual symbol for finite summation with respect to + and

Ywrt. @ |}

224 HENNESSY AND INGOLFSDOTTIR
4. THE PROOF SYSTEM

In this section we give a sound and complete proof system for processes
with respect to the model AT . It will follow from the full abstraction
result of Section 4.3 that it is also sound and complete with respect to the
behavioural ordering . The proof system is derived from that in
Chapter 5 of [He887], with which it has much in common, including the
infinitary rule to deal with recursive terms. The only significant addition is

the rule

tlv/x] sz ufv/x], forevery ve Val

c?x.tsT e?x.u

Of course this is also an infinitary rule if Va/ is infinite. In a more realistic
proof system it would be replaced by a finitary form of induction
appropriate to the data type of Val In addition to this rule we have the
extended equations discussed in the introduction, the obvious modification
to the interleaving law of [He88], and a number of rules concerned with
the evaluation of expressions and boolean expression.

I 1 ==
= [
1, Z u; .
I1 L= for every ope X
op(t) = op(u)
1 1 Cu f[vix] = ulv/x] forevery ve
clerz cleu c?xac ety
[
8% = e
recP.1 C recP.ou recP.t=1[recP.t/P]
rcu .
\% = for every equation 1 — u
= up rcou =

d = uforevery d € Applt)

VI
tcu
VI le] =[]
cler=cle'.t
VIII [be] =T [he] =F
If be Then t Else u=1 If be Then t Else u=u
IX _— if y does not occur free in ¢

¢Ixr=c?yalvix]

FiG. 4. Proof system.

VALUE-COMMUNICATING PROCESSES 225

Yeurez)=xere”

Yevyr=reXx
Yex=x
X+(Y+2)=(X+Y)+Z
XY+ V¥Y=rY+Xx
X+X=X
X+ NIL=X

pre. X+ pre.Y=pre (X®Y)
XX+ V=¢Ix. X®Bclx. ¥V
cle X+cle . Y=cele X®cle' Y
X+(Y®Z)=(X+NeX+2)
XBIY+2)=(X@r)+(XaZz)
XYeycx
XY+Q - Q2
QcX

I

FiG. 5. Basic equations.

In Section 4.1 we describe the proof system and prove it sound w.r.t.
the model AT!. Completeness is the topic in Section 4.2. In the final sub-
section, Section 4.3, we use the proof system to show that the model is
also fully abstract w.r.t. &, thereby uniting the three different view of

processes. Throughout we abbreviate AT [t] to [7].

4.1. Definition of the Proof System
The proof system is equationally based and is given in Fig. 4. The rules
should be self-explanatory. Note that Rules VII, VIII assume knowledge of

the evaluation of expressions, and that Rule IX is an a-conversion rule for
input terms. The equations are given in Figs. 5-7. Figure 5 is essentially

(XY e=X"®Y'c
(Y@ N[R]I=X[R]® ¥[R]

(X+Y)ie=Xve+ Yie
(X + V)[R]=X[R]+ Y[R]

‘ v pre (X'.c) if ¢ # chan(pre)
re. =
pre ¢ NIL otherwise

(pre. X)[R] = R{pre).(x[R])
NIL = NIL
NIL[R] = NIL
Qe=Q
Q[R] =8
(X@ V)| Z=X|Z®Y| 7
XY(YezZ)=XYex| 7z
NILYVP=P|NIL=P
X (Y+2)=(X+Q)| Y=0

Fic. 6. More equations.

226 HENNESSY AND INGOLFSDOTTIR

Let X, Y denote 3 { pre, X, iel}, X {pre,.Y, jeJ} Then

Y| ¥e ext(X, Y) if comms(X, Yy =F
Y= (ext(X. Y)+int(X, ¥))@®int(X, Y) otherwise

where

ext(X, Y)=Y {pre (X, | Y)iel}+Y {pre, (X | V) jeJ}
int(X, Y)=¥ X, [vix]| Y, pre,=c?x, pre;=clo}
@Y 1X,| Y, [eiv], pre;=cle, pre,=c?y}

FiG. 7. Interleaving law.

concerned with the interplay between the nondeterministic operators and
prefixing while in Figure 6 we give the equations governing restriction,
renaming, and parallel. Figure 7 gives an obvious adaptation of the inter-
leaving law in Fig. 5.3 in [He88] to handle value-passing. In Fig. 6 we use
chan(pre) to denote the channel occurring in the prefix pre and R(pre) to
denote the obvious extension of the channel renaming R to prefixes. In
Fig. 7 the predicate comms is defined to be true only if for some i, j pre, and
pre, are inverses of each other.

Let | = u denote the fact that 1 — u can be derived from the proof
system.

THEOREM 4.1. 1t = u implies [t] < [u].

Proof. First it is necessary to check that AT satisfies all of the
equations, which is redious but not very difficult apart from the inter-
leaving law. Then it is necessary to check that all of the rules are sound in
AT!. All are straightforward. For Example, VI is sound because in any
natural interpretation D

DL} =| | (Did].de App(n)}. 1

4.2. Completeness of the Proof System

In this section we show the completeness of the proof system with
respect to the model AT ie,

¥

[p]<lq] implies - p ¢.

It is sufficient to show a slightly weaker result: for every finite term ¢ and
process ¢,

1d] < [¢] implies |- d C 4. (3)

VALUE-COMMUNICATING PROCESSES 227
For suppose we have proved (3) and [p] < [¢]. Now

[pl=_]{[p"T.n=0}.

So, for every de App(p), [d]<[q]. By (3) it follows that for every
de App(p), d —q. Applying Rule VI we obtain the required - p — ¢.
To prove partial completeness (3) we do not require the full proof
system; more specially, we do not require Rule VI. Let p = 4 ¢ denote the
fact that p = ¢ can be derived in the proof system without the use of
Rule VI or the first part of IV.
We show that

[d] <[q] impliesd = , ¢.
The central notion is that of head normal form.

DerFiniTION 4.2, (1) NIL is h.nf.
(2) Let .o be a saturated set, and for each ¢ € Ev(.o7), let ¢, be a term
given as follows:
(a) If e=c?then 7, is ¢?x.¢ for some term ¢'.

(b) If e=c! then 1, is X {clv.f(v)|vedomain(f)}, where f
is a partial function from Val into VPL with a finite domain; ie.,
feFin(Val—~VPL).

Then

Z{Z {f(-feeA}lAe.o/}

is a h.n.f.
We refer to +' above as 1(¢?) and f as 1(c!).

Note the similarity of the h.nf’s to the trees in AT%. We wish to show
that every convergent term has a h.nf. and the proof follows closely the
corresponding result for the pure language. There the proof used three
derived equations:

XYOY=X®YD(X+Y) Der 1
XQX+Y+2)
=XOX+V)D(X+Y+2) Der 2

(pre X\ + Z,)® (pre. X+ Z5)
=(pre X+ Z)®(pre. X+ 2Z,)
where X'is X, @ X, Der 3.

228 HENNESSY AND INGOLFSDOTTIR
These are also derived equations in our proof system but, in addition, we
also require a modification of Der 3 for output guards:

(le. X, +Z)®D(cle'. Xot Z)=(W+Z)D(W+Z,)

where Wisc¢le X, +c¢le'. X, Der 3.

This may be derived in a similar fashion to Der 3 (see p. 37 of [He88]):

(cle. X, +Z)®(cle". X+ Z,)

=(cle. X, +Z)®(c'e . X+ Z5)

®@W+Z,+2,) by Der 1
— (e X, +Z)D(W+Z)®(cle. Xr+Z,)

@W+Z)D(W+Z, +2,) by Der 2
— (e X, 4+ Z)®(WH+Z)®(cle . X2+ Z5)

®(W+2Z,) by Der 1

=((cle X W)+ Z)®((c'e" X, W)+ Z,)
using the distributivity of + over @.
But with the new equation, cle. X+ c¢le'. Y=cle. X@cle'. Y, one can
show that
cle X @W=cle' X, W=W

and the result follows.

ProPOSITION 4.3. If pl, then there exists a h.nf., hnf(p), such that
p=ahnf(p).

Proof (Outline). The proof proceeds in two stages. First processes are
reduced to sum forms and then the latter are converted to h.n.f’s. A sum

form is a process whose toplevel operators are prefixing, +, or @.
Formally it is the least set of processes SF which satisfies:

1. NILeSF, pre.te SF.
2. p,geSFimplies p+qgeSFand p@geSF.

The technique of Theorem 2.4.6 of [He88] may be used to convert a sum
form to a h.nf. but using Der 3' in place of Der 3. So we concentrate on
showing how to convert processes into sum forms,

Let < be the least transitive relation which satisfies

L. p<op(---,p,--)ifopel{l, +, ®\c, [R]}
2. p > g implies p<gq.

VALUE-COMMUNICATING PROCESSES 229

We use Ind(<) to denote the set of processes p such that {p'| p'< p} is
finite. It is easy to show, by structural induction, that if p¢ Ind(<) then
p > ¢ for some g such that g¢Ind(<). In other words p] implies
pelnd(<) and therefore we may prove the required statement using
induction over <.

The proof proceeds by a case analysis on the dominant operator in p
and in the cases of the operators |, [R], and \c they can be eliminated
using the equations of Figs. 6 and 7. The only difficult case is the parallel
combinator | for which we must phrase the inductive hypotheses in such a
way that, when we apply the interleaving law, further occurrences of | may
be eliminated. The required inductive hypothesis is: For each pe Ind(<)
there is a sum form, sf(p), such that

L. p=asf(p)
2. for every se Act ™, sf(p) = r implies p == r. ||

We also need the following property of finite terms.

LemMMA 44, For every closed finite term d
dl <d=, Q.

Proof. By repeated use of the interleaving law we can eliminate the
operator | from d. The proof then proceeds by structural induction on d.
For each of the operators there is an equation which states that it is strict
in all of its arguments. |

A similar relationship between behavioural convergence and denoting L
in AT" can be established for arbitrary closed terms.

LEMMA 4.5. For every closed term pp| if and only if [p]].

Proof. First suppose p|. Then p has a h.nf Anf(p) and, since the proof
system is sound with respect to AT,, [p] = [Anf(p)]. But because of the
structure of h.n.f’s it 1s simple to show that they are intrepreted as trees T
such that T|. Therefore [p]|.

To prove the converse first consider finite closed terms d. If df then
d=, £ and since [Q2] = L it follows that [d] = L. So [d]] implies d|.
Now suppose that for some closed term p, [p]]. Then since [p]=
LI{[p"] | n=0}, there exists some n> 0 such that [p"]|. Since p” is finite
this implies p"}. Now p" T\, p and this in turn implies that p" <,, p. So

we can conclude that p|. |

THEOREM 4.6. For any closed finite term d and closed term gq,

[d] < [q] implies d = 4 q.

230 HENNESSY AND INGOLFSDOTTIR

Proof. By induction on the depth of d, i.e., the length of the longest
sequence of external moves it can make. Note that d and hnf(d), if it exists,
have the same depth.

If d1 then since d=, Q2 the result follows trivially. So we may assume
that d|. From Lemma 4.5 this in turn implies that ¢|. So let their respec-
tive h.nf’s be

E{Z {d.lecd)] Aeﬂ}
E{Z {q.1ecB) | Be.%}.

Because of the structure of h.nf’s

A([d], €)= o,
[d] — [d(c!)(v)] for ¢!e Ev(.«/)and v e domain(d(c!))
[[d]—» [d(c?)[v/x]] for ¢? € Ev(.o/),

where x is the variable ¢? binds in d(¢?) and similarly for ¢g. By the
definition of < in AT! it follows that # < o/, and for each ¢!e Ev(#)
and vedomain(q(c!)) [dic!)(v)] <[g(c")(v)] and for each c¢?e Ev(#)
[d(cN[v/x]] <[g(c?)[v/x]] for every ve Val. By induction we have for
such ¢!, v and ¢? that d(c!'v) =4 g(c!)(v) and d(eN[v/x] = A g{c D[v/x].
Using Rule Il we can now show that for each ¢? in Ev(B)d,, =4 q.-.
Similarly we can use the equations, in particular X@® ¥ < X and the new
equation cle. X®@cle'.Y=cle. X +cle'. Y, to show d., =, q.,. We may
now proceed as in [He88] to show d = 4 ¢:

d=AZ{Z{dl.|eeA}Aed}
=AZ{Z d.|eed} Ae/ﬂ} for some r
Sapsy {d. |eeA‘Ae¢8}

}

;AE{ Y {q.lecA}Ac R

=.q 1

Following the discussion at the beginning of this subsection we can now
state:

VALUE-COMMUNICATING PROCESSES 231
THEOREM 4.7. For all processes p, q we have that \—p = q if and only if
[r] <14l
4.3. Full Abstraction

In this section we show that the model AT is fully abstract with respect
to the behavioural preorder &y ie.,

P Twmq if and only if [p] < [g]. (4)

This in turn implies the soundness and the completeness of the proof
system with respect to &, because of Theorem 4.7.

The key to proving this result is the relation <,,. It is defined both on
terms and on trees and in each case is defined in terms of convergence
predciates | s, for each sequence of actions s, and acceptance sets. We have
already shown that

PRmg=ping
for all closed terms p, ¢, and

T<U«TgyU
for all trees T, U. So we show (4) by proving

P<ug<=[p] <um [4]

This in turn follows from

pls<1p]ls

and
A (Lpl(s))=clA(p,s)),

where ¢/ is the closure operator for saturated sets referred to in Section 3.3.
Recall that ¢/(X) is the least collection of finite subsets such that

1. Xecd(X).

2. A,Cecl(X) and A < B< C implies Be c/(X).

3. A, Becl(X) implies A Be c/(X).
These two results are not shown directly for all processes p; they are
mediated by the useful notion of head-normal forms. We leave the reader
to check that p — , ¢ implies p &, ¢; this means checking that T, is

satisfied for all the equations and is preserved by the appropriate rules. It
then follows that p <, hnf(p).

641 107°2-5

232 HENNESSY AND INGOLFSDOTTIR

PROPOSITION 4.8. For every closed term p,
pls<=[plls

Proof. The proof is by induction on the length of s. The base case,
when s = ¢, has already been shown in Lemma 4.5. So we assume that s has
the form as".

(1) Suppose plas’. Then pland so has h.nf anf(p). Now by the
construction of the h.nf.’s:

hnf(p)—> g < [p] —> [q].

So if [Anf(p)] —= T then hnf(p)—> g such that [¢g] = T. Now ¢ | s’ and so
by induction 7] s". This means [hnf(p)] | as’” and therefore [p] | as’.

(i) Suppose [p] | as’. The proof that p | as is very similar. [

PROPOSITION 4.9. For cvery se€ Act*, pls implies that /([pl,s)=
c(A(p, s)).

Proof. Again by induction on the length of s.

(i) s=e¢. Since p| it has a hnnf hnf(p) and [p] =[Anf(p}]. By
the construction of hanf’s & ([Anf(p)], e) = (hnf(p),c). Also since
p=axhnf(p) it follows that p <, hnf(p) and hnf(p) <y p. This in turn
means that /(.o p, £)) = cl(./(hnf(p), £)). But by the definition of h.n.f,
cl(.o (hnf(p), &)=/ (hnf(p), ¢), from which it follows that .«/([p],¢)=
cl(A(p, €)).

(ii) s=as’. Again p|s means p|and therefore it has a h.n.f inf(p)
with [p] = [hnf(p)]. Here we use again the property

hnf(p)—> q<[hnf(p)] - [4q].

So by induction, if either of .«/(p, as) or .&/([p], as) is nonempty, then both
are nonempty. So let us assume the latter. Then

c(of (p.as’))=cl(.A(q, ') where hnf(p) > ¢
=.o/([¢], s") by induction
=/ ([hnf(p)], as’)
=d([pl,as"). |

Again from the discussion at the beginning of the subsection we can
conclude that

THEOREM 4.10. For all processes p, q,
p Swmifandonly if [p] <[q].

VALUE-COMMUNICATING PROCESSES 233

5. CONCLUSION

We have presented a semantic theory of a process description language
which supports value-passing. It consists of a denotational model which is
fully abstract with respect to a natural notion of testing and a proof system
which is both sound and complete with respect to the model. One can use
Theorem 3.6 to characterize the model further: it is the initial Natural
Interpretation which is fully abstract with respect to testing.

Although the language is theoretically quite powerful, it is very limited
from a practical point of view, as the examples in Section 2.1 show.
A more natural language would, for example, allow process names to be
parameterized by values and would have values of different types, with
specific types associated with individual channels. These additions would
improve the language considerably and all could easily be accommodated
within our theory. It should also be apparent that the theory does not
depend in any way on the use of the particular combinator |. Many other
parallel combinators from the literature may also be modeled for the
reasons explained in [He887]: essentially we have a theory of nondeter-
ministic processes on top of which one may model a wide variety of
parallel combinators.

The complete proof system is mainly of theoretical interest, although, if
the two infinitary rules are replaced by finitary forms of induction, the
result would be powerful and somewhat more useful. It would still pre-
suppose the ability to evaluate expressions. A more interesting proof system
would incorporate a subproof system for the equality of value-expressions
which may include free variables and would prove statements of the form

, ,
ey=¢e), ... =6 -p=gq.

Such a proof system is defined in [He89].

The research reported here was motivated by the publication of
[Miln88] where a minor variation on the model AT was originally
presented. We have offered a formal justification for this model, namely,
that it identifies processes which cannot be differentiated using a natural
notion of testing. As far as we are aware, no similar result appears in the
literature for process languages which support value-passing.

There are, however, various semantic theories of such languages. In
[Mil80] an operational semantics similar to ours is given for “full CCS”
and in [HP80] an observational preorder for this language is characterized
equationally. Indeed, this result is very similar to the completeness theorem
for our proof system. However, this theory lacks a natural model, although
a term model is constructed from the equational characterization. More

234 HENNESSY AND INGOLFSDOTTIR

recent work on “full CCS” (see [Mil89]) tends to explain value-passing in
terms of infinite choice, with ¢?x.p being modeled by

{Z ¢, plv/x]|ve Val}.

This approach, which is based on the theory of bisimulations, also lacks
natural models and complete algebraic characterizations are difficult to
obtain. However, it is natural to wonder to what extent this derived notion
of value-passing could be accommodated within the standard framework of
testing [He88]. Both the full-abstractness and completeness results in this
framework depend crucially on the fact that processes are finite-branching.
To be precise, in order to interpret ¢?x.p in the above fashion the
language needs to have an infinite summation operator, » _,,,, at least if
Val is infinite. Such an operator cannot be interpreted in the standard
model AT, because each tree in AT, has a finite number of successor
branches.

One could still use this derived notion of value-passing in the framework
of testing if one could find a simple generalization of AT, which dropped
the assumption of finite branching. This would avoid the necessity of
defining the more subtle variant 4T, particularly if the extension were
straightforward. However, there are at least two problems with this sugges-
tion. The first is that if such a generalization could be found then it would
not be fully abstract with respect to the behavioural preorder L, for the
simple reason that it would not satisfy the axiom

cleX+cele.Y=cle X®cele'. Y.

This axiom is a consequence of our natural framework of testing, in which
instances of the left and right hand sides cannot be differentiated. It is
conceivable that one might be interested in a more powerful notion of
testing where, for example, the processes ¢!l.p+¢!2.q and ¢!1.p@c!2.4
could be distinguished. This essentially means that one has processes with
unbounded nondeterminism and morcover observers can discern this
unbounded behaviour. This brings us to the second problem, namely that
an infinitary version of AT, is not easy to define. One suggestion would be
to take the definition of A7, but omit the requirements about finiteness.
However, this would mean that the order defined in Section 3 would not
be complete. One can see this without being too precise. Let 7, be the
denotation in the proposed model of the “term”

¥ {a,.NIL|nzk}.

VALUE-COMMUNICATING PROCESSES 235

Then Ty, < T, < --- €T, < --- forms a chain which has no limit. One could
try to invent a new order and this is the approach taken in [Ros88b]. Here
the standard ordering on AT,, or more accurately, the failures model of
CSP, which is very similar, is divided into its two components, one of
which is the “improvements order,” which models the fact that one process
is more deterministic than another; the other, called the “definedness
order,” is concerned only with divergence. A similar approach could be
taken to the infinitary version of AT,, where the corresponding version
of the “definedness” order would be complete. However, there are still
problems. Using this derived notion of value-passing the hiding or
restricting of channels must be modeled by hiding or restricting with
respect to an infinite number of actions, which is not continuous even with
respect to the “definedness” order. For example, let P, be the denotation
of the term

S leo NIL k<n}+)Y {c;.Qk=n).

Then Py, ..., P,, .. is a chain and it is natural to expect that its limit would
be P, the denotation of

Y {eo NIL|k=0}.

However, in the proposed model, (P,|c¢'1.NILY.c=Q for every n,
whereas (P | ¢!'1.NIL)\c= NIL.

In other words, accommodating any aspect of unbounded nondeter-
minism within the testing or failures framework is nontrivial and best
avoided if at all possible. Attempts in this direction may be seen in [He87]
and the previously cited [Ros88b]. So a major contribution of the present
paper is to show that value-passing languages, which a priori exhibit forms
of unbounded nondeterminism, can be accurately modeled using standard
mathematical constructions which are usually only considered adequate for
finitely branching processes.

In [Ros88a] a denotational model for OCCAM, ([In84]) is presented
and in [HR88] equational laws for this model are investigated. This work
has much in common with our research, although their language is
imperative where ours is applicative. Moreover, in this work there is the
underlying assumption that the set of values passed between processes is
finite. This is necessary because even in the standard failures model of
[Hoa85], which is the underlying basis for these papers, hiding with
respect to an infinite number of values is not continuous; the example
above may be used to show this. Their model also lacks a behavioural
characterization; this poses the problem of how to develop a theory of
testing for imperative languages which contain assignment statements.

236

HENNESSY AND INGOLFSDOTTIR

ACKNOWLEDGMENTS

The first author acknowledges the support SERC and the ESPRIT/BRA project Concur,
while the second author was funded by Arhus/Aalborg University.

RECEIVED August 14, 1991; FINAL MANUSCRIPT RECEIVED August 19, 1991

[Brig6]

[DNH84]
[Guesl]
[HP80]

[Hews]
[Hes7]
(He88]

[He89]

[Hoa85]
[HR88]

[In84]
[Miln88 |

[Mil80]
[Mil89]

[Plo81]
[Ros88a]

[Ros88b]

[Smt86]
[SP§2]

REFERENCES

BrinksMA, E. (1986), A turotial on LOTOS, in “Proceedings of IFIP Workshop
on Protocol Specification, Testing and Verification }™ (M. Diaz, Ed.), pp. 73-84.
North-Holland. Amsterdam.

DENicoLA. R., anp Hennessy. M. {1984), Testing equivalences for processes.
Theoret. Comput. Sci. 24, 83-113.

GUESSARIAN, . (1981), “Algebraic Semantics,” Lecture Notes in Computer
Science, Vol. 99, Springer-Verlag, Berlin/New York.

HENNESSY, M., AND PLOTKIN, G. (1980), “A Term Model for CCS.” Lecture Notes
in Computer Science. Vol. 88, Springer-Verlag, Berlin/New York.

Hennessy, M. (1985), Acceptance trees, J. Assoc. Compur. Mach. 32, No. 4,
896-928.

HenNEssY., M. (1987), An algebraic theory of fair asynchronous communicating
processes, Theoret. Comput. Sci. 49, 121 -143.

HexNESSY, M. (1988), “Algebraic Theory of Processes.” MIT Press, Cambridge.
MA.

HENNESSY, M. (1989), “A proof system for communicating processes with value-
passing, in “Proceedings of Foundations of Software Technology and Theoretical
Computer Science, Ninth Conference. Bangalore,” pp. 325-339, Lecture Notes in
Computer Science, Vol. 405, Springer-Verlag. Berlin/New York: to be published in
Formal Aspects Coniput.

Hoare, C. A, R. {1985), “Communicating Sequential Processes,” Prentice -Hall
International, London.

Hoare, C. A. R., AND RoOsCOE. A. W. (1988), The laws of Occam, Theoret.
Comput. Sci. 60, 177 229.

Inmos Lo, (1984), “The Occam Programming Manual.” Prentice—Hall, London.
MiILnE, R. (1988), “Concurrency Models and Axioms,” RAISE/STC/REM;6,V2,
STC Technology.

MiLner, R. (1980), “A Calculus of Communicating Systems,” Lecture Notes in
Computer Scicnce, Vol. 92, Springer-Verlag. Berlin.

MiLNer, R. (1989), “Calculus for Communication and Concurrency.” Prentice—
Hall, London.

PLoTkIN, G. (1981). “Lecture Notes in Domain Theory™, Univ. of Edinburgh.
Roscoe, A. W. (1988), “Denotational Semantics for Occam,” PRG Monograph.
Oxford University.

Roscoe. B. (1988), "Two Papers on CSP.” Oxford University Technical Report
PRG-67.

SCcHMIDT, D. (1986), “Denotational Semantics,” Alley & Bacon, Rockleijh, NJ.
SMYTH, M., AND PLOTKIN. G. (1982). The category-theoretic solution of recursive
domain equations, SI4M J. Comput. 11, No. 4.

