INFORMATION AND COMPUTATION 103, 204-269 (1993)

Towards Action-Refinement in Process Algebras*

L. ACETO AND M. HENNESSY

School of Cognitive and Computing Sciences, University of Sussex,
Falmer, Brighton BN! YQH, United Kingdom

We present a simple process algebra which supports a form of refinement of an

action by a process and address the question of an appropriate equivalence relation
for it. The main result of the paper is that an adequate equivalence can be defined
in a very intuitive manner. In fact we show that it coincides with the timed-
equivalence proposed by one of the authors. We also show that it can be

characterized equationally. 1993 Academic Press. Inc.
Contents
1. Introduction.
2. The language. 2.1. Labelled transition systems and bisimulation. 2.2. A basic
language. 2.3. The process language with refinement.
3. Timed-equivalence. 3.1. Timed-operational semantics. 3.2. ~¢ coincides with ~ .
4. Refine equivalence. 4.1. Motivation. 4.2. The calculus and its operational

wn

6.

semantics. 4.3. Definition of refine equivalence. 4.4. Refine-equivalence and
timed-equivalence coincide. 4.5. Refine-equivalence is preserved by action-
refinement.

. Proof of the equational characterization. S.1. Preliminaries. 5.2. Unique

factorization and decomposition results. 5.3. The completeness theorem.
Conclusions.

Appendix: Table of Notation.

The term reactive systems has recently been coined [Pn85] to refer to
a wide class of computational systems which evolve or compute by

1. INTRODUCTION

periodically interacting with their environment.

These systems may be purely software, such as processes written in the
programming language Occam [OCB84], purely hardware, such as VLSI
systems, or a mixture of both, such as communication protocols. Indeed,

* This work has been supported by a grant from the United Kingdom Science and

Engineering Research Council and by the Esprit BRA Project CEDISYS.

204

0890-5401/93 $5.00

Copyright (€ 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.

PROCESS ALGEBRAS 205

most computational devices may be viewed in one way or another as
reactive systems; so that a theory of these systems is also a general theory
of concurrent systems.

Many languages have been devised for describing reactive systems; in
this paper we restrict our attention to the so-called process algebras such
as CCS [Mil80], CSP [Hoare85], and ACP {BK&85]. These consist of a
set of combinators for constructing new systems from existing ones
together with a mechanism for recursive definitions and are normally
parameterized with respect to a predefined set of actions. For example, if
a, b, ¢ are actions then P, defined by

P <= (a; P)+ (b; c; P),

describes a reactive system which can either perform an g-action and
proceed as before or perform a b-action followed by a c-action and proceed
as before.

These languages are designed to describe not only actual systems but
also their specifications. It follows that a very important component for
these languages is a notion of equivalence between descriptions: one
description might be a specification, say SPEC, and another, SYS, the
description of an actual implementation and to say that they are equivalent
means that SYS is a correct implementation of SPEC, for both describe
essentially the same behaviour but at different levels of abstraction or
refinement.

A variety of equivalences have been proposed [Mil80, HMS8S5, Hoare85,
DH84], and a variety of methods for proving pairs of descriptions
equivalent. Although the resulting theories are very different, speaking in
general terms they have much in common. They all allow abstraction from
internal actions and, in addition, the equivalences in the latter two
references allow descriptions to be equivalent if they both describe the same
behaviour modulo nondeterminism.

We would like to develop a language for reactive systems and a related
equivalence which would support a form of abstraction/refinement where
actions might be refined to processes or dually processes might be
abstracted to actions. For example, at a very high level of abstraction a
system might be described by

SPEC <=input; output; SPEC.

At a more refined level it may be that the actions of input and output
are rather complicated and are carried out by processes P and Q,
respectively. So SPEC could be refined to

SYS < P; Q; SYS.

643:103:2-4

206 ACETO AND HENNESSY

This form of abstraction/refinement is not supported by any existing
Process Algebra and it is the topic of the present paper. More specifically
we consider a very simple (even minimal) process algebra, and a new
combinator for refining an action by a process and address the question of
an appropriate equivalence for the augmented language. The main result of
the paper is that, at least for the simple language we consider, an adequate
equivalence can be defined in a very intuitive manner and moreover
can be axiomatised in much the same way as the standard behavioural
equivalences [HM8S5,DH84 1.

Semantic equivalences for models of concurrent computation, e.g., Petri
Nets [Rei85] and Event Structures [Win87], which support the refinement
of actions by processes have recently been the subject of extensive study in
the literature; see, e.g., [GGB88, Gi%0a] for well-written surveys. For
example, history preserving bisimulation and ST-bisimulation equivalences
over prime Event Structures have been shown to be preseved by action
refinement in [GGB88, GI90], respectively. Refinement theorems for
branching bisimulation [GW89] over process graphs [BK85] and causal
trees [DD89a] have been given in [GW89a, DD89b]. Vogler proves in
[Vo90] that a variation on failure semantics based on interval semiwords
is a congruence with respect to action refinement over safe Petri Nets. A
syntactic study of action refinement in the framework of trace equivalence
over a simple process algebra has been presented in {NEL88]. In this
paper we shall set the basis for a syntactic study of action refinement in
process algebras in the semantic framework of bisimulation equivalence.
Further developments of this theory for more complex algebras may be
found in [AH90). We refer the interested reader to Section 6 for a more
detailed comparison with related work.

We now give a brief outline of the remainder of the paper. In Section 2
we define our language, which is deliberately designed to be the simplest
possible in which the questions we address are interesting. We also give a
standard operational semantics in terms of a labelled transition system
[Pi81]. This is the starting point for most of the existing behavioural
equivalences. We give one example, strong observational equivalence ~,
and show that it is not adequate for our language. The basic problem is
that two equivalent terms can have different effects when used as part of a
larger system or context. It means that this equivalence will not support a
compositional proof method. Nevertheless it is an intuitive equivalence and
we argue that an appropriate equivalence for our language is the largest
context-preserving equivalence contained in ~, ~° We show that this
relation ~° is intuitively and mathematically tractable, the former by
showing that it coincides with timed-equivalence [H88] and the latter by
showing that it can be equationally characterized.

Timed-equivalence is the subject of Section 3. If an action can be refined

PROCESS ALGEBRAS 207

by a process, we can no longer consider actions as being atomic events. A
minimal consequence is that actions have distinct beginnings and endings.
This is the intuition underlying timed-equivalence, which we denote by ~,.
It is strong observational equivalence but defined using subactions,
beginnings and endings, S(a) and F(a) for each action a.

We prove that ~, and ~° coincide. However, the proof of ~, & ~° relies
on an equational characterization of ~,. This equational characterization
Is given in detail in Section 5 as it is independent of the remainder
of the paper. One consequence of the fact that ~, and ~° coincide is
that ~, is preserved by action-refinements; ie, p ~,q implies that
pla~r] ~ gla~r], for each process r. However, the proof is very
indirect as it relies on the completeness of a set of equations for ~, and the
particular form these equations take. It would be preferable to have an
operational or behavioural proof of this fact as we are unlikely to have
complete equational theories of the appropriate form for more complicated
languages.

With this in mind, in Section 4 we introduce a variation of timed-
equivalence called refine-equivalence, ~,. This is also a strong observa-
tional equivalence defined using the subactions S(a) and F(a), but the extra
ingredient is that the beginnings and endings of actions must be properly
matched. In many ways this is a more intuitive formulation of strong
observational equivalence for non-atomic actions, although the formal
definition is somewhat more complicated. We show that, for our simple
language, ~, and ~, coincide and we also give a purely behavioural proof
of the fact that ~_ is preserved by action-refinements.

We end with a conclusion and suggestions for future work. A table of the
notations used in the paper may be found in the Appendix.

2. THE LANGUAGE

In this section we present the language used in this paper to discuss the
problems mentioned in the introduction. The language we use is a process
algebra, in the style of CCS [Mil807, CSP [Hoare85], and ACP [BK85],
equipped with a new combinator for refining an action by a process. The
set of combinators we consider is a minimal one for the issue we want to
address in this paper to be interesting. For instance, it lacks a notion of
communication between parallel agents and a facility for defining recursive
agents. However, its set of combinators constitutes the core of any process
algebra and an understanding of the theory we aim at developing for them
has proved to be useful in extensions to more complex algebras which are
currently under investigation, [AH90].

208 ACETO AND HENNESSY

This section is organized as follows: in 2.1 we briefly review two standard
means of defining the operational semantics of concurrent agents, Labelled
Transition Systems (LTS) [Kel76], and bisimulation [Par81]. The notion
of (strong) bisimulation is used many times in the remainder of the paper
for many different LTS’s and we often refer the reader to the general
definitions given in this section.

In 2.2 we present our basic language P and its operational semantics.
The operational rules are used to define a standard observational semantics
for P by means of the strong bisimulation technique outlined in 2.1.

In 23 we enrich P with a simple refinement operator [a~ ¢]. This
operator allows the refinement of an action by a process. The operational
semantics for this language will be defined in two ways: the first reduces a
process pe P, to a process red(p)e P by essentially considering the new
operator as a syntactic substitution. The operational behaviour of p is then
indirectly defined by that of red(p). The second defines a set of transition
relations which directly give the operational semantics for pe P .

The associated strong bisimulations will be shown to coincide on P,,.
We will denote them by ~.

However, as we will show by means of examples, it turns out that ~ is
not an adequate semantic equivalence for P In fact, it is not a
congruence with respect to action refinement. This means that ~ would
not support compositional proof techniques. As is standard practice we
consider the largest congruence, with respect to P, contained in ~. We
denote it by ~°. The remainder of the paper is devoted to studying the
properties of ~°.

2.1. Labelled Transition Systems and Bisimulation

A standard way of defining the operational semantics of concurrent
processes is the so-called two-step approach. This approach, advocated
by Milner in [Mil80] and most of his subsequent work, is based on
associating an operational semantics to processes following Plotkin’s
Structured Operational Semantics (SOS) [PI81] and then abstracting
from unwanted details on the way processes evolve using a behavioural
equivalence which equates processes which cannot be told apart by means
of external observation of their behaviour. A semantic process is then taken
to be a congruence class of syntactic objects (terms). In this section we
briefly review these ideas and refer to the quoted references for more
details.

A standard notion which is used in defining the operational semantics of
concurrent processes using Plotkin’s SOS is that of Labelled Transition
System (LTS) [Kel76].

Informally an LTS is based on a notion of global state and of transition
from one (global) state to another. The transition relation is usually

PROCESS ALGEBRAS 209

parameterized on a set of atomic actions Act and several interpretations of
the relations —2», x € Act, are possible. A standard one is the following
[Mil80]:

p—>> p' iff p may perform the action « and become p’ in doing so.

Formally the definition of labelled transition system is the following one:

DerFINITION 2.1. A Labelled Transition System (LTS) is a triple
(St, Act, {— | x€ Act}), where

« St is a set of states,
¢ Act is a set of actions,
« for each x e Act, —>» < St? is called a transition relation.

The second step of the operational approach to the semantics of
concurrent processes is abstraction from unwanted details. This is achieved
by factorizing the set of processes via one of the observational equivalences
proposed in the literature, [Mil80, Mil89, DH84, BHR84]. The essence of
these equivalences is that they are based upon the idea of observing a
process, which is usually taken to mean communicating with it. The idea
is that processes are equal iff they are indistinguishable in any experiment
based upon observation. One of the most extensively studied approaches to
the definition of observational equivalences for processes is the one based
on Park’s notion of bisimulation [Par81]. This way of defining observa-
tional equivalences on processes will be frequently used in this paper. For
this reason we now give the formal definition of bisimulation for LTS and
will refer to it every time we will define an equivalence in this style.

DeFmITION 2.2. Let (St, Act, {— | € Act}) be an LTS.
A binary relation # on St is called a bisimulation if for each (s,, 5,) e R,
a € Act the following clauses hold:

(i) s, —=> s\ =355 5,— 55 and (s}, 53) € A,
(il) s, s3=>3s]:5, — s} and (5], s})eA.

The following result is then standard:

PrOPOSITION 2.1. Let ~ ={J{R =S| R is a bisimulation}. Then:

(1) ~ is the maximum bisimulation.

(i) ~ is an equivalence relation on St.

In the remainder of the paper this technique for defining the operational
semantics of concurrent processes is used several times. We will introduce

210 ACETO AND HENNESSY

simple languages ¥ and will define the operational semantics of the terms
by induction upon their structure. This associates an LTS to each term
te & and thus to & itself. Consequently we apply the notion of bisimula-
tion, described above for general LTS’s, to obtain a standard observational
equivalence.

2.2. A Basic Language

The language we consider, which is closely related to the language PA
investigated by Bergstra and Klop in several papers in the literature, see,
e.g., [BK84, 88], will be parameterized over a set of actions A. The set of
actions A will be a subset of the set of processes and actions, together with
the terminated process nil, and will be the constants of our algebra of
processes. The process combinators used to build new systems from
existing ones will be the following:

e + for non-deterministic choice,

« ; for sequential composition,

o | for parallel composition, and

o [for left-merge [BK84, H88, CHR9].

Formally:

DEerNITION 2.3, Let A be an uninterpreted set of actions. A is ranged
over by a, b, a’, b', ...
For each ne N let X" be defined as follows:

(i) 2°={nil} UA,

(i) Z2={+...1.1}

(i) Z"=FVne¢{0,2}.
The signature 2 is defined as Z=4,(J,,,2" Let P denote the word
algebra over X, T;.

Terms in P are written considering +, ;, |, and |’ as infix operators. P is
ranged over by p,q,¢',q,,.., and it is given the structure of a labelled
transition system by defining a standard operational semantics for it in
Plotkin’s SOS style [Mil80, P181]. Due to the fact that we are considering
general sequential composition rather than action-prefixing, we need a
termination predicate on P (another alternative is shown in [BHR84].
Here, due to the simplicity of the language we make do with a syntactically
defined termination predicate).

DEFINITION 2.4. Let ./ be the least set which satisfies

. m'le\/

PROCESS ALGEBRAS 211

«q.e/=VqePq,f qe/
* 41,026/ >0 +4:.0::42. 41 | 26/
Notation 2.1. We will write q\/ for qe \/
Intuitively, for each gqeP, q\/ iff ¢4 is a terminated process, which will

mean, as it will become clear after the next definition, that g cannot
perform any transition.

DerFiNITION 2.5. For each ae A, —% is the least binary relation on P
which satisfies the following axiom and rules:
1. a— nil
2. g =g+, 4. 49,4
g =q0"> 49
4 g 24 =950->¢
5. 29 =q19:">4910:.9:10."49:149
6. 9.9 =q 194 |49
We may now define a standard observational equivalence on P using
the notion of strong bisimulation presented in the previous section. The

equivalence relation generated in this way for the language P will be
denoted by ~.

PROPOSITION 2.2. ~ js a X-congruence.

It is natural to require that semantic equivalence relations be congruences.
This means that whenever we have two equivalent specifications we may
place either of them into a larger system (or context) obtaining equivalent
behaviours,

An important feature of the theory of ~ is that | is not a primitive
operator, at least for finite processes. In fact, every finite parallel process
has an equivalent purely non-deterministic counterpart.

This is illustrated by the following standard example.

ExamPLE 2.1. Let g, =a|b and g, ={(a;b)+ (b;a). Then
R = {(q., q2), (a | nil, nil; a), (nil | b, nil; b), (nil | nil, nil)}
is a bisimulation. Hence ¢, ~ q,.

Another important feature of strong bisimulation equivalence is that
its theory has several complete axiomatizations over different languages
[HMS8S, H88, BK85]. This shows that this equivalence is mathematically

212 ACETO AND HENNESSY

tractable. In what follows we would like to show the same property for a
language based on P enriched with a feature for action-refinement.

2.3. The Process Language with Refinement

In this section we introduce the language whose semantic properties will
be investigated in the remainder of this paper. The language, which we call
the process language with refinement, P, is based on the signature X
enriched with a combinator, [a~ p], which allows the refinement of an
action by a process p. Formally:

DermiTioN 2.6. The process language with refinement P, is the
language generated by the grammar

pu=nillalp+plp;plplplplpl pla~pl,

where a€ A.
P..; will be ranged over, with abuse of notation, by p, ¢, r, p’, py, -...

ExaMpLE 2.2. p={(a|b)la~a,;a;] stands for a process in which
action a has been refined to the sequential composition of two subactions
a, and a.

With regard to the simple process presented in the above example,
operationally we would expect it to be able to perform any shuffle of the
strings a,a; and b. We have at least two ways of capturing the operational
behaviour of the processes definable in P

e We might regard p[a~ p’'] as indicating the syntactic substitution
of process p’ for any occurrence of a in p. Iterating this procedure we could
translate or reduce every process in P into a process in P. The
operational behaviour of p[a~ p’] would then be determined by that of
its translation according to the operational semantics of P-processes.

« we might explicitly define an operational semantics for P .
We follow both lines and show that the resulting semantic equivalences
coincide. Having done so, in the following sections of this paper we use the

operational semantics of P _~processes given via the reduction to P. This
method, although it may be less elegant, will be technically more tractable.

DerFmiaTioN 2.7. 1. The reduction function, red: P ;— P, is defined by
structural induction as follows:
(i) red(nil)=nil
(ii)) red(a)=a

PROCESS ALGEBRAS 213

(iii) red(p, op p,)=red(p,)op red(p,), ope {+,:, .V}
(iv) red(p,[a~ p,])=red(p,)[a/red(p,)], where [a/-] denotes
the syntactic substitution of red(p,) for each occurrence of a in red(p,).
2. A refinement function p: A - P may be used to generalize the
construct {a~ p,]. The language obtained in this way is denoted by P,,.
The reduction function for this language is defined as in 1 with the
following clause in place of clause (iv),

red(p[pl)=red(p) p,
where p,: A — P is the syntactic substitution defined by

VaeA p,(a)=red(p(a)).

Intuitively, a refinement function p may be seen as the simultaneous refine-
ment of each action a€ A by the process p(a). It is interesting to note that
it is essential to consider refinement functions p whose codomain is P,
rather than P,. In fact, had we allowed refinement maps p: A - P, the
reduction function red(-) would not be properly defined for refinements
such that p(a)=alp].

Fact 2.1. (i) YpeP (P,) red(p)eP.
(i) VgePred(g)=gq.

With the above notion of reduction each process pe P ((P,) inherits an
operational semantics from its reduction. For example,

red((a | b)[a~a,;a])=(a,;a) | b,

and the transitions of such a P-process can be easily determined using the
operational rules given in the previous section.

Moreover, P (P,) inherits a notion of observational equivalence for
processes from P via red(-). Two processes p,, p,eP(p,, p,€P,) are
equivalent iff their reductions are equivalent with respect to ~. From now
on we concentrate on P, as P is a “sublanguage” of P,,.

DEerINITION 2.8. VYp,, p,eP, p,~, p<>red(p,) ~red(p,).

We now define an explicit operational semantics for P, from which a
standard observational equivalence is obtained,

First of all we define the termination predicate \/ for the extended
language.

DerFiNtTiON 2.9. (i) For each peP, define Ter(p)< A, the set of
actions of p which have to be mapped to terminated processes to force p
to terminate, by structural induction as follows:

214 ACETO AND HENNESSY

o Ter(nil)=&
* Ter(a)={a}
» Ter(p, ¥ p,)=Ter(p,)
« Ter(p, op p,)=Ter(p,) uTer(p,),forope {+,;,|}
s Ter(plp = Uaeruim Ter(p(a)).
(i1) Let \/ be the least subset of P, which satisfies
. nile\/
s pie/=ptpey
* pi.p2€/=p op p,e./,whereope { +,;,}
- VaeTer(p) pla)e/ = plple/.
In what follows we write p\/ iff pe\/.

Notation 2.2. Given two refinement functions p, p': A — P, we write
pop' for the refinement function defined as

YaeA (pop'Na)=p'(a)p,

the application of the syntactic substitution p to each p'(a).
One can prove by induction on p that red(pp)=red(p)p,, from which
it follows that (pop"), =p,cp;.

We can now define an explicit operational semantics for the language P,
(and hence for its sublanguage P).

DeriNtTioN 2.10. For each ae A let —~ be the least binary relation on
P, which satisfies the following axiom and rules:

1. a =~ nil

2. p = pi=pit+ pp = plprt P D

. p S pi=pu P P ;2

A pi/ipr P = pip P

5. pr = pi=p | Py~ py P P2l Py P2l DA

6. po—*>pi=plp,—*pilp:

7. p(b) Lo p'=b{p] = p

8. pilp] = p =(p+p)lp]l = p.(p2+p)lp]l =0
9. pilp] == p'=(pi; p2)p] = p's (p2lr])

10. p[p1/, p2lp] — p'=(p1: P2)P] = 1’

1. py[p] = pi=(pi| p)lp] = P11 (P2[p]). (P21 P))p]

= (p2 oD P

PROCESS ALGEBRAS 215

12. pilp] = pi=(p: ¥ PIp 1> Pi 1 (P20 D
13. plpepl—*p'=(plp Dlp'] == p".

Using this operational semantics we can define a standard observational
equivalence on P, using the strong bisimulation technique as we have done
for P. The resulting equivalence relation on P, is denoted by ~,. We now
show that ~,; and ~, coincide on P,. To do so we need to relate the
moves of a process pe P, with those of its reduction red(p)eP.

LEMMA 2.1. The following statements hoid:
(i) VpeP, Ter(p)=Ter(red(p)).
(i) VpeP, p/<red(p) /.

Proof. Both the statements can be shown by induction on the structure
of p. The only interesting case is p=p,[p]

(i) Ter(p,[p1)=U e rert) Ter(p(a)), by definition.
This is equal t0 U, rerqreac), Ter(red(p(a))), by the inductive
hypothesis, which by definition is equal to Ter(red(p,)p,)

(ii) p, [p]\/a‘daeTer(p,)p(a)\/, by definition.
By inductive hypothesis, this is equivalent to

VaeTer(pl)red(p(a))\/.

By clause (i} of the lemma, this is equivalent to

VaeTer(red(p,)) red(p(a))./.
This is in turn equivalent to (red(p,)p,)\/ and red(p, [p])\/.
This completes the proof of the lemma. |

We can now relate the moves of a process p e P, to those of its reduction
red(p).

LEMMA 2.2. For each pe P, the following statements hold:
(i) p—= p'=red(p) — red(p');
(ii) red(p)—> x=3p' :p = p' and red(p')=x.

Proof. We prove both statements by induction on the length » of the
proof of p —%+ p’ and red(p) —= x, respectively.

We proceed by examining the structure of p and sketch the details of two
cases of the proof of statement (i) leaving the others to the reader.

p=p.; p,- Assume p; p, —= p’. There are two subcases to examine:

(a) p, = p)and p'=p};p,.

216 ACETO AND HENNESSY

The proof of the derivation p, =~ p} has length »— 1. Hence, by
inductive hypothesis, red(p,) - red(p)).
By the operational semantics for P,

red(p,; p,)=red(p,); red(p,) - red(p'}; red(p,) =red(p}; p,).

(b) piy/ and p, =+ p'
The proof of the derivation p,—= p’ has length »— 1. Hence, by
inductive hypothesis, red(p,) —=> red(p’).
By the above lemma, pl\/¢>red(pl)\/P.
Hence, by the operational semantics for P,

red(p,; p,)=red(p,); red(p,) - red(p’).

p=p,[p). We now examine the structure of p, concentrating on
showing the claim for two subcases.

p,=>5. Then p(b) - p'. The proof of this derivation has length
n— 1. Hence, by inductive hypothesis, red(p(b)) — red(p’).
This implies red(b[p])=bp, — red(p’).

pi=p2lp'] Assume (p,[p'Dlp] = p".
Then p,[pep’] % p".
The length of the proof of this derivation is less than n. Hence, by
inductive hypothesis, red(p,fp-p' 1) red(p’).
Moreover, by definition of red(-),

red(p,[pop’])=red(p,)(pop)..

By a previous observation (Notation 2.2), red(p,)(p<p’), =red(p,)(p. p;).
It follows that

red(p,)(p,op;) = (red(p,) p;) p. =red((p.[p' NP D).

This completes the inductive argument for statement (i). The proof of
statement (i) follows entirely similar lines. |

We now show that the equivalences ~, and ~, coincide on P, (and thus
on P,;). This is stated by the following theorem.

THEOREM 2.}. Vp,, p,eP, p,~, pr<>p,~, Pa.
Proof. We will show that for each p,, p,eP,,

pi~; pra<red(p,) ~red(p,)

(Only if) Consider the relation # < P? defined as follows:
2 3o {(red(p,), red(p,)} | p, ~, p,}.

PROCESS ALGEBRAS 217

We show that # is a P-bisimulation. By symmetry it is sufficient to show
that

red(p;) > x=3y :red(p,)—> yand (x, y)e A
Assume red(p,) — x. Then, by the above lemma,
3pi:p —* piandred(p)=x.

As p,~, p,, there exists p5 such that
p2 = ph and pi~, pi.

By the above lemma, red(p,) == red(p3) and, by definition of %, (red(p)),
red(p3)) e #. Hence & is a P-bisimulation.

(If} Consider the relation defined as follows:

4 = {(pi, p2) | (red(p,), red(p,))e ~ }.

A can be shown to be a P -bisimulation using the same approach as in
the only if case. |

This equivalence over P, ~, = ~,, is a conservative extension of ~
over P and, for convenience, in future we also use ~ to denote it. We
usually use its characterizations in terms of the function red(-).

However, ~ is not an adequate semantic equivalence for P,; it turns
out not to be a congruence with respect to the combinator of action-
refinement, as the following example shows.

ExampLE 2.3. 1. Consider p=al|b and g={(a; b)+ (b;a). As already
noted p ~g. However,

pla~ag;a] » gla~ag; ar]
In fact,

red(g[a ~ a,; ac)) = ((a,; a;);b) + (b; (ag; a;)) = (nil; ag); b,

a state in which only action a, is possible. No such state can be reached by
red(p{a ~ ag; a;]) via an action a,.

2. Consider ¢'=(a| b)+ (a; b). Then p~ g" but

pla~ag; a] » g'[a~a,;a).

218 ACETO AND HENNESSY

In fact,
red(g'[a ~ a,; a;)) = ((a; ar) | b) + ((a,; ap);) == (nil; ap); b,

a state in which only action a; is possible.
We have already seen how no equivalent state can be reached by
red(p[a~ a,; a;]) via an a,-action.

As ~ is not a congruence with respect to action-refinement, it would not
support compositional proof methods on P, However, bisimulation
equivalence is a natural notion of observational equivalence between
processes (as argued for example in [Mil89, HM8S, Ab87]) and we would
like to base our theory of action-refinement or a similar notion of equivalence.

We have a standard way of associating a congruence with ~. It is
sufficient to close ~ with respect to all P_,-contexts, [Mil80]). The
resulting congruence, which we denote by ~°, is known to be the largest
congruence contained in ~, [Mil80]. The definition of ~¢ is, however,
purely algebraic and does not shed much light on its behavioural
significance. Moreover, it does not support useful proof techniques to show
that two processes are related with respect to it. The remainder of the
paper is devoted to addressing these two issues.

3. TIMED-EQUIVALENCE

It has been pointed out in the introduction that, if we want to describe
the behaviour of concurrent processes to allow for a step-wise refinement
of the actions they perform, the view of processes enforced by interleaving-
style equivalences becomes inadequate.

Essentially this depends on the fact that an interleaving view of the
behaviour of the processes under consideration strongly depends on what
are regarded to be the atomic actions processes may perform.

As in this development we allow for an operation which changes the
level of atomicity of actions without enforcing any mutual exclusion policy,
we need a more refined behavioural description of the processes than the
ones given by the interleaving based equivalences proposed in the literature
[HMS8S5, DH84, BHR84]. _

In [H88] one of the authors has proposed an alternative version of
bisimulation equivalence based on actions which are not necessarily instan-
taneous. A comprehensive description of the resulting semantic theory is
given in the above quoted reference. For our purposes it will be sufficient
to remind the reader that the resulting behavioural description of processes
is based on the assumption that there are observers which can detect the
beginning and ending of actions.

PROCESS ALGEBRAS 219

A standard bisimulation equivalence can be developed using the opera-
tional description of the behaviour of the processes. The result is a semantic
theory of processes which distinguishes concurrency from nondeterminism
and which can be completely axiomatized [H88].

In this section we develop a semantic theory based on these ideas for the
language P presented in Section 2. P is an extension of the language used
in [H88] as action prefixing is replaced by sequential composition of
processes. The theory will be developed according to the standard two-step
operational description of processes. First of all we define an operational
semantics for processes based on the ideas in [H88]. Second we abstract
from unwanted details by means of a semantic equivalence based on this
operational semantics. This section ends with a discussion of the relevance
of this notion of equivalence for processes with respect to the step-wise
refinement of actions proposed in Section 2.

3.1. Timed-Operational Semantics

We assume that beginnings and terminations of actions are distinct
subactions which may be observed. For each ae A we use S(a) and F(a)
to denote the beginning and the termination of an a-action, respectively.
We view S(a), F(a) as a new class of actions and deﬁne an operational
semantics in terms of new next-event relations —=) = il

Notation 3.1. A;=4;{S(a)|aecA} U {F(a)|acA} is called the set of
subactions and is ranged over by e, ¢, e, ...

As pointed out in [H88], the language for processes proposed in
Section 2 is not sufficiently expressive to describe all possible states a
process may reach. To overcome this problem we introduce into the
language a new symbol F(a) for each ae A. F(a) will denote the state in
which the atomic process « is being executed but has not yet terminated its
execution.

DEerNITION 3.1 (Process States). Let ., the set of process states, be
the least set which satisfies
e pe P implies pe &,
* ac A implies Fla)e ¥,
e €&, pe P implies s; pe &,
e 5,€¥, 5, implies s, | s,€ L.
& is ranged over by s, 5., 5,

We can now define a standard operational semantics for states following
the pattern described in Section 2. In defining the operational semantics we

220 ACETO AND HENNESSY

use the termination predicate defined in Section 2. This predicate can be
easily extended to & as follows:

DEFINITION 3.2, Vse & s,/ <>seP and sy/-

DeriNITION 3.3. For each e€ A,, = is the least binary relation on &%
which satisfies the following axioms and rules:

a 2 F(a)

1
2. F(a) £ nil

3. p, =>s) implies p, + p, = s|, p,+ p, => 5|

4, s, = s, implies s,; p = s\; p

5. si/» p = s implies 5,; p => 5

6. s, == s, implies s, | 5, == 5/ | 55,5, |5, = 5, 5}
7. p, = s implies p, | p, => 51 p,.

Rules 1 and 2 above are the new rules which make explicit our view of
processes. They state that an atomic process @ may perform the beginning
of the action « and enter state F(a). Moreover when in state F(a) it can
only perform the termination of the action it has started.

A standard behavioural equivalence may now be defined using the above
defined operational semantics and the notion of bisimulation given, for
arbitrary labelled transtion systems, in Section 2.

DerINITION 3.4 (Timed Equivalence). The maximum bisimulation over
the labelled transition system (¥, A,, {=|ecA,}) is denoted by ~,
and is called timed (observational) equivalence.

Some examples of equivalent and inequivalent processes, which may be
readily translated into our language, are given in [H88].

We now concentrate on the properties of ~ which are relevant to the
developments presented in the remainder of the paper. First of all we show
that ~ is contained in ~ for processes. To do so we need to relate the
operational semantics for P-processes given in Section 2 with the one given
in the above definition.

LeMMA 3.1. For each peP, acA, p ELINp =F(—LL>p' iff p-—=% p'.

Proof. Both directions of the if-and-only-if can be easily shown by
structural induction on p. Note that if p =2, 5 then s contains only one
occurrence of F(a). With this in mind the proof is straightforward and thus
omitted. |

We can now show the promised theorem.

PROCESS ALGEBRAS 221

THEOREM 3.1. Vp,gqeP p~ g=>p~q.

Proof. Consider the relation # =4 ~, N P?.
We show that & is a bisimulation. Take (p, g) € #. By symmetry, it is
sufficient to show that for each ae A

p—5 p'implies g’ :g—> g’ and (p’, ¢’} e A.
Assume p—%» p’. Then, by the above lemma, p S, o £ p' for some
se. As p ~, q, there exists s'€ % such that s ~ s and ¢ RN ILIN q
with p' ~ ¢q".
By the above lemma, g% ¢’ and, by definition of %, (p', g¢')e &.
Hence # is a bisimulation. This proves the claim. |

The reverse implication does not hold as shown by the following
example.

ExaMpLE 3.1. Consider p=(a;b)+ (b;a) and g=a | b. Then p~gq but
prd Sta) C . .

In fact, p === F(a), b which is a state in which p can only perform the
termination of the action a. No such state can be reached by g via S(a). In
fact, ¢ EICIAGN implies s = F(a) | b and s may perform the start of action b.

ProposITION 3.1. ~ is a congruence on P.
Proof. Standard and thus omitted. [

It turns out that ~, can be completely axiomatized for the language P
presented in Section 2. The required equations are collected in Fig. 1.

Let =g be the least P-congruence which satisfies the axioms in Fig. 1.

Then we can state the following result.

THEOREM 3.2. Vp,gqePp=pq<p ~q.

The proof of this result is rather technical and involved; it is based on
the techniques used in, e.g., [CH89, H88] to axiomatize non-interleaving
equivalences, but the details are more delicate due to the presence of
general sequential composition in the language. Section 5 is entirely
devoted to the exposition of the proof. As it is independent of the rest of
the paper, we assume the theorem in the remainder of Section 3 and in
Section 4.

3.2. ~°¢ Coincides with ~,

The remainder of this paper is entirely devoted to proving that ~, coin-
cides with ~° on the set of processes P. Theorem 3.2 then also provides a

643/103,2-5

222 ACETO AND HENNESSY

Al (z+y)+z=z+(y+2)
A2 zt+y=y+z

A3 z+z=1x

Ad z+nil =1z

Bl (z + y)z = zfz + y{=
B2 (=fy)fz = zf(v]2)

B3 zfnil = z

B4 nilfz = nil

X1 zly = zly + yfz

C1 (z;9);2 = z;(y; 2)

C2 z;ntl =z =nil; x

C3 (z+y)iz=(z;2)+ (y;2) ifz,y & /.

FiG. 1. Complete axioms for ~,.

complete equational characterization of ~°. As a first step towards proving
this claim, in this section we show that ~€ is contained in ~,. To show this
result we need to translate states into the language of observers as stated in
[H88]. This is stated formally in the following definition:

DerNITION 3.5. (i) Let X' be the signature defined as follows:
e 2o={8a)|aecA} U {F(a)|acA}y {nil}
« Zh={+.5,,l}
e M= Vn#0,2
Finally, 2’ =), .0, %%
(ii) The function Tr: & — T is the unique homomorphism between
the two algebras such that:
o Tr{nil)=nil
o Tr(a)= S(a); F(a)
o Tr(F(a))=nil; F(a).
The terms in T, may be endowed with an operational description of
their behaviour by defining an interleaving-style operational semantics for

T,.. This is done by associating a next-event relation ——, to each e€ A,
following the definition of —%» , a€ A, given in Section 2.

PROCESS ALGEBRAS 223

The relationships between the relations == and —%», are expressed by
the following lemma.

LEMMA 3.2, For each se &, e€ A, the following statements hold:
1. s\/ <> Tr(s)\/;
2. 5 =5 =Tr(s) <>, Tr(s');
3. Tr(s)—%>,x=>35":5 = 5 and Tr(s')=x.
Proof. All the statements can be shown by structural induction on s.

We focus on the case s=s,; p for statement 2.
2. Assume §,; p = s'. There are two cases to consider:

(a) s, = s;and s’ = s;; p. By inductive hypothesis, Tr(s,) —, Tr(s}).
Hence Tr(s,; p) =Tr(s,); Tr(p) ==, Tr(s}); Tr(p) = Tr(s,; p).

(b) s,/ and p == 5'. By inductive hypothesis, Tr(p)—=, Tr(s'). By
statement 1 of the lemma, Tr(sl)\/. Hence Tr(s,); Tr(p)—=,; Tr(s’'). |

We may define a bisimulation equivalence on T;- in the standard way.
The details are left to the reader. Let us denote ~, with abuse of notation,
the resulting equivalence relation. We concentrate on investigating the
relationships between ~, and ~ via Tr(-).

THEOREM 3.3. Vs, s,€ %55, ~ 52 < Tr(s,) ~ Tr(s,).
Proof. (Only if) Assume 5, ~, 5,. Define the following relation on T.:
R={(Tr(s), Tr(s)) | s ~ 5}
We show that # is a bisimulation. By symmetry, it is sufficient to show
that, for each (Tr(s), Tr(s")) e #, for each e A,
Tr(s)—>,x=3y:Tr(s')~>, yand (x, y)e &

Assume Tr(s)—>,x. Then, by the above lemma, there exists § such that
s =>5 and Tr(§)=x. As s ~, s, there exists § such that s’ = § and
§~.5.
By the above lemma, Tr(s') >, Tr(5') and by definition of # we have
that (Tr(3), Tr(5")) e A.
(If) Assume Tr(s,) ~ Tr(s,). Define the following relation on % :

R={(s,5') | Tr(s)~Tr(s')}.

Reasoning as above it is easy to show that # is a timed-bisimulation.

This proves the claim. |

224 ACETO AND HENNESSY

COROLLARY 3.1. Vp,qePp ~“g=p ~q.
Proof. Let p, be the syntactic substitution defined, for all a € A, by

p(a)y= S(a);, F(a) and p(Fla))=nil; F(a).

Note that, for each se.%, Tr(s)=sp,. Assume now that p ~°gq. Then,
for each substitution p, pp ~gp. This implies pp,~ gp,. By the above
observation, pp,=Tr(p) and ¢p,=Tr(gq). By Theorem 33, Tr(p)~
Tr(q)< p ~.gq. Hence p ~¢q implies p ~,q. |}

To complete the proof of our claim that ~, coincides with ~¢ for the
language that we have introduced, we need to show that ~ is contained
in ~° In the presence of the equational characterization of ~, given in
Theorem 3.2, it is possible to give an elegant, algebraic proof of this fact.
Let us recall that, by Theorem 3.2, ~ is the least congruence over P which
satisfies the set of equations in Fig. 1. Moreover, by the construction of ~¢,
~¢ is a congruence over P. Hence, in order to show that ~ < ~€ it is
sufficient to prove that ~°¢ satisfies all the equations which completely
characterize ~, over the language P.

For the sake of completeness, let us recall that ~ is a congruence with
respect to all the combinators apart the action refinement one. Hence ~°¢
can simply be obtained by closing ~ with respect to all the “refinement
contexts.” Formally, for each p, ge P,

p ~“ giff for all P -contexts C[-], C[p]~ C[q]
iff for all aq, ..., a,€ A, rg, ..., r, € P, P~ qo,

where ¢ denoted the syntactic substitution [a,/red(ry)] - [, /red(r,)]. We
may now give a first, algebraic proof of the fact that ~, coincides with ~°¢
over P.

THEOREM 3.4 (The Characterization Theorem: Algebraic Proof). For
each p,qeP, p ~“qiff p~.q.

Proof. The “only if” implication follows by Corollary 3.1. In view of
Theorem 3.2, to prove the “if” implication it is sufficient to show that, for
each p, ¢, rgy, .., r,e P and ay, .., a,€ A, whenever p =g is an instance of an
equation in Fig. 1 then

p[a0/r0] T [an/rn] ~ Q[ao/’o] T [an/rn]'

This follows easily for each equation in Fig. 1 because syntactic substitu-
tion is a homomorphism with respect to all the operators in 2 and by the
soundness of all the equations with respect to ~. For instance, let

(pV@)Vt=plt(qgln

PROCESS ALGEBRAS 225

be an instance of axiom (B2) and ¢ denote the syntactic substitution
Lao/re]---[a,/r,]. Then

((pVa)t De=(pet qe)t te
~pel (qel Q) as (B2) is sound with respect to ~

=(pl (gl ne
Thus, for each p,qeP, p ~qiff p~,q. |

However, the above-given algebraic proof of the characterization
theorem for ~° is language-dependent and relies on the equational charac-
terization of ~, given in Theorem 3.2. Moreover, for the proof to work, it
is essential that only processes and not actions be referred to in the set of
complete equations. As it is unlikely that such a characterization will be
available over more complex algebras, for instance those including a
restriction operator [Mil80], it would be useful to give an alternative,
behavioural proof of the fact that ~, is contained in ~¢ over P. Such a
proof will allow us both to shed more light on the properties of ~, which
make sure that such an equivalence is preserved by action-refinement and
to introduce a wealth of operational techniques and results which have
proved to be of considerable use in extending the work presented in this
paper to richer algebras [AH90]. In order to give a behavioural proof of
our claim that ~, is contained in ~¢ over P, the main problem is to show
that ~, is preserved by the operation of action-refinement. We already
know (Proposition 3.1) that ~, is a congruence with respect to the other
combinators of our calculus and that it is contained in ~, so if we show
that ~ is preserved by [a ~ ¢] the claim would follow by the fact that ~¢
is the largest congruence contained in ~. The proof of this result is much
more involved and will be facilitated by the use of a version of timed
equivalence, denoted by ~, and called refine-equivalence, which is induced
on & by a family of relations on a labelled version of the calculus.

4. REFINE-EQUIVALENCE

4.1. Motivation

In proving that ~, is a congruence with respect to [a~q], the
combinator for refining actions by processes, it will be technically useful to
consider a version of our language in which we may safely talk about
different occurrences of the same action symbol in a term.

The need for this technical complication can be explained by means of
an example.

226 ACETO AND HENNESSY

ExaMmpLE 4.1. Assume we have specified a system by means of the
process term p=(a | a)| a and, at a lower level of abstraction, we want to
refine a to g=b:c. As parallel processes may evolve asynchronously,
pla ~ ¢g] may indeed reach a stage of its evolution in which the three
a-processes will each be at a (possibly) different stage of their evolution.
Hence it is necessary to devise a method which allows us to express the fact
that different “copies” of process ¢ are currently active and to keep track
of the state each of them has reached.

The solution we propose in this section is to consider a labelled version
of our simple language. We restrict ourselves to considering labelled
process terms in which each labelled action occurs at most once. The
labelled calculus is endowed with a relation which captures a notion of
bisimulation between labelled terms. Two labelled terms will be bisimilar if
there is a kind of label-preserving correspondence between their labelled
actions which is consistent with their dynamic behaviour. This notion of
bisimulation on the labelled calculus induces an equivalence relation on the
uniabelled one which we denote ~_ and call refine-equivalence. This new
equivalence is of independent interest as it is an alternative formulation of
the idea of strong bisimulation in the presence of non-instantaneous
actions. We eventually show that ~ and ~, coincide, but we can show
fairly straightforwardly that ~_is preserved by action-refinement.

4.2. The Calculus and Its Operational Semantics

We now present the formal definition of the labelled calculus we use in
proving that ~, is a congruence with respect to action-refinement.

DEFINITION 4.1 (Uniquely Labelled Processes). (i) The set of labelled
atomic actions, LA, is defined as follows:
LA = {a,|ae A AnieN}.

def

(ii) The set of uniquely labelled processes, LP, is the set of terms
generated by the grammar

ne=nilla|\n+n|m | nin|nl x,

where a;€ LA, subject to the constraint that each index i occurs at most
once in 7. LP is ranged over by n, n, 7, ...

DEerFINITION 4.2 (Configurations). The set of uniquely labelled states,
or configurations, L%, is defined by simply adapting the clauses of
Definition 3.1 to the set of uniquely labelled processes, subject to the
constraint that, for each configuration ¢, each index i occurs at most once
in ¢. L% will be ranged over by ¢, d, ¢/, d’,

PROCESS ALGEBRAS 227

The operational semantics for labelled states is defined in terms of next-
event relations -, where / ranges over the set of labelled subactions

LA, = {S(a) | a;eLA} U {F(a)) | a,e LA}.

The interpretation we impose on labelled subactions is a simple variant of
the one we have imposed on the subactions in A,. For each a,€ LA, the i th
occurrence of the action symbol a, S(a;) stands for the beginning of its
execution and F(a;) stands for its termination.

The termination predicate on L%, needed in the definition of the
operational semantics, and the operational semantics for L% itself can be
defined using the standard method. We leave the details to the reader who
should also check the following result:

PROPOSITION 4.1. VceL¥, AeLA, c+> ¢'=>c¢' eLY¥.

Having developed an operational view of configurations we would like to
say when two configurations ¢ and d are behaviourally equivalent. The
notion of equivalent behaviour between configurations is not absolute but
is parameterized with respect to a correspondence between their
component states of the form F(a;,) for some a,e LA. The technical
definition takes the form of a parameterized timed bisimulation. The next
few definitions introduce the technical machinery we will need in
introducing this kind of relation.

The parameter in the definition of bisimulation for configurations will be
a family of binary relations, one for each ae A, on N. If ¢ is one of those
families of relations and c~,d,c,deL¥, then, for each (i j)eg,,
F(a;) and F(a;) play the same role in the dynamic behaviour of the
configurations.

The informal notion of playing the same role stated above will be
formalized by the definition of bisimulation.

DerINITION 4.3. (i) Let # be a binary relation over N. Then # is (the
graph of) a partial bijection on N iff it is a bijection between two subsets
of N.

(i) s will denote the set of A-indexed families of partial bijections
over N and will be ranged over by 4, o, ...

Notation 4.1. In what follows ¢ denotes both the empty set and, with
abuse of notation, the A-indexed family of relations such that

VacA a— .

We also sometimes write (i, j)e¢, as (a, i, j) € ¢, where ¢ € #. All the
usual operations and predicates on relations are extended pointwise to
indexed families of relations in the natural way.

228 ACETO AND HENNESSY

For example, if # and #’ are s -indexed families of binary relations
RER >NpeH R, Ry

An A-indexed family of partial bijections ¢$e.# is used to record
information about which actions have been started and to whom they have
been matched in the bisimulation functional. We call such information a
history. Intuitively, the presence of (q, 7, j) in a history ¢ means that in one
process action a, has started, in the other action a; has started and we are
expecting the i th occurrence of a in one to be matched to the jth in the
other. The matching between actions a; and a; is recorded in a history 4
only until the two actions terminate. From that moment onwards the
information about this matching becomes redundant and is discarded
from A. Thus histories will only record information about the matching
between the actions which are currently being executed rather than the
whole set of such associations.

Given a configuration ¢, any F(a;) occurring in c is called a place of c.
Intuitively F(a;) stands for a state in which the execution of the atomic
labelled process a; has started but has not terminated yet. The set of
a-places in c¢ is defined as follows:

DerFINITION 4.4. For each ae A, ceLY

Places(a, ¢) = {i] F(a,) occurs in c}.

Configurations are equivalent or inequivalent with respect to a history ¢.
For ¢ and d to be equivalent with respect to ¢ € #, we require that

« all actions which have started in ¢ or 4 and are not yet finished must

be recorded in ¢;

« every start "30‘,’8 of ¢, LN ¢’, must be matched by a corre-
sponding move d > @’ of d such that ¢’ and d’ are equivalent with

respect to the augmented history ¢ U {(a, i, j)}; and

e every end move from ¢, P EALLN ¢’, must be matched by the end

move of d associated with it in the history ¢, ie., d 2 4 with (a,i,)ed
and ¢ and 4’ are equivalent with respect to the diminished history

¢— {(a’ Isj)}

This is the motivation underlying the following formal definition.

DEFINITION 4.5 (Parameterized Bisimulation). 1. Let 2(L.%?)” denote
the set of #-indexed families of binary relations over LY.

2. Define a functional 4:2(L¥%)" - P(L¥*)* as follows: given
Re P(LFH”, (cy, 1) e4(R), iff

PROCESS ALGEBRAS 229

(i) Vae A dom(¢,)=Places(a, c,) and range(¢,) = Places(a, ¢,)
(i) VYa,eLA
(@) ¢, 2 ¢ = 3jeN, cheLS: e s ¢, and (¢}, ¢h) €
7

o ita i j}
Flay) . , Fla))
(b} ¢, —>ci=3c,e L $,(i)=jand c; +—2 cyand (¢}, ¢h) €
.@(»7 {ad, j)}
(iii) Va,eLA
Stay) , . P Slaj) , B P
(a) c;r—> ¢y = 3ieN, cjeLY:c;—> ¢} and (¢}, ¢3) €
'%évl(u.z,jll
Flay) ' . . Fla) o
(b) co—> cy=3c:¢,(i)=j and ¢, —> ¢} and (¢}, cH)e
Ry {ain

3. e P(LF)” is a parameterized bisimulation iffl # < %(R).
Voet ~y =) (B, | RS SR)).

(P(LF*)*, <) is a complete lattice as < is induced pointwise by the
relation of set inclusion. The following result is then standard.

ProOPOSITION 4.2. (i} %(-) is a monotonic endofunction over the complete
lattice (P(L¥HY”, <).
(i) {~4| e A} is the maximum fixed-point of 4(-).

4.3. Definition of Refine-Equivalence

The maximum fixed-point of the functional 4(-), { ~,| ¢ ¥}, can be
used to induce an equivalence relation on the set & of unlabelled states.
This relation is the refine-equivalence promised in the previous section and
is a technical tool used to give a behavioural proof of the fact that ~,
is preserved by [a~ ¢]. The definition is very similar to that of timed-
equivalence. There is only the additional constraint that occurrences of
actions should be properly matched; namely, whenever the start of the i th
occurrence of an action is matched by the start of the jth occurrence then
the finish of the jth occurrence must also be used to match the finish of
the i th occurrence.

This definition is more in accordance with the intuitive idea underlying
strong observational equivalence in the presence of non-instantaneous
actions. We still want to match the ability of processes to perform actions
and their resulting potential behaviour and, to ensure that complete actions
are compared, we should consider not only their beginnings and endings,
but also their entire duration. This is achieved by using histories.

230 ACETO AND HENNESSY
DefFINITION 4.6. 1. The function un(-):L¥+—.% is defined as the
unique homomorphism between the two algebras such that
o un(nil) = nil

e un(a,)=a
» un(F(a;))= F(a).
2. Vs,85,€¥s,~, 5, 3¢;,c,eLF un{¢c;)=5,,i=1,2,and Ipec &
Cy~4Co
Note. In what follows we often make use of the obvious fact that un(-)

is onto.

Notation 4.2. From now on, if e€ A, and ie N then e, stands for S(a;),
if e=S(a), F(a;), if e= F(a).

The following lemma relates the derivations of a configuration ¢ to those
of its corresponding unlabelled state un(c).

LeMMA 4.1. Let ce L. Then

(1) c\/¢>un(c)\/.
(i) VYe,eLA,c+s ¢’ =un(c) = un(c’).
(iii) VeeA,un(c) == s=13¢', j:c > ¢’ Aun(c’)=s.
Proof. By structural induction on ¢. Omitted. |}

One simple corollary of this lemma is the fact that ~_ is contained in ~,.

THEOREM 4.1. (~, S ~\):1Vs, $,ESL §;~, 85,=>8,~5,.
Proof. Define the relation # < &?:

R = {(un(c), un(d)) | I¢e H :c~,d}.

We show that # is a timed-bisimulation. By symmetry, it is sufficient to
show that, for each (un(c), un(d))e #, un(c) = s=>3s": un(d) == s’ A
(5,8)eR

Assume that un(c) 24, Then, by Lemma 4.1,

. S(a;)
i, ¢ 1cF——> ¢ Aun(c’)=s.

As ¢~ d for some ¢ ¥,

’

. , S ’ '
1j.d o AL [N ~p0fain 4

PROCESS ALGEBRAS 231
By Lemma 4.1, a4, g implies un(d) gun(d’). Moreover, by the
definition of #, (un(c’), un(d’)) € #.
Similarly one can match the F(a)-moves of the configuration c.
Hence # is a timed-bisimulation.
Let s,,5,€% be such that s, ~ s,. Then, by the definition of ~,
5, ~, 5, implies (s,, s,)€ #. It follows that 5, ~ s,. |

We now show that ~, is an equivalence relation on .

THEOREM 4.2. ~, is an equivalence relation on <.

Proof. We show that ~, is reflexive and transitive leaving the proof
that it is symmetric to the reader.

Reflexivity. Let 1,=4, {(i,i)| ie I}, for IS N. A family of relations ¢
in A is an identity if and only if, for each ae A, ¢,=1, for some /= N.
Define #e P(L¥*)* as follows:

_ {Q if ¢ is not an identity
¢ aef | {(c, c) | Vae A Places(a, c)=dom(g,)} otherwise.

It can be easily seen that # is a parameterized bisimulation.
As Vse ¥ 3ceL&:un(c)=s and (c, ¢)e #,, where ¢ is such that

Yae A, = {(i, i) | iePlaces(q, ¢)},

we have that c~,cand 5 ~,s.

Transitivity. Define the following # e 2(L¥%)*:
V¢E%.@¢ d::.f U {~'f10 ~e ’ ¢=¢oq) A |//, (PE”}.

It can be shown that # is a parameterized bisimulation.
Moreover, s, ~, s, and s, ~_ s, imply

e, i=1,2,31un(c;)=s;and 3¢, @:c, ~, 3 A 3~y 3.
Hence (¢, ¢;)e#,,.,. This implies ¢, ~, ,c; and 5; ~.55. |}
Note that from the definition of ~ it follows easily that
Vr, melPr, ~,nm,=¢=(.
Hence, for all p,ge P, p ~, q if, and only if,

Imy, mun(ny)=p Aun(ny)=q A Ty ~u 5.

232 ACETO AND HENNESSY

We now show that in the definition of ~_ we could have used a for all
instead of 3¢, ¢5, ... We hope that this result adds to the intuition of the
definition of parameterized bisimulation. To do so we first show that if ¢
and d are configurations which reduce to the same unlabelled state se &
then there exists a ¢ € .# such that ¢~ d. First of all we prove a technical
lemma which is needed in what follows.

LEMMA 4.2. Let ¢, de LS. Assume un(c)=un(d) and c — ¢,

Then there exists a unique je N, d' € LY such that

d i g and un(c’)=un(d’).

Proof. By induction on the structure of c.

¢ =m. Vacuous.

¢=F(a,). Then d is of the form F(qa,) for some je N. The result follows
trivially.

c=cy;n. Then d is of the form d;; n, with un{c,)=un(d,) and

Fla,) Fla,)
un(n)=un(r). Assume c,; 7 —— ¢}; n because ¢, —— c}.

Flay)

By the inductive hypothesis, 3!jeN, 1 d; :d, — d; and un(c|)=
un{d,). Hence d/; n, and j are unique such that
d;;m, PEALIN d/;m, and un{c; 7)=un{d;; n,).

c=c; !¢, Similar.

Lemmas 4.1-4.2 will also be useful in deriving a parameterized bisimula-
tion #(c,d) and @(c, d)e # such that (c,d)e #(c, d)y, 4. The next
definition, which is rather technical, is devoted to the construction of such
a parameterized bisimulation. The construction is by induction on the size
of ¢ (and therefore also of ¢ as un(c¢)=un(d)).

DEefFINITION 4.7. Let ¢, deL.¥. Assume un(c)=un(d). The following
inductive construction is given:

« If ¢/ and d./ then #(c, d)e P(LF)” is defined as follows:
e d)) ifg=g

Y A =
peH A(c,d), der{@ otherwise.

Moreover, ¢(c, d)= .
e If ¢ and d are not terminated then define the following sets:

S = (', d)138(a,), S(a) : = ¢ A dES @ A un(c’) = un(d")}

PROCESS ALGEBRAS 233

F = {(c',d')|3F(a,), F(a):c+ ¢’ Ad V5 d' A un(c’) =un(d")}

X={(F F(a))lckf("—’)+ ‘A d > d Aun(c’)=un(d’)}.

Note that, by Lemma 4.2, F and X are graphs of injective functions.
Then ¢(c, d) {(a, i, /)| (Fla,), F(a,))e X} and Z(c,d) is defined as
follows:

U(t".d')ESuF%(C,’ d,)ai lf ¢-‘,£¢(C, d)

VéeH R(c, d), = {] .
U aresor R(chd)0 (e d)) it ¢=4lc, d).

Note that in the above given construction the sets S, F, X are always
finite. Moreover, the size of ¢’ (and therefore also of d’) has decreased.
Before showing that the construction is indeed correct we state the
following lemma.

LemMa 4.3, For each ¢, de LY such that un(c)=un(d) the following
statements hold:

L e ¢ and dv2 d and un(c’)=un(d') implies (', d')=
dle. d)yu {(a, i)}
2 e o and d VL

dlc. d)— {(a, i, j)}.

Proof. By structural induction on un(c¢). Omitted. |

Fla))

d' and wn(c'Yy=un(d') implies ¢(c'.d’)=

PROPOSITION 4.3. For each ¢, de LY such that un(c)=un(d), #(c, d) is
a parameterized bisimulation.

Proof. By induction on the size of ¢ (and therefore also of d).

The base case, c\/ and d\/, is obvious.

Assume ¢ is not terminated. By inductive hypothesis, we know that for
each (¢',d’')eSUF, #(c',d') is a parameterized bisimulation.

It is therefore sufficient to show that (c, d)e %(#(c, d)) 4(.a)-

Assume ¢ +%% ¢'. Then, by Lemma4l un(c) 22 un(¢’) and this
implies the existence of j, 4’ such that d —> d' and un(d')=un(c’).

By induction, (¢’, d') € By 4

Also, by the above lemma, ¢(c¢’, d')=d(c,d)u {(a, i, j)} and therefore
Places(a, ¢) =dom(¢,(c, d)) and Places(a, d) = range(é,(c, d) since the
corresponding property holds of ¢(c’, d)

The argument for the case when ¢ 2 ¢ is similar.

Hence, by symmetry, Z%(c, d) 1s a parameterized bisimulation. [

As a corollary we get the following result which shows that in the
definition of ~, we could have made do with a for all instead of there exist.

234 ACETO AND HENNESSY

CoRrRoOLLARY 4.1. The followig statements hold:
(i) Ve, deL& un(c)=un(d)=c~ 4 p»d

(1) Let s,,5,€%. Then s, ~.s, iff for all ¢,,c,e LY such that
un(c,) =s, and un(c,) =s,, there exists ¢ € # such that ¢, ~ 4 c,.

4.4. Refine-Equivalence and Timed-Equivalence Coincide

This section is entirely devoted to showing that, for our language, ~,
and ~ coincide. However, contrary to what happens with ~, it is quite
straightforward to give a behavioural proof of the fact that ~ is preserved
by action-refinement. We have already shown that ~_ is contained in ~,.
Unfortunately the converse is rather involved. Its proof is developed in two
steps. First we show that ~, is a congruence with respect to +,;, |, V.
Then we show that ~_ satisfies all the axioms which completely characterize
~, over our language (the axioms are collected in Fig. 1). The completeness
theorem (Theorem 3.2) tells us that ~ is the least congruence on P which
satisfies the axioms; hence we will have shown the desired inclusion.

THEOREM 4.3. ~_ is a P-congruence.

Proof. We will show that ~ is preserved by | leaving the other cases
to the reader. Assume s, ~,s,. Then, by definition of ~,,

dc),c,eL¥:un(c,)=5,,i=1,2,andIge # : ¢, ~;c,.

Let se&. Then there exists ce L.¥ such that (¢,|c ¢;|c)eL¥? and
un(c)=s. Define #e P(L¥?)* as follows:

Voe X Ry = {(c|c,d|d)eL¥?|3¢,, $,eH:
¢=¢|U¢2 A ('~¢|d/\("~¢zd'}.

We show that # is a parameterized bisimulation. Assume that
(c|c’,d|d')eR,. Then there exist ¢,, p,e # : ¢, Up,=¢ and ¢ ~, d and
¢’ ~,4 d'. Note that, as (¢ | ¢, d|{d' Ve LS, ¢,n¢,=.

(i) We show that clause (i) of the definition of parameterized
bisimulation holds. This is because

Vae A Places(a, c | ¢’) = Places(a, c) U Places(a, ¢') = dom(¢,,) udom(g,).

Moreover dom(¢,)=dom(¢,) dom(é,,). Similarly for the range of the

relation ¢,.
< (i)i) Assume, without loss of generality, that ¢ | ¢’ 2, & | ¢’ because
(ay

V2, & Then 3j,d:d 2% 4 and (7, d)e d, L {(a, i, j)}. This implies

PROCESS ALGEBRAS 235

dld =, 4 | d’. Moreover, by the property of the operational semantics,
(¢clc,d|dyeLS? and (¢| ', d|d')eR, 1» by definition of #.

Fla)) - Fla; —
(iii) Assume, wlog, that ¢ | ¢’ e, | ¢’ because ¢ e, =

As c¢~, d by hypothesis, Eld;_drfﬂd and ¢, (/)=j and (¢, d)e
~4 {wip- This implies d|d'+=2> d|d'. Moreover, as ¢,,n ¢y, =B,
(41 ,), ()=

As (¢|c,d|d)eL¥? we have that, by definition of #, (¢|c’,
d|d'Ve Ry, (i ptro e

Moreover, as ¢, N ¢, =,

(¢l_ {(a’ l,j)})U¢2=(¢| U¢2)_ {(a’ l,J)}

By symmetry & is a parameterized bisimulation.

1uérv {tai j)

As, by definition of &, (¢, | ¢, c;| ¢)e &, where

VaeAy, = @, {(i, i) | i€ Places(a, c)},

we conclude that ¢, | c~, ¢, | c. Hence s, | s ~, 5,5 |}

To complete the proof of the inclusion ~, < ~,, we need to show that
~. satisfies all the laws of the complete axiomatization of ~, on the
language P. The equational characterization of ~, is given in Fig, 1.

THEOREM 4.4. Let o denote the set of axioms in Fig. 1. Then t=1 €./
implies that t =1t is valid for ~,.

Proof. The proof of this result is rather technical and tedious. For
instance, when proving the validity of axioms Bl and X1 care must be
taken in making “copies” of x, y, and z with disjoint labellings.

The techniques developed in Section 4 are very useful in this respect. We
examine only the axiom B2, which allows us to show the general proof
technique. The remaining axioms are left to the reader.

B2. (xV y)¥ z=xY (y|z). Define # e P(LF?** as follows,

Voe o Ry = ((d\{ d)V dy. d { (dy | dy)),
((dy | dy) | dy, dy | (d; | dy))e Lo | T},

where [is the predicate, a function of d,, d,, d;, ¢, defined as follows,

3
ie |) Places(a, dj)}.

J=1

VaeA¢a={UJ)

We show that # is a parameterized bisimulation.

236 ACETO AND HENNESSY

Assume ((d,V dy)V dy. d, ¥ (d;|ds)) € Ry and (d,{ o)} dy+ (d | o) | d.
Then d, =2 4.

This implies d, | (d, | d;) Vo d{ | (d, | d,).

By the definition of R, ((d; | d,) | ds, d\ [(dy | d:)) € R4, ((aiiyy-

Similarly for moves of the form (d, ¥ dy) ¥ ds V22 (d] | d,) | d;.

The case ((d, | d5) | d5, d, | (d> | dy)) follows a sumilar pattern.

Hence # is a parameterized bisimulation and this is sufficient to show
the validity of axiom B2 for ~.. |

Finally we may state the main result of this section, namely that ~, and
~, coincide.

THEOREM 4.5. Vs,,5,€% 5, ~ 5,5, ~,5,.

Proof. Follows from Theorems 4.1, 4.3 and 44. |}

4.5. Refine-Equivalence Is Preserved by Action- Refinement

This section is devoted to giving a behavioural proof of the fact that ~,
is preserved by action-refinement. The proof is articulated in several steps.
First we define a suitable notion of substitution for labelled terms. Then we
proceed by studying the relationships between the moves of a configuration
¢ to which a substitution p has been applied and those of un(c¢) and p.

We conclude the section by showing that ~,, and thus ~,, is a
congruence with respect to substitution.

DEFINITION 4.8. A substitution p is a mapping p: LAU {F(a,)€LA} » ¥
such that:

(1) Va,eLA p(a,)eP;
(ii) Vi, jeN p(a)=pla).
Let SUB denote the set of all the substitutions.

Note that we require actions to be substituted with processes and not
with states (this satisfies our intuition that an action stands for a task
which has not started evolving yet), but, for instance, we allow actions to
be mapped to terminated processes. This fact has interesting implications
which we hope to explore in more detail in the future.

ExaMpPLE 4.2. Consider p=(a,;b,)+ (a;; ¢,). This process will choose
non-deterministically one of the two branches of the computation it stands
for when presented with the action a (remember that ¢, and a, are
considered as two occurrences of action a). Moreover, this choice is

PROCESS ALGEBRAS 237

made internally by the process itself and cannot be influenced by the
experimenter. This is an example of internal non-determinism.

Now let p be a substitution mapping a, and a, to nil and renaming b,
to b and ¢, to ¢. Then pp = (nil; b) + (nil; ¢). By means of the substitution
we have hidden the g-actions and, in doing so, we have made the choice
of the branch of the computation controllable by the environment. We
have made the non-determinism exhibited by the process external.

This power of process substitution makes it more difficult to relate the
moves of cp to those of ¢ and those of p. To do so we need a formal
method for dealing with the situations described by the above example.

We define a way of associating to each configuration ¢ a set of couples
of the form (A, d), where A is a set of labelled actions and states of the
form F(a,). The intuition captured by these couples is the following: given

peSUB, if (4, d) is associated to ¢ and p(A)\/ then c¢p behaves like dp.

Note. For simplicity, in the following definition of the functions n and
n" we will only give the cases which are needed in the formal developments
presented in this section. In fact, as we mostly prove our technical results
by some form of induction, it is sufficient to define the effect of a substitu-
tion p on the initial moves of a configuration.

DerFmNITION 4.9. 1. The function # is defined by structural induction on
n as follows:

(i) ninil) = {(, nil)}
(i) mia)={({a,}, nil)}
(i) n(m +m)={(x, 7" +m) | (x,n")en(n,)}
vilnm+a) | (x) en(n,)}
) (m,) ifm,
(v} n(my;ma) = {z(xfn’; n,) | (x, t')en(n,)} othe;{vise
(v) n(ry | my)={(x, " |)| (x, n)en(m)}
Uilx, [n) | (x,m')en(n,)}
(i) g,V m)={(x, 7'V m2) | (x, 2") enlm,) },
2. The function 5’ is the extension of # to configurations. It is defined
by structural induction on ¢ as follows:
(i) n'(n)=n(xn)
(i) n'(F(a))= {({F(a)}, nil}}
, {(m) if ¢
(i) n'(e;m) = {?(x, csm)) (x, cYen'(c)} oth;{wise

(iv) n'leylel)=1{(x,cilc) | (x ci)en'(c,)}
uilx el ed) | (x, ch)en'(er))

643:103:2-6

238 ACETO AND HENNESSY
Notation 43. Let X LA U {F(a,)| a,e LA}. Then
p(X)y/ = Va, Fla)e X pla)y/ A p(F(a))y/-

The following proposition and corollary state formally that what we
hoped for in giving the above definition actually holds.
In fact, if (X, d)en’(c) and p(X)\/ then ¢p ~, dp.

ProOPOSITION 44. YneLP, peSUB, (X, n')en(n) A p(X)\/:> np ~ 7'p.

Proof. By structural induction on n. We give just the proof of the case
n=m, | m, leaving the others to the reader.
n=m, | m,. Assume (X, n')en(n, | m,). There are three cases to examine:

(a) (X,n')=(X,u Xy, n||m}) with (X, m)en(n,) and (X, 7)€
n(n,). By inductive hypothesis, y,p ~ 7y p and m,p ~, nsp. Since ~ is a
congruence it follows that (n, | my))p=m,p | map ~ Wip | Whp.

(b) (X,n')=(X, =} |n,) with (X, n}) e n(n,). By inductive hypothesis,
m,p ~, w1 p. Again this means that (7, | m)p=mp|np ~ Wp|map=
(ny | m2)p-

(¢) Symmetrical. |

COROLLARY 4.2. VceL%, peSUB (X, c'Yen'(c) A p(X)\/=> cp ~, C'p.
Proof. By structural induction on ¢. Omitted. ||

With the next theorem we start the investigation of the possible origin of
a move of ¢p, for ce L% and p e SUB. We first do so for labelled processes.
Before proving the relevant theorem we state a technical lemma which we
will need in the proof.

LemMMA 44, Let ceL.¥ and peSUB. Then cp\/ and (X, c')en'(c)
imply p(X)\/ and c’p\/.

Proof. By structural induction on ¢. Omitted. |

The next theorem relates the moves of np, n e LP and p e SUB, to those
of = and p. Intuitively it states that if np == s one of the following
situations occur:

e m can execute the start of action g, for some a,e LA, and the
process associated to a; by p can execute the action e. From that moment
onwards F(a;) will be a “place-holder” for what remains to be executed of
the process p(a;).

PROCESS ALGEBRAS 239

« There is a couple (A, n') associated to = by 5 such that p maps all
the elements of 4 to terminated processes and n'p == s. This is justified by
Proposition 6.1, which states that, in this case, mp behaves like n’'p with
respect to ~,.

THEOREM 4.6. Let ne LP and p e SUB. Then np == s implies that

(i) 3a;:m > oA pla) => y A s=cp[F(a)~ y], or

(i) X, n)en(n): p(X)/ A np =>s.
Proof. By structural induction on 7.

7 = nil. Vacuous.

n = a,. Clause (i) is trivially met.

n=m,+7, Assume (m,+7,)p =>s. Wlog, we may assume m,p+
n,p => s because 7, p = 5. By inductive hypothesis this implies that

(1) da;:m, ML pla;) = yAs=cp[F(a;)— y], or

(i) 30X, w)en(n,):p(X)y/ Arip ==s.
If (1) holds then

n 4T s o A pla) = p A s=cp[Fla) - y].
If (i1) holds then, by definition of 5(-), (X, =} + n,)en(n, + n,).
Moreover p(X),/ and '\ p+n,p => 5.
T=m,;m,. Assume (n,; ,)p =1, p; T,p = 5. There are two possibilities:
(a) mp =5 and s=s';m,p. By inductive hypothesis m,p = s’
implies that

(i) 3a,:7m, % ¢ A p(a,) = y A s'=cp[Fla)~ y], or

(i) (X, 7)) en(n,): p(X)/ and nip == 5.

If (1) holds then =n,; n, LLLINGS n,. Moreover

(c;ma) pLF(a) > y]=(cp[Fla)) = y])i(map[Fla) = y]) =", myp.
If (i1) holds then, by definition of n(-), (X, n}; n,)en(n,; n,) and, by the
operational semantics,
(T3 m)p=mp;map => 5 M,p.
(b) m,py/ and m,p =>s. By the inductive hypothesis, m,p = s
implies that
(1) 3a;:m, ELIURPIN pla,) =+ y A s=cp[F(a,) > y], or
(i) 3I(X, my)en(n,): p(X)/ A mhp ==>s.

240 ACETO AND HENNESSY

If (i) holds then there are two subcases:

Stay)
1. nl\/ Then n,; n, —— ¢ and clause (i) is met.

2. mé \/ Then, by the above lemma, n,p./ implies that for
each (X, n)en(m,) we have that p(X)\/ and n)p./. Hence, for each
(X, n); my)en(n,; m,) we have that p(X)\/ and n’lp\/. By the operational
semantics, for each (X, n}; n,)en(n; n,) we have that

(m\; 7o) p=mipsmap == 5.
If (i1) holds then there are two subcases:

1. If n,\/ then (X, n5)en(n,; n,) and clause (ii) holds.
2. If nlp\/ and 7, ¢ \/ then, again by the above lemma, for each
(Y, m})en(n,) we have that p(¥),/ and np./
Hence, by definition of 5(-), for each (Y, n{; n,)en(n,; n,) we have that
p(Y)\/ and n',p\/. Thus (Y, n}; n,) e n(n,; n,) implies that

.
(T m)p=m1p,mp = 5.

n=m,|n,. Assume, wlog, TP | m,p => 5| m,p because n,p = 5. By
the inductive hypothesis, 7,p == s implies that

(i) da;: n,l——‘i)—>c/\p{a)=>1As—cp[F(a)— y], or

(i) (X, n))en(n,): p(X) \/ AT p = 5.
If (i) holds then =, | n,), e | m,. Moreover,
(c|m) p[F(a,) = y1=(cp[F(a)— y]) | (mzp[F(a)— y])=s5] m2p.

If (ii) holds then, by definition of #(-), (X, 7} | nz)er](nl | 7).
By the operational semantics, (7} | 7,)p =7}p | 7,0 = s | 5.
n=m, | n,. Similar to the case above. |

To characterize to moves of ¢p for ce L.¥ we need to show how a move
of cp may depend on a possible move of the state p(F(a,)).

THEOREM 4.7. Let ce LY, pe SUB. Assume cp == s. Then

(1) 3Ja,eLA:c e, o A p(a,) = y A s=c'p[F(a;)— y], or

(ii) I(X. c)en'(c):p(X)/ A c'p =5, 0r
(iii) Ja,eLA :p(F(a,)) = y A s=cp[F(a,)— y] and F(a,) occurs
in c.

Proof. By structural induction on ¢. The details are very similar to
those in the proof of the above theorem. |

PROCESS ALGEBRAS 241

So far we have shown how to relate the moves of ¢p, for ce L¥ and
p€SUB, to moves of ¢ and p. In what follows we need to be able to go
in the opposite direction. Namely, in certain circumstances, given moves of
¢ and moves of p, we want to derive the corresponding move of cp. This
information is needed in proving that refine-equivalence is preserved by
action-refinement and is derived by the next lemma.

LEMMa 4.5, Let ce LY, peSUB.

(a) Assume ¢ V2 ¢ and p(a,) => y. Then cp == c¢'p[F(a,)— y].

(b) Assume F(a)) occurs in ¢ and p(F(a)) => y. Then cp ==
cplFla;)— y]

Proof. Both statements can be shown by structural induction on ¢. We
sketch only the proof of statement (a) leaving the proof of (b) to the
reader.

c=n: We show that n+—% ¢ and p(a,) == y imply mp =
¢'p[F(a;) = y] by induction on the proof of n LN

We examine only the case n=m, | n, and leave the others to the reader.

n=m,|n,. Wlog, assume =, | 7, e, ¢ { m, because =, LN By
the inductive hypothesis, n,p == cp[F(a,)— y]. By the operational
semantics,

(m | m)p=mp | mp = (cp[Fla)— y]) | nap.

Moreover, as F(a;) does not occur in n,,

(c|my) plFla)— y]l=(cp[Fla;) = y]) | mzp.
¢ = F(a;): Vacuous.
The cases c=¢, | ¢, and c=c¢,; n are easy. }

We now have all the technical machinery we need to prove that ~, is
preserved by action-refinement. The proof is based on the tight corre-
spondence between the places of two configurations ¢, 4 such that c~, d
which is recorded by ¢ € #. This allows us to state formally when a place
F(a;) in ¢ plays the same role as a place F(a;) in d with respect to
action-refinement.

DeriNITION 4.10. 1. Let p, p’e SUB and ¢ e #. We say that p~, p’ iff
for each ac A

(i) Viedom(g,) p(F(a;)) ~, p'(F(ay,;))
(i) Vi, jeNp(a,) ~, p'(a)-

242 ACETO AND HENNESSY

2. Define &,,, <% as follows:
'@sub ;:f {(Cpa C,P’) l 3¢e3(C~¢ C/ A p~¢ p’}

We want to show that &, is a timed-bisimulation. Before showing this
result we state a technical lemma which will be useful in its proof.

LEMMA 4.6. (i) A, is an equivalence relation on &.
(i) Vs;,5,€F 5, ~ ;= (5, 53) € By
Proof. (i) This statement is a simple consequence of the properties of
~4 on LY and of the following observations:
s Vo, p p~yp = p ~ g p.
° vp’ p/’ pl!~¢1 pl A p’~¢2 p”:>p~¢2“¢l p//.

(it) Assume that s,,s,€% and s, ~, 5,. Then, by Theorem 4.5,
sy ~,§,. This implies that there exist ¢, ¢c,€ L% such that un(c¢;)=s,,
i=1,2,and ¢, ~, ¢, for some e

Consider p e SUB such that Va,e LA p(a;,)=a A p(F(a;)) = F(a).

Then it is easy to see that, for each ¢e#, p~,p. By definition
of R, (c1p,c2p)eR,,,- Moreover, c,p=un(c,)=s,,i=1,2. Hence
(sl’sz)e‘\%sub' l

THEOREM 4.8. The relation R, is a timed-bisimulation.

Proof. We prove by induction on the size of ¢ that for (cp, ¢'p’) € Z,,
cp = s=>3s':c'p == s and (s, 5') € Ry,

By symmetry this is sufficient to prove the claim.
First of all recall that (cp, ¢’p')e &, Ml for some ¢ge#c~, ¢ and
p~qp'. Assume cp => 5. By Theorem 4.7 there are three cases to examine:
() 3a,:crL d A pla) = y A s=dp[F(a;)— y]. Then, as ¢ ~4 ',
there exist je N, d’' € L such that
d>2 g and ~o i 4

As p~yp', 3y p'la) =y and y ~ v,
By Lemma 4.5, d +— d’ and p’(a;) == y' imply

dp' <> d'p'[F(a)~ ']
It is easy to see that

plF(a;)— y] oo (ai)} pI[F(aj) -]

PROCESS ALGEBRAS 243

Hence, by the definition of %,
(dp[F(a))— y), d'p'[F(a) = y']) € A

(ii) 3I(X,d)en'(c):dp = s and p(X)\/. Then, by Corollary 4.3,
cp ~,dp. By the above lemma, (cp, dp)e R,
As A, is an equivalence relation, (dp, ¢'p’) € R,,,,- As the size of d is less
than that of ¢, we may apply induction to obtain

A5’ :¢’p’ =5 and (s, 5)€R,,,.
(iii) 3a,:p(F(a,)) = s A s=cp[F(a;)— y] and F(a;) occurs in c.
As F(a;} occurs in ¢ and c~,¢', iedom(¢,). By the hypothesis that
p~4p', we have that
3y’ :p'(Fla))) =y and y ~, y', where j=¢,(i).
As F(a;) occurs in ¢’ we may apply Lemma 4.5 to obtain
¢p' == ¢p'[Fla)—y']

As p~,p’, we have that p[F(a;) = y]1~4p'[F(a)— y']
By the definition of 4.,

(cpLF(a)— yl, c'p'[F(a)) > y']) e Ao |

This theorem allows us to give a behavioural proof of the fact that ~
is preserved by action-refinements.

T

CoroLLARY 4.3 (The Refinement Theorem: Behavioural Proof).
Vp,q,rePp ~_ q implies p[a~r] ~, gqla~r].

Proof. We show in fact that p ~, q implies that pfa~r] ~ gla~r],
which, by Theorem 4.5, is sufficient to prove the claim. Assume p, g P and
p ~.q. Then there exist

ny, ;€ LP:un(n,) = p, un(n,) =g and n, ~ 5 7,.

Consider the substitution p defined as follows:
s YieNp(a)=r
e Yiib#apbh,)=05b
 Vip(F(a;)) = Fla)
Then p ~ 4 p and therefore, by the definition of &, (7, p, 1,p) € Hqp.

Moreover, n,p= pla/r] and n,p =¢q[a/r]. By the above theorem and
the definition of ~, over P, pla~r] ~, gla~r]. |

244 ACETO AND HENNESSY
5. PROOF OF THE EQUATIONAL CHARACTERIZATION

This section is entirely devoted to a detailed proof of the equational
characterization of the relation ~, over P (Theorem 3.2). The proof is
based upon standard techniques used in the literature to axiomatize
non-interleaving equivalences; see, e.g., [CH89, H&8]. However, the details
are much more involved because of the presence of general sequential
composition in the language, rather than action-prefixing. As usual, the
proof of the completeness theorem relies on the isolation of suitable normal
forms for processes. For the languages with action-prefixing considered in
the above given references, normal forms for processes are of the form

z a; pitq,

iej
where p, and ¢, are themselves normal forms. In the presence of a general
sequential composition operator, however, normal forms will be process
terms made up of an arbitrary alternation of sequential composition and
left-merge. (See Definition 5.1.) In order to reason about such complex
terms, we develop decomposition results for normal forms and their
associated process states modulo ~,. (See Section 5.2.)

5.1. Preliminaries

Let =, denote the least congruence over P which satisfies the set of
axioms E in Fig. 1. The following proposition, whose proof is standard and
thus omitted, states that the axioms are indeed sound with respect to ~,.

ProrosITION 5.1 (Soundness). For each p, qe P, p=, q implies p ~,q.

Note that axiom (C3) is nor sound without the side-condition. For
example, (nil+b); ¢ » nil; c+b;ec.

In what follows we concentrate on the much more challenging proof of
completeness of the set of axioms E with respect to ~,. In order to prove
the completeness theorem, it is convenient to reduce the processes in P to
what will be called head reduced forms or hrf’s. Before giving the definition
of this class of terms, let us introduce some useful notation.

Notation 5.1. In what follows, for each process peP,

p=>iff there exist a€ A, s€ ¥ : p = s.

Note that p # iff p ~ nil.

We now introduce a class of processes, the head reduced forms, which is
very useful in the proof of the completeness theorem. Intuitively, sequential
hrf’s correspond to processes which semantically have the sequential com-

PROCESS ALGEBRAS 245

position operator as head operator and parallel hrf’s to processes which
semantically have the left-merge operator as head operator. Combinations
of parallel and sequential behaviour in processes are dealt with by means
of the larger class of hrf’s.

DermNiTION 5.1 (Head Reduced Forms). The sets HRF (head reduced
forms), HRF,, (sequential head reduced forms), and HRFp,, (parallel head
reduced forms) are defined simultaneously as the least sets satisfying

¢ a; peHRFg,, if peHRF;

» p;qeHRFg, if peHRFp,,, g€ HRF, and g¢=;

» pY qeHRFy,, if peHRFg,,, geHRF, and g=>;

e X,/ P;€HRF if I is a finite index set and, for each i€/, p,e HRFg,,
or p;eHRFp,,.
By convention, if =¥ then 3, p,=nil.

The next lemma states that it is possible to reduce each process in P to
a head reduced form using the axioms in E.

LeMma 5.1 (Reduction Lemma). For each peP, there exists a head
reduced form h(p) such that p = h(p).

Proof. By induction on the depth of p. The proof proceeds by a case
analysis on the structure of p and will use all of the axioms in E apart from
(A3).

¢ p=nil. Then p is already a hrf.

e p=a. Then a=, a; nil, which is a sequential hrf, by axiom (C2).

« p=g+r. By the inductive hypothesis, there exist hrf’s h(g) and h(r)
such that g =, h(g) and r =, h(r). If h(q) = nil or h(r) = nil then apply (A2)
and (A4) to obtain a hrf. Otherwise ¢+ r =, h(q)+ h(r) which is a head
reduced form.

o p=gq;r. By the inductive hypothesis, g=,As(g). Assume, wlog, that
h(g)=3,.,49: where each g, is either a sequential hrf or a parallel hrf.

If hig)=nil (i.e., I=J) then apply (C2) and the inductive hypothesis to
obtain

p=q;r=gnil; h(r)=gh(r).

Otherwise 1# @ and p=,(3;.,9); r=r2.,c,9: " by repeated use of
axiom (C3) which is applicable as each q; is not terminated. We show that,
for each ie !, ¢g;;r may be reduced to either a sequential hrf or a parallel
hrf. There are two possibilities to consider:

246 ACETO AND HENNESSY

(1) g, is a sequential hrf. We distinguish two subcases:

(i) gq,=a;q with §e HRF. Then

gir={a;q);r=gpa;(q;r) by (C1)
=pa;,h(g;r) by the inductive hypothesis.

(ii)) g,=4§,; 4§, with §, e HRFp,, §, € HRF, and §, =. Then

g3 r=(413 G20 r=£4,:(4537) by (C1)
=g G h(§sr) by the inductive hypothesis,

which is a sequential hrf as A(§,; r)=.

(2) g, is a parallel hrf. Then g,=4, V' 4, with §, eHRFg,, and §, =
H h(r)=nil then q,;r=;q,. Otherwise, A(r)=>and q;r=(4,V §.); A(r),
which is a sequential hrf.

« p=g/{ r. By the inductive hypothesis, ¢ =, h(q). Assume, wlog, that
hqg)=Y,.,9: If h(q)=nil then apply (B4) to obtain p =, nil. Otherwise,

P=c(Xic,9)Y r=g2:c,q:V r by repeated use of (Bl).
We show that, for each i€ 7, ¢; ¥ r may be reduced to either a sequential
hrf or a parallel hrf. There are two cases to examine:

(1) g,eHRFg,. We distinguish two subcases:

(1) g;=a;43. Thena; gV r=,a; gt h(r) by the induction hypothesis.
If h(r)=nil then apply (B3) to obtain a sequential hrf. Otherwise
h(r)=>and a; 4§V h(r) is a parallel hrf.

(i) ¢,=4,; §, with §, eHRFy,,, §, € HRF and §,=>. Then
g:¥ r=g(41;42) ¥ h(r) by the inductive hypothesis
_ {é,;qzeHRFSCq if h(r) = nil
“E UG @) Y h(r) otherwise
(2) ¢.=4.V(g, with §, € HRFs,., §, e HRF and §,=>. Then

gV r=(G@:V gV r=ecg:t (§21r) by (B2)
=zq,f h(g,|r) by the inductive hypothesis,

which is a parallel hrf as §, = implies A(g, | r)=.

e p=qlr. Then p=gqt r+rV q by (X1). The claim now follows from
the above case.

This completes the proof of the reduction lemma. J

PROCESS ALGEBRAS 247

The proof of the completeness theorem is based upon several lemmas
stating important decomposition properties. As we are dealing with finite
processes, it will be convenient to prove most of these properties by induc-
tion on some notion of the size of a process. In what follows, the size of
a process p, | pl, will be taken to be the length of the longest sequence of
subactions it can perform with respect to the timed operational semantics,
ie,

|pl = max{l(¢)|ceA} and p =Z> 5, for some s},

where /(o) denotes the length of the sequence g. This notion of size is
generalized in this obvious way to s € &. The following proposition is easily
established.

PROPOSITION 5.2. For each s, s,€ %, s,~, 8, implies |5,| = |s,|.

LEmMA 5.2. Let 5(,5,€%. Then s,; p~,s,; p implies s, ~ 5.
Proof. By induction on the combined size of s, and s,.

» Suppose Sl\/ . Assume, towards a contradiction, that there exist
ecA,, s, such that s, = s,. Then, by the operational semantics,
S2;p = $5; p. As s;; p~,5,; p, there exists s such that p = s and
s~ 55; p. However, this is impossible as |s| <|p| < |s3; p|. Thus sz\/ and
therefore s, ~, s5.

« Assume s, = s|. By the operational semantics, this implies that
$1; p == s; p. Reasoning as above we may deduce that not sz\/. Hence
there exists s, such that s, == s, and s}; p~,ss; p. By the inductive
hypothesis, s/ ~, s5. As this can be done for each e, s} such that s, = s/,
we obtain, by symmetry, that s, ~,5,. ||

Two special subclasses of the set of states & play an important role
in the proof of the completeness theorem. These are called sequential
configurations and parallel configurations. Intuitively, sequential
configurations are, as their name indicates, semantically sequential process
states, in a sense which is made precise in the following section. (See
Definition 54 and Proposition 5.5.) Dually, parallel configurations are
process states which are semantically parallel, in a sense which is
formalized in Definition 5.3. These two sets of states are also closely related
to the classes of sequential and parallel hrf’s and help us to obtain a precise
understanding of the behaviour of these processes. In fact, we show that,
modulo ~, the target states of start-moves performed by sequential hrf’s
are sequential configurations. Again, a dual result holds for parallel hrf’s:
the target states of start-moves performed by these processes are parallel
hrf’s. (See Lemma 5.3.)

248 ACETO AND HENNESSY

Notation 5.2. For each index set I={i, .. i}, k>0, the notation
[1;c;c; stands for ¢, |---|c, and is justified by commutativity and
associativity of | modulo ~,. By convention, I1],, ; ¢, =nil.

DEerINITION 5.2 (Parallel and Sequential Configurations). The sets
bseq» the set of sequential configurations, and €p,,, the set of parallel
configurations, are simultaneously defined as the least subsets of % which
satisfy the following clauses:

» Fla), pe s, If peP;

¢ c€%Bpa, p=>imply C; PEBseys

o {c;liel} S%bsq, [11>0and p=imply (IT,.,c.) | p€bpas
* {Ci,iEI}g(gSeq’ /> 1 imply I1,., ¢, € Gpur-

In the above chauses [is always assumed to stand for a finire index set.

The following immediate properties of sequential and parallel configura-
tions are heavily used in the proofs of the main results of this section.

Fact 5.1. (1) For each ce %g.q\J Gpa, there exists ac A such that
¢ =>!~(u) .

(2) For each c€%p,,,

S(a
(a) ¢ %, for some ae A, or
(b) EALIN f—i~'ﬂ>, for some a, be A.

Hence sequential configurations are always capable of performing the
end of at least one action; on the other hand, parallel configurations are
either capable of performing the start of an action or can perform at least
two end moves in a row. The following lemmas study the effect of start-
and end-moves on processes and configurations. At this stage it is useful to
introduce the notation ce ~, X to mean that there exists some xe€ X such
that ¢ ~, x.

PROPOSITION 5.3. (i) For each s€ ¥, seP or s€ ~ G5y 0r 5€ ~ bpy,.
(1) Let s,,s,€%. Assume that |s,|,|s,|>0. Then s,|s5s,€P or
5 l §;€ ~, (gPar'

Proof. (i) By induction on the structure of s. We only sketch the proof
of the case s=s5,|s,. In this case, by the inductive hypothesis, we have
that, for i=1, 2,

s, P or §;€ ~ bseq or 5, € ~, bpyu-

PROCESS ALGEBRAS 249

If 5,,5,€P then s, [s,€P. If [5,/=0 and s5,€ ~, €5, OF 5, € ~, €5, and
[s2| =0 then s, |5, € ~, €sq. In all the other possible cases we have that
51|56 ~ G

(ii) Follows from the previous analysis for (i). |

The following lemma studies the effect of start-moves on sequential and
parallel head reduced forms.

Lemma 53. (1) peHRFg,, and p LU imply ¢ € .,

(2) peHRFy,, and p 24 . imply ce€p,, and ¢ is of the form d|r,
with d € 6seq, reP and |r] > 0.

Proof. Both statements are shown by simultaneous induction on the
size of p. We assume, as inductive hypothesis, that (1) and (2) hold for
each ¢ such that |¢] <] p|.

(1) Assume peHRFg, and p 2 . By the definition of the set
HRFg,, there are two cases to examine.

* p is of the form a;q. Then, by the operational semantics,

= F(a); g € 6seq-

o pis of the form q;r, with ge HRFp,,, re HRF and |r| > 0. Bsy the
operational semantics and the fact that g e HRF 5, implies ¢ ¢ \/ q.r LN
implies ¢ =d;r, with g =2 4 As {r| >0, we have that |g| <|p|. Thus we
may apply the inductive hypothesis for (2) to obtain, among other things,
that de %5,,. Hence d; r e s .

This completes the proof of (1).

(2) Assume peHRFp, and p 24, ¢ Then, by the definition of
HRFp,,, p is of the form g | r, with g€ HRFg,,, r€eHRF and |r| >0 By the
’S(a)
operational semantics, ¢ r == ¢ implies c=d|r, with ¢ ==d. As
[r] >0, |g| <|p|l. We may thus apply the inductive hypothesis for (1) to
obtain that de %s.,. Hence d|re%p,, and is of the required form. This
completes the proof of (2). |

The following result is an immediate corollary of the previous lemma.

CoroLLARY 5.1 (Effect of Start-Moves on Head Reduced Forms). Let

peHRF. Then p 2, . implies c € 5., €p,,. Moreover, if c € 6p,, then c is
of the form d | q, with de s, and |q| >0.

LemMa 5.4 (Effect of Start-Moves on Processes). If peP and p 2, .
then ¢ € ~\6seq OF €€ ~, bp,,. Moreover, if ce ~ bp,, then ¢ ~ d|gq, for
some d, q such that de 65, and |g| > 0.

250 ACETO AND HENNESSY

Proof. Let peP and assume that p =4 . By Lemma 5.1, p=, h(p)
for some hrf A(p). By the soundness of =, with respect to ~,, we have that
p ~. h(p). Hence there exists d such that A(p) LN ~ c. By the previous
corollary, de€ %s., U %p,.. Thus c€ ~, €., U p,,. Moreover, again by the
previous corollary, c € ~, €;,, implies that d is of the required form. [

LEmMa 5.5 (Effect of Start-Moves on Configurations). For each
€ € Gseq \W Bpar the following statements hold:

’

(1) c€Bseq and c LI imply ¢’ € ~ Bseqs

(2) c€%p, and ¢ S, o imply ¢’ € ~, €pa,.

Proof. Both statements are proved simultaneously by induction on the
size of ¢. We assume, as inductive hypothesis, that (1) and (2) are true of
all d with |d| <|c|.

(1) The statement is vacuously true if ¢ is of the form F(a); p.
Assume now ¢ is of the form d;p with de%p, and p=. Then
d;p fi—i)>d’;p if d2% 4, as for no de %pa, d\/. By the inductive
hypothesis for (2) we have that d'e ~ %p,,. Thus &’; pe ~ b5q-

(2) Agsume ¢ is of the form [1,.;¢;! p, with |/|>0 and p=. If
Il..,¢.lp 219, ¢ there are two cases to examine:
e suppose, wlog, that [[,.,c¢c;|lp LN i1 1T;x1¢:1 p because
S(a) , . . .
¢, == ¢}. As ¢, € %5, we may apply the inductive hypothesis for (1) to
obtain ¢} € ~, s.q. Hence ¢ [T],.,c;| p€ ~ Gpars

» suppose [[,c;c;lp RILIN Ilicici | d because p 2D g Then, by

Lemma 5.4, de ~, 6., Or d€ ~, Gp,,. In both cases [],.,¢;| de ~, Gp,-
If ¢ is of the form [T, c,, |1 > 1, then, wlog, TT,c;¢; 2> ¢} | T, €
because ¢, EICIN cy. As ¢ € 65, we may apply the inductive hypothesis for

(1) to obtain ¢} € ~, bs.. Thus ¢} | [T, c;€ ~, 6par-

This completes the proof of the lemma. J

By the above lemmas, we may assume from now on that, modulo ~,,

%seq and €p,, are closed with respect to moves of the form g:g acA. The

following lemma studies the effect of end-moves on configurations.

Lemma 5.6 (Effect of End-Moves on Configurations). For each ce
bseq " Bpar» the following statements hold:

a) .
(1) c€%bseq and ¢ LiLINpY imply c'eP or '€ ~ bs.q;

’

Fla) .
(2} ce%Bp, and c == (' imply '€ P or ¢’ € ~ bseq OF '€ ~ Cpy,.

PROCESS ALGEBRAS 251

Proof. Both statements are proved simultaneously by induction on the
size of ¢. We assume, as inductive hypothesis, that (1) and (2) are true for
all d with |d| <|¢|.

(1) If ¢ is of the form F(a); p then F(a); p L9, nil, peP. cherwise
¢ is of the form d; p with de%p,, and p=-. Assume that d; p =—) ==d'; p
because d == d'. Then, by the inductive hypothesis for (2), d’eP or
d'€~ bseq OF d' € ~ bp,,. If d'€P then d';peP. If d'e ~ €, then
d’; pe ~, €soq. Otherwise d'e ~ %, and there are two possibilities to
consider:

o d' ~ F(b);q. Then d’; p ~ F(b); (q; p) € Ceq-
o d ~,d";q with d”"e€p,, and g=. Then d’; p ~, d"; (q; p) € b5,

This completes the proof of (1).
(2) Assume ce€ %p,.- We distinguish two cases:

e ¢ is of the form [];.,¢;|p, 1>0 and p=>. Then, wlog,
[Tic;cilp i::c, (TT;x1c:| p because ¢, ==)>c, By the inductive
hypothesis for (1), c;€P or ¢} € ~, Gseq. If ¢ € ~ Eseq then) | [Tz ¢,]
pE ~, bp,,. Otherwise ¢ eP. If |I]=1 then ¢ | I’I,»,é1 ¢, peP. I || >1
then ¢, | TLins ¢/] PE ~, Gpay a5 ¢} | p=.

ec is of the form T[I,.,c, |l > 1. Assume, wlog, that
Tlic,c g:»cl | TT.xici=c¢" because ¢, LiLIN ¢y. By the inductive
hypothesis for (1), c;€P or ci€ ~, €sq. If ¢} € ~ %5y then '€ ~%p,,.
Otherwise ¢, € P. Now, if |I] >2 then ¢’ € ~, €p,,. If |I| =2 and ¢} = then
'€ ~,Gp,,. Il |1| =2 and ¢~ nil then ¢' € ~, €.

This completes the proof of (2). |}

The following lemma will find application in some of the results
presented in the following section.

LEMMA 5.7. Let c € €p,,. Assume that

Sta)
e ¢ ==, for each ac A, and
A
o for no aeA, de ~, %p,,, ¢ =2 d.

Then ¢ ~, F(a) | F(b), for some a,be A.

Proof. First of all, note that, by the proviso of the lemma, ¢ must be of
the form ¢, | ¢, with ¢, ¢; € 6s.,. We claim that ¢, ~, F(a) and c,~, F(b),
for some a,be A. Assume in fact, for the sake of contradiction, that
¢, € 6seq and, for no a€ A, ¢, ~, F(a). Then either ¢, ~, F(a); p, for some
a€ A and p such that |p| >0, or ¢, ~, d; p, for some de %p,. and p such
that | p| > 0. In both cases, it is easy to see that, by the previous lemma,

252 ACETO AND HENNESSY

eyl e, gﬁ | ;€ ~ €pa., for some a and ¢). This contradicts the
hypotheses of the lemma. Hence, by symmetry, ¢, ~, F{a) and ¢, ~, F(b),
for some a, b. ||

The previous lemmas state the basic operational material which finds
extensive application in the proof of results leading to the promised
completeness theorem. QOur next aim is to prove two fundamental
decomposition properties used in the proof of the completeness theorem:
the sequential and the parallel decomposition theorems. The proofs of these
results makes use of some general unique factorization results with respect
to ~,, which are based upon similar results presented in [Mol89, MM90],
for ~. The proofs of the factorization and decomposition results are the
subject of the following section. In what follows rather than always
working modulo ~, we reduce the relation € ~, to €; i.e., we assume that
€ is always considered modulo ~,.

5.2. Unique Factorization and Decomposition Results

This section will be entirely devoted to proving two fundamental decom-
position results which will find application in the proof of the completeness
theorem: the sequential decomposition and the parallel decomposition
theorems. The sequential decomposition result we are after states that, for
each ¢, de €p,, and p, g€ P,

c;p~.dg implies ¢~ dand p ~, q. (1)

The parallel decomposition theorem we should like to prove, which may be
seen as the dual statement of (1), states that, for each ¢, de %, and
p.q€P,

clp~dlg implies ¢c~.dand p ~_q. (2)

In the process of proving (1) and (2) we shall establish unique factorization
results, modulo ~, for states s € & with respect to the operators of sequen-
tial and parallel composition, which are similar to the ones presented in
[Mol89, MM90] modulo strong bisimulation equivalence, ~. Apart from
their intrinsic interest, such factorization results allow us to give elegant
proofs of the above-mentioned decomposition results. The theory presented
in this section also allows us to shed more light on the semantic properties
of ~,. In particular, by using the factorization and decomposition results
stated above we shall prove that, modulo ~, each process peP is either
nil or semantically sequential or semantically parallel. (See Theorem S.5
and the subsequent corollary.) This property does not hold for standard
bisimulation equivalence, ~, over P.

Our first aim in this section is to show the sequential decomposition
result stated in (1). As mentioned above, the proof of (1) relies on a unique

PROCESS ALGEBRAS 253

sequential factorization result, which states that each state se€.¥ may be
expressed uniquely, modulo ~,, as a sequential composition of “semanti-
cally parallel states.” Intuitively, a state s is “semantically parallel” if it
cannot be expressed, modulo ~,, as a nontrivial sequential composition of
states. Formally:

DEFINITION 5.3 (Seq-irreducible and Seq-prime States). Let se %
Then s is said to be:

(i) seg-irreducible if s ~ c; p, for some ce ¥ and peP, implies
¢ ~nil or p ~ nil;
(11) seq-prime if s is seq-irreducible and s » , nil.

For each se %, a sequential factorization for s modulo ~, is a sequence
of seq-primes s,, p,, ..., p,, with n 20, 5, € & and, for each 2<i<n, p,eP,
such that

S~ 813 P2 s P-

By convention, if n=0 then s,; p,;..; p,=nil. We shall now prove that
each se.% has a unique sequential factorization into seq-primes, modulo

~
THeorem 5.1 (Unique Sequential Factorization). Let se€ .. Then s has
a unique sequential factorization into seq-primes modulo ~ .

Proof. The proof is divided into two parts, an existence part and a
uniqueness part, both of which are shown by induction on |s|, the size of
sed.

Existence. We assume, as inductive hypothesis, that each s° with
|s'l <|s] has a sequential factorization. The proof proceeds by a case
analysis on the possible form s may take, modulo ~,. If s ~ i/ then s has
an empty factorization into seq-primes. If s is seq-prime then it is its own
factorization. Otherwise we may assume, wlog, that s ~ s,;p with
|s.[, | p| > 0. By the inductive hypothesis, ¢,;¢,;...;4, and p,;..; p,, are
seq-prime factorizations for s, and p, respectively. Thus, by substitutivity,

S~ s qas s qns Pis s P

is a seq-prime factorization for s. This completes the proof of the existence
part of the result.

Uniqueness. We assume, as inductive hypothesis, that each s'€ & such
that [s’[< [s| has a unique seq-prime factoriation. Assume that

$ ~ €15 P25 s Py

~d3925 5,

643/103,2-7

254 ACETO AND HENNESSY

are two factorizations of s into seq-primes. We shall show that the two
factorizations are identical, modulo ~,. If »=0 then m=0 and we are
done. If n =1 then s is a seq-prime and thus m=1 and ¢, ~, d,. Hence the
two factorizations are identical. Otherwise, by symmetry, we may assume
that #, m > 2. We distinguish two possibilities:

(1) p, ~.¢.. and
(i) pp * G
We examine the two possibilities in turn.
(i) Assume that p, ~, ¢,,. Then, by Lemma 5.2 and substitutivity, we
have that
€13 P2 Pron ~odii g2 et (3)
As | p,l, 1¢,,] >0, we may apply the inductive hypothesis to (3) to obtain

that ¢,, p3, .., p,_, and d,, ¢, .., ¢,, ., are identical seq-prime factoriza-
tions. Thus we have that n=m, ¢, ~, d, and, for each 1 <i<n, p, ~, q;.

(i1) Assume now, for the sake of contradiction, that p, %, ¢q,. As
|c,| >0, we have that ¢, = ¢ for some e€ A, and c. By the operational
semantics, ¢,; pyi..;p, == Ci; P2;..; p,. Moreover, as |d,|>0 and
€13 Pasos P ~1dys 23 05 g, We have that, for some 4/,

di; G @ = Al Gas i o~ C1s P2 P
By the inductive hypothesis,
S~ C P2 P
~idii g5,

has a unique seq-prime factorization

s € Py P~ d Y s d S G5 G

where h, k>0 and ¢} ~, ¢';..;¢" and d| ~,d';..;d* are the unique
seq-prime factorizations for ¢} and d;, respectively. As n, m>2, we then
have that p, ~,¢q,,. This contradicts the hypothesis that p, +,q,,.

This completes the proof of the uniqueness part and that of the
theorem. |

We now show the above-given unique sequential factorization result for
states, modulo ~,, may be used to give a proof of the sequential decom-
position theorem. First of all, we show that each parallel configuration c is
indeed a seq-prime state. This result is a corollary of the following useful
proposition.

PROCESS ALGEBRAS 255

PrROPOSITION 54. Let c€%p,,, d€ S, and peP. Assume that ¢ ~ d; p.
Then p ~ nil.

Proof. By induction onFthe size of ¢. Assume that ¢ ~, d; p. Note that,
as ¢ € %p,, implies that ¢ 22% for some a, this implies that |d| > 0. Thus
each initial move from d; p has to come from d. The proof proceeds by an
analysis of the following three possibilities:

(a) ¢ =2 ¢, for some a, c',

Fa)
(b) ¢ == ¢’ €%bpa, for some q, c’, and

(c) mneither of the two previous cases applies.

We examine each possibility in turn.

(%2) In this case, by Lemma 5.5, ¢’ € %p,,. Moreover, as ¢ ~,d; p,
dip=>d';p~,c for some d. We may now apply the inductive
hypothesis to obtain p ~ nil.

(b) Similar to (a).

(c) Assume now that neither of the two previous cases holds. We are

then in a position to apply Lemma 5.3 to gbtain that ¢ ~, F(a) | F(b), for
some a, b. Then,F as ¢ ~, d; p and ¢ L9, 2O il | nil, there exists d’ such
that d; p Lo, 2 g, p ~ nil | nil. This implies that d’ ~, p ~ nil.

This completes the proof of the proposition. |}

COROLLARY 5.2. Each parallel configuration is seq-prime.

Proof. Assume that ce %, and that ¢ ~,d; p. Then, by the above
proposition, we have that p ~, nil. Thus ¢ is seq-irreducible. Moreover, as
¢ € 6p,, implies |c| >0, c is seq-prime. |

We can now prove the promised sequential decomposition theorem.

THEOREM 5.2 (Sequential Decomposition Theorem). Let ¢, de%p,,.
Then ¢; p ~.d; q implies ¢ ~,d and p ~,q.

Proof. By Theorem 5.1, p and ¢ have unique factorizations into
seq-primes given by

P~ P15 Pa and g~ q1;iGm-

By Corollary 5.2, ¢, de %p,, implies that ¢ and d are seq-prime. Thus, by
substitutivity and Theorem 5.1,

Ci D1 P~ 45055 G

256 ACETO AND HENNESSY

are identical factorizations into seq-primes. This implies that ¢ ~, d and,
for each 1<i<n=m, p;~, g, By substitutivity, we then get that
pr~q 1

The dual statement of Theorem 5.2, the parallel decomposition theorem,
may now be shown by following a similar strategy. First of all, we prove
a unique parallel factorization result for states, which states that each se %
may be expressed uniquely, modulo ~,, as a parallel composition
of “semantically sequential states.” Intuitively, a state is “semantically
sequential” if it cannot be expressed, modulo ~,, as a nontrivial parallel
composition of states. Formally:

DEFINITION 5.4 (Par-irreducible and Par-prime States). Let se.%.
Then s is said to be:

(1) par-irreducible if s ~, 5, | s, implies s, ~, nil or s, ~ nil;
(ii) par-prime if s is par-irreducible and s + , nil.

The proof of the unique parallel factorization result for states modulo ~,
uses the following simplification lemma, which is familiar from the theory
of several equivalences based on the notion of bisimulation; see, e.g.,
[CH89, Moi891.

LemMa 5.8 (Simplification Lemma). Let ¢, d, fe . Then:

(1) For each ecA,, f'€e¥, f==f" and c¢|f ~.d|f imply that
d == d’, for some d’ such that ¢ ~, d’.
(2) c|f ~.d|f implies that ¢ ~, d.

Proof. Both statements are proved simultaneously by induction on the
combined size of ¢, d, and f. We assume, as an inductive hypothesis, that
(1) and (2) hold for each ¢',d’ and f* such that |[¢/]+|d'|+|f’]| <
le| + [dl + | f].

(1) Assume that f == f"and ¢ | f ~,d| f'. Then, by the operational
semantics, ¢ | f => ¢ | f. As ¢ | f ~,d |/’ then is a matching e-move from
d| f'. We distinguish two possibilities:

ed|f =>d |f' ~,c|f because d = d’. Then we may apply the
inductive hypothesis for (2) to obtain ¢ ~, d’. Hence there exists d’ such
that d == d’' ~, c.

o d|f = f|f"~,c|f because ' = f". Then we may apply the
inductive hypothesis for (1) to obtain that d = d’ ~ ¢, for some d".
This completes the inductive step for statement {1).

PROCESS ALGEBRAS 257

(2) Assume c¢|f ~.d|f and ¢ = ¢’. Then, by the operational
semantics, ¢ | f == ¢’ | f. Let us examine the possible matching moves from

dl f:

ed|f=d|f~.c|f because d = d'. Then, by the inductive
hypothesis for (2), ¢’ ~,d’.

ed|f=>d|f ~,c'|f because f = f'. Then, by the inductive
hypothesis for (1), d = d’ ~, ¢’ for some d".

Thus for every move of ¢ we may find a matching move by 4. By symmetry,
c~.d 1

For each se &, a parallel factorization for s modulo ~, is given by a set
{cy, . Ci}, k=0, of par-primes such that

§~¢Cyl] Cge

We now have all the technical material which is needed to prove that
each state has a unique parallel factorization into par-primes modulo ~,.
The proof of the parallel factorization result follows the one of
Theorem 4.2.2 (pp. 77-79) of [Mol89].

THEOREM 5.3 (Unique Parallel Factorization). Each se€ % may be
expressed uniquely, modulo ~, as a parallel composition of par-primes.

Proof. The proof is divided into two parts, an existence part and a
uniqueness part, both of which are shown by induction on [s|, the size of
se.

Existence. We show, first of all, that s can be expressed, up to ~, as
a parallel composition of par-primes. We assume, as inductive hypothesis,
that the claim holds for all s' such that |s’| < |s|. The proof proceeds by an
analysis on the possible forms s may take, modulo ~,.

It s ~ nil then s can be expressed as an empty product of par-primes. If
s is par-prime then it is its own parallel factorization. Otherwise, we may
assume that s ~, 5, | s, for some s,, s, such that |s,|, |s,| > 0. By the induc-

tive hypothesis, s, and s, have prime factorizations given by ¢,|---| ¢, and
d/|---\|d,, repectively. By substitutivity, we then have that
§~e 85 ‘SZ ~tC1|"'|Cn|d]l"'l dm

is a parallel factorization for 5. This completes the proof of the existence
part of the theorem.

Uniqueness. We assume, as inductive hypothesis, that each s’ such that
|s'| < |s| has a unique parallel factorization up to ~,. Assume now that

s~ e, ~odi] el dy,

258 ACETO AND HENNESSY

are two parallel factorizations of s into par-primes. We prove that the two
factorizations are identical, modulo ~,. We proceed by analyzing the
following two possibilities:

(a) the two factorizations have a common par-prime factor,

(b} ¢, *,d;, for all i, j, ie., there is no common par-prime factor in
the two factorizations.

We examine the two possibilities separately.

(a) Assume, wlog, that ¢, ~, d,. Then, by substitutivity,

s~ e, ~eldy |-l dy,.

By the Simplification Lemma, this implies that ¢,]---| ¢, ~,d,]---| d,,. By
the inductive hypothesis, which is applicable as |¢,| >0, we have that
{¢3, ., c,} and {d,, .., d,,} are identical par-prime factorizations, modulo
~.. Hence {¢,, .., c,} and {d,, .., d,} are identical par-prime factoriza-
tions for s.

(b) Assume that ¢, +,d,, for all i, j. If n=0 then it must be the case
that m =0 and the two par-prime factorizations are both empty. Assume
now, for the sake of contradiction, that n>1. We distinguish two
possibilities depending on whether n=1 or n> 1.

(b.1) Assume that n=1. Then, as ¢, is par-prime, we have that
m=1 and ¢, ~,d,. This contradicts the assumption that the two decom-
positions have no common par-prime factor.

(b.2) By symmetry, we may assume that n, m> 2. Let, wlog, c, be
minimal with respect to size amongst all the par-prime factors ¢;, 1 <i<n,
and d, 1<j<mjie,

lesl < le;l and [e| <), foralli

Then, as |¢,| >0, ¢, = ¢} for some ec A, and ¢, e #. By the inductive
hypothesis, ¢} has a unique parallel factorization

ey ~cet et h=0.

By the operational semantics, ¢, |---| ¢, => ¢} | ¢, |---| ¢, = and, by the
inductive hypothesis, ¢ has a unique par-prime factorization given by

el et leg |l

Asc, |- |¢c, ~.dy|---|d,, we have that, wlog, d, | --- | d,, = d] | dy| -+
| d,, ~, ¢ because d, == d|. By the inductive hypothesis, d; has a unique

PROCESS ALGEBRAS 259

par-prime factorization given by d'{---|d* k>=0. Then, again by the
inductive hypothesis,

et lole eyl ey ~ed oo dE dy| -0 dy,

are identical par-prime factorizations for ¢. Note that, for each 1 <I/<h
and 2<5<m,

el <leyl < Idjl.

Thus, for such /, j, we have that ¢/ #, d,. This implies that each d; does not
appear in c'|---|c*|¢,|---|¢c,. Hence m<2. This contradicts the
assumption that m > 2. This completes the proof of the existence part.

The proof of the theorem is now complete. J

We shall now show how the unique parallel factorization result may be
used to give a proof of the parallel decomposition theorem. As it may be
expected, given the dual roles played by sequential and parallel composi-
tion and configurations in our technical development, the key to the proof
of the parallel decomposition theorem is to show that each sequential
configuration is par-prime.

PROPOSITION 5.5. Each sequential configuration is par-prime.

Proof. let ce%s.,. We show that ¢ is par-prime by a case analysis on
the possible form ¢ may take.

» ¢ = F(a); p. Assume, for the sake of contradiction, that ¢ ~, ¢, | c,
with |c,[, |co| > 0. We proceed by analyzing the possible form of ¢, and ¢,.

If ¢, € P then, as |c,] >0, we have that ¢, =2 for some a € A. This implies

that ¢, | ¢ %, contradicting the assumption that ¢ ~, ¢, | ¢;.
11€2 g Y

Otherwise, by symmetry, we may assume that ¢,, c,€ % —P. Then we

have that ¢, L9, and c, =2 for some a, b. This implies that

¢ | ¢y LN 5—4:5 again contradicting the assumption that ¢ ~, ¢, | ¢,.
Thus each sequential configuration of the form F(a); p is par-irreducible

and obviously par-prime.

» c=d; p with de%p,, and |p| > 0. Assume, for the sake of contra-
diction, that ¢ ~, ¢, | ¢,, with |¢,|, [¢;| > 0. By Lemma 5.3(ii), this implies
that ¢, | c,e P or ¢, | ¢, €%Gpa,. If ¢; | c,€ P then we obtain a contradiction
toc~,c;|cyasc 22, for some a.

If ¢,|c,e%p,, then, by the sequential decomposition theorem,
c=d;p ~,c;|c, implies p ~ nil. This contradicts the assumption that
{p| > 0. Thus each sequential configuration of the form d; p is par-prime.

260 ACETO AND HENNESSY

As we have considered all the possible forms sequential configurations may
take, we have that each ¢ e %s,, is par-prime. |

We can now prove the promised parallel decomposition theorem.' In the
statement of this result we use some new notation which is introduced in
the following definition.

DeFINITION 5.5. Let {c,|iel}, {d,| jeJ} S @seq, With [and J finite
index sets. Then we write {c,| iel} ~, {d,;| jeJ} iff there exists a bijective
map ¢: /- J such that ¢, ~ dy,,, for each iel

THEOREM 5.4 (Parallel Decomposition Theorem). Let {c;|iel},
{dj | jed} s Cseqs» P> 4EP. Then c = (ITicicol p ~ (Hje./ dj)l q =d implies
{c.liel} ~ {d;|jeJ}and p ~ ¢

Proof. By the unique parallel factorization theorem (Theorem 5.3),
there exist unique par-prime factorizations for p and ¢ given by

1) p~cpil-lpa
(") q ~q I “"qm'

Note that each par-prime factor of p and g has to be a process. By
Proposition 5.5, each ¢; and d, is par-prime as it is a sequential configura-
tion. Thus, by substitutivity and the unique parallel factorization theorem,

(H)|p. Py~ (Hd)lq, | 4

ief jeJt

are identical par-prime factorizations up to ~,. As, obviously, ¢, +, ¢, and
d; #, py, for all i, j, h, k, it must be the case that

{ciliel} ~ {d;| jeJ} and {pul1<h<n} ~ {q | 1<k<m}.
By substitutivity, (i), and (ii), we then have that p ~ ¢. This completes the
proof of the theorem. |}

Intuitively, for a process pe€ P, its unique parallel factorization modulo
~, may be seen as the “most parallel version” of p (modulo ~). Similarly,
its unique sequential factorization may be seen as the “most sequential
version” of p (modulo ~,). For each peP, by the two factorization
theorems we have just shown,

pP~Pil-| P a unique product of par-primes

~eG1s e Qo a unique sequential composition of seq-primes.

! We thank Frits Vaandrager for suggesting the proof of this theorem which is presented
below.

PROCESS ALGEBRAS 261

With respect to standard bisimulation, ~, it is possible to have both the
factorizations be nontrivial, which we take to mean that n, m>2. For
instance, for p=a| q,

p~ala (parallel factorization)

~ a;a (sequential factorization).

We now show that, up to ~,, at least one of the factorizations is trivial.

THEOREM 5.5. Let peP. Assume that p,|---| p, and q,;..;q,, are
a par-prime factorization and a seq-prime factorization for p, up to ~,
respectively. Then n=m=0orn=1orm=1.

Proof. Assume, for the sake of contradiction, that », m > 2 and that

pll"'lpn ~i g1 Gm- (4)

As |p,| >0, there exist ac A and ce ¥ such that p, 24 By the
operational semantics, we then have that p,|---| p, 24 . | p, where
p=p,|--|p, and |p|>0 as n=2 By (4) and the fact that jq,|>0,
we have that, for some 4, ¢,;..;q,, 2L g G ~.c| p, where §=¢,;..; ¢,
and |g|>0 as m>=2 By lLemmaS54, ¢ de %Seq U 6p,,. Moreover, as
c| p ~,d;qand | p| >0, we have that de %p,, or d is of the form d; r with
d e %p,, and [7] > 0. In both cases d; g € bs,,.

We proceed by considering the cases ¢ €%, and ¢ € %p,, separately. If
¢ € 65, then, by the parallel decomposition theorem, ¢ | p ~, d; g implies
that p ~, nil. This contradicts the fact that {p| > 0.

If ¢ € €p,, then, by Lemma 5.4, ¢ has the form ¢, | ¢ for some ¢, € 4., and
t such that [7| > 0. Then, by substitutivity and the parallel] decomposition
theorem, ¢ | p ~, ¢, | 1| p ~,d; § implies that 1| p ~ nil. This contradicts
the hypothesis that |1], | 5| > 0.

Thus we have shown that either n <2 or m < 2. Obviously, if # =0 then
m=0. Hence, by symmetry, n=m=0orn=1orm=1. |

An interesting corollary of the above theorem is the following result
stating that, up to ~,, each process is either ni/ or par-prime or seq-prime.

COROLLARY 53. Let peP. Then p ~,nil or p is par-prime or p is
seq-prime.
5.3. The Completeness Theorem

In order to prove the promised completeness result, we will need some
further lemmas whose proofs will highlight the usefulness of the important
decomposition results shown in the previous section.

6437103:2-8

262 ACETO AND HENNESSY

LeMMA 5.9. Let ¢, debs.q) Cpa,. Then:

(i) c€bseq and ¢ ~, d imply de €.,
(1) ce%p,, and ¢ ~, d imply de p,,.

Proof. We just prove (i) as (ii) then follows by symmetry. Assume that
¢ €6s.q and ¢ ~, d. Suppose, towards a contradiction, that de %;,,. Then,
by the definition of €p,,, either d=]1,.,d;| p with |J| >0 and d, € %s., for
each jeJ and |p|>0, or d=[],.,d; with |J|>1 and d,e %, for each
jeJ. i d=T],.,d;| p ~, c then, by Theorem 5.4, we obtain that p ~, nil.
This contradicts the assumption that |p(>0. If d=11;.,d;, ~,c then,
again by Theorem 5.4, we obtain that {c¢} ~, {d,| jeJ}. However, this is
impossible as |J| > 1. Hence de %s.,. |

LeMMa 5.10. Let ¢, d€ Gseq 'V Bpar- Then:
(1) c¢=F(a); p ~, d implies d=F(a); q and p ~ q.
(2) c=cy;p~,d, with ¢,€%p,, and |p| >0, implies d=d,; q with
d, €bp,;, 1g1 >0, ¢y, ~, d,, and p ~ g.
(3} c=ci|p~id, with ¢, €%, and |p| >0, implies d=d, | q, with
d, €%bseq, 191 >0, ¢; ~ d), and p ~, q.

Proof. Assume c, d € 5., %p.,. We prove each statement separately.

(1} Assume ¢ = F(a);p ~,d. Then ce%,, and, by Lemma 5.9,
¢ ~,d implies de €, as well. We show, first of all, that d must be of the
form F(a); q. Assume in fact, towards a contradiction, that d is of the form
d,;q, with d, €%, and |g| >0. Then, as d, €%p,,, either d, 2D or
d, 22 28 for some b, b€ A. By the operational semantics the same is
true of 4, which contradicts the hypothesis that ¢ ~, d. Hence d must be of
the form F(a); ¢ and this easily implies p ~, g.

(2) Assume c=c,; p ~.d, with ¢, €%y, and | p|>0. Then ce%s,,
and, by Lemma 5.9, ¢ ~, d implies de %5, as well. By (1) and symmetry,
we have that d must be of the form d,; ¢, with d, € %p,, and |g| > 0. Thus,
c=c¢,; p~.d;;q=d and we may apply Corollary 5.2 to obtain ¢, ~, d,
and p ~, q.

(3} Assume c=c,| p ~, d, with ¢,e€%s.,, and | p{>0. Then ce%p,,
and, by Lemma 5.9, ¢ ~ d implies de %p,, as well. We show, first of all,
that d must be of the form d, | ¢, with d, € €5, and |gq] > 0. Assume in fact,
towards a contradiction, that d=[[;.,d;, with |J|>1 and d,e%,,, for
each jeJ. Then we may apply Theorem 5.4 to ¢, | p ~,[1, d; to obtain
p ~nil. This contradicts the hypothesis that | p] > 0.

Assume now d=][1],.,d,|q, with |J| >0, |g| >0 and d,€ %, for each
jeJ. Then we may apply Theorem 54 to ¢, | p ~,I1;c,d;| g to obtain

PROCESS ALGEBRAS 263

{e;} ~ {d;] jeJ} and p ~, ¢q. Hence J is a singleton set and the statement
holds. |

The following result, which plays an important role in the proof of the
completeness theorem, expresses a very strong property of ~, when applied
to sequential and parallel head reduced forms.

PROPOSITION 5.6. Let p,qge HRFS,:q U HRFp,,. Assume p SILIN c,

g =2 dandc ~ d Then p ~

Proof. By induction on the combined size of p and ¢. We assume, as
inductive hypothesis, that the claim holds for all p’, ¢’ eHRFSequHRF Par
such that | p'| + || <1p| + Iql. Assumethatp——=)>c q 24 4 and ¢ ~, d.
By Lemma 5.3, c € 6, Or c is of the form ¢’ | r, with ¢’ €%, and |r| >0.
We consider these two possibilities in turn.

» c€ 6., We distinguish two subcases according to the structure of ¢.

1. ¢=F(a);r. Then, by Lemma 5.10, ¢ ~, 4 implies that d= F(a);
t and r ~ t. It is now easy to see that p -—;-> F(a) r, peHRFg., W HRFp,,,
implies that p is of the form a; r. Similarly g is of the form a;¢ Asr ~ ¢
we then have, by substitutivity, that p ~, q.

2. c¢=c';r, with ¢’ €%p,, and |r] > 0. Then, by Lemma 5.10, ¢ ~, d
1mplles that dis of the form d’; t, with d' € %p,,, |t| >0, ¢’ ~,d"and r ~ 1.
As p 22, ¢ and peHRFSequHRde,, p must be of the form p;r, with
p1€HRFp,, and p, f—-—1> ¢’. Similarly g has to be of the form gq,; s, with
g, €HRFp,, and ¢, == d". As |r], 1| >0, |q,| +|p,) <|pl +]|gl and we
may apply induction to obtain p, ~, ¢,. By substitutivity, p ~ ¢.

e c=c'|r, with ¢’ € 6sq and |r| > 0. By Lemma 5.10, ¢ ~, d implies d
is of the form d’ | 1, with d’ € €5, |11 >0, ¢’ ~,d',and r ~ ¢. [t is easy to
see that p———(——)>c | r and peHRF‘chuHRF‘,;.a,r imply p=p,Vtr, with
p1€HRFg, and p, %-2 ¢'. Similarly, ¢ SN | t implies ¢ =gq, [1, with
g, €HRFg,, and g, = 29 ', As |r], 1t >0, we may apply the inductive
hypothesis to obtain p, ~, ¢,. Hence, by substitutivity, p ~,q. |

We have now developed all the technical machinery needed in the proof
of the completeness theorem.
THEOREM 5.6 (Completeness). Let p,geP. Then p ~, q implies p=,q.

Proof. The proof is by induction on the combined size of the terms. By
the reduction lemma and the soundness of = ; we may assume, wlog, that
P=2,.,p and g=3 ;. ,q, are head reduced forms. By symmetry, it is
then sufficient to show that

Viel 3jeJ:.p,=fq,.

264 ACETO AND HENNESSY

In fact, the equality p=,¢ will then be provable by applications of
(A1)-(A3). Let iel The proof proceeds by an analysis of the possible
structure of p,.

. p,_a r, r e HRF. Then p, 3L—”> F(a); r. By the operational seman-

tics, p, ;::» F(a); r implies p RIEAN F(a);r. As p ~ g, there exists g, such
that g, == ¢ ~, F(a); . By Lemma 5.10, ¢ ~, F(a); r implies ¢ = F(a); t
with r ~ 1. By the inductive hypothesis, r =, t. Moreover, g; EILIN F(a);t
and qJEI-IRFSeq_JHRF,,M imply ¢,=a;t Hence, by substitutivity, p,=a;
r=ga, t=gq;.

* p;=ry;r,, With r,eHRde,, r,€HRF and ile > 0. Assume p; SLS
Then ¢ must be of the form ¢’; r, with r, BN By Lemma 5.3, ¢’ € €p,,
and thus ce %s.,. As p ~, g, there exists g, such that g, == EACIN ~,c’;ry. By
Lemma 5.10, d ~, ¢’; r, implies « has the form d'; 1,, with d’ e%pa,, {151 >0,
¢ ~.d" and r, ~ t,. By the inductive hypothesis, r, =, 1,.

It is now easy to see that g, % d’ t, and q,eHRFchuHRF‘pd,g 1mply

q =t,;1t,, with tleHRFPd, and r, RIS By Proposition 5.6, r, == ¢/,
24 4" and ¢ ~.d" imply r, ~ t,. Hence, by the inductive hypothesis,
rl =,1, and, by subsmutmty, PiSriira=gl =g,

e p;=r, | r,, with r e HRFg,,, r, €HRF and |r,] > 0. Assume p, == BN

Then ¢ must be of the form ¢, |r,, with r, g(, By Lemma 5.3,

¢ €%bseq- As p ~,q, there exists g, such that q,i(—“—’>d~lc1|r7 By
Lemma 5.10, it must be the case that d=d, | t,, with d, e %s,, 15| >0,
¢y ~.d, and r, ~.t,. By the inductive hypothesis, r,=,t,.

As g =>d, | 1, and q,eHRFgequHRFp“, ¢, must be of the form

/
t, ¥ t,, with ¢, eHRFg,, and ¢, =>d,. As ¢, ~,d,, we then have, by
Proposition 5.6, that r, ~ ¢,. By the inductive hypothesis, r,=g¢,. By
substitutivity, p,=r, V' r;=g ¢, t,=q;. This completes the proof of the
theorem. |J

6. CONCLUSIONS

In this paper, we have studied the consequences of the introduction of an
operator for refining an action by a process in a simple process algebra.

More specifically we have considered a process algebra which constitutes
the core of many of the existing ones, added to it a new combinator for
refining an action by a process, and then addressed the question of an
appropriate equivalence for the augmented language.

The main result of this paper is that, at least for the simple language we
have considered, an adequate equivalence relation can be defined in a very
intuitive manner. In fact, it coincides with both Hennessy’s timed-

PROCESS ALGEBRAS 265

equivalence [H88] and a slight reformulation of it which we call
refine-equivalence. Moreover, these equivalences can be axiomatized in
much the same way as the standard behavioural equivalences [HMS8S5,
DHg4].

The technical machinery and the understanding of the problem that we
have gained in the development of the work reported in this paper have
proved to be of considerable help in its extensions to more complex
algebras [AH90]. As an example produced by R. Van Glabbeek shows,
timed equivalence is not in general preserved by action refinement over,
e.g., event structures. The characterization theorem we have proved in this
paper 1s thus language dependent and does not hold for process algebras
which include a parallel operator with synchronization and CCS
restriction. However, as we show in [AH90], many of the techniques
developed in this paper for refine-equivalence are indeed applicable in
general and a characterization result in terms of refine-equivalence similar
to Corollary 4.3 still holds. The interested reader is invited to consult
[AH90] for more details.

After having developed a more comprehensive theory of action-refine-
ment in process algebras, we aim to carry out a detailed study of the
usefulness of this notion in the specification and development of reactive
systems. Our feeling is that such a feature should allow a further degree of
freedom in the modularization of the development of concurrent systems,
in much the same way as the notion of procedure has been of help in
describing complex sequential systems. This claim will have to be supported
by working out the specification of a range of realistic systems using the
algebraic techniques we plan to develop.

Finally, let us refer briefly to some related work. In [Pr86], Pratt
discusses the pomset model of concurrent computation. One of the most
interesting operators he introduces is the operator that he calls pomser
homomorphism. Such an operator is in essence similar to the one we have
introduced in this paper. In fact, it has the effect of substituting a pomset
to a vertex of another pomset.

In [Gi84], the author, working with Pratt’s pomset model, shows that,
regarding each symbol of a pomset as standing for a language, causal
dependency between symbols as concatenation of languages and
concurrency as their shuffle, two pomsets are equivalent (in the sense that
they stand for the same language) if and only if they are equivalent under
the interpretation in which only languages with strings of length at most 2
are considered.

In [K88], A. Kiehn introduces a call mechanism for Petri net system,
which are finite families of place/transition nets, [Rei85], and studies some
closure properties of the class of languages accepted by them. None of these
papers, however, is concerned with an explicit algebraic treatment of the

266 ACETO AND HENNESSY

feature of action-refinement in the different models adopted by the authors.

In [BC88], G. Boudol and 1. Castellani propose a calculus of concurrent
processes which allows them to regard a finite computation as a single
event. They investigate this problem both at the level of execution of a
process and at the level of operation (the way processes operate on data).
This kind of abstraction is in essence a dual notion of the refinement
operator described in this paper and it would be interesting to have a
process algebra containing both these features. Since the appearance of
[CDP87], semantic theories for processes which support the refinement of
actions by processes have been the object of extensive study in the
literature. The reference [GG88] gives a good survey of the work in this
area; moreover, there the authors show that history preserving
bisimulation over finite prime event structures [Win87] is preserved by
action-refinement (in the absence of internal, invible actions). [NEL88]
presents a natural model for a process language incorporating a refinement
operator which is fully abstract with respect to a trace-based notion of
equivalence over processes. [DD89b] studies action-refinement over
synchronization and causal trees [DD89a] and presents refinement
theorems for two versions of branching bisimulation [GW89]. In [GI90],
the author studies notions of ST-bisimulation, a version of bisimulation
equivalence which is very close in spirit to the refine-equivalence presented
in this paper, and ST-trace equivalence over finite, prime event structures
and proves that they are both preserved by refinement. A refinement
theorem for a version of failures semantics [BHR847] over safe Petri nets
has been presented in [Vo90]. However, apart from [NEL88], all of
the above-mentioned references are concerned with the study of action-
refinement at the semantic level. In this paper, on the other hand, we have
tried to provide the theoretical foundations for a syntactic treatment of the
feature of action-refinement in a simple algebraic setting. Extensions of our
work to more complex algebras will be reported in [AH90].

APPENDIX: TAaBLE OF NOTATION

A Set of actions (a, b, ...€ A)

A, Set of subactions (e, ¢’,..€A))

LA Set of labelled actions (a;, b;, ...€ LA)

LA, Set of labelled subactions (1€ LA,)

P Set of basic processes (p, g, ...€ P)

P Process language with refinement (p, g, ..€ P)
P, P with refinement combinators [p] (p, g, ...€P,)

PROCESS ALGEBRAS 267

4 Set of states over P (s, 5/, ...€ &)

LP Set of uniquely labelled processes (n, 7, ... € LP)
LY Set of uniquely labelled states (¢, d, ...€e L¥)
€seq Set of sequential configurations

Gpar Set of parallel configurations

HRF g, Set of sequential head reduced forms
HRFp,, Set of parallel head reduced forms

HRF Set of head reduced forms

- Transition relations over P

e Transition relations over P,

= Timed transition relations over .

5, Transition relations over T ;.

o Labelled transition relations over L.

~ Bisimulation equivalence

~¢ Largest P, -congruence contained in ~

~ Timed-equivalence

~, Refine-equivalence

{~s|pe st} Largest parameterized bisimulation

€ ~, Set membership modulo ~,

H Set of histories

SUB Set of substitutions

red(-) Reduction function

Tr(-) Translation function

Places(a, ¢) Set of a-places of ¢

un(-) Function which forgets the labels of configurations
n(-) See Definition 4.9

ACKNOWLEDGMENTS

It is a pleasure to acknowledge Frits Vaandrager for suggesting the elegant proof of the
Parallel Decomposition Theorem based on the unique factorization result and his detailed
comments on a previous version of this paper. We also thank the anonymous referee for
his/her many suggestions which led to improvements in the paper.

RECEIVED September 13, 1989; FINAL MANUSCRIPT RECEIVED February 27, 1991

REFERENCES
[Ab87] ABRAMSKY, S. (1987), Observation equivalence as a testing equivalence, Theoret.
Comput. Sci. 53, 225-241.
[AH90] AceTo, L., AND HENNESSY, M. (1990), “Adding Action Refinement to a Finite

Process Algebra,” Computer Science Report 6/90, University of Sussex, to appear
in Information and Computation.

268

[BC88]
[BHR84]
[BK84]
[BK85]

[BKS$8]

[CDP87]

[CHS9]

[DD89a]

[D89b]
[DH84]
[(Gi84]

[GG88]

[G190]

[GI90a]

[GW89]

(GW89a]
[H88]
[HM85]
[Hoare85]

[K88]

[Kel76]
[Mil80]

[Mil83]

ACETO AND HENNESSY

Boupor, G., aND CAsTELLANI, 1. (1988), Concurrency and atomicity, Theoret.
Comput. Sci. 59, 25-84.

Brookes, S. D., Hoare, C. A. R., AND RosCOE, A. W. (1984), A theory of
communicating sequential processes, J. Assoc. Comput. Mach. 31 (3), 560-599.
BERGSTRA, J. A, anD Krop, J. W. (1984), Process algebra for synchronous
communication, Inform. Control 60, 109-137.

BERGSTRA, J. A, AND KLoP J. W. (1985). Algebra of communicating processes
with abstraction, Theoret. Comput. Sci. 37 (1), 77-121.

BERGSTRA, J. A., AND KLP, J. W. (1988), Process theory based on biisimulation
semantics, in “Proceedings REX School 1988 pp. 50-122. Lecture Notes in
Computer Science, Vol. 354, Berlin/New York.

CASTELLANO, L., pE MicHELIS, G., aND PoMELLO, L. (1987), Concurrency vs
interleaving: An instructive example, Bull. European Assoc. Theoret. Comput. Sci.
31, 12-15

CASTELLANI, 1., AND HENNESSY, M. (1989), Distributed bisimulations, J. Assoc.
Comput. Mach. (October), 887-911.

DARONDEAU, P, AND DEGANO, P. (1989), Causal trees, in “Proceedings ICALP
1989,” pp. 234-248, Lecture Notes in Computer Science, Vol. 372, Springer-
Verlag, Berlin/New York.

DARONDEAU, P., aAND DrGANO, P. About semantic action refinement, Fund.
Inform., to appear.

DE Nicora, R., anp HENNESsY, M. (1984), Testing equivalences for processes,
Thearet. Comput. Sci. 34 (1), 83-134.

GisCHER, J. L. (1984), “Partial Orders and the Axiomatic Theory of Shuffle,”
Ph.D. Thesis, Stanford University.

vAN GLABBEEK, R., AND Gortz, U. (1988), “Equivalence Notions for Concurrent
Systems and Refinement of Actions,” Arbeitspapiere de GMD 366.

vaN GLABBEEK, R. (1990), The refinement theorem for S7-bisimulation
semantics, to appear in “Proceedings IFIP Working Conference, Israel at the Sea
of Galilee.”

vaN GLABBEEK, R. (1990), “Comparative Concurrency Semantics and Refinement
of Actions,” Ph.D. Thesis, Free Umversity of Amsterdam.

vAN GLABBEEK, R., AND WEULAND, P. (1989), Branching time and abstraction in
bisimulation semantics, in “Information Processing 1989, pp. 613-618, Elsevier,
Amsterdam/New York.

vaN GLABBEEK, R., AND WEuLAND, P. (1989), Refinement in branching time
semantics, in “Proceedings AMAST Conference, May 1989, fowa,” pp. 197-201.
HENNESSY, M. (1988), Axiomatising finite concurrent processes, SIAM J. Compu.
(October).

HENNESSY, M., AND MILNER, R. (1985), Algebraic laws for nondeterminism and
concurrency, J. Assoc. Comput. Mach. 32 (1), 137-161.

Hoarg, C. A. R. (1985), “Communicating Sequential Processes,” Prentice—Hall,
Englewood Cliffs, NJ.

KIEHN, A. (1988), “Petri Net Systems and Their Closure Properties,” Technische
Universitat Miinchen, Institut fir Informatik; to appear in “Advances in Petri
Nets,” 1989.

KEeLLER, R. (1976), Formal verification of parallel programs, Comm. ACM 19 (7},
561-572.

MiLNER, R. (1980), “A Calculus of Communicating Systems,” Lecture Notes in
Computer Science, Vol. 92, Springer-Verlag, Berlin/New York.

MILNER, R. (1983), Calculi for synchrony and asynchrony, Theoret. Comput. Sci.
25, 267-310.

[Mil89]
[MM9%0]
[Mol89]

[NEL88]

[OC84]

[Par81]

[PI81]

[Pn85]

[Pr86]
[Rei85]

[Vo90]

[Win87]

PROCESS ALGEBRAS 269

MiLNer, R. (1989), “Communication and Concurrency,” Prentice-Hall,
Englewood Cliffs, NJ.

MILNER, R., AND MOLLER, F. (1990), Unique decomposition of processes, Bull.
European Assoc. Theoret. Comput. Sci. 41, 226-232.

MoLLER, F. (1989), “Axioms for Concurrency,” Ph.D. Thesis, Report C§-59-89,
Department of Computer Science, University of Edinburgh.

NIELSEN, M., ENGBERG, U., AND LARSEN, K. 8. (1988), Fully abstract models for
a process language with refinement, in “Proceedings REX School 1988."
pp. 523-548, Lecture Notes in Computer Science, Vol. 354, Springer-Verlag,
Berlin/New York.

INMOS Limited (1984), “OCCAM Programming Manual,” Prentice-Hall,
London.

Park, D. (1981), Concurrency and automata on infinite sequences, in “Lecture
Notes in Computer Science,” Vol. 104, pp. 167-183, Springer-Verlag, Berlin/
New York.

PLoTkIN, G. (1981), “A Structural Approach to Operational Semantics,” Report
DAIMI FN-19, Computer Science Department, Aarhus University.

P~UELL, A. (1985), Linear and branching structures in the semantics and logics of
reactive systems, in “Lecture Notes in Computer Science,” Vol. 194, pp. 14-32,
Springer-Verlag, Berlin/New York.

PRATT, V. (1986), Modelling concurrency with partial orders, Internat. J. Parallel
Programming 15, 33-71.

REeisig, W. (1985), “Petri Nets,” EATCS Monographs on Theoretical Computer
Science, Springer-Verlag, Berlin/New York.

VOGLER, W. (1990), Failures semantics based on interval semiwords is a
congruence for refinement, in “Proceedings STACS 1990, Lecture Notes in
Computer Science, Springer-Verlag, Berlin/New York.

WinskeL, G. (1987), Event structures, in “Advances in Petri Nets 1986,
pp- 325-392, Lecture Notes in Computer Science, Vol 255, Springer-Verlag.
Berlin/New York.

