
Under consideration for publication in Math. Struct. in Comp. Science

Modelling session types using contracts

Giovanni Bernardi and Matthew Hennessy †

School of Statistics and Computer Science, The University of Dublin, Trinity College

Received July 30, 2013

Session types and contracts are two formalisms used to study client-server protocols. In

this paper we study the relationship between them. The main result is the existence of a

fully abstract model of session types; this model is based on a natural interpretation of

these types into a subset of contracts.

Contents

1 Introduction 1
2 Session types 4

2.1 Sub-typing 6
3 Contracts 9

3.1 The contract language 9
3.2 The server pre-order 20
3.3 Must testing 25

4 Session Contracts 30
4.1 Session contracts 30
4.2 The restricted server pre-order 31
4.3 The restricted client pre-order 36

5 Modelling session types 39
5.1 Examples and applications 42

6 Conclusions 44
6.1 Summary 44
6.2 Related work 45
6.3 Future work 50

1. Introduction

Communication between processes in a distributed system often consists of a structured
dialogue, following a protocol which specifies the format of the messages interchanged
and, at least for binary communication, the direction of the messages. Session types, ST ,

†
This research was supported by SFI project 06 IN.1 1898.

have been introduced as an approach to the static analysis of the participants of such
dialogues. They allow structured sequences of non-uniform messages to be interchanged
between the participants. For example, using the notation of (Gay & Hole 2005), the
type ![Int]; ?[Real]; end specifies the output of a value of type Int followed by the input
of a value of type Real, after which the dialogue is terminated. Flexibility in the permit-
ted sequencing of messages by a process is accommodated by two choice operators; the
branching type &hT1, T2 i o↵ers a choice to the partner in the dialogue between following
either the protocol specified by the type T1 or that specified by T2. On the other hand the
choice type �hT1, T2 i allows the process itself to follow either of the protocols specified
by T1 or T2.
Sub-typing, (Gay & Hole 2005), also increases the flexibility of the type system; intu-

itively T1 4st T2 means that any participant designed with the protocol specified by T1 in
mind may also be used in a situation where the protocol specified by T2 will be followed.
Intuitively this pre-order between session types is generated by allowing more possibilities
in branching types and restricting them in choice types. The reader is referred to (Caires
& Pfenning 2010, Gay & Hole 2005, Honda et al. 1998) for more details on session types,
including how they are associated with processes and what behaviour they guarantee.

Web services (Alonso et al. 2004, Bernardo et al. 2009) are distributed components
which can be combined using standard communication protocols and machine-independent
message formats to provide services to clients. To encourage reusability, descriptions of
their behaviour are typically made available in searchable repositories (oasis Standard
2011). In papers such as (Barbanera & de’Liguoro 2010, Carpineti et al. 2006, Castagna
et al. 2009, Laneve & Padovani 2007) a language of contracts has been proposed for
describing behaviours; despite a very di↵erent surface syntax, the language of contracts
is very similar in style to session types. In particular there is the sequencing of mes-
sages ↵1.↵2, an external choice between behaviours �1 +�2 reminiscent of the branching
type &hT1, T2 i, and an internal choice between allowed behaviours �1 � �2, reminiscent
of the choice type �hT1, T2 i.
The object of this paper is to study the precise relationship between these two for-

malisms. In particular for first-order session types, which do not allow the use of com-
munication channels in messages, we show that the theory of session types, hST ,4st i,
can be captured precisely using a natural pre-order over a subclass of contracts.
Contracts for web services serve two roles. A contract � may describe the behaviour

of a server o↵ering some specific service. Dually a contract ⇢ may describe the behaviour
expected of a client who wishes to avail of a particular service. Central to the theory of
contracts for web services is the idea of compliance between such contracts, formalised
as an asymmetric relation ⇢ a �; it has been defined in a variety of ways in papers such
as (Castagna et al. 2009, Laneve & Padovani 2007, 2008). This leads to two natural
pre-orders on contracts, defined set theoretically:

— the server pre-order: �1 vsrv �2 if for every (client) contract ⇢, ⇢ a �1 implies ⇢ a �2

— the client pre-order: ⇢1 vclt ⇢2 if for every (server) contract �, ⇢1 a � implies ⇢2 a �

As we have already stated session types are more or less a syntactic variant of contracts;
formally there is a straightforward translation M(T) of session types into contracts.

2

Unfortunately neither of the relations vsrv ,vclt are sound with respect to sub-typing;
specifically there are session types T1, T2 such that T1 4st T2 but M(T1) and M(T2) are
unrelated as contracts.
The problem lies in the fact that, viewed as constraints on behaviour, session types

are much more constraining than contracts. We therefore isolate a subset of contracts,
which we call session contracts, SC, that are the range of the translation function M.
This enables us to define a sub–server relation and a sub–client relation, vSC

srv and vSC
clt

respectively, on these contracts. Even though these relations are respectively coarser
than vsrv and vclt, it turns out that these relations are still unsound with respect to
session sub-typing. But in the main result of the paper we show that by combining these
pre-orders we obtain full-abstraction, that is a sound and complete model for session
types.
Throughout the paper we follow the approach of Castagna et al. (2009), Padovani

(2010), and think of “contracts” only as terms of (some dialect of) ccs without ⌧ ’s (Nicola
& Hennessy 1987); in particular, our notion of contract is completely independent of that
discussed in (McNeile 2010) and (Meyer 1997).

Contributions The contributions of this paper are the following: Theorem 5.7 provides
what, to the best of our knowledge, is the first fully abstract model of session types in
terms of contracts. Theorem 4.14 and Theorem 4.24 are the first alternative characteri-
sations of the server and the client pre-orders on session contracts. Corollary 3.51 is the
first published proof showing the equality between a first-order compliance-based refine-
ment and a testing based must-preorder; moreover, the corollary means that the equality
holds regardless of the co-action relation used to let contracts interact.

Structure of the paper The paper is organised as follows. In the next section we give
the definition of session types and the sub-typing between them; this material is taken
directly from (Gay & Hole 2005), although our definition is based on first-order types;
however, we allow a primitive sub-typing relation between the basic types.
In the subsequent section we study contracts. We use the language for contracts of

(Padovani 2010), and we provide a formulation of the notion of compliance which di↵ers
from the one of (Padovani 2010) in that (a) it is co-inductively defined, and (b) it is
parametrised over the co-action relations ./. Then, disregarding the parameter ./, we
provide a co-inductive characterisation of the server pre-order on contracts, and we prove
that it equals the must pre-order over contracts. As we reason up-to ./, the result that
we obtain is more general than a similar result presented in (Laneve & Padovani 2007).
In Section 4 we focus on a subset of contracts called session contracts SC, this time
giving co-inductive characterisations to both the restricted server pre-order vSC

srv and
the restricted client pre-order vSC

clt over them. Due to the very restricted nature of
these contracts, these co-inductive characterisations are purely in terms of their syntax.
In Section 5 we tackle the central question of the paper. Having defined the (obvious)
translation of session types into session contracts, we explain why the two natural pre-
orders vSC

srv and vSC
clt are unsound relative to the sub-typing on session types. Finally,

we prove that when combined they provide a sound and complete model; the proof is

3

S, T ::= Session types

end satisfaction

?[t];S input

![t];S output

&h l1 : S1, . . . , ln : Sn

i, n � 1 branch

�h l1 : S1, . . . , ln : Sn

i, n � 1 choice

X type variable

µX. S recursion

We impose the additional proviso that in a term the l
i

’s are pair-wise di↵erent.

Figure 1. Session types (first-order).

greatly facilitated by their co-inductive characterisations. The paper concludes with a
brief look at related work.

2. Session types

The syntax of terms for session types is given by the language LST in Figure 1. It
presupposes a denumerable set of labels L, ranged over by l, and a set of basic or ground
types BT types ranged over by t. We also use a denumerable set of variables Vars , ranged
over by X, in order to express recursive types.
The use of variables leads to the usual notion of free and bound occurrences of variables

in terms in the standard manner; we say that a term is closed if it contains no free
variables. We also have the standard notion of capture avoidance substitution of terms
for free variables. For the sake of clarity let us recall this definition: a substitution s is a
mapping from the set Vars to the set of terms in LST . Let

s�X =

(

s \ {(X, s(X))} if X 2 dom(s)

s otherwise

Then the result of applying a substitution s to the term S is defined as follows:

Ss =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

end if S = end

s(X) if S = X, and X 2 dom(S)

X if S = X, and X 62 dom(S)

![t]; (S0s) if S = ![t];S0

?[t]; (S0s) if S =?[t];S0

&h l1 : (S1s), . . . , ln : (Sns) i if S = &h l1 : S1, . . . , ln : Sn i
�h l1 : (S1s), . . . , ln : (Sns) i if S = �h l1 : S1, . . . , ln : Sn i
µX. (S0(s�X)) if S = µX. S0

In the final clause the application of s�X embodies the idea that in µX. S0 occurrences
of X in the sub-term S0 are bound and therefore substitutions have no e↵ect on them.

4

T

T 6= µZ. S

T

�
µY. T

/

Y

µY. T

Figure 2. Inference rules for #dpt on closed terms.

It is easy to check that the e↵ect of a substitution depends only on free variables; that
is, Ss1 = Ss2 whenever s1(X) = s2(X) for every free variable X occurring in S. We use
the symbol

�

T /X

to denote the singleton substitution {(X,T)}.
We will only use guarded recursion, which we now explain formally. Let #dpt be the least

fixed point of the functional on closed terms defined by the inference rules in Figure 2.
Intuitively, T #dpt means that the free variables in T occur after a type constructor,

which di↵ers from µ. Now we say that a term T is guarded if every sub-term of T that
has the form µX. S satisfies S#dpt. Finally, we use ST to denote the set of closed guarded
terms, and we refer to the elements in ST as session types.

Example 2.1. The property#dpt and the property of being guarded are di↵erent. Consider
the term T = &h l : µX.X i; it is not a variable and the top-most constructor in it is
not a recursion, therefore T#dpt. A sub-term of T is µX.X and clearly µX.X#dpt is false;
therefore T is not guarded.

The advantage of only using guarded terms is that we can unfold types so as to obtain
their top-most type constructor. To explain this formally first let us consider the function
depth from terms to N1 (the set of natural numbers augmented by 1). This is defined
as the least such function which satisfies:

depth(S) =

(

1 + depth(S0 � S/X

) if S = µX. S0,

0 otherwise

Note that depth(µX.X) = 1, but one can show that when applied to terms that satisfy
the predicate #dpt, one always obtains a natural number.

Lemma 2.2. If S#dpt then depth(S) 2 N.

Proof. The proof is by rule induction on the derivation of S # dpt. If the axiom was
used then thanks to the side condition S 6= µX. S0, and so depth(S) = 0 because of the
definition of depth. If the other rule was used then S = µX. S0, and the hypothesis of the

rule implies S
n

S0
/X

o

#dpt. Then, by definition of depth, depth(S) = 1+depth(S
n

S0
/X

o

),

and by the inductive hypothesis depth(S
n

S0
/X

o

) 2 N; hence depth(S) 2 N.

Proposition 2.3. The depth of any session type is finite.

Proof. Follows from the definition of ST and Lemma 2.2.

This function depth will therefore provide a measure of session types over which we can
perform induction.

5

Definition 2.4. [Unfolding (Gay & Hole 2005)]
For all T 2 ST , define unfold(T) as follows:

unfold(T) =

(

unfold(T 0 � µX. T /X

) if T = µX. T 0

T otherwise

Lemma 2.5. For every T 2 ST , unfold(T) is a well-defined session type.

Proof. We have to show that unfold(T) is closed and guarded. The proof is by induc-
tion on depth(P). It relies on the fact that each step of unfolding replaces one variable
with a closed and guarded term; hence the overall unfolding is closed.

Intuitively, unfold(T) unfolds top-level recursive definitions until a type constructor
appears, which is not µ. This will be extremely useful in manipulating session types.
We conclude this sub-section by showing some typical examples of session types, which

we recall from the literature.

Example 2.6. [Math server, (Gay & Hole 2005)]
Consider the session type

S1 = µX.&h plus : ?[Int]; ?[Int]; ![Int];X,

eq : ?[Int]; ?[Int]; ![Bool]; end i

This specifies the protocol of a server which o↵ers two services at the labels plus and eq.
The first expects the input of two integers, after which an integer is returned, and then
the service is once more available. The second also expects two integers, then returns a
boolean, after which the session terminates.
An extension to the service is specified by the type

S2 = µX.&h plus : ?[Int]; ?[Int]; ![Int];X,

eq : ?[Int]; ?[Int]; ![Bool]; end,

neg : ?[Bool]; ![Bool]; end i

This provides in addition queries for negation.

2.1. Sub-typing

There are three sources for the sub-typing relation over types. The first is some predefined
pre-order over the basic types, t

1

4
g

t
2

, which intuitively says that all data-values that
have type t

1

may be safely used where data-values of type t
2

are expected.

Example 2.7. An example of sub-typing on base types is given in Figure 3, for the
ensuing set of types, BT = {Bounded, Bool, Int, Real, Num, Random}. In the figure the pre-
order 4

g

is depicted by the arrows; for instance, the arrow from type Int to type Real

means that Int4
g

Real.

6

BoundedBool

Int Real Num Random

Figure 3. A sub-type relation on a set of basic types BT; the arrow represents the
relation 4

g

(see Example 2.7).

More generally, if JtK denotes the set of values of the basic type t then we can define 4
g

by letting t
1

4
g

t
2

whenever Jt
1

K ✓ Jt
2

K. The other sources are two constructs of the
language: the branch construct allows sub-typing by extending the set of labels involved,
while in the choice construct the set of labels may be restricted (see Example 2.8 and
Example 2.9 below). Moreover, we will have the standard co-variance/contra-variance of
input/output types (Pierce & Sangiorgi 1996), extended to both the branch and choice

constructs.

Example 2.8. [Sub-typing on branch types]
In this example we explain how the sub-typing relates the branch types. Consider the
type

BarTender = &h espresso : T1 i

Intuitively, the BarTender o↵ers only the label espresso, thus all the customers sat-
isfied by BarTender, are satisfied by any other type that o↵ers at least the label
espresso. Let

ItalianBarTender =&h espresso : T 0
1,

deka : T 0
2,

doubleespresso : T 0
3 i

Following the intuition, The ItalianBarTender will satisfy all the customers satisfied
by the BarTender; this is formalised by the sub-typing, which relates the two types as
follows

BarTender 4st ItalianBarTender

as long as also the continuations T1 and T 0
1 are related as well (ie. T1 4st T 0

1).
We have shown that, intuitively, it is safe to replace a branch type with a branch type

that o↵ers more labels.

Example 2.9. [Sub-typing on choice types]
In this example we show how the sub-typing relate the choice types. Let ItalianCus-

tomer describe the di↵erent co↵ees that a process may want to order when interacting

7

with a bar tender.

ItalianCustomer =� h espresso : T 0
1,

deka : T 0
2,

doubleespresso : T 0
3 i

All the bar tenders that are able to satisfy this range of choices, have to o↵er at least the
four labels that appear in ItalianCustomer. Now consider the type

Customer = �h espresso : T 0
1 i

Since Customer chooses among fewer options than ItalianCustomer, it is safe to use
a channel at type Customer in place of a channel at type ItalianCustomer. This is
formalised by the sub-typing relation as follows,

ItalianCustomer 4st Customer

In this example we have shown that, intuitively, it is safe to replace a choice type, with
a choice type that chooses among fewer labels.

However, because of the recursive nature of our collection of types, the formal definition
of the sub-typing relation is given co-inductively.

Definition 2.10. [Type simulation]
Let P(X) denote the powerset of a set X and let F4st : P(ST 2) �! P(ST 2) be the
function defined so that (T, U) 2 F4st

(R) whenever one of the following holds:

(i) if unfold(T) = end then unfold(U) = end

(ii) if unfold(T) = ?[t
1

];S1 then unfold(U) = ?[t
2

];S2 and (S1, S2) 2R and t
1

4
g

t
2

(iii) if unfold(T) = ![t
1

];S1 then unfold(U) = ![t
2

];S2 and (S1, S2) 2R and t
2

4
g

t
1

(iv) if unfold(T) = &h l1 : S1, . . . lm : Sm i then unfold(U) = &h l1 : S0
1, . . . , ln : S

0
n i

where m n and (Si, S
0
i) 2R for all i 2 [1, . . . ,m]

(v) if unfold(T) = �h l1 : S1, . . . lm : Sm i then unfold(U) = �h l1 : S0
1, . . . , ln : S

0
n i

where n m and (Si, S
0
i) 2R for all i 2 [1, . . . , n]

If R ✓ F4st
(R) then we say that R is a co-inductive type simulation. Let 4st denote

the greatest solution of the equation X = F4st
(X); formally,

4st = ⌫F4st

We call 4st the type simulation. Standard arguments ensure that the relation 4st exists,
that it is a typing relation, and indeed the greatest type simulation.

Example 2.11. Let T, S denote the types µX. ?[Int];X, µX. ?[Real];X respectively.
We can prove that T 4st S, because the relation R= {(T, S), (?[Int];T, ?[Real];S)} is
a type simulation, since Int4

g

Real.
Referring to Example 2.6, one can also show that S1 4st S2 by providing an appropriate

type simulation.

The requirement that session types be guarded is crucial for the sub-typing relation to
be well-defined. We explain this fact in the next example.

8

Example 2.12. [Sub-typing and guardedness]
Consider again the term T = &h l : µX.X i of Example 2.1. Suppose we wanted to check
whether T 4st &h l : S i for some session type S. The definition of 4st requires us to
check whether

unfold(µX.X) 4st unfold(S)

This check, though, cannot be done because unfold(µX.X) is not defined at all (and
the unfolding of S may not be defined either).

Proposition 2.13. The relation 4st is a pre-order on ST .

Proof. See (Gay & Hole 2005).

In (Gay & Hole 2005) the set of types ST are used to give a typing system for the pi
calculus, and appropriate Type Safety and Type Preservation theorems are proved. Here
instead our aim is to give a model to the set of types hST ,4st i using contracts.

3. Contracts

We first define our language for contracts and give some examples. In the following
sub-section we define a natural server based pre-order on contracts, for which we give a
behavioural co-inductive characterisation. In the final sub-section we investigate a closely
related pre-order based on must testing.

3.1. The contract language

This subsection is roughly divided in three parts. In the first one we define the lan-
guage LC , and we are concerned with syntactical properties of its terms �’s; similarly to
what we have done for session types, we introduce the unfolding of closed terms of Lc and
a predicate#dpt to guarantee that each contract can be unfolded (Lemma 3.1). Afterwards,
we give an operational semantics (Figure 5), and we discuss important semantic proper-
ties that we want contracts to enjoy; this will lead to the introduction of a predicate #,
and two lemmas (Lemma 3.10 and 3.11) which ensure that (a) contracts do not diverge,
and (b) silent moves lead to a finite number of derivatives. In the last part of the sub-
section we describe how client-server interactions are modelled by contracts (Figure 7).

A language for contracts LC is given in Figure 4. As with session types it uses a
denumerable set of recursion variables Vars , here lower case, but also presupposes a
set Act of actions, ranged over by ↵, which contracts can perform; as we will see the
special action X, which we assume is not in Act , will be used to indicate the fulfilment
of a contract. Intuitively the contract ↵.� performs the action ↵ and then behaves like �;
the sum �0 + �00 is ready to behave either as �0 or as �00 and the choice depends on
the external environment. For this reason the operation + is called external sum. The
internal sum �0 � �00 represents a contract that can behave as �0 or as �00, and the
choice is taken by the contract independently from the environment. Such a decision can

9

� ::= Contracts

nil termination

1 success

↵.� action

� + � external choice

� � � internal choice

x contract variable

µx.� recursion

Figure 4. Contract grammar.

be due for instance to an if statement in the process implementing the contracts. The
symbol nil denotes an empty contract, which intuitively can never be fulfilled, while 1

denotes the contract that is always satisfied.
Recursive definitions are handled in much the same way as session types and so we

do not spell out the details; we assume a definition of capture-avoiding substitution s.
Now we define the predicate #dpt, the function depth, and the function unfold as in the
previous section.
The function depth is the least one that satisfies

depth(�) =

(

1 + depth(�0 { �/x }) if � = µx.�0,

0 otherwise

and the unfold is the least function that satisfies:

unfold(�) =

(

unfold(�0 { �/x }) if � = µx.�0,

� otherwise

These definitions are not arbitrary. As it happens, they let us prove Lemma 5.2, which,
to our aim, is paramount (see Section 5).
Let #dpt be the least fixed point of the rule functional defined on closed terms of LC by

the rules in Figure 2.
Similarly to what done in the previous section one can prove the following lemma.

Lemma 3.1. Let �#dpt. Then

(i) the depth of � is finite: depth(�) 2 N
(ii) the term unfold(�) is defined and if � is closed then unfold(�) is closed.

Proof. The proof of part (ii) relies on (i) and is similar to the proof of Lemma 2.2.

An operational semantics for the closed terms of the language LC is given in Figure 5.
The judgements are of the form

�
µ�! �0, µ 2 Act⌧ X

where we use Act⌧ X as a shorthand for the set Act [{⌧, X}, and Act X as shorthand for
Act [{X}. The judgement �

↵�! �, where ↵ 2 Act has the obvious meaning; �
⌧�! �0,

10

1

X�! nil
[a-Ok]

↵.�

↵�! �

[a-Pre]
µx.�

⌧�! � { µx.�

/

x

}
[a-Unf]

� � ⇢

⌧�! �

[a-In-l]
� � ⇢

⌧�! ⇢

[a-In-r]

�

��! �

0

� + ⇢

��! �

0
[r-Ext-l]

⇢

��! ⇢

0

� + ⇢

��! ⇢

0
[r-Ext-r]

�

⌧�! �

0

� + ⇢

⌧�! �

0
+ ⇢

[r-Int-l]
⇢

⌧�! ⇢

0

� + ⇢

⌧�! � + ⇢

0
[r-Int-r]

Figure 5. Inference rules for the semantics of closed terms of LC , where � 2 Act X

means that the contract � is resolved to the contract �0 by some internal computation,

while �
X�! �0 represents the reporting of the successful completion of a computation.

Let
⌧�!⇤ denote the reflexive transitive closure of

⌧�!.
We are now ready to show two properties of unfold. We will use them in the rest of

the paper.

Lemma 3.2. Let � be a contract.

(i) If �
⌧

6�! then unfold(�) = �

(ii)�
⌧�!⇤ unfold(�)

Proof. Part (i) is proved by structural induction on �. We prove part (ii); the argument
is by induction on depth(�). If depth(�) = 0 then from the definition of depth it follows
that � 6= µx.�0; by definition of unfold then unfold(�) = �. The reflexivity of

⌧�!⇤

implies �
⌧�!⇤ unfold(�).

If depth(�) > 1 then, due to the definition of depth, � = µx.�0. The definition
of unfold implies that unfold(�) = unfold(�0 { �/x }), while the definition of depth
implies depth(�) = 1 + depth(�0 { �/x }), and therefore depth(�0 { �/x }) is smaller than
depth(�). We are now allowed to use the inductive hypothesis on �0 { �/x }:

�0 { �/x }
⌧�!⇤ unfold(�0 { �/x })

We use rule [a-Unf] (see Figure 5) to infer �
⌧�! �0 { �/x }, and then the transitivity of

the relation
⌧�!⇤ to obtain

�
⌧�!⇤ unfold(�0 { �/x })

We already know that unfold(�) = unfold(�0 { �/x }), and, by applying this equality

11

to the reduction sequence above, we get

�
⌧�!⇤ unfold(�)

This concludes the proof.

Let

S(�) = {�0 | � µ�! �0 for some µ 2 Act⌧ X }

F (�) = {�0 | � ⌧�!⇤ �0 }

One might think that F (�) is finite if and only if � does not diverge. This is not the
case.

Example 3.3. [Divergence and finite derivatives]
Consider the terms µx. x and µx. (nil � x). Both terms diverge, in the sense that they
perform an infinite sequence of ⌧ ’s:

µx. x
⌧�! µx. x, µx. (nil � x)

⌧�! nil � µx. (nil � x)
⌧�! µx. (nil � x)

On the other hand we have

F (µx. x) = S(µx. x) = { µx. x }

and
F (µx. (nil � x)) = { µx. (nil � x),nil � µx. (nil � x) }
S(µx. (nil � x)) = { nil � µx. (nil � x) }

The set F (�) is not finite for every �.

Example 3.4. [Infinite derivatives]
We show two terms �,�0 such that F (�) and F (�0) are infinite. Let � = µx. (↵.x + x)
and �0 = µx. (↵.nil + (x � x)). According to the rules in Figure 5 one can infer:

�
⌧�! (↵.� + �)

⌧�! (↵.� + (↵.� + �))
⌧�! . . .

and

�0 ⌧�! ↵.nil + (�0 � �0)
⌧�! ↵.nil + �0 ⌧�! ↵.nil + (↵.nil + (�0 � �0))

⌧�! . . .

The root of the problem is that the inference rules [r-Int-L] and [r-Int-R] do not resolve
the external sum.

On the other hand the finiteness of S(�) is easy to prove.

Lemma 3.5 (Finite branches).

The set S(�) is finite for every �.

Proof. The proof is by structural induction. If � = nil then plainly S(�) = ;. Other-
wise we proceed as follows,

— if � = ↵.�0 then the only applicable rule (see Figure 5) is [a-Pre], and so S(�) = {�0};
— if � = µx.�0 then only rule [A-Unf] can be applied, so S(�) = {�0 { �/x }};

12

1 nil ↵.�

⇢ �

(� � ⇢)

⇢ �

(⇢ + �)

� { µx.�

/

x

}
µx.�

Figure 6. Inference rules for # over closed terms of LC .

— if � = �0 + �00 then �0 and �00 are both smaller than �. The inductive hypothesis tells
us that S(�0) and S(�00) are finite. Rules [r-Ext-l], [r-Ext-r], [r-Int-l] and [r-Int-
r] in Figure 5 ensure that S(�) = S(�0) [S(�00). This implies that the cardinality of
S(�) is finite;

— if � = �0 � �00 the argument is alike the previous one.

Example 3.6. [Divergence and #dpt]
Consider the term

� = µx. (x � x)

Using the rules in Figure 2 one can prove that �#dpt; consequently depth(�) is finite and
unfold(�) is well-defined; in particular depth(�) = 1 and unfold(�) = � � �. Note
now that the term � engages in an infinite sequence of internal moves

�
⌧�! � � �

⌧�! �
⌧�! � � �

⌧�! . . .

In other words the term � diverges. Similarly, one can reason that terms as µx. (nil � x)
and µx. (↵ � x) su↵er the same issue.

Throughout the paper we want to deal only with terms that do not diverge and with
finite F (�). To isolate the �’s that converge we use the predicate #. Formally, we define
it as the least fixed point of the functional given by the inference rules in Figure 6. The
predicate # is essentially a strengthened version of #dpt.

Proposition 3.7. For every � 2 LC , �# implies �#dpt.

Proof. Straightforward from the definitions of the predicates.

The predicate # is preserved by silent moves.

Lemma 3.8. Let �#. If � ⌧�! �0 then �0#.

Proof. The proof proceeds by rule induction on the derivation of �
⌧�! �0.

The only interesting case is when the silent move �
⌧�! �0 is inferred by using rule

[r-Int-L] or rule [r-Int-R] (see Figure 5). Suppose rule [r-Int-L] was used. Then � =
�1 + �2, �0 = �0

1 + �2, and the derivation is

�1
⌧�! �0

1

�1 + �2
⌧�! �0

1 + �2

We have to prove that �0
1 + �2#; the definition of # ensures that, to this aim, it is

enough to show that (a) �0
1# and that (b) �2# (see Figure 6). Point (b) follows from the

13

hypothesis: since �#, the equality � = �1 + �2 implies that �1# and that �2#. The last
fact is exactly point (b).
Now, by using the fact that �1#, we prove point (a). The derivation shown above let

us use rule induction; the lemma holds for �1: if �1# and �1
⌧�! �̂1 then �̂0

1#. We know
that �1# and that �1

⌧�! �0
1, thus it must be �0

1#.
If rule [r-Int-R] was used the argument is similar.

We have also the converse.

Lemma 3.9. Let � be a closed term of LC . Then �# if and only if �
⌧�! �0 implies �0#.

Proof. The only if side of the lemma is Lemma 3.8, so we are required to prove only
that if �

⌧�! �0 implies �0#, then �#.
Let � be a closed term of LC such that �

⌧�! �0 implies �0#. We have to show that �#.
The proof is by structural induction on the form of �; the only interesting case is when

the term � is an external sum. In that case, � = �1 + �2, so to prove that �1# it is
enough to show that �1# and that �2#.
We prove �1#. The term �1 is a sub-term of �, hence structural induction guarantees

that the lemma holds for �1: if �1
⌧�! �0

1 implies �0
1#, then �1#. Assume that �1

⌧�! �0
1;

thanks to the structure of � we can derive

�1
⌧�! �0

1

�1 + �2
⌧�! �0

1 + �2

[r-Int-L]

Now the hypothesis of the lemma implies that �0
1 + �2#, so from the the definition of #

it follows that �0
1# and that �2#.

We have shown that �1
⌧�! �0

1 implies �0
1#, so from the inductive hypothesis it follows

that �1#. Moreover, we have also shown that �2#; we have proven that �#.
The argument for rule [r-Int-L] is analogous, and left to the reader.

The predicate # let us give an inductive characterisation of the convergent terms.

Lemma 3.10 (Convergence).

Let � be a closed term of the set LC ; �# if and only if there exists a natural number k

such that �
⌧�!

n
�0 implies n k.

Proof. The only if side is by rule induction on why �#. We prove the if side, which
states that if there exists a k 2 N such that �

⌧�!
n
�0 implies n k, then �#.

The argument is an induction on k. If k = 0 then � cannot perform ⌧ , and so it is
either 1, nil or a prefix ↵.�0. In all these cases we can easily infer �#.
If k > 0 then � performs a ⌧ , so suppose �

⌧�! �0; it follows that �0 ⌧�!
m

�00 implies
m k� 1. This means that there exists a k0 such that �0 ⌧�!

m
�00 implies m k0. Since

k � 1 < k, we can apply the inductive hypothesis to �0; from this application it follows
that �0#.
As yet, we have proven that �

⌧�! �0 implies �0#; this allows us to apply Lemma 3.9,
which ensures that �#.

It is easy to see that a converging term � has finite F (�).

14

Lemma 3.11. For every � 2 LC if �# then F (�) is finite.

Proof. We can prove it by rule induction on the derivation of �#.

We are ready to define the set of contracts.

Definition 3.12. [Contracts]
Let C denote the set of all terms � of LC which are closed and such that if �

s�!⇤ �0 for
some s 2 Act?, then �#. We refer to these terms as contracts.

Proposition 3.13. Let � be a contract, then unfold(�) is a well-defined contract.

Proof. We have to show that unfold(�) is closed, and that it satisfies #. The first
fact is part (ii) of Lemma 3.1. The second fact follows from part (ii) of Lemma 3.2 and
Lemma 3.8.

Example 3.14. [e-vote, (Barbanera & de’Liguoro 2010, Laneve & Padovani 2008)]

Ballot = µx. ?Login.(!Wrong.x� !Ok.(?VoteA.x+?VoteB.x))

Voter = µx. !Login.(?Wrong.x+?Ok.(!VoteA.1� !VoteB.1))

A process o↵ering contract Ballot implements a service for e-voting. Such a service lets
a client log in. If the log in fails the services starts anew, while if the log in succeeds the
two actions are o↵ered to the environment, namely VoteA and VoteB.
The contract Voter is a recursive client for the protocol described by the contract

Ballot.

Example 3.15. [e-commerce, (Bernardi et al. 2008)]

Customer = !Request.(!PayDebit.⇢0 �
!PayCredit.⇢0 �
!PayCash.1)

⇢0 = !Long.?Bool.1

Bank = µx. ?Request.(?PayCredit.?Long.!Bool.x+
?PayDebit.?Long.!Bool.x+
?PayCash.x)

The contracts above describe the conversation that should take place between a client
(which o↵ers the contract Customer) and a bank (which has contract Bank) involved in
an on-line payment. The conversation unfolds as follows: the Customer sends a request
to the bank and afterwards it chooses the payment method; the choice is taken by an
internal sum and this means that the decision of the Customer is independent from the
environment (i.e., the Bank contract). If the Customer decides to pay by cash then no
other action has to be taken; while if the payment is done by debit or credit card the
Customer has to send the card number, this is represented by the output !Long. After
the card number has been received the Bank answers with a boolean. Intuitively, this

15

represents the fact that the bank can approve or reject the payment. The Customer
protocol finishes after such boolean has been received, while the Bank starts anew.

3.1.1. Client-Server interactions and the compliance relation Contracts are expressive
enough to encode XML based languages such as WS-BPEL activities and WSCL di-
agrams (Castagna et al. 2009); moreover in (Carpineti et al. 2006) it is shown how to
assign contracts to a subset of ccs processes. Intuitively, if a process, such as a server,
is assigned a contract � then it guarantees to support the behaviour described in �. The
interaction between servers and clients can be described at the level of their contracts, by
defining a binary operation ⇢ k � between their contracts and describing the evolution of
the contracts as they interact. This interacting semantics is given in Figure 7, where the
judgements are of the form ⇢ k �

⌧�! ⇢0 k �0. It presupposes a binary relation ./ on Act ,
where ↵ ./ � means that the action ↵ can synchronise with the action �. This relation
can be instantiated in various ways depending on the particular set of actions Act .

Example 3.16. Suppose we take Act to be { a?, a! | a 2 A } where A is a set of
communicating channels. Then define

↵ ./i � whenever ↵ = a?,� = a! or ↵ = a!,� = a? for some a 2 A

The relation ./i represents synchronisation on channels.
We will use a more elaborate set of actions when interpreting session types as contracts.

Recall from Section 2 the set of basic types BT, the set of labels L used in session types,
and Example 2.7. We can define Act to be the set

{ ?b, !b | b 2 BT } [{ l?, l! | l 2 L }

with ./c determined by

↵ ./c � whenever

8

>

>

>

>

<

>

>

>

>

:

↵ =?b, � =!b0 b0 4
g

b

↵ =!b, � =?b0 b4
g

b0

↵ =?l, � =!l

↵ =!l, � =?l

Using the basic sub-typing relation depicted in Figure 3 the following examples should
be clear:

(i) ?Num ./c!Int: a contract that can read a datum of type Num can read a datum of type
Int because Int4

g

Num.
(ii) ?Int 6./c!Num: conversely a contract ready to read a datum of type Int cannot read

a datum of type Num because Num 64
g

Int.
(iii) ?Random ./c!Bool: as in point (i), Bool4

g

Random hence an interaction between the
actions ?Random and !Bool is safe.

Having described how interactions between clients and servers a↵ect their contracts,
let us describe, by means of a relation, when a client (guaranteeing a) contract ⇢ can

16

⇢

⌧�! ⇢

0

⇢ k �

⌧�! ⇢

0 k �

[p-Sil-l]
�

⌧�! �

0

⇢ k �

⌧�! ⇢ k �

0
[p-Sil-r]

⇢

↵�! ⇢

0
�

��! �

0

⇢ k �

⌧�! ⇢

0 k �

0
↵ ./ � [p-Synch]

Figure 7. Inference rules for contract interaction.

safely interact with a server (guaranteeing a) contract �. Indeed, we shall formalise the
meaning of “safely”.
The central notion is that of compliance between contracts. This is defined co-inductively

and uses the predicate on contracts ⇢
X�! which intuitively means that the contract ⇢

has already been satisfied. Our definition is a variation on that of compliance in (Laneve
& Padovani 2007, 2008, Padovani 2010).

Definition 3.17. [Compliance relation]
Let Fa : P(C2) �! P(C2) be the function defined so that (⇢,�) 2 Fa(R) whenever both
the following hold:

(i) if ⇢ k �
⌧

6�! then ⇢
X�!

(ii) if ⇢ k �
⌧�! ⇢0 k �0 then (⇢0,�0) 2R

If R ✓ Fa(R) then we say that R is a co-inductive compliance relation. Let a denote
the greatest solution of the equation X = Fa(X); formally,

a = ⌫Fa

We call a the compliance relation. If ⇢ a � we say that the contract ⇢ complies with the
contract �.

Notice that there is an asymmetry in the relation ⇢ a �; the intention is that any client
running contract ⇢ when interacting with a server running contract � will be satisfied,
in the sense that either the interaction between client and server will go on indefinitely,
or, if the interaction gets stuck, the client will end on its own in a state in which it is

satisfied, ⇢
X�!.

Example 3.18. [Compliance and divergent terms]
In order that the relation a captures the intuition described above, it is crucial that C
contains no divergent terms. Had we admitted them, then for every ⇢ the relation

{ (⇢0, µx. x) | ⇢ ⌧�!⇤ ⇢0 }

would have been a perfectly fine co-inductive compliance. Note, though, that the client
contract ⇢ is by no means satisfied by the server.

Example 3.19. [Compliance and X]
According to our definition of compliance, the client need not ever perform X. For

17

example, suppose ↵ ./ � and consider the ensuing set

{(µx.↵.x, µy.�.y)}

This set is a co-inductive compliance relation, and the client contract, µx.↵.x, does not
perform X at all.

Example 3.20. The fact that nil cannot be satisfied is formally expressed by the fact
that

nil 6a �

for every contract �. On the other hand 1 is always satisfied because we can prove that
for every contract � we have the following,

1 a �

Suppose � is a contract which cannot interact with the action ↵; by this we mean that

�
⌧�!⇤ ��! implies � 6./ ↵. Then

1+ ↵.⇢ a �

for every ⇢, because ⇢ is guarded by an action that can never take place.
Referring to Example 3.14, it is routine work to check that the following relation is a

co-inductive compliance.

R = {(Voter,Ballot),
(?Wrong.Voter+ ?Ok.(!VoteA.1� !VoteB.1),

!Wrong.Ballot� !Ok.(?VoteA.Ballot+ ?VoteB.Ballot)),

(?Ok.(!VoteA.1� !VoteB.1), !Ok.(?VoteA.Ballot+ ?VoteB.Ballot),

(!VoteA.1� !VoteB.1, ?VoteA.Ballot+ ?VoteB.Ballot),

(!VoteA.1, ?VoteA.Ballot+ ?VoteB.Ballot),

(!VoteB.1, ?VoteA.Ballot+ ?VoteB.Ballot),

(1,Ballot)}

The previous example shows that on the client-side, the contracts 1 and nil have opposite
meanings, as the former is always satisfied, while the latter is never satisfied; thus a client
whose contract is 1 is not equivalent to a client whose contract is nil. On the server-
side the situation is di↵erent; a server with contract 1 is equivalent to a server with
contract nil. We prove this fact.

Proposition 3.21. For every contract ⇢, ⇢ a 1 if and only if ⇢ a nil.

Proof. Suppose ⇢ a 1; this means that there exists a co-inductive compliance R that
contains (⇢,1). Since 1 o↵ers no interaction, the contract ⇢ enjoys the two properties
which follow,

(i) if ⇢
⌧

6�! then ⇢
X�!

(ii) if ⇢
⌧�! ⇢0 then (⇢0,1) 2R

18

Knowing (i), it is straightforward to show that

R0= { (⇢0,nil) | ⇢ ⌧�!⇤ ⇢0, ⇢ a 1 }

is a co-inductive compliance. A symmetrical argument can be used to show that also

R0= { (⇢0,1) | ⇢ ⌧�!⇤ ⇢0, ⇢ a nil }

is a co-inductive compliance.

The following properties of the compliance relation will be useful later in the paper.

Lemma 3.22. Let ⇢,�1, and �2 be contracts. The following hold:

(i) if ⇢ a �1, ⇢ a �2 then ⇢ a �1 � �2

(ii) if ⇢1 a �, ⇢2 a � then ⇢1 � ⇢2 a �

Proof. As an example we outline the proof of (i). Let R be the relation defined by

R= { (⇢,�) | ⇢ a � or � = �1 � �2 where ⇢ a �1 and ⇢ a �2 }

It is straightforward to show that R is a compliance relation, from which the result
follows.

Proposition 3.23. For all contracts ⇢,�, we have the following

(a) if ⇢ a � then ⇢ a unfold(�)
(b) if ⇢ a � then unfold(⇢) a �

Proof. Both follow in a straightforward manner from part (ii) of Lemma 3.2 and part
(ii) of Definition 3.17.

The converse is also true:

Proposition 3.24. For all contracts ⇢,�, we have the following

(a) if ⇢ a unfold(�) then ⇢ a �

(b) if unfold(⇢) a � then ⇢ a �

Proof. Let us look at the proof of (a). Let

R = { (⇢,�) | ⇢ a � or ⇢ a unfold(�) }

The result will follow if we can prove that R is a co-inductive compliance relation, as
given in Definition 3.17.

(a) Suppose ⇢ k �
⌧

6�!. If ⇢ a � then by definition ⇢
X�!. Otherwise

⇢ a unfold(�)

Note that �
⌧

6�! and therefore by part (i) of Lemma 3.2 it follows that unfold(�) = �,

which means, since now ⇢ a �, ⇢
X�!.

(b) Suppose ⇢ k �
⌧�! ⇢0 k �0. We have to show (⇢0,�0) 2R, which is obvious if ⇢ a �. On

the other hand if ⇢ a unfold(�) there are three cases, depending on the inference
of the action ⇢ k �

⌧�! ⇢0 k �0. If the action is due to a silent move of ⇢, the result

19

follows from part (ii) of Definition 3.17. In the other cases the result will follow by an
application of part (i) and part (ii) of Lemma 3.2; and of part (ii) of Definition 3.17.

3.2. The server pre-order

In this subsection we show how to compare servers in terms of their ability to satisfy
clients; once more this is done in terms of their respective contracts.

Definition 3.25. [Server pre-order]
We write �1 vsrv �2 whenever for every contract ⇢, ⇢ a �1 implies ⇢ a �2.

This provides us with a natural subsumption-like pre-order between server-side contracts.
For if �vsrv �

0 then we are assured every client satisfied by a server running the contract �
is by definition also satisfied by a server running the contract �0.
One consequence of Proposition 3.23 and Proposition 3.24 is that

Junfold(�)Ksrv = J�Ksrv

and therefore when reasoning about the server pre-order we can work up to unfolding.

Notation A In the rest of the paper we will at times use the symbols
P

and
L

to
write contracts, for instance

P

i2[1;m] �i in place of �1 + �2 + . . . + �m
L

i2[1;n] �i in place of �1 � �2 � . . . � �n

This is by justified to the fact that

� � ⇢=srv ⇢ � � � � (�0 � �00) =srv (� � �0) � �00

� + ⇢=srv ⇢ + � � + (�0 + �00) =srv (� + �0) + �00

where =srv is the equivalence relation given in the obvious way by vsrv .

3.2.1. Co-inductive characterisation Here we give a co-inductive characterisation of the
server pre-order vsrv ; this is based on a number of semantic properties of contracts,
which we outline in the following lemmas.

Lemma 3.26. If �1 vsrv �2 and �2
⌧�! �0

2 then �1 vsrv �0
2.

Proof. Suppose ⇢ a �1, where �1 vsrv �2 and �2
⌧�! �0

2; we have to show ⇢ a �0
2.

We know a is a co-inductive compliance relation, and also that ⇢ k �2
⌧�! ⇢ k �0

2. So
by part (ii) of Definition 3.17 the required ⇢ a �0

2 follows.

The next property involves the acceptance sets of contracts. For any r ✓ Act let us

write � # r whenever �
⌧

6�! and r = {↵ 2 Act | � ↵�! }. These sets r,r0, . . . are called
initials (Eshuis & Fokkinga 2002) or ready sets (Laneve & Padovani 2007, 2008). If � # r

we say that � converges to r; indeed, in our presentation only stuck states have ready
sets.

20

�

↵.�1

⌧

�.�2 � �.�3

�.�2

⌧

�.�3

⌧

⌧

�

0

�.�

0
1 � �.�

0
2

↵.�

0
1

⌧

�.�

0
2

⌧

⌧

�.�

0
3

⌧

Acc(�) = { {↵}, {�}, {�} } Acc(�0
) = { {↵}, {�}, {�} }

Figure 8. An example of acceptance sets (see Example 3.28).

Definition 3.27. [Acceptance set]
For every contract � let

Acc(�) = {r | � ⌧�!⇤ �0, �0 # r }

We say that Acc(�) is the acceptance sets of �.

One sees easily that nil # ; and 1 # ; (as X 62 Acts), so

Acc(nil) = Acc(1) = {;}

Example 3.28. In Figure 8 we depict the LTS’s and the acceptance sets of the ensuing
contracts

� = ↵.�1 � (�.�2 � �.�3) �0 = (↵.�0
1 � �.�0

2) � �.�0
3

Proposition 3.29. Let � 2 C. The ensuing statements are true,

(a) if � # r then r is finite
(b) the set Acc(�) is finite
(c) the set Acc(�) is non-empty

Proof. Part (a) follows from the fact that external sums contain a finite amount of
summands. Part (b) follows form Lemma 3.11. Part (c) follows from the fact that if �#
then � has stuck derivatives.

Example 3.30. [Divergent terms and acceptance sets]
Here we show the acceptance set of a divergent term. Let � = µx. (↵.x + x). For every
ready set r we have � 6# r because �

⌧�!, and the same is true for the derivative ↵.� + �,
because it also performs a ⌧ :

�
⌧�! ↵.� + �

⌧�! . . .

We thus conclude that Acc(�) = ;. Indeed, in the proof of part (c) of Proposition 3.29
the crucial hypothesis is �#.

21

Individual acceptance sets are compared by their ability to o↵er interactions. We will
write r v s whenever for every ↵r 2 r and every � such that � ./ ↵r there exists some
action ↵s 2 s such that � ./ ↵s also. The precise meaning of this pre-order actually
depends on the instantiation of the interaction relation ./.

Example 3.31. Suppose that Act be the set { a?, a! | a 2 A } and ./i is defined as in
Example 3.16. One can check that rv s if and only if r ✓ s.
Suppose that

Act = { ?b, !b | b 2 BT } [{ l?, l! | l 2 L }
and ./c as in Example 3.16. It turns out that r v s whenever the following conditions
are true,

— !l 2 r implies !l 2 s for every l 2 L

— ?l 2 r implies ?l 2 s for every l 2 L

— ?br 2 r implies ?bs 2 s for some type bs such that bs 4g

br
— !br 2 r implies !bs 2 s for some type bs such that br 4g

bs

Lemma 3.32. Suppose �1 vsrv �2 and �2 # r, then there is some r0 2 Acc(�1) such
that r0 v r.

Proof. This proof proceeds by contradiction. To establish the contradiction we con-
struct a contract ⇢ such that

(a) ⇢ a �1

(b) ⇢ 6a �2

Suppose there is no r0 2 Acc(�1) such that r0vr; thanks to part (c) of Proposition 3.29
this fact cannot be true because Acc(�1) is empty. Again by Proposition 3.29 we know
Acc(�1) to be finite, so let r1, . . .rn be all the elements in Acc(�1). From the hypothesis
there are ↵i 2 ri and �i ./ ↵i such that �i 6./ ↵ whenever ↵ 2 r0. Let the contract ⇢ be
defined as �1.1+ . . .+ �n.1.

First notice that (b) above is true: since �2 # r, ⇢ k �2
⌧�!⇤ ⇢ k �0

2 such that ⇢ k �0
2

⌧

6�!

and ⇢
X
6�!. This means that (⇢,�2) cannot be contained in any co-inductive compliance

relation.
To establish (a) above it is su�cient to prove that

R = { (⇢,�0
1) | �1

⌧�!⇤ �0
1 }

is a co-inductive compliance relation, which is relatively straightforward.

Yet another property of vsrv will be necessary to give its co-inductive characterisation;
to prove this property, one more notion is in order.

Definition 3.33. [After]
For any action ↵ 2 Act and contract �, let (� after ↵) be the set

{�0 | � ⌧�!⇤ ��! ⌧�!⇤ �0,where ↵ ./ � }

22

The proof of the following property is immediate.

Proposition 3.34. Let � be a contract, then for every ↵ 2 Act the set (� after ↵) is
finite.

Proof. This follows because for every contract S(�) and F (�) are finite; see Lemma 3.5
and Lemma 3.11.

Note that in general the set (� after ↵) may be empty. When it is non-empty we
use

L

(� after ↵) to denote the internal sum of all its elements.

Lemma 3.35. Suppose �1 vsrv �2 and �2
��! �0

2. Then whenever ↵ ./ �,

(a) the set (�1 after ↵) is non-empty
(b) the contract

L

(�1 after ↵) is smaller than �0
2. Formally,

M

(�1 after ↵) vsrv �0
2

Proof. To prove of part (a) consider the contract ⇢ = 1+ ↵.nil. Since

⇢ k �2
⌧�! nil k �0

2

it follows that (⇢,�0
2) cannot be in any co-inductive compliance relation, hence ⇢ 6a �2.

Therefore, from �1 vsrv �2, we have that ⇢ 6a �1.
But because of the construction of ⇢ this can only be the case if (�1 after ↵) is

non-empty. More specifically, if it was empty we could construct a simple co-inductive
compliance relation containing the pair (⇢,�1).
Now consider part (b). Suppose ⇢ a

L

(� after ↵); we have to show ⇢ a �0
2. To do so

consider the contract ⇢0 = 1+ ↵.⇢. Suppose we could establish

⇢0 a �1 (1)

Because �1 vsrv �2 this would mean that ⇢0 a �2, from which the required ⇢ a �0
2

follows, by part (ii) of Definition 3.17.
It remains to prove (1) above. Let

R = { (⇢,�0) | ⇢ a �0, �0 2 C } [{ (⇢0,�0
1) | �1

⌧�!⇤ �0
1 }

Then, because ⇢ a
L

(� after ↵), it is easy to establish that R is a co-inductive com-
pliance relation.

We have now assembled all the required properties for our co-inductive characterisation
of the server pre-order.

Definition 3.36. [Semantic sub–server relation]
Let F4srv

: P(C2) �! P(C2) be the function defined so that (�1,�2) 2 F4srv
(R) if and

only if the following conditions hold:

(i) if �2
⌧�! �0

2 then (�1,�
0
2) 2R

(ii) for every r 2 Acc(�2), �2 # r implies r0 v r for some r0 2 Acc(�1)

(iii) if �2
��! �0

2 and ↵ ./ � then (�1 after ↵) 6= ; and
L

(�1 after ↵) R �0
2

23

If R ✓ F4srv
(R) then we say that R is a co-inductive semantic sub–server relation.

Let 4srv denote the greatest solution of the equation X = F4srv
(X); formally,

4srv = ⌫F4srv

We call 4srv the semantic sub–server relation.

Proposition 3.37. If �1 vsrv �2 then �1 4srv �2.

Proof. It is su�cient to prove that the relation vsrv is a semantic sub-server relation;
this is straightforward in view of the last three lemmas.

We also have the converse.

Theorem 3.38. [Co-inductive characterisation]
The server pre-order is the greatest semantic sub–server relation.

Proof. We are required to prove that for all contracts �1 and �2, the following is true,

�1 vsrv �2 if and only if �1 4srv �2

Because of the previous proposition it is su�cient to prove that �1 4srv �2 and ⇢ a �1

implies ⇢ a �2. This will follow if we can show that the relation

R = { (⇢,�) | ⇢ a �1 for some �1 such that �1 4srv � }

is a co-inductive compliance relation.
Suppose ⇢ R �. By Definition 3.17 we are required to show two things; namely that

(a) if ⇢ k �
⌧

6�! then ⇢
X�!

(b) if ⇢ k �
⌧�! ⇢0 k �0 then (⇢0,�0) 2R

By the definition of R we know that there is some contract �1 such that �1 4srv � and
⇢ a �1.

We prove the point (a). If ⇢ k �
⌧

6�! then ⇢
⌧

6�!, �
⌧

6�!; in addition, the two contracts

cannot interact, that is ⇢
↵�! and �

��! implies ↵ 6./ �. Since ⇢ and � are stable
both Acc(⇢) and Acc(�) contain exactly one set each, say r and s respectively. Then
rephrasing the above remark we know

↵ 2 r,� 2 s implies ↵ 6./ � (2)

Since �1 4srv �, by part (ii) of Definition 3.36 �1
⌧�!⇤ �0

1 for some �0
1 such that �0

1 # s0

and s0 v s. One can use (2) above to show that this means

↵ 2 r,� 2 s0 implies ↵ 6./ �

Also, since ⇢ a �1 and �1
⌧�!⇤�0

1, part (ii) of Definition 3.17 implies ⇢ a �0
1. But ⇢ k �0

1

⌧

6�!
and therefore we have the required ⇢

X�!.
To prove point (b) above, we have to show that if ⇢ k �

⌧�! ⇢0 k �0 there exists a �̂

such that

⇢0 a �̂, �̂ 4srv �0

24

We proceed by case analysis on the rule used to infer ⇢ k �
⌧�! ⇢0 k �0. There are three

possibilities: first suppose the inference rule [p-Sil-L] from Figure 7 is used; the premises
of the rule imply that ⇢

⌧�! ⇢0, and so �0 = �. In this case the required �̂ is �1; the
definition of R gives �1 4srv � and part (ii) of Definition 3.17 gives ⇢0 a �1.
The case when the rule [p-Sil-R] is used is similar; choosing the required �̂ to be �1

again is justified by point (i) of Definition 3.36.
Finally suppose [p-Synch] is employed. Now we know that

⇢
��! ⇢0, �

��! �0, � ./ �

In this case we show that the required �̂ is
L

(�1 after �). Part (iii) of Definition 3.36
implies that

L

(�1after�) 4srv �0 and thus it su�ces to show that ⇢0 a
L

(�1after�).
The set �1after� is finite and therefore by Lemma 3.22 it is su�cient to prove ⇢0 a �00

for every �00 2 (�1 after �).
For such a �00 we can derive the transition

⇢ k �1
⌧�!⇤ ⇢0 k �00,

where one of the reductions is due to the interaction through �. From part (ii) of Defini-
tion 3.17 it follows that ⇢ a �00.

3.3. Must testing

The compliance relation between contracts, Definition 3.17, has much in common with
the idea of testing from (Nicola & Hennessy 1984). Here we explain the relationship.
We recall the definition of must testing, and explain how it di↵ers from the compliance
relation. Despite this di↵erence we then go on to show that the testing pre-order it
induces on contracts coincides with the server pre-order.
For every contract ⇢ and � a sequence of reductions

⇢ k �
⌧�! ⇢1 k �1

⌧�! ⇢2 k �2 �! . . .

is called a computation of ⇢ k � and each derivative ⇢i k �i is a state of the computation.

Intuitively, viewing ⇢ as a test we say that the state ⇢i k �i is successful if ⇢i
X�!; and a

computation is successful if it contains a successful state.

Example 3.39. For every � all the computations of

1+?l
1

.nil k �

are successful, because in the first state we have 1+?l
1

.nil
X�!. On the other hand,

suppose that a contract ⇢ does not perform X and neither do its derivatives. Then no
computation of ⇢ k � is successful.

A computation is maximal if either

(i) it is infinite, or

(ii) it is finite and the last state is stuck, that is has the form ⇢k k �k where ⇢k k �k

⌧

6�!

25

Definition 3.40. [Must testing]
For all contracts ⇢,� we write � must ⇢ if all the maximal computations of ⇢ k � are
successful.

The notion of a client contract complying with a server contract di↵ers in two ways
from that of a server contract passing a client contract viewed as a test.

Example 3.41. One di↵erence between must and a is what happens after a contract
has passed a test, that is the test has reached a successfully state; the subsequent com-
putation is disregarded by must, whereas the compliance relation has to hold for all the
states in a computation.

As an example consider � =?Real.nil and ⇢ = 1+!Int.nil. Clearly ⇢
X�!, and there-

fore � must ⇢, because each maximal computation of ⇢ k � begins in a successful state.
However ⇢ 6a � because ⇢ k �

⌧�! nil k nil.

Example 3.42. The second di↵erence is that the compliance relation does not require
the testing contract to ever report success, provided that the communication between
the contracts can continue indefinitely. As an example consider the following contracts

� = µx. !Bool.x, ⇢ = (µy. ?Rnd.y)+ !Int.1

Plainly, one sees that ⇢
X
6�!, and, therefore, ⇢ k � is not a successful state. The only

computation of ⇢ k � is the infinite loop ⇢ k �
⌧�! ⇢ k �, and therefore ⇢ a � holds; on

the other hand � must ⇢ is false. Example 3.19 contains an even simpler instance of the
di↵erence between the relation a and the relation must.

The must relation can be used to define a well known pre-order:

Definition 3.43. [Must pre-order (Nicola & Hennessy 1984)]
Let �1,�2 be contracts; we write �1 vmust �2 if and only if for every ⇢, �1must⇢ implies
�2 must ⇢.

Notation B As we discussed in paragraph Notation A of Section 3.2, we use
L

and
P

also when reasoning on the must pre-order. Formally, this is justified by the ensuing
equalities,

� � ⇢ =must ⇢ � � � � (�0 � �00) =must (� � �0) � �00

� + ⇢ =must ⇢ + � � + (�0 + �00) =must (� + �0) + �00

where =must is the equivalence relation given in the obvious manner by vmust.
Notwithstanding the di↵erences between must testing and compliance exposed in Ex-

ample 3.41 and Example 3.42, it turns out that the server pre-order vsrv and the must

pre-order vmust coincide (Corollary 3.51).
First, in a series of lemmas, we show that vmust satisfies the three defining properties

of the semantic sub–server relation (Definition 3.36).

Lemma 3.44. Let �1 vmust �2. If �2
⌧�! �0

2 then �1 vmust �0
2.

26

Proof. Take a contract ⇢ such that �1must⇢ and a maximal computation C performed
by �0

2 k ⇢. It is easy to see that a maximal computation from �2 k ⇢ can be obtained by
prefixing C with the move �2 k ⇢

⌧�! �0
2 k ⇢.

Since �1 vmust �2 it follows that this extended computation must be successful. How-
ever this implies that C itself is successful since ⇢ does not change during the initial
extending move.

Lemma 3.45. Let �1 vmust �2 and �2 # r. There exists a r0 2 Acc(�1) such that r0vr.

Proof. The proof is similar to that of Lemma 3.32, and proceeds by contradiction. For
some n � 1, let

Acc(�1) = { r1, . . . ,rn }
and suppose that ri 6v r. This means that for every ri there is ↵i 2 ri and a �i such
that �i ./ ↵i and �i 6./ ↵ whenever ↵ 2 r.
Let ⇢ be the contract �1.1 + . . . + �n.1. The contradiction is established by showing

that

(a) �1 must ⇢ while
(b)�2 must ⇢ is false

Both of which we leave to the reader. Intuitively (b) follows because �2 # r, while (a) is

a consequence of the fact that if �1
⌧�!⇤ �0

⌧

6�! then �0 # ri for some 1 i n.

Lemma 3.46. Let �1 vmust �2 and �2
��! �0

2. Whenever ↵ ./ �

(a) the set (�1 after ↵) is not empty
(b) the contract

L

(�1 after ↵) is smaller than �0
2. Formally,

M

(�1 after ↵) vmust �0
2

Proof. The proof of part (a) is analogous to that of part (a) in Lemma 3.35, but the
contract to be used in this case is ⇢ = (1 � 1) + ↵.nil.
We prove point part (b) by contradiction. Suppose there is a contract ⇢0 such that

we have
L

(�1 after ↵) must ⇢0, while �0
2 must ⇢0 is false. Consider the contract

⇢ = ↵.⇢0 � 1. Clearly �2 must ⇢ is false while �1 must ⇢ is true. This contradicts the
hypothesis that �1 vmust �2.

Proposition 3.47. If �1 vmust �2 then �1 4srv �2.

Proof. The previous three lemmas show that vmust is a semantic sub–server relation,
from which the result follows.

To establish the converse of this result we need to develop some additional notation.
The first is a generalisation of the relation �after↵ to �afteru where u is a non-empty
sequence of actions from Act?. This is defined by induction on the length of u, with the
inductive case being

(� after w↵) =
[

�02(� after w)

(�0 after ↵)

27

Example 3.48. Let � =!t
1

.(?t
2

.�1+?t
3

.�2)+!t
1

.nil and ?t
3

./!t
2

; we have the follow-
ing equalities,

(�after ?t
1

!t
2

) =
S

�02(� after ?t
1

)(�
0 after !t

2

)

=
S

�02{nil,?t
2

.�1+?t
3

.�2}(�
0 after !t

2

)

= {�1,�2}

Next we generalise the interaction relation ↵ ./ � to non-empty sequences, u ./ w in
the obvious manner; note that this implies that u and w have the same length. Finally
we need the notion of contracts performing sequence of actions. For u 2 Act? let �

u
=) �0

be the least relation which satisfies

(a) �
"

=) � for every contract �
(b)�

u
=) �1, �1

a�! �0, where a 2 Act , implies �
ua
=) �0

(c) �
u

=) �1, �1
⌧�! �0 implies �

u
=) �0

We have the obvious generalisation of condition (iii) in Definition 3.36:

Lemma 3.49. Suppose �1 R �2 for some semantic sub–server relation R, and �2
u

=) �0
2

for some non-empty u 2 Act?. Then v ./ u implies that

(a) the set (�1 after v) is not empty
(b) the contract

L

(�1 after v) is related by R to �0
2. Formally,

M

(�1 after v) R �0
2

Proof. By induction on the non-empty size of u; the base case follows from part (iii)
of Definition 3.36.

Theorem 3.50. [Co-inductive characterisation]
The must pre-order is the greatest semantic sub–server relation.

Proof. We have to prove that for all contracts �1,�2

�1 4srv �2 if and only if �1 vmust �2.

Because of Proposition 3.47 it is su�cient to prove �1 4srv �2 implies �1 vmust �2. So,
suppose �1 4srv �2 and �1 must ⇢; we must prove �2 must ⇢.
Consider a maximal computation of �2 k ⇢

�2 k ⇢
⌧�! �1

2 k ⇢1
⌧�! . . . (3)

We first examine the case when this is finite, with terminal state �k
2 k ⇢k. Intuitively

this finite computation can be unzipped to give the contributions from the individual
components �2 and ⇢:

�2
u

=) �k
2 ⇢

v
=) ⇢k where v ./ u

We are required to show that one of the derivatives of ⇢ in ⇢
v

=) ⇢k is successful. To
this aim we will exhibit a suitable computation of �1 k ⇢; in particular we will show that
there exists a �0

1 such that

28

(a) the composition �0
1 k ⇢k is stuck

(b) the computation �1 k ⇢
⌧�!⇤ �0

1 k ⇢k exists
(c) the derivatives of ⇢ in the computation of point (a) are contained in the computation

�2 k ⇢
⌧�!⇤ �k

2 k ⇢k

These three points are enough to prove that in ⇢
v

=) there exists a successful derivative:
thanks to (a), the computation in (b) is a maximal computation of �1 k ⇢; the assumption
that �1must⇢ implies that the computation in (b) contains a successful ⇢̂, and point (c)
ensures that ⇢̂ is contained in ⇢

v
=).

We prove one by one the points above.

(a) Here we show that, for a suitable �0
1, the composition �0

1 k ⇢k is stuck.
By assumption the state �k

2 k ⇢k is terminal; this implies that (1) both �k
2 and ⇢k are

stuck. A consequence is that their acceptance sets are singleton; say Acc(�k
2) = {r}

and Acc(⇢k) = {s}; and (2) the contracts �k
2 and ⇢k cannot interact. Formally

↵ 2 r implies � 6./ ↵ for every � 2 s

Consider now the contract
L

(�1 after v); part (a) of Lemma 3.49 implies that the
set (�1 after v) is not empty and part part (b) of the same lemma implies that
L

(�1 after v) 4srv �k
2 .

Part (ii) of Definition 3.36 and (2) above imply that there exists a set

r0 2 Acc(
M

(�1 after v))

such that

↵ 2 r0 implies � 6./ ↵ for every � 2 s0 (4)

From Definition 3.27 it follows that there exists a contract �0
1 such that �0

1 # r0 and
M

(�1 after v)
⌧�!⇤ �0

1

The latter fact means that �0
1

⌧

6�! and (4) above means that �0
1 and ⇢k cannot interact;

Since (1) above proves that ⇢k is stuck we have shown that �0
1 k ⇢k is stuck.

(b)We are required to exhibit the computation �1 k ⇢
⌧�!⇤ �0

1 k ⇢k.
Since

L

(�1 after v)
⌧�!⇤ �0

1 there exists a �00
1 2 (�1 after v) such that �00

1
⌧�!⇤ �0

1.
From the definition of (�1 after v) it follows that �1

w
=) �00

1 for some w 2 Act? such
that w ./ v, and this implies that �1

w
=) �0

1. Zipping this action sequence together
with ⇢

v
=) ⇢k we obtain the computation

�1 k ⇢
⌧�!⇤ �0

1 k ⇢k
⌧

6�!

We remark that the computation above is finite and cannot be extended, hence it is
maximal.

(c) The derivatives of ⇢ in the computation

�1 k ⇢
⌧�!⇤ �0

1 k ⇢k

are contained in the computation �2 k ⇢
⌧�!⇤�k

2 k ⇢k because the former computation
has been obtained by zipping ⇢

v
=) ⇢k with a computation made by �1.

29

Now suppose that the maximal computation (3) above is infinite. Then the result of
unzipping gives infinite traces u, v such that

�2
u

=) ⇢
v

=)

Let us denote the finite prefixes of these traces of length k by u(k), v(k) respectively.
By Lemma 3.49 we know that �1 after v(k) is non-empty, for every k � 0. This means
that the LTS generated by �1 is infinite.
Now consider the sub-LTS consisting of all nodes � which can be reached from �1 using

a weak move �1
w(k)
=) �0 where w(k) is some trace satisfying w(k) ./ v(k). This sub-LTS

is therefore infinite. It is also finite-branching and so by Kőnig’s lemma it has an infinite
path. By following this path from the root we get �1

w
=) such that w(k) ./ v(k), for

every k � 0.
This infinite computation can now be zipped with ⇢

v
=) to obtain an infinite compu-

tation from �1 k ⇢. Since �1 must ⇢ it follows that there is some �k
2 k ⇢k in the maximal

computation (3) above which is successful, and therefore �2 must ⇢.

Corollary 3.51. The server pre-order equals the must pre-order. Formally

vsrv =vmust

Proof. It is a consequence of Theorem 3.38 and Theorem 3.50.

Thus far, we have never written explicitly the parameter ./ used to infer the reductions
of parallel compositions of contracts. Now we make the parameter ./ explicit; this lets us
emphasise the true import of Corollary 3.51. For every ./ ✓ Act2, we denote with

⌧�!./

the relation inferred by using the rule in Figure 7 and the ./ in the subscript. By replac-
ing

⌧�!./ in Definition 3.17, and Definition 3.40, we define two relations a./ and must./;
in turns this lets us generalise the pre-orders we have studied,

— for every ./ ✓ Act2, we write �1 v./
srv �2 if and only if ⇢ a./ �1 implies that ⇢ a./ �2;

— for every ./ ✓ Act2, we write �1 v./
must �2 if and only if �1 must./ ⇢ implies that

�2 must
./ ⇢.

Since in proving Corollary 3.51 we have used no hypothesis on ./, we can rephrase it as
follows,

for every ./ ✓ Act2. v./
srv = v./

must

This means that the equality between the server pre-order and the must pre-order does
not depend on the ./ at hand. That is, the equality holds regardless of the co-action
relation used in rule [p-Synch].

4. Session Contracts

Here we specialise the contract language, to a sub-language which will be the target of our
interpretation of the session types from Section 2. This is the topic of the first sub-section.
We then go on to re-examine the server pre-order as it applies to this sub-language; in
particular we show that it can also be characterised co-inductively, this time using purely

30

�, ⇢ ::= Session Contracts

1 successP
i2I

?l
i

.� external choice, I finite, non-emptyL
i2I

!l
i

.� internal choice, I finite, non-empty

?t.� input

!t.� output

x contract variable

µx.� recursion

We impose the additional proviso that in a term the l
i

’s are pair-wise di↵erent.

Figure 9. Session contract grammar.

syntactical criteria. In the final section we give a similar co-inductive characterisation to
a related sub–client pre-order.

4.1. Session contracts

The syntax for the language LSC is given in Figure 9.

Definition 4.1. [Session contracts]
We use SC to denote the set of closed terms � of LSC such that if for some s 2 Act?,
�

s�!⇤ �0, then �0#. We refer to these terms as session contracts.

Note that SC is a subset of the more general language of contracts C, but

— external choices are restricted to inputs on labels

— internal choices are restricted to outputs on labels

Note also that nil is not a session contract. Instead we have chosen 1 to be the base
contract, for reasons which will become apparent. Moreover, we already reasoned that a
server contract 1 has the same behaviour as nil (Proposition 3.21).

Session contracts, due to their restrictive syntax, enjoy some properties which we will
use in the next sub-sections, and which we prove now.

Lemma 4.2. Let � be a session contract. Then

(i) �
X�! if and only if � = 1

(ii) �
⌧�!⇤ X�! if and only if unfold(�) = 1

(iii) �
↵�! if and only if � 6= 1

Proof. Part (i) follows from the restrictive syntax of session contract. The proof of part

(ii) requires two arguments. The if side, unfold(�) = 1 implies �
⌧�!⇤ X�!, is justified

by part (ii) of Lemma 3.2. The only if side, �
⌧�!⇤ X�! implies unfold(�) = 1, can be

proven by induction on the length of the sequence
⌧�!⇤; the base case being part (i) of

this lemma. Part (iii) can be proven by structural induction.

31

4.2. The restricted server pre-order

Definition 3.25 applies equally well to session contracts, but it is inappropriate as it
compares session contracts from the point of view of satisfying clients who may use the
more general contracts from Section 3. Instead let us restrict attention to clients who
also only run the more restricted session contracts.

Definition 4.3. [Restricted server pre-order]
For �1,�2 2 SC let �1 vSC

srv �2 whenever ⇢ a �1 implies ⇢ a �2 for every ⇢ in SC.

This relation is more generous than vsrv , in that it allows implementation refinement
(Padovani 2010) to happen, as the following example shows.

Example 4.4.

?latte.1vSC
srv ?moka.1+?latte.1

If a session contract ⇢ can interact with ?latte.1 then, modulo unfolding, it has to
be defined by an internal sum. Moreover this sum can only contain one summand, and
therefore ⇢ complies also with ?moka.1+?latte.1.
Consider now the more general contract ⇢0 = !latte.1+ !moka.nil. One can check that

⇢0 a ?latte.1

whereas ⇢0 6a ?moka.1+?latte.1. It therefore follows that

?latte.1 6vsrv ?moka.1+?latte.1

Example 4.5. [e-vote, ballot refinement]
We give a more concrete instance of the previous example. Recall Example 3.14 and
consider the session contract

BallotB =µx. ?Login.(!Wrong.1�
!Ok.(?VoteA.1+?VoteB.1+?VoteC.1+?VoteD.1))

BallotB o↵ers to a voter more options than Ballot, and intuitively it should be possible
to use a server that guarantees BallotB in place of a server that guarantees Ballot. This
is not the case if the contracts are compared with vsrv , because Ballot 6vsrv BallotB.
On the other hand, if we restrict our attention to session contracts, and thus to the
pre-ordervSC

srv , we have Ballot vSC
srv BallotB.

When comparing session contracts relative to this pre-order it will be convenient to work
modulo unfolding, which is possible because of the following result:

Proposition 4.6. Let �1,�2 be session contracts; �1 vSC
srv �2 if and only if unfold(�2)vSC

srv

unfold(�2).

Proof. Follows from Proposition 3.23 and 3.24.

Proposition 4.7 (Bottom element).

The pre-order vSC
srv enjoys the following properties,

32

(i) it has a bottom element
(ii) if �? is a bottom element of vSC

srv then unfold(�?) = 1

Proof. To prove part (i) we show that 1 is a bottom element of vSC
srv , that is 1 vSC

srv �

for every session contract �. Let ⇢ be a session contract such that ⇢ a 1. The session
contract 1 o↵ers no interaction. Therefore, because of the restricted syntax of session
contracts, ⇢ must also be, modulo unfolding, the simple contract 1. Now fix a session
contract �. Clearly 1 a �, therefore from an application of Proposition 3.24 it follows
that ⇢ a �.
To prove part part (ii) let �? be an arbitrary bottom element of vSC

srv . We are required
to show that unfold(�?) = 1. From the definition of bottom element follows �? vSC

srv 1.
An application of the previous proposition gives unfold(�?)vSC

srv 1. But now an analysis
of the possible syntactic structure of unfold(�?) quickly yields that it must be 1 itself.

Part (ii) is relevant because 1 is not the only bottom element; for example it is also
true that µx.1 vSC

srv � for every �.
We now proceed, as in Section 3.2.1, to give a co-inductive characterisation of the

restricted server pre-order, this time taking advantage of their restricted syntactic struc-
ture.

Definition 4.8. [Syntactic sub–server relation]
Let F4syn

srv
: P(SC2) �! P(SC2) be defined by letting (�1,�2) 2 F4syn

srv
(R) whenever

one of the following holds:

(i) unfold(�1) = 1

(ii) unfold(�2) = ?t2.�0
2 and unfold(�1) = ?t1.�0

1 with t1 4g

t2 and �0
1 R �0

2

(iii) unfold(�2) = !t2.�0
2 and unfold(�1) = !t1.�0

1 with t2 4g

t1 and �0
1 R �0

2

(iv) unfold(�2) =
P

j2J?lj .�
2
j and unfold(�1) =

P

i2I?li.�
1
i with I ✓ J and �1

i R �2
i

(v) unfold(�2) =
L

j2J !lj .�
2
j and unfold(�1) =

L

i2I !li.�
1
i with J ✓ I and �1

j R �2
j

If R ✓ F4syn
srv

(R) then we say that R is a co-inductive syntactic sub–server relation.
Let 4syn

srv denote the greatest solution of the equation X = F4syn
srv

(X); formally,

4syn
srv = ⌫F4syn

srv

We call 4syn
srv the syntactic sub–server relation.

We first show that the set based relation vSC
srv is contained in 4syn

srv ; this will follow if
we can show that the former satisfies the properties defining the latter.

Lemma 4.9. Let �1,�2 2 SC, �1 = unfold(�1), �2 = unfold(�2) and �1 vSC
srv �2.

One of the following is true,

(a) if �1 = !t
1

.�0
1 then �2 = !t

2

.�0
2, t2 4g

t
1

and �0
1 vSC

srv �0
2

(b) if �1 =?t
1

.�0
1 then �2 =?t

2

.�0
2, t1 4g

t
2

and �0
1 vSC

srv �0
2

(c) if �1 =
P

i2I?li.�
1
i then �2 =

P

j2J?lj.�
2
j , I ✓ J and �1

i vSC
srv �2

i

(d) if �1 =
L

i2I !li.�
1
i then �2 =

L

j2J !lj.�
2
j with J ✓ I and �1

j vSC
srv �2

j

33

Proof. The proof is by case analysis on the structure of �1, and the argument depends
greatly on the restricted syntax of session contracts. We prove part (a) and leave the
proof of the other parts to the reader.
Suppose �1 = !t

1

.�0
1. Then ?t

1

.1 a �1 and because �1 vSC
srv �2 it follows that ?t1.1 a �2.

Since ?t
1

.1 is stuck, �2 has to engage in an action !t
2

such that ?t
1

./c!t2; this lets us
prove that t

2

4
g

t
1

. In reason of the syntax and the the hypothesis �2 = unfold(�2),
the equality �2 = !t

2

.�0
2 must hold.

We also have to prove that �0
1 vSC

srv �0
2. Pick a session contract ⇢ such that ⇢ a �0

1.
Clearly ?t1.⇢ a �1, and thus ?t1.⇢ a �2. Since ?t1 ./c!t2, we apply rule [p-Synch] to
infer ?t1.⇢ k �2

⌧�! ⇢ k �0
2. From the definition of compliance it follows that ⇢ a �0

2.

Proposition 4.10. For session contracts, �1 vSC
srv �2 implies �1 4syn

srv �2.

Proof. We prove that vSC
srv is a pre-fixed point of the function F4syn

srv
of Definition 4.8,

that is �1 vSC
srv �2 implies (�1,�2) 2 F4syn

srv
(vSC

srv).
Suppose �1 vSC

srv �2. Then by Proposition 4.6 it follows that unfold(�1)vSC
srv unfold(�2).

Now if unfold(�1) = 1 by definition (�1,�2) 2 F4syn
srv

(vSC
srv). Otherwise we can ap-

ply Lemma 4.9 to the pair unfold(�1), unfold(�2). This provides the required infor-
mation to satisfy the requirements (ii) to (v) in Definition 4.8, thereby ensuring that
(�1,�2) 2 F4syn

srv
(vSC

srv).

Lemma 4.11. Let R be a co-inductive syntactic sub–server relation and let �1 R �2.
If �2

⌧�! �0
2 then �1 R �0

2.

Proof. First note that from Definition 4.8 it follows that

unfold(�1) R unfold(�2) (5)

There are two di↵erent cases to be discussed, depending on the unfolding of �2 being �2

itself or not.

(a) If unfold(�2) 6= �2 then unfold(�2) = unfold(�0
2). The equality and (5) above

imply unfold(�1) R unfold(�0
2); the latter fact means that �1 R �0

2.
(b) If unfold(�2) = �2 then �2 must be an internal sum, say �2 =

L

i2I !li.�
2
i , because

the contract �2 can perform a silent move and cannot unfold. This implies that �0
2 is

the internal sum
L

k2K !l
k

.�2
k for some K ✓ I. From Definition 4.8 it follows that

unfold(�1) =
M

j2J

!l
j

.�2
j

with I ✓ J . Since unfold(�0
2) = �0

2 and K ✓ I ✓ J one sees easily that

unfold(�1) R unfold(�0
2)

thus �1 R �2.

Lemma 4.12. LetR be a co-inductive syntactic sub–server relation, �1 R �2 and �2 # r.
There exists a r0 2 Acc(�1) such that r0 v r.

34

Proof. Using Lemma 3.2 we know unfold(�2) = �2, since �2 6 ⌧�!. From Definition 4.8
it follows that unfold(�1) R �2. Now, according to the cases in Definition 4.8 and a
case analysis on the form of �2, one can show that unfold(�1)

⌧�!⇤�0
1 for some �0

1 which
satisfies the required properties. We leave the details of the case analysis to the reader.
Finally, the proof that �1

⌧�!⇤ �0
1 amounts in two steps. We apply Lemma 3.2, which

ensures that �1
⌧�!⇤ unfold(�1). Now we know that

�1
⌧�!⇤ unfold(�1)

⌧�!⇤ �0
1

so the transitivity of
⌧�!⇤ gives the result.

Lemma 4.11 and Lemma 4.12 proves that the pre-order 4syn
srv enjoys two of the prop-

erties of the pre-order 4srv. The third property of 4srv, though, is not a↵orded by 4syn
srv .

Example 4.13. Let �1 =?latte.1 and �2 =?latte.1+?moka.1; in Example 4.4 we

have shown that �1 4syn
srv �2. On the one hand, we can prove the following things, �2

?moka�! 1

and !moka ./c?moka; on the other hand

(�1 after !moka) = ;

As in Example 4.4 the crucial fact is that the pre-order 4syn
srv allows implementation

refinement (Padovani 2010).

Theorem 4.14. [Co-inductive characterisation]
For session contracts �1,�2, �1 vSC

srv �2 if and only if �1 4syn
srv �2.

Proof. The only if part of the theorem is Proposition 4.10 while the if part, that is the
set inclusion 4syn

srv ✓ vSC
srv , follows from the fact that the relation

R = { (⇢,�2) | �1 4syn
srv �2 , ⇢ a �1 for some �1 2 SC }

contains (⇢,�2) and is a compliance. We prove the latter.
We have to show that R satisfies the two properties in Definition 3.17. Let (⇢,�) 2R;

by definition there exists a �1 such that ⇢ a �1 and �1 4syn
srv �.

To prove point (i) of Definition 3.17 assume ⇢ k �
⌧

6�!. This implies that � and ⇢ are
both stuck, so Acc(⇢) = {s} and Acc(�) = {r}, and that

↵ 2 r implies � 6./c ↵ whenever � 2 s

An application of Lemma 4.12 and of the definition of acceptance set gives a �0
1 such

that �1
⌧�!⇤ �0

1 # r0 and r0 v r. The last inequality implies that

↵ 2 r0 implies � 6./c ↵ whenever � 2 s

therefore, ⇢ k �0
1

⌧

6�!. Part (ii) of Definition 3.17 and the assumption ⇢ a �1 imply that

the session contract ⇢ complies with �0
1 so ⇢

X�!.
What we have left to do now is to show that if ⇢ k �

⌧�! ⇢0 k �0 then (⇢0,�0) 2R, that
is there exists a �̂ 2 SC such that

⇢0 a �̂, �̂ 4syn
srv �0

35

Assume ⇢ k �
⌧�! ⇢0 k �0. The argument depends on the rule used to infer this silent

move (see Figure 7). If rule [p-Sil-L] was used then �0 = � and ⇢
⌧�! ⇢0; let �̂ = �1.

Then we already know that �̂ 4syn
srv �0, and part (ii) of Definition 3.17 implies ⇢0 a �̂.

If rule [p-Sil-R] was applied then ⇢0 = ⇢ and �
⌧�! �0. In this case an application of

Lemma 4.11 implies �1 4syn
srv �0. We know by assumption that ⇢ a �1, so the �̂ we are

looking for is �1.
If rule [p-Synch] was applied then

⇢
↵�! ⇢0, �

��! �0, ↵ ./c �.

Since ⇢ performs an observable action part (iii) of Lemma 4.2 implies ⇢
X
6�!.

Let us turn our attention to unfold(�1). The assumption ⇢ a �1 together with Propo-
sition 3.23 implies that (a) ⇢ a unfold(�1). The assumption �1 4syn

srv � and Definition 4.8
imply that (b) unfold(�1) 4syn

srv �.

We know that ⇢ a unfold(�1) ((a) above), and that ⇢
X
6�!; together with part (i),

these facts force unfold(�1) to o↵er an action � such that � ./c ↵. Thus, for some �0
1,

unfold(�1)
��! �0

1

An application of rule [p-Synch] ensures that

⇢ k unfold(�1)
⌧�! ⇢0 k �0

1

Now (a) and part (ii) of Definition 3.17 imply that ⇢0 a �0
1. We choose �0

1 as candidate �̂.
To finish the proof we have to show that �0

1 4syn
srv �0. The argument is a case analysis

on the action �. Four cases are to be discussed, but, as they are all similar, we give a
detailed account only of two of them.
If � =?t

2

then (b) above and case (ii) of Definition 4.8 ensure that �0 is unique, and
so is �0

1 as well. The same definition implies also that �0
1 4syn

srv �0.
If, for some label l, � =?l then the definition of ./c implies that ↵ = !l, and the

assumption � ./c ↵ implies � =?l. We have proven that � = �. Now (b) above and case
(iv) of Definition 4.8 imply that �0

1 4syn
srv �0.

We conclude this subsection with a summary of our knowledge on the pre-orders which
compare contracts on the server side of the compliance relation.

Corollary 4.15. The following equalities and inequalities hold

vmust = vsrv

vSC
srv 6✓ vsrv

vsrv 6✓ vSC
srv

vSC
srv = 4syn

srv

Proof. The (in)equalities are consequence respectively of Corollary 3.51, Example 4.4,
the fact that SC ⇢ C, and Theorem 4.14.

36

4.3. The restricted client pre-order

We introduce a new pre-order which compares the capacity of clients to be satisfied by
servers. The structure of this sub-section is similar to that of the previous one on the
restricted server pre-order.

Definition 4.16. [Restricted client pre-order]
For ⇢1, ⇢2 2 SC let ⇢1 vSC

clt ⇢2 whenever ⇢1 a � implies ⇢2 a � for every � in SC.

Also on the restricted client pre-order we can reason modulo unfolding.

Proposition 4.17. For every session contract ⇢1 and ⇢2, ⇢1 vSC
clt ⇢2 if and only if

unfold(⇢2) vSC
clt unfold(⇢2).

Proof. Follows from Proposition 3.23 and 3.24.

Example 4.18. We have shown in Example 4.4 that ?latte.1vSC
srv ?moka.1+?latte.1.

A similar argument, this time applied to client-side session contracts, can be used to
show that

?latte.1 vSC
clt ?moka.?moka.1+?latte.1

Similarly to what happens for server contracts, if we turn our attention to general
contracts then the session contracts above are no longer related. Let us see why. The
client ?latte.1 complies with the server !latte.1+ !moka.1, because the action !moka
will never be performed by the server. On the other hand

?moka.?moka.1+?latte.1 k!latte.1+ !moka.1
⌧�!?moka.1 k 1

⌧

6�!

and ?moka.1
X
6�!; this proves that

?moka.?moka.1+?latte.1 6a!latte.1+ !moka.1

Had we defined in the obvious way the pre-order vclt on contracts, then the argument
above would have proven that

!latte.1 6vclt?moka.?moka.1+?latte.1 (6)

We have therefore shown that

vSC
clt 6✓ vclt

We have seen in Proposition 4.7 that the session contract 1 is a bottom element in the
restricted server pre-order. The client pre-order enjoys the dual property.

Proposition 4.19 (Top element).

The pre-order vSC
clt enjoys the following two properties,

(i) it has a top element
(ii) if �> is a top element of vSC

clt then unfold(�>) = 1

37

Proof. Since 1 a � for every contract �, the session contract 1 it is a top element in
the restricted client pre-order. Moreover, reasoning as in Proposition 4.7 we can show
that if �> is an arbitrary top element then unfold(�>) = 1.

Definition 4.20. [Syntactic sub–client relation]
Let F4syn

clt
: P(SC2) �! P(SC2) be defined so that (⇢1, ⇢2) 2 F4syn

clt
(R) whenever one

of the following is true:

(i) unfold(⇢2) = 1

(ii) unfold(⇢2) = ?t2.⇢02 and unfold(⇢1) = ?t1.⇢01 with t1 4g

t2 and ⇢01 R ⇢02
(iii) unfold(⇢2) = !t2.⇢02 and unfold(⇢1) = !t1.⇢01 with t2 4g

t1 and ⇢01 R ⇢02
(iv) unfold(⇢2) =

P

j2J lj .⇢
2
j and unfold(⇢1) =

P

i2I li.⇢
1
i with I ✓ J and ⇢1i R ⇢2i

(v) unfold(⇢2) =
L

j2J lj .�
2
j and unfold(⇢1) =

L

i2I li.�
1
i with J ✓ I and �1

j R �2
j

If R ✓ F4syn
clt

(R) then we say that R is a co-inductive syntactic sub–client relation.
Let 4syn

clt denote the greatest solution of the equation X = F4syn
clt

(X); formally,

4syn
clt = ⌫F4syn

clt

We call 4syn
clt the sub–client relation.

Lemma 4.21. Let ⇢1, ⇢2 2 SC, ⇢1 = unfold(⇢1), ⇢2 = unfold(⇢2) and ⇢1 vSC
clt ⇢2.

Then

(a) if ⇢2 = !t
2

.⇢02 then ⇢1 = !t
1

.⇢01, t2 4g

t
1

and ⇢01 vSC
clt ⇢02

(b) if ⇢2 =?t
2

.⇢02 then ⇢1 =?t
1

.⇢01, t1 4g

t
2

and ⇢01 vSC
clt ⇢02

(c) if ⇢2 =
P

j2J?lj.⇢
2
j then ⇢1 =

P

i2I?li.⇢
1
i with I ✓ J and ⇢1i vSC

clt ⇢2i
(d) if ⇢2 =

L

j2J !lj.⇢
2
j then ⇢1 =

L

i2I !li.⇢
1
i with J ✓ I and ⇢1j vSC

clt ⇢2j

Proof. The proof is almost the same as Lemma 4.9, the di↵erence being that here we
look at left-hand side of the compliance relation, and that we need a result of the fact
that for each session contract ⇢ there exists a session contract � such that ⇢ a �. This is
proven in (Barbanera & de’Liguoro 2010, Section 2.1).

Proposition 4.22. For every session contract ⇢1 and ⇢2, if ⇢1 vSC
clt ⇢2 then ⇢1 4syn

clt ⇢2.

Proof. The argument is similar to the one of Proposition 4.10, but here we use the
function F4syn

clt
and Lemma 4.21.

Lemma 4.23. LetR be a co-inductive sub–client relation and let ⇢1 4syn
clt ⇢2. If ⇢2

⌧�! ⇢02
then ⇢1 4syn

clt ⇢02.

Proof. The proof is similar to the proof of Lemma 4.11.

Theorem 4.24. [Co-inductive characterisation]
Let ⇢,� 2 SC. Then ⇢ 4syn

clt � if and only if ⇢ vSC
clt �.

Proof. In view of Proposition 4.22 we have to prove only the inclusion 4syn
clt ✓ vSC

clt .
It is enough to show that

R = { (⇢2,�) | ⇢1 4syn
clt ⇢2, ⇢1 a � for some ⇢1 2 SC }

38

is a co-inductive compliance. Let ⇢ R �; by definition of R there exists a session con-
tract ⇢1 such that ⇢1 4syn

clt ⇢ and ⇢1 a �.

We prove part (i) of Definition 3.17. Assume ⇢ k �
⌧

6�!; we have to show that ⇢
X�!.

To this aim it is su�cient to show

unfold(⇢1) = 1 (7)

We explain why this fact su�ces. Assume (7). Since unfold(⇢1) 4syn
clt ⇢ we know that

(⇢1, ⇢) 2 F4syn
clt

(4syn
clt)

This is possible only thanks to case (i) of Definition 4.20, and therefore unfold(⇢) = 1.

Since ⇢
⌧

6�!, part (i) of Lemma 3.2 implies ⇢ = unfold(⇢), and so, now, an application

of part (ii) of Lemma 4.2 ensures ⇢
X�!.

We prove (7). The argument revolves around the unfolding of ⇢1. To begin with, note
two facts: one, the assumption ⇢1 4syn

clt ⇢ and Definition 4.20 imply unfold(⇢1) 4syn
clt ⇢;

and the other, the assumption ⇢1 a � and Proposition 3.23 imply unfold(⇢1) a �.

The fact that ⇢ k �
⌧

6�! can be used to prove

↵ 2 r implies ↵ 6./c � for every � 2 s (8)

From the definition of acceptance set and ⇢1
⌧�!⇤unfold(⇢1) (part (ii) of Lemma 3.2)

it follows

Acc(unfold(⇢1)) ✓ Acc(⇢1) (9)

Now we prove that unfold(⇢1) = 1. Fix a stuck derivative ⇢01 of unfold(⇢1):

unfold(⇢1)
⌧�!⇤ ⇢01

⌧

6�!

Such a stuck state exists because of the restricted syntax of session contracts. Further,

since ⇢1
⌧

6�!, by definition we have ⇢1 # r for some r. Point (9) implies that r 2 Acc(⇢1),

and so point (8), together with ⇢1
⌧

6�! and �
⌧

6�!, implies that ⇢01 k �
⌧

6�!. We have

already seen that unfold(⇢1) a �, so part (ii) of Definition 3.17 now imply that ⇢01
X�!.

We can now apply part (ii) of Lemma 4.2 to obtain unfold(⇢1) = 1.
As yet we have proven that (⇢,�) respects part (i) of Definition 3.17. The argument to

show that also part (ii) of Definition 3.17 holds is similar to the one used in Theorem 4.14.
The di↵erence amounts in the use of Definition 4.20 in place of Definition 4.8. We leave
the details to the reader.

5. Modelling session types

The interpretation of session types as contracts is expressed as a function from the
language LST in Section 2 to the language LSC in Section 4. The function is little more
than a syntactic transformation.

39

Let M : LST �! LSC be defined by:

M(S) =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

1 if S = end

!t.M(S) if S =![t];S

?t.M(S) if S =?[t];S
P

i2[1;n]?li.M(Si) if S = &h l1 : S1, . . . , ln : Sn i
L

i2[1;n]!li.M(Si) if S = �h l1 : S1, . . . , ln : Sn i
µx.M(S0) if S = µX. S0

x if S = X

It is easy to see that M maps session types, ST , to session contracts, SC; indeed it
defines a bijection between these sets:

— for every � 2 SC there exists some session type T such that M(T) = �

— if M(T1) = M(T2) then T1 = T2

where T1 = T2 denotes syntactic identity. Further, substitution is preserved by M.

Lemma 5.1. Let S, T 2 ST . Then M(S
�

T /X

) = (M(S))
�M(T)/M(X)

.

Proof. The proof is by structural induction on S.

The interpretation also commutes with the two functions depth(�) and unfold(�):

Lemma 5.2. For every T 2 ST and � 2 SC the ensuing properties are true,

(i) dpt(T) = dpt(M(T))
(ii) unfold(M(T)) = M(unfold(T))
(iii) unfold(M�1(�)) = T if and only if unfold(�) = M(T)

Proof. The proofs of the first two points are by induction on dpt(T), the proof of (ii)
using (i) and the previous lemma. The third point follows immediately from (ii).

As we have shown, the di�culty is to find a natural pre-order on session contracts
which accurately reflects the sub-typing relation on session contracts. There are two
obvious candidates, the restricted server pre-order and the restricted client pre-order on
session contracts. The di�culty lies in the interpretation of end.

Example 5.3. Recall that M(end) = 1. In the restricted server pre-order the session
contract 1 is a least element, being smaller or equal to every other session contract. On the
other hand, for session types end 4st T if and only if unfold(T) = end. Consequently
the relation vSC

srv is an unsound model for sub-typing between session types. For example:

1 vSC
srv !t.1, end 64st ![t]; end

The restricted client pre-order presents the dual issue as it relates every session contract
to 1; it is one of the top element. Once again a model based on vSC

clt would be unsound:

!t.1 vSC
clt 1, ![t]; end 64st end

40

The main result of the paper is that the bijection M gives a fully abstract interpretation
of sub-typing between session types in terms of session contracts, provided we combine
these two set-based pre-orders.

Definition 5.4. [Session contract pre-order]
For �1, �2 2 SC let �1 vSC �2 whenever �1 vSC

srv �2 and �1 vSC
clt �2.

Example 5.5. It is instructive to see the behaviour of 1, the image of end under M,
relative to this combined pre-order. First suppose � vSC 1 for some session contract �.
This implies � vSC

srv 1 and therefore, as we have shown in Proposition 4.7, � must be a
bottom element relative to vSC

srv and unfold(�) must be 1. A similar argument, using
the pre-order vSC

clt ensures that if 1 vSC � then unfold(�) must also be 1.
In other words modulo unfolding the only session contract related to 1 via vSC is 1

itself.

Proposition 5.6 (Completeness).

For session contracts, �1 vSC �2 implies M�1(�1) 4st M�1(�2).

Proof. Let R be the relation over session types defined by

R= {(M�1(�1),M�1(�2)) | �1 4syn
srv �2, �1 4syn

clt �2}

If we prove that R is a type simulation, that is it satisfies the properties given in Defini-
tion 2.10, then the result will follow because of Theorems 4.14 and 4.24.
The proof proceeds by a case analysis on the structure of unfold(�1); we give the

details of two cases.

— Suppose unfold(M�1(�1)) = end. According to Definition 2.10 we have to show
that

unfold(M�1(�)) = end.

Because of part (iii) of Lemma 5.2 we know that unfold(�1) = 1; moreover in
Example 5.5 above we have already reasoned that unfold(�2) must be 1.

— Suppose unfold(M�1(�1)) = ![t
1

];S1. We are required to prove that

unfold(M�1(�2)) = ![t
2

];S2, (10)

for some t2 and S2 such that t2 4g

t1 and (M(S1),M(S2)) 2 4syn
srv \ 4syn

clt .
Again by Lemma 5.2 (iii) we know that unfold(�1) = !t1.M(S1). As �1 4syn

srv �2,
Definition 4.8 implies that unfold(�2) = !t

2

.�0
2 for some t

2

such that t
2

4
g

t
1

and
some �0

2 such that M(S1) 4syn
srv �0

2. Now letting S2 denote M�1(�0
2), another appli-

cation of Lemma 5.2 (iii) ensures that (10) above is satisfied. By the definition of S2

we also have the requirement M(S1) 4syn
srv M(S2).

It remains to show M(S1) 4syn
clt M(S2). But this follows from �1 4syn

clt �2, by part
(iii) of Definition 4.20.

The proof for the remaining cases is similar to the argument already shown, and left
to the reader.

Theorem 5.7. [Full abstraction]
For all session types, T1 4st T2 if and only if M(T1) vSC M(T2).

41

Proof. Thanks to the completeness theorem, Theorem 5.6, it is su�cient to prove that
T1 4st T2 implies M(T1) vSC

srv M(T2) and M(T1) vSC
clt M(T2). As an example we outline

the proof of the former. Because of Theorem 4.14 it is su�cient to show that the relation
R given by

R = { (�1,�2) | M�1(�1) 4st M�1(�2) }

is a syntactic sub–server relation, that is R✓ F4syn
srv

(R), where F4syn
srv

is given in Defi-
nition 4.8.
Suppose �1 R �2. The proof is a case analysis.

— If unfold(�1) = 1 we have nothing to prove because condition (i) of Definition 4.8
does not require anything.

— If unfold(�1) = ?t
1

.�0
1 we have to show that

unfold(�2) = ?t
2

.�0
2

with t
1

4
g

t
2

and �0
1 R �0

2. An application of part (iii) of Lemma 5.2 shows that
unfold(M�1(�1)) = ?[t

1

];M�1(�0
1). The fact that M�1(�1) 4st M�1(�2) let us

use Definition 2.10 to deduce that M�1(�2) = ?[t
2

];M�1(�0
2) for some t

2

such that
t
1

4
g

t
2

, and some M�1(�0
2) such that M�1(�0

1) 4st M�1(�0
2). From the last in-

equality and the definition of R it follows that �0
1 R �0

2. Since we have proven the
conditions on the input actions t

1

, t
2

and on the continuations �0
1,�

0
2 we have left

only to show that the structure of unfold(�2) is the required one; this follows from
another application of part (iii) of Lemma 5.2.

The other cases are analogous and left to the reader.

Corollary 5.8. The relation vSC is decidable.

Proof. To begin with, note that M is defined by structural induction, so it is decidable.
The corollary then follows from Corollary 2 of (Gay & Hole 2005), which ensures that the
relation 4st is decidable, and our Theorem 5.7, whereby we can prove the isomorphism
4st

⇠= vSC .

5.1. Examples and applications

In this subsection we give a series of examples in order to discuss the results we obtained.
The first two example are of theoretical nature, whereas the last one shows an application.

Example 5.9. [Type simulations and the weak simulation relation]
At this stage, a natural question arises, which concerns the relationship between type
simulations and weak simulations (Milner 1999). Assume the standard definition of the
weak simulation (Milner 1999); we use the symbol . to denote the greatest weak simu-
lation relation.
We begin by showing that, even though two session types are in a co-inductive types

simulation, their images through M need not be in a weak simulation. Consider the
relation

R = {(�h l
1

: end, l
2

: end i, (�h l
1

: end i), (end, end)}

42

The standard co-inductive proof technique let one prove that the relation R is a type
simulation. On the other hand, the definition of M implies that

M(�h l
1

: end, l
2

: end i) =!l
1

.1� !l
2

.1

M(�h l
1

: end i) =!l
1

.1

Then M(�h l
1

: end, l
2

: end i) 6. M(�h l
1

: end i) because !l
1

.1� !l
2

.1
⌧�! l

2�!, while

!l
1

.1 6 l2�!⇤. We have proven that S1 4st S2 does not imply M(S1) . M(S2).
Looking at the foregoing argument, one might be tempted to reason that if S1 4st S2

then M(S2) . M(S1). We prove that this is not the case. We can prove that

?l
1

.1vSC ?l
2

.1+?l
1

.1

An application of M�1 gives us:

M�1(?l
1

.1) = &h l
1

: end i
M�1(?l

2

.1+?l
1

.1) = &h l
1

: end, l
2

: end i

A look at the definition of 4st, Definition 2.10, lets one prove that for every type simu-
lation R

(&h l
1

: end, l
2

: end i, &h l
1

: end i) 62 R

and, therefore,

&h l
1

: end, l
2

: end i 64st &h l
1

: end i

Example 5.10. [e-vote, revisited]
In this example we use Theorem 5.7 in conjunction with Theorem 2 of (Gay & Hole
2005), in order to show how the set based pre-order vSC can be used to guarantee that
a process Pa can be safely replaced by a suitable process Pb.
Consider two contracts BallotA and BallotB such that BallotA vSC BallotB. Let

BallotA = M�1(BallotA) and BallotB = M�1(BallotB). From Theorem 5.7 it follows
that

BallotA 4st BallotB (11)

Let ?c denote the coinductive duality relation defined as in Definition 9 of (Gay & Hole
2005). Suppose now that BltSrvA(x+), BltSrvB(x+) and Voter(x�) are pi calculus
processes (as in (Gay & Hole 2005)) such that

{x+ : BallotA} ` BltSrvA(x+),
{x+ : BallotB} ` BltSrvB(x+),

{x� : V oter} ` Voter(x�)

for some session type V oter such that V oter?c BallotA. By means of the typing rules

43

of (Gay & Hole 2005), it is possible to derive

...
{x+ : BallotA} ` BltSrvA(x+)

...
{x� : V oter} ` Voter(x�)

{x+ : BallotA}, x� : V oter ` BltSrvA(x+) | Voter(x�)
[T-Par]

` (⌫x : BallotA) BltSrvA(x+) | Voter(x�)
[T-NewS]

Then (11) above and Theorem 2 of (Gay & Hole 2005) can be used to guarantee that if
process BltSrvB(x+) is used in place of process BltSrvA(x+), then no communication
error will happen along the channel x.
One can use non-recursive versions of the contracts seen in Examples 3.14 and 4.5 to

obtain contracts that satisfy the assumptions above:

BallotA = ?Login.(!Wrong.1� !Ok.(?VoteA.1+?VoteB.1))
BallotB = ?Login.(!Wrong.1�

!Ok.(?VoteA.1+?VoteB.1+?VoteC.1+?VoteD.1))

V oter = M�1(!Login.(?Wrong.1+?Ok.(!VoteA.1� !VoteB.1)))

Example 5.11. [Protocol conformance]
As already remarked, the language for contracts is a sublanguage of ccs without ⌧ ’s
(Nicola & Hennessy 1987), and consequently contracts are suitable for specifying com-
munication protocols.
Assume a protocol Pr to be specified by a contract �, and let Q be a process (in the

sense of (Gay & Hole 2005)), which is well-typed under the environment �. Assume also
that �(x) = S for some channel x.
We want to answer the following question:

(Q) “Does the session type S conform to the protocol specification �?”

Clearly, as long as the notion of conformance is not mathematically defined, it is not
possible to give an answer (at least not a meaningful one).
In light of Theorem 5.7, we propose the following definition of conformance. Assume

the standard definition of weak bisimilarity equivalence (Milner 1999); we denote this
relation ⇡. We say that a session type S conforms to a protocol specification � if and
only if M(S) ⇡ �.
To answer the question (Q) now one has only to prove that M(S) ⇡ � or to show a

counter example to this statement.
For example, if we had given a specification of the protocol POP3 (Rose 1988) with

a contract �, then we would have been able to check whether the session type pop3 of
(Gay et al. 2003) conforms to �.
In order for the notion of conformance we have given to be of any practical consequence,

one last thing has to be ascertained. We have to prove that weak bisimilarity equivalence,
when restricted to session contracts, is decidable. We leave this as an open problem worth
further investigation.

44

Behavioural Co-inductive

vsrv = 4srv

vSC
srv = 4syn

srv

vSC
clt = 4syn

clt

vSC ⇠
=

4st

Figure 10. Our behavioural pre-orders for contracts, the relations characterising them,
and the isomorphism with sub-typing.

6. Conclusions

6.1. Summary

In this paper we have used contracts (Padovani 2010) to give a fully abstract model for
first-order session types ordered by their sub-typing relation (Gay & Hole 2005).

In view of the interpretation M, we have shown that the “natural” server refinement
on contract (Definition 3.25) is not a complete model for the sub-typing, as it does not
allow the refinement a v a + b. Example 4.18 shows that also the “natural” client pre-
order on contracts has the same issue. This has lead us to the identification of a subset
of contracts which we call session contracts. We have then shown that the “natural”
server and client refinements on session contracts are unsound models of the sub-typing
(Example 5.3). This result explains why to obtain a fully-abstract model, it is necessary
to introduce yet another pre-order, that is the intersection of the server and the client
pre-orders on session contracts (Definition 5.4).

We believe that our work

— provides the first fully abstract model of session types in terms of contracts;

— shows the first alternative characterisation of the server and the client pre-orders on
session contracts;

— contains the first published proof that shows the equality between the must pre-order
and a refinement for servers based on the compliance relation; moreover, it shows
that the equality holds regardless of the ./ relation used to let contracts interact.

The table in Figure 10 sketches our knowledge on the refinements that we have inves-
tigated. By means of examples we have shown that the relations in di↵erent rows are
di↵erent.

If we bear in mind the the debate on the “right” notion of compliance for contracts,
Section 3.3 and Corollary 3.51 are worthy of comment. The result states that as long
as we are concerned with refinements for the servers, it does not matter whether we
pick as definition of compliance Definition 3.17 or Definition 3.40, because the resulting
refinements are the same. This means also that the must pre-order on contracts does not
provide a complete model for the sub-typing.

45

6.2. Related work

Roughly speaking, the refinements for contracts that have been proposed thus far in the
literature can be related either to the must testing (Nicola & Hennessy 1984), or to the
fair testing (Rensink & Vogler 2007). According to this criterion, we divide this section
in two parts; first we compare the refinements we have investigated with the pre-orders
used in the papers that have influenced us most, namely (Barbanera & de’Liguoro 2010,
Laneve & Padovani 2007, 2008, Padovani 2010). The theories presented in these papers
are related the must pre-order; thus we will refer to them as must-theories. Afterwards,
we compare our work with two theories inspired by the fair testing, which are given in
(Bravetti & Zavattaro 2009, Padovani 2011). We refer to those theories as fair-theories.
As we will see, the must-theories bear some similarities with our results; whereas the
fair-theories turns out to provide refinements that are di↵erent from the ones we have
studied.
From now on we reason under the assumption that in our definition of compliance the

synchronisation relation ./i is used.

6.2.1. Must-theories The comparison with (Laneve & Padovani 2007, 2008) is compli-
cated by the fact that in these papers compliance judgements take the form i1[⇢] a i2[�]
where i1, i2 are finite sets of actions representing in some sense the interfaces of the pro-
cesses guaranteeing the contracts; moreover, for a contract i[�] to be valid its interface i

has to contain all the action names (including X) that appear in the behaviour �. Let
us refer to the pairs i[�] as constrained contracts.
In (Laneve & Padovani 2007) a theorem is proven, which resembles our Corollary 3.51:

Theorem 2 Let i = names(⌧). i[�] �lp07 i[⌧] if and only if � vmust ⌧ .

This theorem is weaker than Corollary 3.51. First of all, as constrained contracts are pairs
(ie. a set of actions and a behaviour), the server refinement �lp07 (Laneve & Padovani
2007, see Definition 2) cannot be directly compared with the must pre-order; formally

�lp07 6✓ vmust, vmust 6✓ �lp07 (12)

One may argue that this has no significance, as it is still easy to prove that

if �1 vmust �2 then names(�2)[�1] �lp07 names(�2)[�2]

The converse implication, though, relies heavily on the interfaces of the constrained
contracts at hand, and in general is not true:

i[�] �07 i’[�0] does not imply that � vmust �0 (13)

For instance, we can prove the following

;[nil] �lp07 { !a }[!a.nil]
nil 6vmust !a.nil

It follows that in the sense shown above the pre-order �lp07 is coarser than the must
pre-order.
Since the relation �lp07 cannot be compared directly with vmust (12), and is somehow

coarser than vmust (13), to the best of our knowledge, our Corollary 3.51 is the first

46

published proof of the equality between a first-order compliance-based refinement and a
testing based must-preorder.
Also there is a di↵erence between our compliance relation and the compliance of (Lan-

eve & Padovani 2007). The compliance used in (Laneve & Padovani 2007), which we
denote alp07 is related to our compliance in the sense that

Proposition. If i[⇢] alp07 j[�] for some i, j then ⇢ a �

The converse of the proposition is not true; we explain why. We have ?a.X.nil a!a.X.nil,
while X2names(!a.X.nil) thus ?a.X.nil 6alp07!a.X.nil, because Definition 1 of (Laneve
& Padovani 2007) requires that X be not among the names of the contract on the right
hand side of the compliance.
Now we compare our work with (Laneve & Padovani 2008); we denote alp08 the com-

pliance relation given by (Laneve & Padovani 2008, Definition 1), and �lp08 the pre-order
given there in Definition 2.
Our compliance relation and alp08 are related in a way analogous to what we have seen

for a07.

Proposition. If i[⇢] alp08 j[�] for some i, j then ⇢ a �

The converse is not true, ?a.X.nil+?b.X.nil a!a.X.nil, and from {a, b} 6✓ {a} it follows

{a, b, X}[?a.X.nil+?b.X.nil] 6a lp08{a, X}[!a.X.nil].

We can prove that the relation �lp08 extends �07 to the terms that contain X; for
instance we can prove that

{X}[X.nil] �lp08 ;[nil]
{X}[X.nil] �lp08 {`, X}[`.X.nil]

(Laneve & Padovani 2008) presents the first comparison between session types and
contracts; in particular, it is shown that the subcontract relation �lp08 together with two
interpretations similar to M provide two sound models for the subtyping on a subset
of our session types. These interpretations are denoted J�K1 and J�Knil. Their proposed
full abstraction result, (Laneve & Padovani 2008, see Theorem 2), though, appears not
to be true. According to that definition and the interpretation J�Knil

;[nil] �lp08 {`}[`.nil]

Their Theorem 2 therefore implies &h ` : end i 4st end, which is not true. On the
other hand if J�K1 is used then there are two issues. According to Theorem 2 the pair
(end,&h ` : end i) is interpreted as (;[X.nil], {`}[`.X.nil]). Then

(a) neither ;[X.nil] nor {`}[`.X.nil] are constrained contracts, because their interfaces
do not contain all the action names which appear in the respective behaviours; more-
over

(b) even if the interpretation was correct, Theorem 2 would be false because

{X}[X.nil] �lp08 {`, X}[`.X.nil]

while, as stated above, &h ` : end i 4st end is not true.

47

Our study of the restricted pre-orders on session contracts (Definition 4.3 and Def-
inition 4.16) is clearly inspired by (Barbanera & de’Liguoro 2010). In (Barbanera &
de’Liguoro 2010) the language for session types is the same one as we used, whereas the
subset of contracts in which session types are embedded is the set of session behaviours.
The set of session behaviours is bigger than the set of session contracts because of the
lack of distinction between labels and base types. It is possible to write session behaviours
as

?Int.1+?l
1

.1

which are image of no session type according to the given interpretation J�K. Note,
though, that J�K = M, so the range of J�K is the set of session contracts, and our
Theorem 5.7 proves that J�K and their pre-order �: (Barbanera & de’Liguoro 2010,
Definition 3.4) provides a complete model for the sub-typing. The completeness of �:
was only conjectured in (Barbanera & de’Liguoro 2010).
Their approach is complementary to ours, in that they provide a co-inductive character-

isation of the pre-order �:, which turns out to equal the intersection of their sub-server
and sub-client pre-orders. In contrast, we have studied the (restricted) server and the
client pre-orders independently, providing their co-inductive characterisations; we have
then (1) explained why it is necessary to use the intersection of the two pre-orders to
obtain a fully-abstract model; and (2) proven that the intersection of these pre-orders is
a sound and complete model of the sub-typing.
The comparison with (Padovani 2010) is straightforward. Our definition of compliance

and the definition in that paper (Definition 2.1) are di↵erent; nevertheless, we can prove
that the resulting relations coincide (as long as we instantiate ./ to the relation ./i).
As a consequence, also our server pre-order v./i

srv coincides with the strong subcontract
relation (Padovani 2010, see Definition 2.2).

6.2.2. Fair-theories In (Bravetti & Zavattaro 2009, Padovani 2011) the notion of cor-
rectness requires all the components of a composition to be successful (ie. be able of
performing X) at the same time in order for the whole composition to be successful.
This requirement implies that the compositions which contain terms as

nil, µx. a.x

cannot be correct, because the contracts above do not perform X at all. This phenomenon
renders the viability of contracts (Padovani 2011, Definition 3.1) a non trivial matter; on
the contrary, in our theory every contract is viable wrt. must and a.
The pre-orders on session contracts and session types that we have studied allow the

refinement

a � b v a (14)

For instance we can prove the following facts

µx. (!espresso.x� !moka.1) vSC µx. !espresso.x
µX. � h livelock : X, stop : end i 4st µX. � h livelock : X i

In (Padovani 2011) it is pointed out that the refinements shown above are not sound

48

with respect to the fair-testing (Rensink & Vogler 2007); this will let us prove that the
refinements proposed in (Bravetti & Zavattaro 2009, Padovani 2011) are not contained
in our relations vsrv and vSC .

Now we give the detailed comparisons with the mentioned papers. The language used
in (Padovani 2011) is similar to our session contracts, the di↵erences being that actions
are decorated with a role tag p, q, . . . ; and there is a special session type fail. Also,
sessions are multiparty, that is they are general compositions of session types (tagged
with a role), for instance

p1 : T1 k p2 : T1 k . . . k pk : Tk

The notion of correct session type composition is given in (Padovani 2011, Definition 2.1),
and it is used to define a set-theoretical sub-typing relation on session types (Padovani
2011, Definition 2.2), which is denoted . We can prove

µx. (p!livelock.x � p!stop.1) 6 µx. p!livelock.x

because the term µx. p!livelock.x cannot reach a successful state at all. This means
that (14) is not sound for .

Also the following facts are true:

µx. p!livelock.x µx. p!stop.x
µx. p!livelock.x 6vSC µx. p!stop.x

The first fact is true because no composition containing the session type µx. p!livelock.x
can be correct, as this term does not perform X at all; whereas the second fact follows
from the definition of M and Definition 2.10. It thus follows that

 6✓ vSC , vSC 6✓

Similar to (Padovani 2011), in (Bravetti & Zavattaro 2009) general compositions of
contracts are allowed

[C1] k [C2] k . . . k [Cn]

and for a composition to be successful all its components have to be successful (ie. be
able of performing X) at the same time.

As for the contract language, the main di↵erence with our framework is that the theory
of (Bravetti & Zavattaro 2009) involves output persistent contracts (Bravetti & Zavattaro
2009, see Definition 4); for instance the term !a.1+ b.1 is a contract in our theory, that
is ruled out in (Bravetti & Zavattaro 2009), as it is not output persistent.

Definition 12 of that paper introduces the subcontract relations �O on output per-
sistent contracts, where the parameter O is a the set of output actions that the compo-
sitions used as tests can show. The comparison between our server pre-orders and the
pre-orders �O is complicated by two aspects,

— if C 0 �O C then it is safe to use C 0 in place of C; in view of this, we will compare
our pre-orders with the inverse of the pre-orders �O;

— a priori, it is not clear how to choose the parameter O. To solve this complication we
treat �O as a function of O, and briefly discuss its monotonicity.

49

The function �O is not monotonically increasing, as ; ✓ {a}, while

a.nil �; a.1

a.nil 6�{a} a.1

On the other hand �O is monotonically decreasing in O.

Proposition. If O ✓ O0 then �O0 ✓ �O.

This proposition gives us two criteria to reason on all the pre-orders �O:

— for every O the pairs in �N are in �O, where N = { a | a 2 Act };
— for every O the pairs not in �; are not in �O.

As for the restriction on output persistent contracts, in the oncoming discussion we will
use only contracts that enjoy that property; thus our arguments are sound.
We have the following facts

1+ a.1 vsrv a.1

1+ a.1 6��1
; a.1

where the test used to prove the second fact is 1. Also the ensuing facts are true,

a.nil ��1
N nil

a.nil 6vsrv nil

The first fact holds because no system containing a.nil can be correct. The test that we
use to prove the second fact is a.1. Thus far we have proven

vsrv 6✓ �;, �N 6✓ vsrv

Similarly to what done for the relation of (Padovani 2011), we can prove also that

µx. (⌧.!livelock.x+ ⌧.!stop.1) 6��1
; µx. !livelock.x

Thus our relation vSC is coarser than �;. As �N relates also terms more general than
session contracts, we have the following facts

vSC 6✓ �;, �N 6✓ vSC

6.3. Future work

Models for session types and sub-typing Session types haven been originally used
to type dialects of the pi-calculus (Honda et al. 1998). Recently session types have been
proposed also to type other formalisms, for instance orchestration charts (Fantechi &
Najm 2008). In that paper session types have behaviours described by typecharts, which
are essentially LTS’s (see Section 4.1 there), and the sub-typing �, is defined in the
following simulation-like manner:

T1 � T2 if and only if the following conditions are true,

— if T2
?m�! T 0

2 implies that there exists a T 0
1 such that T1

?m�! T 0
1 and T 0

1 � T 0
2

— if T1
!m�! T 0

1 implies that there exists a T 0
2 such that T2

!m�! T 0
2 and T 0

1 � T 0
2

50

In view of Example 5.9 it should be clear that the relation vSC does not model �. We
leave as an open problem the use of vSC to model the inverse of �; the complication
being that the definition above does not account for the ⌧ actions.

Higher-order language The restriction to first-order session types is a severe limita-
tion on our results, and we intend to extend them to the full language of session types
in (Gay & Hole 2005). To this end it will be necessary to use a higher-order version of
the language that we have used in the paper; that fact that we have used the parameter
./ to express the notion of co-action will be of some help here.

Refinements for clients By and large, the results in the literature on contracts for web-
services pertain to refinements for either the server side of binary connections, or peers
of multi-party connections. To the best of our knowledge, the first paper that avails of a
refinement for clients is (Barbanera & de’Liguoro 2010). Assuming the obvious definition
of the refinements for the clients due to the must testing and to the compliance relation,
denoted respectively vclt

must and vclt, we can show that in our framework these pre-orders
di↵er from the respective refinement for servers,

vclt
must 6✓ vmust 6✓ vclt

must

vclt 6✓ vsrv 6✓ vclt

These facts call for an investigation of the client refinements vclt
must and vclt, which we

leave for future work.

Decidability refinements In Corollary 5.8 have briefly discussed the decidability of
the session pre-order. We leave as open problem the investigation of the decidability of
the other refinements we have discussed.

Acknowledgements The authors wish to acknowledge the anonymous reviewers for
the criticisms and the suggestions on the previous drafts of this paper.

References

Alonso, G., Casati, F., Kuno, H. A. & Machiraju, V. (2004), Web Services - Concepts,

Architectures and Applications, Data-Centric Systems and Applications, Springer.
Barbanera, F. & de’Liguoro, U. (2010), Two notions of sub-behaviour for session-based
client/server systems, in T. Kutsia, W. Schreiner & M. Fernández, eds, ‘PPDP’, ACM,
pp. 155–164.

Bernardi, G., Bugliesi, M., Macedonio, D. & Rossi, S. (2008), A theory of adaptable
contract-based service composition, in V. Negru, T. Jebelean, D. Petcu & D. Zaharie,
eds, ‘SYNASC’, IEEE Computer Society, pp. 327–334.

Bernardo, M., Padovani, L. & Zavattaro, G., eds (2009), Formal Methods for Web Ser-

vices, 9th International School on Formal Methods for the Design of Computer, Com-

munication, and Software Systems, SFM 2009, Bertinoro, Italy, June 1-6, 2009, Ad-

vanced Lectures, Vol. 5569 of Lecture Notes in Computer Science, Springer.

51

Bravetti, M. & Zavattaro, G. (2009), Contract-based discovery and composition of web
services, in Bernardo et al. (2009), pp. 261–295.

Caires, L. & Pfenning, F. (2010), Session types as intuitionistic linear propositions, in
P. Gastin & F. Laroussinie, eds, ‘CONCUR’, Vol. 6269 of Lecture Notes in Computer

Science, Springer, pp. 222–236.

Carpineti, S., Castagna, G., Laneve, C. & Padovani, L. (2006), A formal account of
contracts for web services, in M. Bravetti, M. Núñez & G. Zavattaro, eds, ‘WS-FM’,
Vol. 4184 of Lecture Notes in Computer Science, Springer, pp. 148–162.

Castagna, G., Gesbert, N. & Padovani, L. (2009), ‘A theory of contracts for web services’,
ACM Trans. Program. Lang. Syst. 31(5), 1–61. Supersedes the article in POPL ’08.

Eshuis, R. & Fokkinga, M. M. (2002), ‘Comparing refinements for failure and bisimulation
semantics’, Fundam. Inform. 52(4), 297–321.

Fantechi, A. & Najm, E. (2008), Session types for orchestration charts, in D. Lea &
G. Zavattaro, eds, ‘COORDINATION’, Vol. 5052 of Lecture Notes in Computer Sci-

ence, Springer, pp. 117–134.

Gay, S. J. & Hole, M. (2005), ‘Subtyping for session types in the pi calculus’, Acta Inf.

42(2-3), 191–225.

Gay, S., Vasconcelos, V. & Ravara, A. (2003), Session types for inter-process communi-
cation, Technical Report TR-2003-133, Department of Computing Science, University
of Glasgow.

Honda, K., Vasconcelos, V. T. & Kubo, M. (1998), Language primitives and type dis-
cipline for structured communication-based programming, in C. Hankin, ed., ‘ESOP’,
Vol. 1381 of Lecture Notes in Computer Science, Springer, pp. 122–138.

Laneve, C. & Padovani, L. (2007), The must preorder revisited, in ‘Proceedings of the
18th international conference on Concurrency Theory’, Springer-Verlag, Berlin, Hei-
delberg, pp. 212–225.

Laneve, C. & Padovani, L. (2008), The pairing of contracts and session types, in

P. Degano, R. D. Nicola & J. Meseguer, eds, ‘Concurrency, Graphs and Models’, Vol.
5065 of Lecture Notes in Computer Science, Springer, pp. 681–700.

McNeile, A. (2010), A framework for the semantics of behavioral contracts, in ‘Proceed-
ings of the Second International Workshop on Behaviour Modelling: Foundation and
Applications’, BM-FA ’10, ACM, New York, NY, USA, pp. 3:1–3:5.

Meyer, B. (1997), Object-Oriented Software Construction, 2nd Edition, Prentice-Hall.

Milner, R. (1999), Communicating and mobile systems - the Pi-calculus, Cambridge Uni-
versity Press.

Nicola, R. D. & Hennessy, M. (1984), ‘Testing equivalences for processes’, Theoretical
Computer Science 34, 83–133.

Nicola, R. D. & Hennessy, M. (1987), ccs without ⌧ ’s, in ‘TAPSOFT, Vol.1’, Vol. 249
of Lecture Notes in Computer Science, Springer, pp. 138–152.

oasis Standard (2011), ‘Universal Description, Discovery, and Integration’.
URL: http://uddi.xml.org/

Padovani, L. (2010), ‘Contract-based discovery of web services modulo simple orchestra-
tors’, Theor. Comput. Sci. 411(37), 3328–3347.

52

Padovani, L. (2011), Fair Subtyping for Multi-Party Session Types, in ‘Proceedings of the
13th Conference on Coordination Models and Languages’, Vol. LNCS 6721, Springer,
pp. 127–141.

Pierce, B. C. & Sangiorgi, D. (1996), ‘Typing and subtyping for mobile processes’, Math-

ematical Structures in Computer Science 6(5), 409–453.
Rensink, A. & Vogler, W. (2007), ‘Fair testing’, Information and Computation

205(2), 125–198.
Rose, M. (1988), ‘Post O�ce Protocol: Version 3’, RFC 1081. Obsoleted by RFC 1225.

53

	Introduction
	Session types
	Sub-typing

	Contracts
	The contract language
	The server pre-order
	Must testing

	Session Contracts
	Session contracts
	The restricted server pre-order
	The restricted client pre-order

	Modelling session types
	Examples and applications

	Conclusions
	Summary
	Related work
	Future work

