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Abstract

We present a practical first-order theory of a higher-order ⇡-calculus which is both
sound and complete with respect to a standard semantic equivalence. The theory is
a product of combining and simplifying two of the most prominent theories for HO⇡
of Sangiorgi et al. and Je↵rey and Rathke [10, 21], and a novel approach to scope
extrusion. In this way we obtain an elementary labelled transition system where the
standard theory of first-order weak bisimulation and its corresponding propositional
Hennessy-Milner logic can be applied.

The usefulness of our theory is demonstrated by straightforward proofs of equiva-
lences between compact but intricate higher-order processes using witness first-order
bisimulations, and proofs of inequivalence using the propositional Hennessy-Milner
logic. Finally we show that contextual equivalence in a higher-order setting is a con-
servative extension of the first-order ⇡-calculus.
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c?(X,Y).⌫t.
�

c!h(app X � appY) | app Xi.0 � c!ht!.app Yi.0 � | ⇤( t?.(app X � appY) )
⇡ c?(X,Y).⌫t.

�
c!h(app X � appY) | app Yi.0 � c!ht!.app Xi.0 � | ⇤( t?.(app X � appY) )

(†)

c?(X,Y).⌫t.
�

c!h(app X | appY) � app Xi.0 � c!ht!.app Yi.0 � | ⇤( t?.(app X | appY) )
6⇡ c?(X,Y).⌫t.

�
c!h(app X | appY) � app Yi.0 � c!ht!.app Xi.0 � | ⇤( t?.(app X | appY) )

(‡)

Figure 1: An Equivalence and an inequivalence in higher-order concurrency

1. Introduction

Developing e↵ective reasoning techniques for programming languages with higher-
order constructs is a challenging problem, made even more challenging by the presence
of concurrency, mobility, and distribution. The di�culties involved are exemplified by
the search for reasonable proof techniques for establishing behavioural equivalences
between processes written in higher-order versions of the ⇡-calculus [10, 15, 17–23] in
which, besides first-order values, processes can be communicated.

To illustrate the challenges of reasoning in higher-order concurrent languages let us
consider the pairs of higher-order processes shown in Figure 1, where � is an internal
choice operator and app causes the execution of a suspended process. The di↵erences
within each pair of processes is highlighted. All processes initially receive two sus-
pended processes X and Y on channel c and dynamically create a local channel t. Then
each one combines X and Y in a slightly di↵erent way into two possible replies on chan-
nel c, chosen non-deterministically. After a reply is sent, all that is left of the processes
is the same replication (denoted by the ⇤-operator) guarded by the private channel t.
Up to this point the behaviour of the processes is indistinguishable by a potential inter-
rogator. But from this point on the interrogator may use the values previously emitted
from the processes to make further observations.

Let us consider the first process first. It non-deterministically chooses between re-
plying to its interrogator with either (1) the suspended process (app X � appY) | app X,
or (2) the process t!.appY . When the interrogator runs the former, either two copies
of X, or X in parallel with Y , are executed. When it runs the latter, Y is executed after
triggering the replication, which in turn executes X or Y . Hence, when the interrogator
runs the second of the possible responses of the first process, two copies of Y , or X in
parallel with Y , are run. The second process in Figure 1 exhibits the same observable
behaviour. The (unobservable) di↵erence with the first process is that it sends the sus-
pended “two copies of Y or X in parallel with Y” directly to the observer and uses the
trigger to encode the “two copies of Y or X in parallel with Y” process.

The third process of Figure 1 also chooses between two replies to the interrogator.
The first is (app X | appY) � app X which, when run, it will select between running X
in parallel with Y , or just X. The second will run two copies of Y in parallel with X,
using the trigger channel. The asymmetry with the final process of Figure 1 is clear:
this chooses between replying to the interrogator with (app X | appY) � appY (X in
parallel with Y , or just Y) or a suspended process that when run will execute two copies
of X in parallel with Y .

The aim of the current paper is to design an elementary bisimulation theory for
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higher-order concurrency which, besides being fully-abstract with respect to a seman-
tic equivalence, supports a practical and e↵ective reasoning technique that can be used
to prove subtle equivalences and inequivalences such as those in Figure 1. We will
formally prove that our intuitive explanation of what an interrogator can observe about
those processes is in fact correct. There is no strategy of the interrogator (possibly
replicating the processes in the figure and combining their outputs into more com-
plex processes) that can distinguish the first pair of processes, and there is no way of
matching the the non-deterministic choices that can deem the second pair of processes
equivalent.

Our methodology combines and simplifies ideas carefully selected from the liter-
ature [10, 21] and employs a novel treatment of names and extrusion. This results to
a purely first-order theory of bisimulation in which actions take a particularly simple
form, and in which the examples in Figure 1 can be handled in a straightforward man-
ner. In this paper we study a process-passing ⇡-calculus (pp-⇡) and bisimulation since
this is a simple setting to develop our technique. However, this technique scales to
other behavioural theories and languages; for instance we have recently applied this
technique to develop a may-testing theory for a higher-order concurrent language with
cryptographic primitives [12].

A number of di↵erent fully-abstract reasoning techniques have been developed for
HO⇡ including the translation of higher-order communication to triggers in the first-
order ⇡-calculus [18, 19] and its improvement in [10], and environmental bisimulations
[21].

Sangiorgi, Kobayashi, and Sumii [21], motivated by work on environmental bisim-
ulations for functional languages [13, 27, 28], use a standard LTS and annotate bisim-
ulations with an environment (relation) containing the knowledge currently known to
the interrogator; this allows the interrogating actions to be meaningfully based on the
interrogator’s current knowledge. Their method simplifies the metatheory (e.g. show-
ing that bisimilarity is a congruence), but leads to a definition for bisimulations with
many and arguably complex conditions. As an example, for higher-order inputs of re-
lated processes one has to consider all possible input values constructed by identical
contexts with related values in their holes. This strong proof obligation is sometimes
mitigated by the use of up-to context techniques.

Je↵rey and Rathke [10] use a more restrictive approach of formal triggers, informed
by Sangiorgi’s translation to triggers [19]. A higher-order output of a process is trans-
formed to a special trigger service holding the actual value and only a pointer for in-
voking the service is passed to the interrogator. Similarly, a higher-order input is fed
with a trigger with which the process can intuitively run the actual value—but actually
only an observable action is recorded in the LTS.

We believe that both methods have useful intuitions and that their combination has
greater value than the sum of its parts. Our theory incorporates and simplifies their
insights.

We use knowledge environments in the LTS, rather than on bisimulations, that
record the values exposed to the context, and test related processes with symbolic
higher-order inputs. We also take this one step further by including an explicit rep-
resentation of the information known only to the process. Thus configurations take
the form ⌫a h�, Pi which consists of the (higher-order) process P under interrogation,
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a representation � of the knowledge currently known to the interrogator about this
process, and the information a known to the process but currently unknown to the in-
terrogator.

This extension allows us to simplify considerably the actions on which our bisim-
ulations are based; in particular it eliminates the need for explicitly extruding new in-
formation and communication actions are labelled simply c!v and c?v thereby relieving
us of the need to manage the complications inherent in the use of extrusion. A signifi-
cant consequence is that bisimulation in our theory is characterised by a propositional
Hennessy-Milner Logic (HML) [8], which would not be possible with other LTS’s.

The main contributions of the paper can be summarised as follows:

(i) We define a first-order, fully-abstract, theory of standard weak bisimulation equiv-
alence for a higher-order ⇡-calculus, called pp-⇡, that unifies two distinct tech-
niques. The theory is compositional in the sense that the equivalence is preserved
by arbitrary process contexts.

(ii) The associated coinductive reasoning technique for pp-⇡ processes is e↵ective:
because the theory is first-order it is straightforward to demonstrate equivalences
between processes by exhibiting witness bisimulations. In support of this we
provide a series of compelling example process equivalences.

(iii) We give the first propositional HML characterisation of weak bisimulation for a
higher-order ⇡-calculus; this result easily transfers to the first-order ⇡-calculus.
We use this to give simple proofs of inequivalence between higher-order pro-
cesses, which is di�cult to achieve with existing theories.

(iv) We prove that contextual equivalence in a higher-order setting is a conservative
extension of the first-order ⇡-calculus, thus confirming that results and reasoning
methods from first-order ⇡-calculus transfer to a higher-order setting.

A direct consequence of our theory is that it brings the analysis of higher-order concur-
rent and distributed systems within the scope of existing first-order proof technologies.

The remainder of the paper is organised as follows: the next section defines the
language pp-⇡, giving the syntax, a reduction semantics and a simple type system for
ensuring that communicated values are appropriately typed. Section 3 details our first-
order LTS for pp-⇡, and Section 4 defines strong and weak bisimulations and a charac-
terisation of the latter in terms of a propositional Hennessy-Milner Logic. Section 5 is
devoted to proving several interesting equivalences by using weak bisimulations, and
an inequivalence by providing a discriminating HML formula. Sections 6 and 7 con-
tain the proofs of soundness and completeness of our theory with respect to contextual
equivalence that preserves only parallel contexts, and Section 8 proves that our the-
ory is fully abstract with respect to the full contextual equivalence. Section 9 proves
the conservativity theorem. The paper closes in Section 10 with conclusions and a
discussion of related work.
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t ::= Nm | Pr Type

x, y, z Variable

a, b, c, n Name

u, v 2 Variable [ Name Identifier

P,Q ::= 0 | u!hV:ti.P | u?(x:t).P | P | P | ⌫n. P Process

| appV | ⇤(P) | if u= u then P else P
U,V,W ::= u | �P Value

� ` V : t

� ` n : Nm
� ` P : OK
� ` �P : Pr

x : t 2 �
� ` x : t

� ` P : OK

� ` 0 : OK
� ` u : Nm � ` V : t � ` P : OK

� ` u!hV:ti.P : OK
� ` u : Nm �, x : t ` P : OK

� ` u?(x:t).P : OK

� ` P : OK � ` Q : OK
� ` P | Q : OK

�, n : Nm ` P : OK
� ` ⌫n. P : OK

� ` V : Pr
� ` appV : OK

� ` P : OK
� ` ⇤(P) : OK

� ` u : Nm � ` v : Nm � ` P : OK � ` Q : OK
� ` if u= v then P elseQ : OK

Figure 2: Syntax and typing of pp-⇡

2. The Language

2.1. Syntax

We study the language pp-⇡ (process-passing-⇡), a higher-order version of the ⇡-
calculus, which allows processes to be communicated and is roughly equivalent to the
language studied in [20].

We assume a set of channel names Name, ranged over by a, b, . . . and a separate
set of variables Variable, ranged over by x, y, . . ., and use u, v, . . . to denote identifiers,
from (Variable [ Name).

The syntax of the language is given in Figure 2. The basic constructs in pp-⇡ are the
input and output of typed values along channels, u?(x:t).P and u!hV:ti.P. In the former
a value of type t is received on channel u and bound to the variable x in P, while in the
latter the value V of type t is output on channel u and the process continues with the
execution of the code P. In addition we have the standard constructs of the ⇡-calculus:
replication ⇤(P), parallel execution (P | Q), the generation of new names ⌫n. P, and the
testing of these names if u= v then P elseQ.

In the ⇡-calculus the only values which can be transmitted along channels are
names, but in pp-⇡ thunked or suspended processes, of the form �P, are also allowed;
when such a value is received by a process it can be executed, via the new construct
appV .

5



P! Q

Comm-Red

a!hV:ti.P | a?(x:t).Q! P | Q{V/x}

App-Red

app �P! P

Par-Red
P1 ! P2

P1 | Q! P2 | Q

Nu-Red
P1 ! P2

⌫a. P1 ! ⌫a. P2

Cong-Red
P01 ! P02

P1 ⌘ P01 P2 ⌘ P02
P1 ! P2

Cond-True-Red

if a= a then P elseQ! P

Cond-False-Red
a , b

if a= b then P elseQ! Q

Figure 3: Reduction semantics for pp-⇡

Typing:. We have a very-lightweight notion of type whose purpose is simply to ensure,
dynamically, that at any point in time when a value is received at a certain type it is
subsequently only used at that type. Values can be one of two types, Nm for names
and Pr for (suspended) processes. Type inference is with respect to type environments,
consisting of finite sets of variable-type associations x : t. Then the typing judgements
take the form

• � ` V : t, indicating that relative to � the value V has type t

• � ` P : OK, indicating that the process term P is well-typed relative to �.

The rules for inferring the judgements are also given in Figure 2.
Typing is dynamic: inputs and outputs communicate only when they agree on the

type of the communicated value. Therefore channels do not have a single static type.
At di↵erent points in time they may be used to communicate values of di↵erent type.
For example a client using the service of the following example at s will be expected
to follow an implicit protocol, whereby first a name is sent on s and then a process.

Example. Consider the following process, which describes a service at s:

⇤(s?(x:Nm).s?(y:Pr).⌫ f . ⌫r. x!h f i.x!hri.
⇤( f ?(z:Nm).z!hy:Pri.0) |
⇤(r?.app y))

It first receives as input a reply channel name, bound to x, and then a (suspended)
process bound to y. It generates two new names f and r which it returns on the reply
channel, and then sets up two new servers at those names. The first, at f , receives a
name and forwards the suspended process there; the second, at r, runs the suspended
process on request.

2.2. Reduction semantics

The reduction semantics is expressed as a relation

P! Q
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where P and Q are assumed to be well-typed processes, that is process terms satisfying
; ` P : OK and ; `Q : OK. The rules for inferring these judgements are given in Figure 3
and are relatively standard. The main rule is for communication,

a!hV:ti.P | a?(x:t).Q! P | Q{V/x}

Note that this communication along a can only happen if the partners agree on the
type of the value being transmitted. The other significant rule is for the initiation of a
suspended process,

app �P! P

The remaining rules are standard, borrowed from the ⇡-calculus; in particular reduc-
tions are relative to a structural equivalence P ⌘ Q which we now define.

Definition 2.1 (Structural equivalences). Limited structural equivalence (=̂) is defined
to be the least equivalence relation on processes satisfying the axioms

P = 0 | P P | Q = Q | P (P1 | P2) | P3 = P1 | (P2 | P3)

and closed under the two operators � | � and ⌫a.�.
Structural equivalence (⌘) is obtained by adding the further axioms

⌫a. ⌫b. P = ⌫b. ⌫a. P ⇤(P) = P | ⇤(P)
⌫a. 0 = 0 ⌫a. (P | Q) = (⌫a. P) | Q (a < fn(Q))

As we have already stated, structural equivalence (⌘) is used in the reduction se-
mantics, but the more restrictive limited equivalence (=̂) will be useful in proofs of
equivalence. Note that these structural equivalences are not full congruences. They
are only closed under evaluation contexts, that is under parallel and restriction, but not
under �� and c!h � i.P. This simplifies the extension of these relations to configura-
tions in Section 4 and the proofs that (=̂) and (⌘) are bisimulations (Propositions 4.3
and 4.11, respectively).

Lemma 2.2 (Substitution). If �, x : t ` P : OK and `V : t then � ` P{V/x} : OK.

Proof. By rule induction.

Lemma 2.3. If �, x : t ` P : OK and x < fn(P) then � ` P : OK.

Proof. By rule induction.

Lemma 2.4. If P ⌘ Q and � ` P : OK then � ` Q : OK.

Proof. By case analysis on Definition 2.1, using Lemma 2.3.

Proposition 2.5 (Preservation). If `P : OK and P! Q then `Q : OK.

Proof. By rule induction on P! Q, using Lemmas 2.2 and 2.4.
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2.3. A behavioural equivalence
We focus on reasoning about reduction-closed barbed congruence [10, 11, 18, 19,

22] of closed, well-typed processes, but in this section we content ourselves with a
simplified version of it. We write P R P0 when R is a binary relation on closed, well-
typed processes and (P, P0) 2 R.

We consider the basic observable of a process to be the ability to output on a given
channel, called a barb.

Definition 2.6 (Barbs). We write P #b if and only if there exist c,V, t, P1, P2, with b <
{c}, such that P ⌘ ⌫c. (b!hV:ti.P1 | P2).

We write P +b if and only if there exists Q such that P!⇤ Q and Q #b.

Definition 2.7 (Parallel Semantic Equivalence (�pcxt)). (�pcxt) is the largest relation on
closed processes that preserves barbs, is reduction closed, and is preserved by parallel
contexts; i.e. P �pcxt P0 if and only if

(i) Barb preserving: for all b, P +b i↵ P0 +b,

(ii) Reduction closed: for all P1 with P! P1 there exists P01 such that P0 !⇤ P01 and
P1 �pcxt P01, and vice-versa, and

(iii) Preserves parallel constructs: for all well-typed processes Q, P | Q �pcxt P0 | Q.

It is straightforward to show that �pcxt is an equivalence relation. On the other hand
to give a direct proof that two processes are related is very di�cult, especially in the
higher-order ⇡-calculus. In the following sections we define a labelled transition sys-
tem (LTS) and show that (�pcxt) coincides with weak bisimulation in the LTS. We also
demonstrate the usefulness of bisimulation as a proof technique of equivalence via sev-
eral examples. Finally we show that the equivalence remains unchanged if we extend
the third requirement (iii) to demand that the relation be preserved by all contexts.

3. The Labelled Transition System

The idea behind an LTS-based semantics for a process language is to describe the
interactions which an observer can have with processes; indeed semantic equivalences
such as bisimulation equivalence can be expressed in terms of games, and strategies for
such games, over these interactions [24].

We first give an informal account of the kinds of interactions we envision for pp-
⇡ and then consider their formalisation. For the standard (first-order) ⇡-calculus ob-
servers interact with processes via inputs and outputs on channels. But these interac-
tions are constrained by the knowledge which the observer has of the process being
interrogated. For example if an observer has no knowledge of channel b then it can not
distinguish between the two processes

a!.0 | b!.0 a!.0

as the only possible known source of interaction is the channel a.
In general the observer’s knowledge is accumulated by receiving values from the

process under interrogation. In pp-⇡ the observer also accumulates knowledge about
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higher-order values, and may use these to further interrogate the process. This further
interrogation can either take the form of transmitting these values along communication
channels, or executing them. For example consider the two processes

P def
= ⌫a. c!h�a!.0i.a?.0 Q def

= ⌫a. c!h�a!.0i.a?.c!.0

and an observer which only knows of the channel c. By inputting on c it gains knowl-
edge of the (suspended) process a!.0 although it does not gain any knowledge of the
existence of the private channel a. Nevertheless by running this suspended process a
di↵erence can be detected between P and Q; in one case output can be detected on
channel c after the execution of the suspended process.

However, even in the first-order case, it is necessary for the observer to indepen-
dently generate new values with which to interrogate the process. For example consider
a situation in which the observer is only aware of the channel name a. Then the only
way for the observer to distinguish between the two processes

a?(x).0 a?(x).if x= a then 0 else a!.0

is to generate an new channel name, say b, and send this as input along the known
channel a.

In pp-⇡ it is also necessary for the observer to generate new higher-order values
with which to interrogate the process, by sending them as inputs. However in our LTS
these new higher-order values are simply abstract constants, ranged over by ↵, taken
from a countable set AConstant. On receiving such an abstract higher-order value ↵ the
processes under interrogation has very little it can do with it; ↵ can only be transmitted
as a value along other channels. However, as we will see, our LTS will also allow
the process to apply ↵ in a trivial manner. To accommodate these abstract values we
need to extend the syntax in Figure 2 to allow them to be used as values. We let P
and V range over the extended syntax of abstract processes, AProcess, and abstract
values, AValue, respectively; acon(P) denotes the set of abstract constants occurring
in P. Furthermore we extend the typing rules to apply to abstract processes and values
by adding the following typing judgement for abstract constants:

� ` ↵ : Pr

In order to formalise these kinds of interactions our LTS needs to take into ac-
count both the process being interrogated and the current knowledge of the observer,
or context. As we have indicated this knowledge is accumulated via interactions with
the process, and consists either of (first-order) channel names or higher-order values.
To tabulate the latter we use a countable set of concrete constants CConstant, disjoint
from other kinds of constants, and ranged over by .

Definition 3.1 (Knowledge environments). A knowledge environment � is a finite set
of the kind

Name [ AConstant [ (CConstant!fin AValue)
with the property that it maps concrete constants to abstract values of type Pr:

�() = V implies `V : Pr
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We write �() = V for (,V) 2 �; we also write names(�), acon(�), and ccon(�)
for the name component, the abstract constant component, and the domain of the func-
tional component of �, respectively.

Our LTS will be defined between configurations of the form ⌫a h�, Pi, where a are
names the scope of which extends to P and the processes indexed in �, P is an abstract
process and � is a knowledge environment. Configurations are identified up to alpha-
equivalence, are ranged over by C, and are subject to the following well-formedness
constraints:

Definition 3.2 (Well-Formed Configuration). A well-formed configuration is any con-
figuration ⌫a h�, Pi with the properties:

(i) a are distinct bound names

(ii) {a} \ names(�) = ;
(iii) `P : OK and fn(P) ✓ {a} [ names(�) and acon(P) ✓ acon(�)
(iv) `V : Pr and fn(V) ✓ {a} [ names(�) and acon(V) ✓ acon(�) for everyV in the

codomain of �.

In a configuration ⌫a h�, Pi the environment � represents the knowledge of the
observer. The names a are those known to the process under investigation P, which are
not known to the observer, motivating condition (ii); note however that these private
names are shared between the process and the abstract values indexed in �, values sent
to the observer from the process. The remaining conditions guarantee that all processes
and values must be well-typed and only use names which are in a or are known to the
environment, and abstract constants in �. For the remainder of this paper we only
consider well-formed configurations. When C = ⌫a h�, Pi we will write names(C),
acon(C), and ccon(C) for names(�), acon(�), and ccon(�), respectively.

The judgements for the LTS take the form

⌫a h�, Pi ⌘�! ⌫b h�0, Qi

and the rules for generating them are given in Figure 4 and Figure 5. The label ⌘ can
take one of the following forms:

(i) Internal action, ⌧: these are the unobservable actions of the process (e.g. internal
communication) and weakly correspond to the semantics of Figure 3.

(ii) First-order input, c?n: input by the process along the channel c, known to the
observer, of the name n; n is picked by the observer and (due to well-formedness
conditions) it might already be recorded in the knowledge environment or is
freshly generated—in both cases n is recorded in the knowledge of the observer
after the transition.

(iii) Higher-order input, c?↵: input by the process of an abstract constant ↵, which is
always taken to be fresh.

(iv) First-order output, c!n: output by the process along the known channel c of the
name n. Here the name n may be private to the process or known to the observer.
In both cases, n is known to the observer after the transition.
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⌫a1 h�1, P1i
⌘�! ⌫a2 h�2, P2i

Name-In-Trans
c 2 names(�)

⌫a h�, c?(x:Nm).Pi c?n�! ⌫a h�[{n}, P{n/x}i

Proc-In-Trans
c 2 names(�)

⌫a h�, c?(x:Pr).Pi c?↵�! ⌫a h�]{↵}, P{↵/x}i
Name-Out-Trans

c 2 names(�) {b} = {a}\{n}

⌫a h�, c!hn:Nmi.Pi c!n�! ⌫b h�[{n}, Pi

Proc-Out-Trans
c 2 names(�)  < ccon(�)

⌫a h�, c!hV:Pri.Pi c!�! ⌫a h�[{ 7!V}, Pi
Comm-Name-Trans
h�]{a},P1i

c!n�! h�]{a},P2i
h�]{a},Q1i

c?n�! h�]{a},Q2i
⌫a h�, P1 | Q1i

⌧�! ⌫a h�, P2 | Q2i

Comm-Proc-Trans
h�]{a},P1i

c!�! h�]{a,  7!V},P2i
h�]{a},Q1i

c?↵�! h�]{a,↵},Q2i
⌫a h�, P1 | Q1i

⌧�! ⌫a h�, P2 | Q2{V/↵}i

Abs-App-Trans

⌫a h�, app↵i app↵�! ⌫a h�, 0i

Conc-App-Trans
�() = V

⌫a h�, Pi app �! ⌫a h�, P | appVi

Figure 4: The LTS: main rules (omitting symmetric rules)

(v) Higher-order output, c!: output by the process of some value along the channel
c. The concrete constant  is picked fresh and the actual value output by the
process is indexed by  in �.

(vi) Abstract value application, app↵: signals the execution by the process of the
abstract higher-order value ↵ supplied by the observer. The computational e↵ect
of this transition is e↵ectively a noop.

(vii) Concrete value application, app : the execution of the higher-order value asso-
ciated with  in the knowledge environment in parallel with the process. This
represents the e↵ect of the observer executing a value originally supplied by the
process.

An important aspect of our LTS is the handling of names and extrusion. A (sub-)
process with a top-level ⌫-binder can only take a ⌧-transition, which lifts the binder
to the level of the configuration (Nu-Trans). Since configurations are identified up
to renaming bound names, this is essentially an extrusion step. When such a bound
name is revealed to the observer via an output transition, the binder is removed and the
name is added in knowledge environment (Name-Out-Trans). In this way we greatly
simplify the labels of the transitions in our LTS, which allows us to give a propositional
characterisation of weak bisimilarity, as we will see in Section 4.3.

We require that communication with the observer occurs over known channels, and
that the observer never provides a private channel as an input. Hence, a transition

⌫a h�, Pi ⌘�! ⌫b h�0, Qi
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⌫a1 h�1, P1i
⌘�! ⌫a2 h�2, P2i

Cond-True-Trans
n1 = n2

⌫a h�, if n1 = n2 thenP elseQi
⌧�! ⌫a h�, Pi

Rec-Trans

⌫a h�, ⇤(P)i ⌧�! ⌫a h�, P | ⇤(P)i

Cond-False-Trans
n1 , n2

⌫a h�, if n1 = n2 thenP elseQi
⌧�! ⌫a h�, Qi

Nu-Trans
b < {a}

⌫a h�, ⌫b.Pi ⌧�! ⌫a, b h�, Pi

Par-L-Trans
h�1]{a},P1i

⌘�! ⌫b h�2]{a}, P2i
{c} = {a}\exp(⌘)

⌫a h�1, P1 | Qi
⌘�! ⌫b, c h�2[exp(⌘), P2 | Qi

App-Trans

⌫a h�, app �Pi ⌧�! ⌫a h�, Pi

Figure 5: The LTS: more rules (omitting symmetric rules)

happens only if
s(⌘) \ {a} = inp(⌘) \ {a} = ;

where s(�) and inp(�) return a singleton set containing, respectively, the subject of a
communication action, the object of an input action; in all other cases they return the
empty set.

Internal communication for first-order values is captured by Comm-Name-Trans,
and for higher-order values by Comm-Proc-Trans. Such communication can take place
over channels that are local to the process, hence the temporary addition of the local
channels in � in the premises. Note that in Comm-Proc-Trans, the concrete constant 
used to temporarily store the value being communicated is not included in the environ-
ment � in the conclusion.

In rule Par-L-Trans all the private names bound by the configuration are temporar-
ily added in � to avoid their alpha renaming without the corresponding renaming of
names in Q. The side condition ensures that names exported to the observer are prop-
erly added to the knowledge environment: exp(�) returns the object of an output action
and the empty set otherwise.

The LTS only increases the knowledge of the observer.

Proposition 3.3. Suppose ⌫a h�1, Pi
⌘�! ⌫b h�2, Qi; then �1 ✓ �2.

Proof. By straightforward rule induction on the transition relation.

For the rest of this subsection we analyse in considerable detail the structure of the
actions in the LTS. First we give an exhaustive analysis of the structure of configura-
tions which are produced by these actions.

Proposition 3.4. The following properties are true.

12



(i) If ⌫a h�1, Pi
c!n�! ⌫b h�2, Qi then for some P1 and P2

P =̂ c!hni.P1 | P2 Q =̂ P1 | P2 �2 = �1[{n} {b} = {a}\{n}

(ii) If ⌫a h�1, Pi
c!�! ⌫b h�2, Qi then for some P1, P2, andV

P =̂ c!hVi.P1 | P2 Q =̂ P1 | P2 �2 = �1]{ 7!V} {b} = {a}

(iii) If ⌫a h�1, Pi
c?n�! ⌫b h�2, Qi then for some P1 and P2

P =̂ c?(x:Nm).P1 | P2 Q =̂ P1{n/x} | P2 �2 = �1[{n} {b} = {a}

(iv) If ⌫a h�1, Pi
c?↵�! ⌫b h�2, Qi then for some P1 and P2

P =̂ c?(x:Pr).P1 | P2 Q =̂ P1{↵/x} | P2 �2 = �1]{↵} {b} = {a}

(v) If ⌫a h�1, Pi
app↵�! ⌫b h�2, Qi then for some P1

P =̂ app↵ | P1 Q =̂ P1 �2 = �1 {b} = {a}

(vi) If ⌫a h�1, Pi
app �! ⌫b h�2, Qi then for someV = �1()

Q =̂ appV | P �2 = �1 {b} = {a}

(vii) If ⌫a h�1, Pi
⌧�! ⌫b h�2, Qi then �2 = �1 and {a} ✓ {b}.

Proof. All properties are shown by rule induction on the transition relation.

From the above analysis we conclude that app↵ transitions can be delayed arbi-
trarily.

Corollary 3.5 (Delay app↵). Let C1
app↵�! ⌘�! C2. Then also C1

⌘�!app↵�! C2.

In a configuration ⌫a h�, Pi there are two sources of knowledge, the environment’s
knowledge in � and the internal knowledge of the process in a. The next result shows
that changes to this knowledge has no e↵ect on many actions.

Proposition 3.6.

(i) Knowledge extension: If ⌫a h�1, Pi
⌘�! ⌫b h�2, Qi and ⌫a, c h�0]�1, Pi is well-

formed, and names(⌘)\names(�0) = acon(⌘)\acon(�0) = ccon(⌘)\ccon(�0) =
; then

⌫a, c h�0 ] �1, Pi
⌘�! ⌫b, c h�0 ] �2, Qi

13



(ii) Knowledge restriction: If ⌫a, c h�0 ] �1, Pi
⌘�! ⌫b h�, Qi and ⌫a h�1, Pi is

well-formed and ⌘ , app , for any  2 �0, then there exist �2 and b0 such that
� = �0 [ �2, {b0} = {b}\{c}, and

⌫a h�1, Pi
⌘�! ⌫b0 h�2, Qi

Proof. In both cases we use rule induction on the transition relation.

Information in ⌫a h�, Pi can also be shifted between the observers knowledge �
and the processes knowledge a without a↵ecting actions, provided of course that infor-
mation is not used in the actions.

Proposition 3.7 (Unused Information).

(i) Hiding: Suppose ⌫a h�1[{b}, Pi
⌘�! ⌫d h�2[{b}, Qi and b does not occur in ⌘.

Then

⌫b, a h�1, Pi
⌘�! ⌫b, d h�2, Qi

(ii) Revealing: Conversely, suppose ⌫b, a h�1, Pi
⌘�! ⌫b, d h�2, Qi where again b

does not occur in ⌘. Then

⌫a h�1[{b}, Pi
⌘�! ⌫d h�2[{b}, Qi

Proof. Again, by rule induction.

With reference to this proposition there are actually very limited ways in which
an action ⌘ from the configuration ⌫b, a h�1, Pi can use the name b. Indeed the
only possibility is an output action, which by Proposition 3.4 must have the form
⌫b, a h�, Pi c!b�! ⌫d h�[{b}, Qi; and this action can still be performed when the ob-
server knows of the existence of b:

Proposition 3.8 (Extrusion). Provided c is di↵erent than b,

⌫b, a h�, Pi c!b�! ⌫d h�[{b}, Qi i↵ ⌫a h�[{b}, Pi c!b�! ⌫d h�[{b}, Qi

Proof. By rule induction, in both directions.

Our behavioural theory is based on weak transitions in the LTS. We write
⌘
=) to

mean the reflexive, transitive closure of
⌧�!, when ⌘ = ⌧, and

⌧
=) ⌘�! ⌧

=), otherwise.
Traces are sequences of actions; weak traces are sequences of observable actions.

We let t range over (weak) traces.

Definition 3.9 (Trace). A configuration C transitions to C0 by a trace t, and we write
C t�! C0, according to the rules:

(i) C ✏�! C

14



(ii) C ⌘,t�! C0 when there exists C00 such that C ⌘�! C00 t�! C0

Similarly, C transitions to C0 by a weak trace t, and we write C t
=) C0, according to

the rules:

(i) C ✏
=) C0 when C ⌧

=) C0

(ii) C ⌘,t
=) C0 when ⌘ , ⌧ and there exists C00 such that C ⌘

=) C00 t
=) C0

4. Bisimulations

In this section we give the definitions for strong and weak bisimulations. We prove
that the limited structural equivalence (=̂) is a strong bisimulation and the full structural
equivalence (⌘) is a weak bisimulation over configurations. We also prove several
useful weak bisimulations that encode properties of local and global names. Finally
we give a characterisation of weak bisimilarity in terms of a propositional Hennessy-
Milner Logic.

4.1. Strong Bisimulations
We start with the definition of strong bisimulation, a rather strict equivalence on

configurations which will be useful later for deriving technical results.
We write binary relations on well-formed configurations as R, X, etc.

Definition 4.1 (Strong Bisimulation). R is a strong bisimulation if and only if for all
C R C0:

(i) If C ⌘�! C1 then there exists C01 such that C0 ⌘�! C01 and C1 R C01.

(ii) The converse of (i)

Strong bisimulations are closed under unions. Thus the union of all strong bisimu-
lations is the largest strong bisimulation; it is also easy to see that it is an equivalence
relation.

Definition 4.2 (Strong Bisimilarity (⇠)). (⇠) is the largest strong bisimulation.

The limited structural equivalence from Definition 2.1 can be extended to config-
urations in the obvious manner. First it is extended to abstract processes by applying
the axioms and rules in Definition 2.1. Then we let ⌫a h�, Pi =̂ ⌫a0 h�0, P0i whenever
P =̂ P0, a = a0 and � = �0.

Proposition 4.3. (=̂) is a strong bisimulation over configurations.

Proof. By using induction on the rules of (=̂); i.e. the rules shown in Definition 2.1
and the standard rules for an equivalence, we can show that all moves from related con-
figurations can be appropriately matched. Structural equivalence allows the reordering
of running parallel processes but not suspended processes under c!h � i.P (or ��).
Therefore, the knowledge environments of configurations related by (=̂) will remain
equal after any transition (esp. any higher-order output transition).
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4.2. Weak Bisimulations
Our theory of behavioural equivalence is based on weak bisimulations, which use

weak actions from the LTS of the previous section.

Definition 4.4 (Weak Bisimulation). R is a bisimulation if and only if for all C R C0:

(i) If C ⌘�! C1 then there exists C01 such that C0 ⌘
=) C01 and C1 R C01.

(ii) The converse of (i)

The collection of weak bisimulations is closed under unions, and thus the union of
all weak bisimulations is the largest weak bisimulation; again it is straightforward to
show that this is also an equivalence relation.

Definition 4.5 (Weak Bisimilarity (⇡)). (⇡) is the largest weak bisimulation.

The freshness condition for concrete constants in higher-order output transitions
(rule Proc-Out-Trans in Figure 4) only considers names in the configuration that per-
forms the transition. In bisimulation proofs we will never need to assume that this
condition extends over a related configuration because environments of bisimilar con-
figurations contain the same concrete constants. Therefore this condition does not pose
any complication in such proofs.

Lemma 4.6. If ⌫a h�, Pi ⇡ ⌫a0 h�0, P0i then ccon(�) = ccon(�0).

Proof. Let  2 ccon(�). Then ⌫a h�, Pi has an app  transition to a configuration C.
By definition of bisimulation ⌫a0 h�0, P0i also has an app  transition to some configu-
ration C0 (and C ⇡ C0), which is only possible if  2 ccon(�0). Similarly for the reverse
direction.

A consequence of the above lemma is that weak bisimilarity is equivariant for con-
crete constants.

Lemma 4.7 (Equivariance for concrete constants). If C⇡C0 then C{1/2} ⇡ C0{1/2}.

Proof. By closing (⇡) under renaming of concrete constants and showing that the ob-
tained relation is a weak bisimulation.

In the meta-theory and applications we will confine our attention to relations over
configurations which have the same acon components. These are relations that have
been generated by source-level processes with no abstract constants, closed under the
same transitions, including the same higher-order input transitions which introduce the
abstract constants. Therefore, as with the freshness condition for concrete constants in
output transitions, the condition for fresh abstract constants in input transitions (rule
Proc-In-Trans in Figure 4) does not pose any di�culty in bisimulation proofs since it
never needs to extend over names other than those in the configuration itself. Bisimi-
larity is equivariant for configurations with the same acon components.

Lemma 4.8 (Equivariance for abstract constants). If C ⇡ C0 and acon(C) = acon(C0)
then C{↵1/↵2} ⇡ C0{↵1/↵2}.
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Proof. By showing that the following relation is a weak bisimulation.

X def
= {(C{↵1/↵2},C0{↵1/↵2}) | any ↵1,↵2, acon(C) = acon(C0), C ⇡ C0}

Our primary concern is the ability for our bisimulations to support reasoning about
process behaviour. To this end we extend weak bisimilarity to closed processes as
follows:

Definition 4.9. We write P ' P0 if and only if there exist b such that

h{b}, Pi ⇡ h{b}, P0i

Note that since (⇡) is only defined between well-formed configurations the names
b in the above definition include the free names of P and P0.

As with (=̂), we extend the structural equivalence (⌘) to abstract processes in the
usual way, and to LTS configurations as follows; note that this is extension is slightly
more general than that used for the limited structural equivalence (=̂).

Definition 4.10 ((⌘) on LTS configurations). We write ⌫a h�, Pi ⌘ ⌫a0 h�0, P0i if and
only if

⌫a.P ⌘ ⌫a0.P0 � = �0

Proposition 4.11. (⌘) is a weak bisimulation over configurations.

Proof (sketch). Suppose

⌫a h�1, Pi
⌘�! ⌫b h�2, Qi and ⌫a h�1, Pi ⌘ ⌫a0 h�01, P0i

We show that

⌫a0 h�01, P0i
⌘
=) ⌫b0 h�02, Q0i

for some ⌫b0 h�02, Q0i ⌘ ⌫b h�2, Qi, and vice-versa.
We proceed by induction on the proof that ⌫a.P ⌘ ⌫a0.P0. The base cases are

provided by the axioms for (⌘) in Definition 2.1 and reflexivity. The only complication
here involves any outermost ⌫-binders in the processes of the axioms: for each binder
we distinguish the case where it is a binder at the level of the configuration and the case
where it is a binder in the process part of the configuration. In all cases, the behaviour
of the related processes are identical, modulo the ⌧-transitions that extrude a binder to
the level of the configuration.

The cases for symmetry and transitivity are shown by straightforward applications
of the induction hypothesis.

For the case of closure under (� | �) we have ⌫a.P = P1 | P2 and ⌫a0.P0 = P01 | P02,
for some P1,P2,P01, and P02, with P1 ⌘ P01 and P2 ⌘ P02. Hence {a} = {a0} = ;.
We proceed by cases on the ⌘-transition. The only applicable cases are Comm-Name-
Trans, Comm-Proc-Trans, and Par-L-Trans, which are all proved by straightforward
applications of the induction hypothesis and Proposition 3.4.
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The case for closure under (⌫n.�) follows by the induction hypothesis and Propo-
sitions 3.7 and 3.8.

As with the proof of Proposition 4.3, the environments of configurations related by
(⌘) remain equal after higher-order output transitions because (⌘) is not closed under
c!h � i.P (or ��).

Corollary 4.12. (⌘) ✓ (').

Extension of knowledge environments with identical names preserves weak bisim-
ilarity.

Lemma 4.13. If ⌫a h�, Pi ⇡ ⌫a0 h�0, P0i and n < {a, a0} then

⌫a h�[{n}, Pi ⇡ ⌫a0 h�0[{n}, P0i

Proof. Let

X = {(⌫a h�[{n}, Pi, ⌫a0 h�0[{n}, P0i) | ⌫a h�, Pi ⇡ ⌫a0 h�0, P0i
{n} \ {a, a0} = ;}

It is easy to show that X is a weak bisimulation using Proposition 3.6.

Hiding names also preserves weak bisimilarity.

Lemma 4.14. If ⌫a h� ] {n}, Pi ⇡ ⌫a0 h�0 ] {n}, P0i then

⌫a, n h�, Pi ⇡ ⌫a0, n h�0, P0i

Proof. Similar to the above proof.

Furthermore, extrusion of private names to the level of the configuration is indis-
tinguishable by weak bisimilarity.

Lemma 4.15. ⌫a, b h�, Pi ⇡ ⌫b h�, ⌫a.Pi

Proof. Trivial.

Lemma 4.16.

⌫a, b h�, Pi ⇡ ⌫a0, b0 h�0, P0i i↵ ⌫b h�, ⌫a.Pi ⇡ ⌫b0 h�0, ⌫a0.P0i

Proof. By Lemma 4.15 and transitivity of (⇡).
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4.3. Logical Characterisation

Weak bisimilarity is characterised by a propositional Hennessy-Milner Logic with
the following syntax.

F ::= ¬F | Vi2I Fi | h⌘i F

where I is a (possibly infinite) indexing set.
These formulas define a set of basic properties satisfied by configurations of our

LTS. The construct ¬F encodes negation and
V

i2I Fi encodes (possibly infinite) propo-
sitional conjuction. The modal construct h⌘i F encodes the property that there is a weak
⌘-transition to a configuration that satisfies F.

The semantics of this logic is given by a satisfaction relation C |= F between a
configuration C and a formula F.

Definition 4.17 (Satisfaction Relation (C |= F)).

C |= ¬F i↵ C 6|= F
C |= Vi2I Fi i↵ 8i 2 I. C |= Fi

C |= h⌘i F i↵ 9C0. C ⌘
=) C0 and C0 |= F

As usual, more predicates are derivable; e.g.:

C |= tt def
= C |= Vi2; Fi

C |= ff def
= C |= ¬tt

C |= [⌘] F def
= C |= ¬h⌘i¬F

C |= Wi2I Fi
def
= C |= ¬Vi2I ¬Fi

C |= F1 ^ F2
def
= C |= Vi2{1,2} Fi

C |= F1 _ F2
def
= C |= Wi2{1,2} Fi

As the transition labels ⌘ in our LTS contain actual (not extruded) names, i.e. con-
stants, the above logic is similar to that of the CCS ([16], Chapter 10). Hence, we avoid
the complications of extrusion and generation of fresh names in the logic.

The main theorem in this section is the characterisation of weak bisimilarity by the
logic.

Theorem 4.18. C ⇡ C0 if and only if for all F

C |= F i↵ C0 |= F

Proof. For the forward direction we proceed by structural induction, taking cases on
the formula F:

Case F = ¬F0: By the induction hypothesis,

C |= F0 i↵ C0 |= F0

hence, by Definition 4.17, C |= ¬F0 i↵ C0 |= ¬F0.
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⌥ F =
V

i2I Fi: by Definition 4.17,

C |=
^

i2I

Fi i↵ (8i 2 I. C |= Fi)

C0 |=
^

i2I

Fi i↵ (8i 2 I. C0 |= Fi)

By the induction hypothesis,

8i 2 I. C |= Fi i↵ C0 |= Fi

and by the definition of the (possibly infinite) conjuction C |= Vi2I Fi i↵ C0 |= Vi2I Fi.
⌥ F = h⌘i F0: If C |= h⌘i F0 then, by Definition 4.17, there exists C0 such that

C ⌘
=) C0 C0 |= F0

Because C ⇡ C0, there exists C00 such that

C0 ⌘
=) C00 C0 ⇡ C00

Hence, by the induction hypothesis, it must be that C00 |= F0, and, by Definition 4.17,
C0 |= h⌘i F0. Similarly if C0 |= h⌘i F0.

For the converse direction of the theorem we define the following relation.

R = {(C,C0) | 8F. C |= F i↵ C0 |= F}
We show by contradiction that R is a weak bisimulation:

We assume that R is not a bisimulation. Because R is obviously symmetric, w.l.o.g.,
this means that for some (C,C0) 2 R there exists C1 such that

C ⌘�! C1 8C0i 2 S . (C1,C0i) < R

where S = {C0i | C0
⌘
=) C0i}. By the definition of R, for every C0i 2 S there exists Fi

such that

C1 |= Fi C0i 6|= Fi

or vice-versa, but in this case we consider ¬Fi. Hence, if I contains the indices of
exactly these formulas,

C1 |=
^

i2I

Fi

and therefore

C |= h⌘i �
^

i2I

Fi
� C0 6|= h⌘i �

^

i2I

Fi
�

which contradicts the fact that (C,C0) 2 R.

An immediate consequence of this theorem is that the logic is particularly useful in
giving simple proofs of inequivalence. In Section 5.5 we prove such an inequivalence
by providing an HML formula that is satisfied by one of the processes and not the other.

20



5. Examples

Here we illustrate the e↵ectiveness of our theory by giving simple proofs of equiv-
alence using first-order weak bisimulation, and of inequivalence using the Hennessy-
Milner Logic. Many of our examples involve ping servers and triggers, which in our
opinion get to the heart of the challenges of reasoning about higher-order concurrent
processes.

All equivalences can be proved using the standard weak bisimulation. However,
to improve presentation, we develop a lightweight up-to � and the limited structural
equivalence (=̂) technique similar to that in [7], Chapter 6. �-moves are ⌧-transitions
that are confluent with all other transitions.

Definition 5.1 (�-move (
⌧��!)). A ⌧-transition C1

⌧�! C2 is a �-move and we write

C1
⌧��! C2 if and only if for all transitions C1

⌘�! C3 one of the following is true:

(i) ⌘ = ⌧ and C2 = C3, or

(ii) there exists C4 such that C2
⌘�! C4 and C3

⌧��! C4.

Definition 5.2 (Weak Bisimulation up-to � and (=̂)). A relation R on configurations is
a weak bisimulation up-to � and (=̂) if and only if for all C R C0,

(i) if C ⌘�! C1 then, for some C01,

C0 ⌘
=) C01 C1

⌧��!⇤=̂ R =̂ C01

(ii) the converse of (i)

Proposition 5.3. The relation (
⌧��!⇤=̂) is transitive.

Proof. By induction on the rules of (=̂).

It is easy to verify that (⇡) is a weak bisimulation up-to � and (=̂). Any weak
bisimulation up-to � and (=̂) is included in (⇡):

Proposition 5.4. If R is a weak bisimulation up-to � and (=̂), then R ✓ (
⌧��!⇤=̂

R =̂
⌧� �⇤) ✓ (⇡).

Proof. Because (
⌧��!⇤) and (=̂) contain the identity, R ✓ (

⌧��!⇤=̂ R =̂
⌧� �⇤). Thus, it

su�ces to show that (
⌧��!⇤=̂ R =̂

⌧� �⇤) is a weak bisimulation.
Let

C1
⌧��!⇤ C2 =̂ C3 R C03 =̂ C02

⌧� �⇤ C01
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then

C1
⌘�! C4

implies C2
⌘�! C5 ^ C4

⌧��!⇤ C5 (for some C5, by definition of (
⌧��!))

implies C3
⌘�! C6 ^ C5 =̂ C6 (for some C6, because (=̂) is a

strong bisimulation)
implies C03

⌘
=) C06 ^ C6

⌧��!⇤=̂ R =̂ C06 (for some C06, because R is a weak
bisimulation up-to � and (=̂))

implies C02
⌘
=) C05 ^ C06 =̂ C05 (for some C05, because (=̂) is a

strong bisimulation)
implies C01

⌘
=) C05 (because ⌧�-moves are ⌧-steps)

Hence, we have that for some C05, C01
⌘
=) C05 and

C4
⌧��!⇤=̂

⌧��!⇤=̂ R =̂ C05

and by Proposition 5.3 and the fact that (
⌧� �⇤) contains the identity we get

C4
⌧��!⇤=̂ R =̂

⌧� �⇤ C05
Similarly we prove the converse condition of Definition 4.4.

Using weak bisimulation up-to � and (=̂) we prove several interesting equivalences
in the following sections.

5.1. Implementation of Replication

For our first example we consider an encoding of replication via higher-order com-
munication. The following process receives a suspended process on channel p which
then replicates and runs.

Rec def
= p?(X).⌫a. (R | a!h�app X | Ri.0)

R def
= a?(X).(app X | a!hXi.0)

We show that this is weakly bisimilar to

Rec0 def
= p?(X).⇤(app X)

Namely, we prove that Rec ' Rec0, which by definition amounts to proving

h{p},Reci ⇡ h{p},Rec0i

To prove this we will provide a relation R on configurations that relates h{p},Reci and
h{p},Rec0i and show that it is a bisimulation up-to (=̂).
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Let us first consider the configurations reachable from h{p},Reci that are relevant
to our proof. These can be partitioned to the following families of configurations.

C1 =̂ h{p},Reci
C2(↵) =̂ h{p,↵}, ⌫a. R | a!h� (app↵ | R)i.0i
C3(↵, i) =̂ ⌫a h{p,↵}, R | a!h� (app↵ | R)i.0 | Qi app↵i
C4(↵, i) =̂ ⌫a h{p,↵}, app � (app↵ | R) | a!h� (app↵ | R)i.0 | Qi app↵i

Similarly, all configurations reachable from h{p},Rec0i are members of one of the
two families of configurations

C01 =̂ h{p},Rec0i
C02(↵, i) =̂ h{p,↵}, ⇤(app↵) | Qi app↵i

In this and following sections we visualise the structure of each LTS involved in a
bisimulation proof by a more abstract Kripke-like structure that uses families of con-
figurations. Each node in the structure represents a family of configurations; the pa-
rameters of each family are quantified at each state. A labelled arrow between families
of configurations exists if there is a configuration belonging to the originating family
that has an LTS transition with the same label to a configuration in the target family.
We sometimes identify transitions with the same originating and target families using
metavariables.

Here the possible-worlds structure that corresponds to Rec is

C1 C2(↵) C3(↵, i) C4(↵, i)

app↵ app↵

p?↵ ⌧
⌧

⌧

This picture has an arrow labelled p?↵ from C1 to C2 because of the LTS transition

C1
p?↵�! C2(↵) that inputs an abstract constant ↵ on channel p. The ⌧-labelled arrow

from C2 to C3 is because of the the transition C2(↵)
⌧�! C3(↵, 0) that extrudes the

private name a to the level of the configuration. The ⌧-labelled arrow from C3 to C4

is due to the transitions C3(↵, i)
⌧�! C4(↵, i) that communicate the value � (app↵ | R)

over the channel a. The remaining ⌧-arrow is a result of the application of � (app↵ | R):
C4(↵, i)

⌧�! C3(↵, i + 1) that produces one more process app↵. The self-loops on the
configurations C3 and C4, labelled app↵, are because of the transitions that apply a
process app↵:

C3(↵, i + 1)
app↵�! C3(↵, i) C4(↵, i + 1)

app↵�! C4(↵, i)

Similarly the LTS that corresponds to Rec0 can be abstracted by the following pic-
ture.

C01 C02(↵, i) ⌧, app↵
p?↵

23



Here we have the input p?↵ due to the transition C01
p?↵�! C02(↵, 0), and the ⌧-labelled

loop on C02 due to an unfolding of the replication

C02(↵, i)
⌧�! C02(↵, i + 1)

The app↵-labelled loop is because of applications of process app↵:

C02(↵, i + 1)
app↵�! C02(↵, i)

We validate that the following relation is a weak bisimulation up-to (=̂).

R = { (C1,C01), (C2(↵),C02(↵, 0)), (C3(↵, i),C02(↵, i)),
(C4(↵, i),C02(↵, i)) | ↵, i }

Indeed, the transition C1
p?↵�! C2(↵) is matched by C01

p?↵�! C02(↵, 0) The ⌧-transitions
C2(↵)

⌧�! C3(↵, 0) and C3(↵, i)
⌧�! C4(↵, i) are matched by zero ⌧-transitions from

C02(↵, 0) and C02(↵, i), respectively. The transition C4(↵, i)
⌧�! C3(↵, i + 1) is matched

by C02(↵, i)
⌧�! C02(↵, i + 1). Finally both the transitions C3(↵, i + 1)

app↵�! C3(↵, i)
and C4(↵, i + 1)

app↵�! C4(↵, i) are matched by C02(↵, i + 1)
app↵�! C02(↵, i). All resulting

configurations of matching transitions are related in R.

5.2. A Trigger-Installing Ping Service
We now consider a ping service that receives a suspended process on channel png

and sends back on the same channel a trigger. When the context applies the trigger a
copy of the suspended process is run.

Ping1
def
= ⇤(⌫tr. P1(tr))

P1(tr) def
= png?(X:Pr).png!h� tr!.0i.⇤(tr?.app X)

We show that this service is weakly bisimilar to the trivial ping service

Ping2
def
= ⇤(png?(X:Pr).png!hXi.0)

Because (') is a full congruence (Theorem 8.5), it su�ces to show that for the
processes under the replication

M1
def
= ⌫tr. P1(tr) M2

def
= png?(X:Pr).png!hXi.0

it is the case that M1 ' M2 or, by definition, h{png},M1i ⇡ h{png},M2i. We prove
this by providing a relation R that contains M1 and M2 and show that it is a weak
bisimulation up-to � and (=̂).

We identify the following families of configurations reachable from h{png},M1i.
C1 =̂ h{png},M1i
C2 =̂ ⌫tr h{png}, P1(tr)i

C3(↵) =̂ ⌫tr h{png,↵}, png!h� tr!.0i.⇤(tr?.app↵)i
C4(↵, , i, j) =̂ ⌫tr h{png,↵,  7!� tr!.0}, ⇤(tr?.app↵) |Q

i tr?.app↵ | Qk app↵i
An abstraction of the LTS for M1 is the following.
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C1 C2 C3(↵) C4(↵, , i, j) ⌧, app↵, (app )⌧�⌧�
⌧ png?↵ png!

Transition C1
⌧�! C2 is the extrusion of the local name tr to the level of the config-

uration. Transition C2
png?↵�! C3(↵) is the input on channel png of an abstract constant

↵ and transition C3(↵)
png!�! C4(↵, , 0, 0) is the subsequent output of the concrete con-

stant  on the same channel. The remaining transitions are between configurations in
the family C4(↵, , i, j) that only a↵ect the value of the parameters:

(i) C4(↵, , i, j)
⌧�! C4(↵, , i + 1, j) is an unfolding of the replication.

(ii) C4(↵, , i + 1, j)
app �!

⌧��!
⌧��! C4(↵, , i, j + 1) is an app  transition, which puts

app � tr!.0 in parallel with the current process, followed by two �-moves. The
first �-move is the application of app � tr!.0 that produces the process tr!.0 ,
and the second is the communication over the channel tr that releases one more
process app↵.

(iii) C4(↵, , i, j)
app↵�! C4(↵, , i, j � 1) is an observable application of the abstract

constant ↵.

Similarly we find the families of configurations reachable from h{png},M2i,

C01 =̂ h{png},M2i
C02(↵) =̂ h{png,↵}, png!h↵i.0i

C03(↵, , j) =̂ h{png,↵,  7!↵},Q j app↵i

and the corresponding abstraction of the LTS

C01 C02(↵) C03(↵, , j) app , app↵
png?↵ png!

Here we have no ⌧-transitions, only the input and output on channel png and the transi-
tions app  and app↵, which increase and decrease, respectively, the number of app↵
in the process. The following relation is a weak bisimulation up-to � and (=̂).

R = { (C1,C01), (C2,C01), (C3(↵),C02(↵)),
(C4(↵, , i, j),C03(↵, , j)) | ↵, , i, j }

The proof is straightforward. All ⌧-transitions on the LHS are matched by zero tran-
sitions on the RHS; the transitions app  and app↵ on the LHS are matched with the
same transitions on the RHS. Conversely, any transition on the RHS is matched with
a corresponding weak transition on the LHS. Furthermore, all configurations resulting
from matching moves are related by (

⌧��!⇤=̂ R =̂).

5.3. A Trigger-Promoting Ping Service
We now consider a ping service that, instead of locally installing a trigger service

for each suspended process it receives, wraps this trigger service in the response sent to
the client. The trigger service is installed in only one of the clients, after an application
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of the response. IfV is the suspended process received by the service then the response
will be

U(V, inst, tr) def
= � (tr!.0 | inst?.⇤(tr?.appV))

where inst is a private channel controlling the installation of the trigger service and tr
is a private channel that invokes it. The ping service is encoded as

Ping3
def
= ⇤(⌫inst. ⌫tr. P3(inst, tr))

P3(inst, tr) def
= png?(X:Pr).png!hU(X, inst, tr)i.inst!.0

We prove that Ping3 is weakly bisimilar to the trivial ping service Ping2, defined
in the previous section. As before we will use the property of congruence for (') to
simplify the proof. Hence we only have to prove that

M3
def
= ⌫inst. ⌫tr. png?(X:Pr).png!hU(X, inst, tr)i.inst!.0

is weakly bisimilar to M2, also defined in the previous section. We show this by provid-
ing a relation R that relates the two processes and showing that it is a weak bisimulation
up-to � and (=̂).

First, we identify the following families of configurations reachable from configu-
ration h{png},M3i. Here we omit subscripts to parallel products that do not a↵ect the
equivalence between configurations.

C1 =̂ h{png},M3i
C2 =̂ ⌫inst, tr h{png}, P3(inst, tr)i

C3(↵) =̂ ⌫inst, tr h{png,↵}, png!hU(↵, inst, tr)i.inst!.0i
C4(↵, ) =̂ ⌫inst, tr h{png,↵,  7!U(↵, inst, tr)}, inst!.0i
C5(↵, , i) =̂ ⌫inst, tr h{png,↵,  7!U(↵, inst, tr)},

⇤(tr?.app↵) | Q tr?.app↵ |Q
i app↵ |

Q
inst?.⇤(tr?.app↵)i

The corresponding abstraction of the LTS is:

C1 C2 C3(↵) C4(↵, ) C5(↵, , i)
⌧, app↵,
(app )⌧⇤�

⌧⌧� png?↵ png! (app )⌧⇤�

The first ⌧⌧� transition extrudes the private names inst and tr. The transitions
png?↵ and png! are the input and output of the trigger, respectively. The transition
C4(↵, )

app �!
⌧��!⇤ C5(↵, , 1) is the application of the concrete constant  by the context,

followed by a communication on channel inst that will install the service ⇤(tr?.app↵),
at least one unfolding of the replication, and a communication on channel tr that will
produce the process app↵. C5(↵, , i) has a ⌧-loop that unfolds the replication, as well
as the transitions C5(↵, , i)

app �!
⌧��!⇤ C5(↵, , i + 1) and C5(↵, , i + 1)

app↵�! C5(↵, , i).
The families of configurations and the abstraction of the LTS for M2 are given in

the previous section.
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We can easily show that the following relation on configurations1 is a weak bisim-
ulation up-to � and (=̂).

R = { (C1,C01), (C2,C01), (C3(↵),C02(↵)),
(C4(↵, ),C03(↵, , 0)), (C5(↵, , i),C03(↵, , i)) | ↵, , i }

5.4. Composition of Triggers with Replication
In previous examples we used the fact that (') is a congruence to factor out the

common contexts and simplify the proofs of equivalence. This is not always possible.
To illustrate this we prove the equivalence

Ping3 ' Ping4

where Ping3 is the ping service defined in Section 5.3, and

Ping4
def
= rec(M4) M4

def
= png?(X:Pr).png!hXi.0

rec(P) def
= ⌫a. (R | a!h�P | Ri.0) R def

= a?(X).(app X | a!hXi.0)
Because of the use of di↵erent replication constructs, there is no common context be-
tween Ping3 and Ping4 that we can factor out to reduce the proof obligation. Hence, we
have to provide a relation R such that h{png},Ping3i R h{png},Ping4i and show that it
is a weak bisimulation up-to � and (=̂).

We devise the following family of configurations that describes the configurations
that are reachable from h{png},Ping3i and relevant to the bisimulation proof.

C(↵, , I, J,K, L,m) =̂ ⌫tr h {png,↵,  7!U(↵, inst, tr)
K[L}, ⇤(M3)

| Qi2I P3(insti, tri)
| Q j2J png!hU(↵ j, instj, trj)i.instj!.0
| Qk2K instk!.0
| Ql2L

�⇤(trl?.app↵l) |
Q

trl?.app↵l

| Qml
app↵l |

Q
instl?.⇤(trl?.app↵l)

�i

Here I, J,K, and L are finite sets of natural numbers. We also use the notation A
S

to
mean that the length of the sequence is the cardinality of the set S , and the subscripts
of the metavariables in A are drawn from the elements of S .

The reader may observe that C contains the parallel composition of the process
⇤(M3) with an arbitrary number of the processes in configurations C2, C3, C4, and C5
of Section 5.3. This is because the ping service may be invoked multiple times by the
context, and each invocation will create a separate set of states C2 to C5. The sets I,
J, K, L contain the indices of local trigger channels, abstract constants, and concrete
constants that correspond to the di↵erent instances of C2 to C5, respectively. Moreover,
the transitions that in Section 5.3 are between configurations in Ci and C j now only
change the parameters of C.

The abstraction of the LTS in this case has only one state.

1Because of omitted indices in the definition of C6, the expression C5(n,↵, , i) is a set of configurations.
Here we abuse notation to mean any configuration in that set.
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C(↵, , I, J,K, L,m)

⌧⌧�⌧�,
png?↵i, png!i,

(app i)⌧⇤�, app↵i

The configurations reachable from h{png},Ping4i and relevant to this bisimulation
proof belong to the following families of configurations.

C01 =̂ h{png}, rec(M4)i
C02(↵, , J,K, L,m) =̂ ⌫a h {png,↵,  7!↵K[L}, R | a!h�M4 | Ri.0

| Q M4 |
Q

j2J png!h↵ ji.0 |
Q

l2L
�Q

ml
app↵l

�i

Notice that C02 is similar to configuration C3 of Section 5.1. C4 is not necessary here
because of the use of the up-to � technique. These are also the two states of the abstract
LTS.

C01 C02(↵, , J,K, L,m)

⌧⌧�,
png?↵i, png!i,
app i, app↵i

⌧⌧�⌧�

It is straightforward to verify that the following relation is a weak bisimulation
up-to � and (=̂) and h{png},Ping3i R h{png},Ping4i.

R = { (C(·, ·, ;, ;, ;, ;, ·),C01), (C(↵, , I, J,K, L,m),C02(↵, , J,K, L,m)),
| ↵, ,m, (8k 2 K. ik + jk + lk = mk), and I, J,K, L are pairwise disjoint }

5.5. The Processes in Figure 1

For our last two examples we consider the two pairs of processes in Figure 1, dis-
cussed in the introduction. We prove that the processes in (†) are indeed weakly bisim-
ilar, while the processes in (‡) are not.

We extend the language with internal choice by adding the following reduction and
transition rules (and their symmetric ones).

P � Q! P ⌫a h�, P � Qi ⌧�! ⌫a h�, Pi

Adding these rules does not change our theory since internal choice can be encoded
using communication:

P � Q def
= ⌫a. a!.0 | a?.P | a?.Q a < fn(P,Q)
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The equivalence.. First we consider the equivalence (†) in Figure 1. We will show that
P ' P0; i.e. we will show h{c}, Pi ⇡ h{c}, P0i, where

P def
= c?(X).c?(Y).⌫t. (c!hV1(X,Y)i.0 � c!hV2(X)i.0)

| ⇤(t?.(app X � appY))
P0 def
= c?(X).c?(Y).⌫t. (c!hV1(Y, X)i.0 � c!hV2(Y)i.0)

| ⇤(t?.(app X � appY))
V1(X,Y) def

= � ((app X � appY) | app X)
V2(X) def

= � (t!.appY)

The relevant configurations reachable from h{c}, Pi can be described by the follow-
ing families of configurations.

C1 =̂ h{c}, Pi
C2(↵1) =̂ h{c,↵1}, c?(Y).⌫t. (c!hV1(↵1, Y)i.0 � c!hV2(↵1)i.0)

| ⇤(t?.(app↵1 � appY))
| Q t?.(app↵1 � app↵2)i

C3(↵1,↵2) =̂ ⌫t h{c,↵1,↵2}, (c!hV1(↵1, ↵2)i.0 � c!hV2(↵1)i.0)
| ⇤(t?.(app↵1 � app↵2))
| Q t?.(app↵1 � app↵2)i

C4(↵1,↵2, , i, j, k)
=̂ ⌫t h{c,↵1,↵2,  7!V1(↵1, ↵2)},

⇤(t?.(app↵1 � app↵2))
| Q t?.(app↵1 � app↵2)
| Qi(app↵1 � app↵2) | Q j app↵1 |

Q
k app↵2i

C5(↵1,↵2, , i, j, k)
=̂ ⌫t h{c,↵1,↵2,  7!V2(↵1)},

⇤(t?.(app↵1 � app↵2))
| Q t?.(app↵1 � app↵2)
| Qi(app↵1 � app↵2) | Q j app↵1 |

Q
k app↵2i

The corresponding abstraction of the LTS is:

C1 C2(↵1) C3(↵1,↵2)

C4(↵1,↵2, , i, j, k)

C5(↵1,↵2, , i, j, k)

⌧, app↵i,
app 

⌧, app↵i,
(app )⌧⇤�

c?↵1 c?↵2⌧�

⌧

⌧

We obtain the families C01 to C05 of configurations reachable from h{c}, P0i by per-
forming the following replacements of the boldfaced parts in C1 to C5:
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(i) in C1 we replace P with P0,
(ii) in C2 we replace the V1(↵1,Y) and V2(↵1) with V1(Y,↵1) and V2(Y), respec-

tively,
(iii) in C3 to C5 we replace V1(↵1,↵2) and V2(↵1) with V1(↵2,↵1) and V2(↵2), re-

spectively.

The corresponding abstraction of the LTS is the same as the one shown above.
The intuition of this equivalence is that the ⌧-transition

C3(↵1,↵2)
⌧�! C4(↵1,↵2, , 0, 0, 0)

on the left-hand side is matched by the ⌧-transition

C03(↵1,↵2)
⌧�! C05(↵1,↵2, , 0, 0, 0)

on the right-hand side, and vice-versa. Hence, from that point onward, a transition

C4(↵1,↵2, , i, j, k)
app �! C4(↵1,↵2, , i + 1, j + 1, k)

is matched by the transitions

C5(↵1,↵2, , i, j, k)
app �!

⌧��!
⌧��! C5(↵1,↵2, , i + 1, j + 1, k)

where the first ⌧-step unfolds the replication once, and the second is the internal com-
munication on channel t.

The proof of this equivalence concludes by verifying that the following relation is
a weak bisimulation up-to � and (=̂).

R = { (C1,C01), (C2(↵1),C02(↵1)),
(C3(↵1,↵2),C03(↵1,↵2)),
(C4(↵1,↵2, , i, j, k),C05(↵1,↵2, , i, j, k)),
(C5(↵1,↵2, , i, j, k),C04(↵1,↵2, , i, j, k)),
| ↵1,↵2, , i, j, k }

The inequivalence.. We now consider the processes (‡) in Figure 1 and prove they are
not equivalent. These processes, written in pp-⇡ syntax, are:

Q def
= c?(X).c?(Y).⌫t. ( c!h� ((app X | appY) � app X)i.0

� c!h� (t!.appY)i.0 )
| ⇤( t?.(app X | appY) )

Q0 def
= c?(X).c?(Y).⌫t. ( c!h� ((app X | appY) � appY)i.0

� c!h� (t!.app X)i.0 )
| ⇤( t?.(app X | appY) )

Let us assume that we match the output

c!h� ((app X | appY) � app X)i.0
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on the left-hand side with the output

c!h� (t!.app X)i.0

on the right-hand side. Then, after an app  transition, we could eventually arrive
at related configurations where the one on the left-hand side would be able to apply
the value bound to X, but not the value bound to Y; the configuration on the right-
hand side would always be able to apply both the values bound to X and Y , therefore,
these configurations would not be weakly bisimilar (and would be distinguishable by
an observer).

Of course there are more choices of relating configurations on the left- and right-
hand side that might lead to a bisimulation. The Hennessy-Milner Logic that we used
to characterise weak bisimilarity is useful in proving that none of these choices would
be successful. It su�ces to find an HML formula that is satisfied by the configuration
h{c},Qi but not by h{c},Q0i. This formula F is

hc?↵1i hc?↵2i hc!i happ i ( happ↵1i tt ^ [app↵2] ff )

It is the case that h{c},Qi |= F, because after the inputs c?↵1 and c?↵2 the process can
pick the output

c!h� ((app↵1 | app↵2) � app↵1)i.0

to perform an c! transition. A subsequent app  transition followed by a ⌧-transition of
the internal choice releases the process app↵1, which can perform an app↵1 transition
but not an app↵2 transition.

On the other hand, h{c},Q0i 6|= F because none of the outputs

c!h� ((app↵1 | app↵2) � app↵1)i.0 c!h� (t!.app↵1)i.0

leads to a configuration satisfying happ↵1itt ^ [app↵2]ff.

6. Soundness of Weak Bisimilarity

In this section we prove that weak bisimulation equivalence (') satisfies the defin-
ing properties of parallel contextual equivalence (�pcxt) and therefore is included in it.
For convenience it is divided into four sub-sections. The first establishes a close re-
lationship between the reduction semantics of Section 2 and the ⌧-moves in the LTS
semantics of Section 3. This is used in the second sub-section which proves that (') is
reduction-closed and preserves barbs. The third subsection shows that (⇡) is closed un-
der substitutions of abstract constants with values indexed by concrete constants. This
result is central in proving the most di�cult property, preservation of (⇡) by parallel
contexts.

6.1. Reductions versus ⌧-steps
To prove that (') is reduction-closed we first need to show that ⌧-transitions corre-

spond to reduction steps.
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Proposition 6.1. If ⌫a h{c}, Pi ⌧�! ⌫b h{c}, Qi then ⌫a. P!⇤ ⌫b.Q

Proof. By induction on the transition ⌫a h{c}, Pi ⌧�! ⌫b h{c}, Qi. The cases Cond-
True-Trans, Cond-False-Trans, Rec-Trans, Nu-Trans, and App-Trans are trivial.

Case Par-L-Trans: we have {a} = {a}\exp(⌧) and

h�1]{a},P1i
⌧�! ⌫b h�2]{a}, P2i ⌫a h�1, P1 | Qi

⌧�! ⌫b, a h�2, P2 | Qi

and want to show that ⌫a. (P1 | Q)!⇤ ⌫b. (P2 | Q). By the induction hypothesis P1 !⇤
⌫b. P2, and, by the reduction rule Par-L-Red in Figure 3, P1 | Q !⇤ (⌫b. P2) | Q. By
the properties of well-formed configurations and Proposition 3.3, b < fn(Q). Hence, by
Par-Cong-Red and Nu-Red, ⌫a. (P1 | Q)!⇤ ⌫b, a. (P2 | Q).

Case Comm-Name-Trans: we have

h{c, a}, P1i
c!n�! h�0, P2i h{c, a},Q1i

c?n�! h�00,Q2i
⌫a h{c}, P1 | Q1i

⌧�! ⌫a h{c}, P2 | Q2i

and want to show that ⌫a. P1 | Q1 !⇤ ⌫a. P2 | Q2. By Proposition 3.4 (i) and (iii) we
get that

P1 = c!hn:Nmi.P11 | P12 Q1 = c?(x:Nm).Q11 | Q12
P2 = P11 | P12 Q2 = Q12{n/x} | Q22

Thus, by Comm-Red, Cong-Red, Par-Red, and Nu-Red, ⌫a. (P1 | Q1)!⇤ ⌫a. (P2 | Q2).
Similarly for the case Comm-Proc-Trans. The rest of the cases are vacuously true.

Proposition 6.2. If P! Q, and fn(P) ✓ {c} then there exist a and Q0 such that

h{c}, Pi ⌧
=) ⌫a h{c}, Q0i ⌫a.Q0 ⌘ Q

Proof. By induction on P ! Q. Cases Comm-Red, App-Red, and Cond-Red are
straightforward.

Case Par-Red: we have

P1 ! P2 P1 | Q! P2 | Q

and want to show that there exist a and Q0 such that h{c}, P1 | Qi
⌧
=) ⌫a h{c}, Q0i

and ⌫a.Q0 ⌘ P2 | Q. By the induction hypothesis there exist a and P20 such that
h{c}, P1i

⌧
=) ⌫a h{c}, P20i and ⌫a. P20 ⌘ P2. By Par-L-Trans and well-formedness of

configurations

h{c}, P1 | Qi
⌧
=) ⌫a h{c}, P20 | Qi ⌫a. (P20 | Q) ⌘ (⌫a. P20) | Q ⌘ P2 | Q
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Case Nu-Red: we have

P! Q ⌫b. P! ⌫b.Q

and want to show that there exist a and Q0 such that h{c}, ⌫b. Pi ⌧
=) ⌫a h{c}, Q0i

and ⌫a.Q0 ⌘ ⌫b.Q. By the induction hypothesis there exist a and Q1 such that
h{c, b}, Pi ⌧

=) ⌫a h{c, b}, Q1i and ⌫a.Q1 ⌘ Q. By Nu-Trans and Proposition 3.7
(Hiding) we have

h{c}, ⌫b. Pi ⌧�! ⌫b h{c}, Pi ⌧
=) ⌫a, b h{c}, Q1i

⌫a. ⌫b.Q1 ⌘ ⌫b. ⌫a.Q1 ⌘ ⌫b.Q

Case Cong-Red: we have

P0 ! Q0 P ⌘ P0 Q ⌘ Q0 P! Q

and want to show that there exist a and Q0 such that h{c}, Pi ⌧
=) ⌫a h{c}, Q0i and

⌫a.Q0 ⌘ Q. By the induction hypothesis there exist a0 and Q00 such that h{c}, P0i ⌧
=)

⌫a0 h{c}, Q00i and ⌫a0.Q00 ⌘ Q0. By Proposition 4.11 and because h{c}, Pi ⌘ h{c}, P0i
there exist a and Q0 such that

h{c}, Pi ⌧
=) ⌫a h{c}, Q0i ⌫a h{c}, Q0i ⌘ ⌫a0 h{c}, Q00i

and by Definition 2.1 ⌫a.Q0 ⌘ ⌫a0.Q00 ⌘ Q0 ⌘ Q.

6.2. Reduction-closure and preservation of barbs
We can now prove that (') is reduction-closed and preserves barbs.

Proposition 6.3 (Reduction Closure of (')). If P ' P0 and P ! Q then there exists
Q0such that:

P0 !⇤ Q0 Q ' Q0

and vice-versa.

Proof. We prove only the forward direction, the converse is symmetric. By the first
premise and Definition 4.9, there exist b (with fn(P, P0) ✓ {b}) such that

h{b}, Pi ⇡ h{b}, P0i (1)

By the second premise and Proposition 6.2 there exist a and Q0 such that

h{b}, Pi ⌧
=) ⌫a h{b}, Q0i ⌫a.Q0 ⌘ Q

Thus, by Definition 4.4 and (1), there exist a0, �0, and Q00 such that

h{b}, P0i ⌧
=) ⌫a0 h�0, Q00i (2)

⌫a h{b}, Q0i ⇡ ⌫a0 h�0, Q00i (3)
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and by Proposition 3.4 (vii) �0 = {b}.
By (2) and Proposition 6.1, P0 !⇤ ⌫a0.Q00.
By (3) and Lemma 4.16 h{b}, ⌫a.Q0i ⇡ h{b}, ⌫a0.Q00i and therefore ⌫a.Q0 '

⌫a0.Q00. Hence Q ⌘' ⌫a0.Q00, and by transitivity of (') and Corollary 4.12 we get
Q ' ⌫a0.Q00.

Proposition 6.4 (Preservation of Barbs of (')). If P ' P0 then P +n i↵ P0 +n.

Proof. We prove only the forward direction, the converse is symmetric. By the sec-
ond premise and Definition 2.6 we get that there exists Q such that P !⇤ Q, Q ⌘
⌫a. n!hV:ti.Q1 | Q2, and n < {a}. By Proposition 6.3 there exists Q0 such that P0 !⇤ Q0

and Q ' Q0.
By the first premise, transitivity of ('), and Corollary 4.12, ⌫a. n!hV:ti.Q1 | Q2 '

Q0. Thus, by Definition 4.9, there exist b such that

h{b, n}, ⌫a. n!hV:ti.Q1 | Q2i ⇡ h{b, n},Q0i (4)

and by the transition rules of the LTS we get

h{b, n}, ⌫a. n!hV:ti.Q1 | Q2i
n!V
=) ⌫a h{b, n} [ {V}, Q1 | Q2i

if t = Nm or

h{b, n}, ⌫a. n!hV:ti.Q1 | Q2i
n!
=) ⌫a h{b, n,  7!V}, Q1 | Q2i

if t = Pr. By Definition 4.4 and (4), there exist a0, �0, and Q01 such that one of the
following is true:

h{b, n},Q0i n!V
=) ⌫a0 h�0, Q01i

or
h{b, n},Q0i n!

=) ⌫a0 h�0, Q01i
Therefore, by Proposition 3.4 (i) or (ii), and (vii), there exist Q01 and Q02 such that

h{b, n},Q0i ⌧
=) ⌫a0 h{b, n}, n!hV 0:ti.Q01 | Q02i

and by Proposition 6.1 Q0 !⇤ ⌫a0. n!hV 0:ti.Q01 | Q02 with n < {a0}. Hence P0 +n.

6.3. Substitution of Abstract Constants
To prove preservation of bisimilarity by parallel contexts we need to relate the

transitions of two configurations C1 and C2 with the transitions of their parallel com-
position. The main challenge is higher-order communication between C1 and C2. If

C1
a?↵�! C01 and C2

a!�! C02
then we would like to show that the composition of C1 and C2 takes a ⌧-transition to
the composition of C01 and C02. However this is not the case: the composition of C01
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and C02 contains the abstract constant ↵ in the place of the actual value communicated,
which is indexed by  in the knowledge environment. Hence we need to relate config-
urations containing such an “indirection” of values through the environment with the
configurations that do not have the indirection.

We define the indexed relation (⌫↵7!), which relates any configuration with an
environment containing  and ↵, to the configuration we get by substituting ↵ with the
value pointed to by  in the environment.

Definition 6.5. (Substitution Relation)

⌫a h� ] { 7!V} ] {↵}, Pi ⌫↵7! ⌫a h�{V/↵}, P{V/↵}i if ↵ < acon(V)

The substitution relation commutes with limited structural equivalence.

Lemma 6.6. If C1 =̂ C2 then

(i) for all C01, if C1 ⌫↵ 7! C01 then there exists C02 such that C2 ⌫↵ 7! C02 =̂ C01,
(ii) for all C01, if C01 ⌫↵ 7! C1 then there exists C02 such that C01 =̂ C02 ⌫↵7! C2,

Proof. We strengthen the lemma by proving (i) and (ii) and their symmetric (obtained
by exchanging the subscripts 1 and 2). We proceed by induction on C1 =̂ C2. The
case for reflexivity is immediate; the cases for symmetry and transitivity follow by the
induction hypothesis. The remaining cases reorder the processes running in parallel in
the configuration; these follow by distribution of substitution over parallel.

Corollary 6.7. C1 =̂⌫↵ 7! C2 i↵ C1 ⌫↵7! =̂ C2.

The following three propositions show that the substitution relation (⌫↵7!) pre-
serves transitions up to pairs of actions app↵, app .

Proposition 6.8. If C1 ⌫↵ 7! C2
⌘�! C02 and

⌘ 2 {c?n, c!n, c?↵0, c!0, app 00 | any c, n,↵0, 0, 00 s.t. ↵0 , ↵, 0 , }

then there exists C01 such that C1
⌘�! C01 ⌫↵ 7! C02, and if ⌘ = app 00 then 00 , .

Proof. By induction on the transition C2
⌘�! C02.

Proposition 6.9. If C1 ⌫↵ 7! C2
app↵0�! C02 then ↵ , ↵0 and there exists C01 such that one

of the following is true:

(i) C1
app↵0�! C01 ⌫↵ 7! C02, or

(ii) C1
app↵�! app �! app↵0�! C01 ⌫↵ 7! C02.

Proof. Since ↵ has been substituted in C1, it is necessary that ↵ , ↵0.
The rest follows by induction on the transition C2

⌘�! C02, where ⌘ = app↵0.
The only cases we need to consider are Par-L-Trans (and its symmetric) and Abs-
App-Trans. The former follows by the induction hypothesis; for the latter we have to
consider two cases:
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(i) C1 = ⌫a h� ] { 7!V} ] {↵}, app↵0i and C2 = ⌫a h�{V/↵}, app↵0{V/↵}i and
C02 = ⌫a h�{V/↵}, 0i. Then

C1
app↵0�! ⌫a h� ] { 7!V} ] {↵}, 0i ⌫↵7! C02

(ii) C1 = ⌫a h� ] { 7!↵0} ] {↵}, app↵i and C2 = ⌫a h�{↵0/↵}, app↵{↵0/↵}i and
C02 = ⌫a h�{↵0/↵}, 0i. Then

C1
app↵�! ⌫a h� ] { 7!↵0} ] {↵}, 0i
app �! ⌫a h� ] { 7!↵0} ] {↵}, app↵0i
app↵0�! ⌫a h� ] { 7!↵0} ] {↵}, 0i ⌫↵7! C02

Proposition 6.10. If C1 ⌫↵7! C2
⌧�! C02 then there exists C01 such that one of the

following is true:

(i) C1
⌧�! C01 ⌫↵7! C02, or

(ii) C1
app↵�! app �! ⌧�! C01 ⌫↵7! C02.

Proof. By induction on the transition C2
⌘�! C02, where ⌘ = ⌧. Cases Comm-Name-

Trans and Comm-Proc-Trans follow by Proposition 6.8; cases Cond-True-Trans,
Cond-False-Trans, Rec-Trans, and Nu-Trans follow easily by the distribution of sub-
stitution over language constructors; case Par-L-Trans (and its symmetric) follow by
the induction hypothesis. For case App-Trans we need to consider two cases:

(i) C1 = ⌫a h� ] { 7!V} ] {↵}, app �Pi and C2 = ⌫a h�{V/↵}, app �P{V/↵}i and
C02 = ⌫a h�{V/↵}, P{V/↵}i. Then

C1
⌧�! ⌫a h� ] { 7!V} ] {↵}, Pi ⌫↵ 7! C02

(ii) C1 = ⌫a h� ] { 7!�P} ] {↵}, app↵i and C2 = ⌫a h�{�P/↵}, app↵{�P/↵}i
and C02 = ⌫a h�{�P/↵}, Pi = ⌫a h�{�P/↵}, P{�P/↵}i (because by definition
of (�↵7!), ↵ < acon(P)). Then

C01
app↵�! ⌫a h� ] { 7!�P} ] {↵}, 0i
app �! ⌫a h� ] { 7!�P} ] {↵}, app �Pi
⌧�! ⌫a h� ] { 7!�P} ] {↵}, Pi ⌫↵ 7! C2

The following proposition shows that the inverse substitution relation (�↵7!) pre-
serves transitions, but converts pairs of app↵, app  to ⌧-transitions.

Proposition 6.11. Let C1 �↵7! C2.

(i) If C2
⌘�! C02, ⌘ , app↵, and ⌘ , app  then there exists C01 such that C1

⌘�!
C01 �↵7! C02.
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(ii) If C2
app↵�!app �! C02 then C1 �↵7! =̂ C02

(iii) If C2
⌘
=) C02, ⌘ , app↵, and ⌘ , app  then there exists C01 such that C1

⌘
=)

C01 �↵7! C02.

(iv) If C2
app↵
=)app =) C02 then there exists C01 such that then C1

⌧
=) C01 �↵ 7! =̂ C02

Proof. The first property can be shown by induction on the transition C2
⌘�! C02. The

second property follows by Propositions 3.4 (v) and (vi). The third is a consequence of
(i) and the fourth a consequence of (i), (ii), Corollary 3.5 and Proposition 4.3.

The preceding propositions in this section show that the substitution relation (⌫↵ 7!)
preserves transitions, up to pairs of app↵ and app  transitions.

We extend this result to an arbitrary number of substitutions. To do that we use �
to range over ordered substitution environments that map abstract to concrete constants
and are bijections; i.e. for all ↵,↵0 2 dom(�), ↵ = ↵0 i↵ �(↵) = �(↵0). We then define
the relation (⌫�) over configurations:

Subst-✏

C ⌫✏ C

Subst-id
C ⌫� C0

C ⌫↵7!,� C0

Subst-↵
C ⌫↵7! C00 C00 ⌫� C0

C ⌫↵7!,� C0

We also extend this relation to relate traces of the form

(app↵1, app 1, . . . app↵n, app n, ⌘)

with the single action ⌘:

SubstTr-✏⌘

⌘ ⌫✏ ⌘

SubstTr-id
t ⌫� ⌘ ↵ < acon(⌘),  < ccon(⌘)

t ⌫↵7!,� ⌘

SubstTr-↵
t ⌫� ⌘ ↵ < acon(⌘),  < ccon(⌘)

app↵, app , t ⌫↵7!,� ⌘

Proposition 6.12. If C1 ⌫� C2
⌘�! C02 and dom(�)\acon(⌘) = codom(�)\ccon(⌘) = ;

then there exists C01, t such that t ⌫� ⌘ and C1
t�! C01 ⌫� C02.

Proof. By induction on C1 ⌫� C2, using Corollary 6.7 and Propositions 6.8 – 6.10.

Proposition 6.13. If C1 �� C2
t�! C02 and t ⌫� ⌘ then there exists C01 such that

C1
⌘�! C01 =̂�� C02.

Proof. By induction on C1 �� C2. Case Subst-✏ is trivial and Subst-id follows by the
induction hypothesis. For Subst-↵ we proceed by cases on t ⌫↵ 7!,� ⌘: case SubstTr-
✏⌘ is vacuously true; case SubstTr-id follows by Proposition 6.11 (i) and the induction
hypothesis; case SubstTr-↵ follows by Proposition 6.11 (i) and (ii), Corollary 6.7,
and the induction hypothesis.
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To handle weak transitions of weak bisimilarity we need to state the last proposition
for weak traces. The proof is similar to the one above, using Proposition 6.11 (iii) and
(iv).

Proposition 6.14.

(i) If C1 �� C2
t
=) C02 and t ⌫� ⌘ , ⌧ then there exists C01 such that

C1
⌘
=) C01 =̂�� C02

(ii) If C1 �� C2
t
=) C02 and (t, ⌧) ⌫� ⌧ then there exists C01 such that

C1
⌧
=) C01 =̂�� C02

Although we will not use this result directly, it is easy to show that weak bisimilar-
ity is preserved by substitution of abstract constants with values indexed by concrete
constants.

Proposition 6.15. (�� ⇡⌫�) ✓ (⇡).

Proof. We have that (�� ⇡⌫�) ✓ (=̂�� ⇡⌫� =̂) and show that (=̂�� ⇡⌫� =̂) satisfies the
conditions for a weak bisimulation using Propositions 4.3, 6.12, and 6.14, and the fact
that (⇡) is a weak bisimulation.

6.4. Parallel Contexts

Here our intention is to show that

P ' P0 implies P | Q ' P0 | Q (*)

for any Q. That is (') satisfies property (iii) of Definition 2.7. However, the proof
requires a generalisation of (*) to arbitrary configurations.

We define the partial function · kc · that composes two well-formed component
configurations into one well-formed composite configuration. The names c are names
shared in the knowledge environments of the component configurations but are locally
bound in the composite configuration.

Definition 6.16 (Configuration Composition). If the configurations ⌫a h�1 ] {c}, Pi,
⌫b h�2 ] {c}, Qi and ⌫a, b, c h�1 [ �2, P | Qi are well-formed then

⌫a h�1 ] {c}, Pi kc ⌫b h�2 ] {c}, Qi def
= ⌫a, b, c h�1 [ �2, P | Qi

The vector c records the names that were sent via first-order communication from
one component configuration to the other but are not in the knowledge of the observer
of the composite configuration.

Parallel composition of configurations is preserved by (⇡), provided the bisimilar
configurations have the same names in their knowledge environment.
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Proposition 6.17. Let C1 kc C2 be defined and for i = 1, 2, Ci ⇡ C0i and names(Ci) =

names(C0i). Then C01 k
c C02 is defined.

Proof. By Definition 6.16 and because names(Ci) = names(C0i), for i = 1, 2, the names

c are in knowledge environments of C01 and C02. It remains to show that C01 k
c C02

is a well-formed configuration. The union of the knowledge environments of C01 and
C02 is a valid knowledge environment because by Lemma 4.6 ccon(Ci) = ccon(C0i),
for i = 1, 2, and the union of the knowledge environments of C1 and C2 is a valid

knowledge environment. The rest of the conditions for C01 k
c C02 being a well-formed

configuration are easily established.

We will compose two configurations in parallel and then replace abstract variables
in one with values indexed by concrete variables in the other through the relation (⌫�),
for a compatible substitution environment �.

Definition 6.18. (Compatible Substitution Environment) A substitution environment �

is compatible to a configuration composition ⌫a h�1, Pi kc ⌫b h�2, Qi when �(↵) = 
implies either

(i) ↵ 2 �1, ↵ < �2,  2 dom(�2),  < dom(�1), or

(ii) ↵ 2 �2, ↵ < �1,  2 dom(�1),  < dom(�2).

The substitution environment records the higher-order communications between
the component configurations, hence the ↵ and  in each binding of � will be part of
di↵erent component configurations. As the composite configuration progresses with ⌧-
transitions due to higher-order communication, the necessary substitution environment
may grow. The properties of substitution from the previous section will help us to map
these transitions to transitions of the component configurations and back.

We now define the closure operator (·)par of a relation under parallel contexts and
substitution of abstract variables. We aim to show that (⇡)par is contained in (⇡), from
which (*) will follow.

Definition 6.19 (Parallel Context Closure of a Relation). If R is a relation on well-
formed configurations of the LTS then Rpar is the relation on well-formed configura-
tions defined by:

Rpar

def
= {(C,C0) | 9C1,C2,C01,C02, �, c. C1 R C01, C2 R C02

C1 kc C2 ⌫� C, C01 k
c C02 ⌫� C0

acon(C1) = acon(C01), names(C1) = names(C01)
acon(C2) = acon(C02), names(C2) = names(C02)

� is compatible to C1 kc C2}

The important part of this definition is closure under parallel composition. As
we discussed earlier, the closure under the substitution relation (⌫�) is necessary to
deal with higher-order communication between the component configurations of the
composition.
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Before showing that (⇡)par ✓ (⇡), we reason about the transitions of parallel com-
position. We first show that observable transitions of the composite configuration are
the result of the interleaving of transitions of the component configurations.

Proposition 6.20. If C1 kc C2
⌘�! C3, with ⌘ , ⌧, then for {d} = {c} \ exp(⌘), either

(i) there exists C01 such that C3 = C01 k
d C2 and C1

⌘�! C01 and C01 k
d C02, or

(ii) there exists C02 such that C3 = C1 kd C02 and C2
⌘�! C02 and C01 k

d C02.

Proof. We start by observing that C1 kc C2
⌘�! C3 can only be derived by rule Par-L-

Trans of Figure 5 or its symmetric. We then take cases on ⌘ and complete the proof
using Propositions 3.4, 3.6 (ii), 3.7 (i), and 3.8.

Internal transitions of the composite configuration may be the result of interleaving
of internal transitions of, or communication between, the components.

Proposition 6.21. If C1 kc C2
⌧�! C3 then either

(i) there exists C01 such that C3 = C01 k
c C2 and C1

⌧�! C01,

(ii) there exist C01, C02, and d such that C3 = C01 k
d C02 and C1

a!b�! C01 and C2
a?b�! C02

and if C1 = ⌫b, b h�, Pi then {d} = {c} [ {b} else d = c,

(iii) there exist ↵,  2 fresh(C1,C2), C01, and C02 such that C01 k
c C02 ⌫↵7! C3 and

C1
a!�! C01 and C2

a?↵�! C02,

or the symmetric of one of the above conditions.

Proof. By cases onC1 kc C2
⌧�! C3 using Propositions 3.4, 3.6 (ii), 3.7 (i), and 3.8. For

case Par-L-Transwe show (i); for cases Comm-Name-Trans and Comm-Proc-Transwe
show (ii) and (iii), respectively. Similarly we prove the symmetric cases.

We now prove that all interleavings of component transitions correspond to a tran-
sition of the composite configuration. Similarly, communication between the com-
ponents corresponds to a ⌧-transition of the composite configuration. The next three
propositions follow by Propositions 3.4, 3.6 (i), 3.7 (ii), and 3.8.

Proposition 6.22. If C1 kc C2 and C1
⌘�! C01 and C01 k

d C2 then C1 kc C2
⌘�! C01 k

d C2,
with {d} = {c} \ exp(⌘).

Proposition 6.23. Let C1 kc C2 and C1
a!b�! C01 and C2

a?b�! C02. Then C1 kc C2
⌧�!

C01 k
d C02 and if C1 = ⌫b, b h�, Pi then {d} = {c} [ {b} else d = c.

Proposition 6.24. Let C1 kc C2 and C1
a!�! C01 and C2

a?↵�! C02 and ↵,  2 fresh(C1,C2).

Then C1 kc C2
⌧�!�↵7! C01 k

c C02.
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By the preceding propositions we can derive similar ones for weak transitions.

Proposition 6.25. If C1 kc C2 and C1
⌘
=) C01 and C01 k

c C2 then C1 kc C2
⌘
=) C01 k

d C2,
with {d} = {c} \ exp(⌘).

Proposition 6.26. Let C1 kc C2 and C1
a!b
=) C01 and C2

a?b
=) C02. Then C1 kc C2

⌧
=)

C01 k
d C02 and if C1 = ⌫b, b h�, Pi then {d} = {c} [ {b} else d = c.

Proposition 6.27. Let C1 kc C2 and C1
a!
=) C01 and C2

a?↵
=) C02 and ↵,  2 fresh(C1,C2).

Then C1 kc C2
⌧
=)�↵7! C01 k

c C02.

We can now prove that (⇡)par ✓ (⇡) and derive the soundness of our technique.2

Theorem 6.28 (Parallel Context Closure of (⇡)). (⇡)par ✓ (⇡).

Proof. We will show that (⇡)par is a weak bisimulation. Let C1 ⇡par C6 and C1
⌘�! C01.

By Definition 6.19, there exist C2, C3, C4, C5, � and c such that � is compatible to

C2 kc C3, acon(C2) = acon(C4), names(C2) = names(C4), acon(C3) = acon(C5),
names(C3) = names(C5), and

C1 �� C2 kc C3 C2 ⇡ C4 C3 ⇡ C5 C4 kc C5 ⌫� C6

The constants in � do not appear in C1 and C01. Moreover, (⇡) is equivariant for concrete
constants (Lemma 4.7) and, because of the definition of (�)par, here we consider only
a fragment of (⇡) which is equivariant also for abstract constants; that is the fragment
that relates configurations with the same acon components (Lemma 4.8). Therefore
we can always pick a � such that dom(�) \ acon(⌘) = ;, codom(�) \ ccon(⌘) = ;.
Hence we can apply Proposition 6.12 and derive that there exist C0 and t ⌫� ⌘ such that

C2 kc C3
t�! C0 ⌫� C01.

2An alternative method for proving preservation of weak bisimulation by parallel contexts is by defining
the following weak bisimulation up to substitution, prove its soundness w.r.t. weak bisimulation, and show

that {(C1 kc C2, C01 k
c C02) | C1 ⇡ C01, C2 ⇡ C02, acon(Ci) = acon(C0i ), names(Ci) = names(C0i )} is a weak

bisimulation up to substitution. This proof strategy would not require the definition of the relation (⌫�) and
Propositions 6.12 – 6.14 but it would require a proof of soundness of the up-to technique.

Definition. R is a weak bisimulation up to substitution if for all C R C0:
1. C{↵1/↵2} R C0{↵1/↵2} and C{1/2} R C0{1/2}

2. If ⌘ , ⌧ and C ⌘�! C1 then there exists C01 such that C0
⌘
=) C01 and C1 R C01.

3. If C ⌧�! C1 then there exist C01 such that C0 ⌧
=) C01 and C1 R C01 or C1 �↵7! R ⌫↵7! C01, for some

↵ and .

4. The converse of (2) and (3).
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By Proposition 6.14, it su�ces to show that there exist C02, C03, C04, C05, C00, �0, and d

such that �0 is compatible to C02 k
d C03, acon(C02) = acon(C04), names(C02) = names(C04),

acon(C03) = acon(C05), names(C03) = names(C05), and

C0 ��0 C02 kd C03 C02 ⇡ C04 C03 ⇡ C05 C04 kd C05 ⌫�0 C00 C4 kc C5
t
=) C00

We proceed by induction on t ⌫� ⌘.

Case SubstTr-✏⌘: ⌘ ⌫✏ ⌘. We proceed by cases on ⌘.
⌥ ⌘ , ⌧: we take �0 = ✏ and {d} = {c} \ exp(⌘) and apply Proposition 6.20 which

gives us that there exists C02 such that

C0 �✏ C02 kd C3 C2
⌘�! C02 C02 kd C03

or the symmetric property. We prove only the first case; the proof of the symmetric
case is similar. By C2 ⇡ C4, there exists C04 such that C4

⌘
=) C04 and C02 ⇡ C04. By

Proposition 6.17 C04 k
d C5 and by Proposition 6.25 we get C00 such that

C04 kd C5 ⌫✏ C00 C4 kc C5
⌘
=) C00

Moreover, we can derive acon(C02) = acon(C04) and names(C02) = names(C04) by cases
on the transition and using Proposition 3.4.

⌥ ⌘ = ⌧: by Proposition 6.21 we get the following cases (and their symmetric):

(i) There exists C02 such that

C0 �✏ C02 kc C3 C2
⌧�! C02

This case is completed similar to the case for ⌘ , ⌧, taking �0 = ✏, d = c, using
Propositions 6.17 and 6.25.

(ii) There exist C02, C03, and d such that

C0 �✏ C02 kd C03 C2
a!b�! C02 C3

a?b�! C03

and if C2 = ⌫b, b h�, Pi then {d} = {c}[ {b} else d = c. By C2 ⇡ C4 and C3 ⇡ C5,

there exist C04 and C05 such that C4
a!b
=) C04, C5

a?b
=) C05, C02 ⇡ C04, and C03 ⇡ C05. By

Proposition 6.26 we get C00 such that

C04 kd C05 ⌫✏ C00 C4 kc C5
⌧
=) C00

Moreover, by Proposition 3.4, we can derive acon(C02) = acon(C04), names(C02) =
names(C04), acon(C03) = acon(C05), and names(C03) = names(C05).
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(iii) There exist ↵,  2 fresh(C2,C3), C02, and C03 such that

C0 �↵ 7! C02 kc C03 C2
a!�! C02 C3

a?↵�! C03

By C2 ⇡ C4 and C3 ⇡ C5, there exist C04 and C05 such that C4
a!
=) C04, C5

a?↵
=) C05,

C02 ⇡ C04, and C03 ⇡ C05. Because acon(C2) = acon(C4), acon(C3) = acon(C5),
and acon(C2) = acon(C4) acon(C3) = acon(C5) (by Proposition 4.6) we have
↵,  2 fresh(C4,C5). Thus, by Proposition 6.27 we get C00 such that

C04 kc C05 ⌫↵7! C00 C4 kc C5
⌧
=) C00

Moreover, by Proposition 3.4, we can derive acon(C02) = acon(C04), names(C02) =
names(C04), acon(C03) = acon(C05), and names(C03) = names(C05).

Case SubstTr-id: � = ↵ 7!, �0, t ⌫�0 ⌘, ↵ < acon(⌘),  < ccon(⌘). This case follows
directly by the induction hypothesis on t ⌫�0 ⌘.

Case SubstTr-↵: � = ↵ 7!, �0, t = app↵, app , t0, t0 ⌫�0 ⌘, ↵ < acon(⌘),  <
ccon(⌘). By definition of compatible substitution environment (Definition 6.18) we
have that the transitions app↵ and app  will be performed by the configurations C2
and C3, respectively, or vice-versa. Hence, by Proposition 6.20, we have

C2 kc C3
app↵�! C2 kc C03

app �! C02 kc C03
t�! C0 C2

app↵�! C02 C3
app �! C03

By Propositions 6.25, C2 ⇡ C4, and C3 ⇡ C5, there exist C04, and C05 such that

C4
app↵
=) C04 kc C5

app 
=) C04 kc C05 C02 ⇡ C04 C03 ⇡ C05

The proof is completed by applying the induction hypothesis at t0 ⌫�0 ⌘.

Corollary 6.29 (Parallel Context Closure of (')). If P ' P0 then for any process Q,
Q | P ' Q | P0.
Proof. By the premise and Definition 4.9, there exist b such that h{b}, Pi ⇡ h{b}, P0i.

Let Q be a process with fn(Q) ✓ {n}. By Lemma 4.13, h{b}[{n}, Pi ⇡ h{b}[{n}, P0i
and h{b} [ {n},Qi ⇡ h{b} [ {n},Qi. By Definition 6.19, h{b} [ {n},Q | Pi (⇡)par h{b} [
{n},Q | P0i, and by Theorem 6.28 h{b} [ {n},Q | Pi ⇡ h{b} [ {n},Q | P0i, Hence, by
Definition 4.9, Q | P ' Q | P0.

Theorem 6.30 (Soundness). (') ✓ (�pcxt).

Proof. In Propositions 6.4 and 6.3 and Corollary 6.29 we have shown that (') preserves
barbs, is reduction-closed, and preserves parallel contexts. Thus (') is included in the
largest relation with these properties, namely (�pcxt).

7. Completeness of Weak Bisimilarity

Here we prove that (�pcxt) is included in ('). To do this we give a translation of
LTS configurations into concrete processes.
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7.1. Concretion of Configurations
We start with the definition of the translation of LTS configurations to concrete

processes.

Definition 7.1 (Concretion). Let ⌫a h�, Pi be a well-formed configuration, and f bi-
jection that assigns fresh names (w.r.t. names(�) and a) to the abstract and concrete
constants in �. Then the concretion of P, �, and a configuration are defined as follows:

P� f def
= P{(�c?.0)/↵} where f (↵i) = ci, for all i

�
�

f def
=

Y

�()=V, f ()=c

⇤(c?.appV� f )

⌫a h�, Pi� f def
= ⌫a (�

�
f | P� f )

The purpose of the concretion of a configuration is to simulate the handling of
higher-order inputs and outputs in the LTS. When the abstract process applies a higher-
order value that has been provided by the context the LTS simply raises a signal to
the observer. The corresponding concrete process signals the observer via a commu-
nication on a unique global channel. Similarly, at any point in the execution, the LTS
allows the observer to run a value that has been provided by the process (and is indexed
in the environment of the configuration). The corresponding concrete process allows
the same behaviour by exposing a service listening on a global channel; communication
on the channel runs the value.

Because abstract and concrete constants are mapped to unique global channels by
f , there is no possibility of interaction between the signal due to the application of an
abstract constant and a service corresponding to a concrete constant. We emphasize
this by using only inputs prefixes in the concretion of a configuration.

We now show that the reductions of translated LTS configurations are simulated by
⌧-transitions of the configurations.

Lemma 7.2. If P� f ⌘ Q then there exists Q0 such that Q = Q0
�

f and that P ⌘ Q0.

Proof. By induction on the height of the derivation tree P� f ⌘ Q.

Lemma 7.3. If �, x : t `P� f : OK and `V� f : t then � `P� f {(V� f )/x} = P{V/x}� f : OK.

Proof. By induction on the height of the derivation tree �, x : t ` P� f : OK.

Lemma 7.4. If ⌫a.P� f ! Q and ⌫a h�, Pi is well-formed then exactly one of the
following is true:

(i) there exist b and Q0 such that

Q ⌘ ⌫b.Q0
�

f ⌫a h�, Pi ⌧
=) ⌫b h�, Q0i

(ii) there exist b, Q0, and c such that

Q ⌘ ⌫b.Q0
�

f | c?.0 ⌫a h�, Pi ⌧
=) ⌫b h�, Q0 | app↵i f (↵) = c

44



Proof. By induction on the height of the derivation tree P� f ! Q, using Proposi-
tion 4.11 and Lemmas 7.2 and 7.3.

Proposition 7.5. If ⌫a h�, Pi� f ! Q then exactly one of the following is true:

(i) there exist b and Q0 such that

Q ⌘ ⌫b h�, Q0i
�

f ⌫a h�, Pi ⌧
=) ⌫b h�, Q0i

(ii) there exist b, Q0, and c such that

Q ⌘ ⌫b h�, Q0i
�

f | c?.0 ⌫a h�, Pi ⌧
=) ⌫b h�, Q0 | app↵i f (↵) = c

Proof. Because �
�

f can not take any steps or communicate with P� f , it must be that
for some Q1

⌫a h�, Pi� f ! ⌫a. (�� f | Q1) ⌘ Q ⌫a.P� f ! ⌫a.Q1

and by Lemma 7.4 there exist b and Q0 such that

⌫a.Q1 ⌘ ⌫b.Q0
�

f ⌫a h�, Pi ⌧
=) ⌫b h�, Q0i

or there exist b, Q0, and c such that

⌫a.Q1 ⌘ ⌫b.Q0
�

f | c?.0 ⌫a h�, Pi ⌧
=) ⌫b h�, Q0 | app↵i f (↵) = c

By Proposition 3.4 (v) and (vii) we have that {a} ✓ {b} in both cases. Hence, either

Q ⌘ ⌫b. (�� f | Q0
�

f ) ⌘ ⌫b h�, Q0i
�

f ⌫a h�, Pi ⌧
=) ⌫b h�, Q0i

or there exist b, Q0, and c such that

Q ⌘ ⌫b. (�� f | Q0
�

f ) | c?.0 ⌘ ⌫b h�, Q0i
�

f | c?.0

⌫a h�, Pi ⌧
=) ⌫b h�, Q0 | app↵i f (↵) = c

From the above we conclude that reductions of translated configurations correspond
to ⌧-transitions of the original configurations, possibly accumulating several app↵ pro-
cesses.

Corollary 7.6. If ⌫a h�, Pi� f !⇤ Q then there exist b, c,↵, Q0 such that

Q ⌘ ⌫b h�, Q0i
�

f |
Y

ci2{c}

ci?.0 ⌫a h�, Pi ⌧
=) ⌫b h�, Q0 |

Y

↵i2{↵}

app↵ii f (↵i) = ci

Conversely, ⌧-transitions of configurations correspond to (zero or one) reductions
of their corresponding translations.
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Proposition 7.7. If ⌫a h�, Pi ⌧�! ⌫b h�, Qi then one of the following holds.

(i) ⌫a h�, Pi� f ⌘ ⌫b h�, Qi� f , or

(ii) ⌫a h�, Pi� f ! ⌫b h�, Qi� f .

Proof. By rule induction.

In what follows we will use an eta-expansion lemma:

Lemma 7.8. P �pcxt app �P

Proof. By considering the smallest relation on configurations containing the identity
and satisfying the axiom P = app �P, and by showing that it is a weak bisimulation.

7.2. Completeness
The completeness proof is based on the fact that the following relation on configu-

rations is a weak bisimulation.

Definition 7.9 (X).

X def
= {(⌫a h�, Pi, ⌫a0 h�0, P0i) | 9 f . ⌫a h�, Pi� f �pcxt ⌫a0 h�0, P0i

�
f }

First we show that X is closed under ⌧-transitions.

Proposition 7.10. If ⌫a h�, Pi X ⌫a0 h�0, P0i and ⌫a h�, Pi ⌧�! ⌫b h�, Qi then there
exist b0 and Q0 such that

⌫a0 h�0, P0i ⌧
=) ⌫b0 h�0, Q0i ⌫a h�, Qi X ⌫a0 h�0, Q0i

Proof. By the first premise and Definition 7.9 we get that there exists f such that

⌫a h�, Pi� f �pcxt ⌫a0 h�0, P0i
�

f (5)

By the second premise and Proposition 7.7, either ⌫a h�, Pi� f ⌘ ⌫b h�, Qi� f , or
⌫a h�, Pi� f ! ⌫b h�, Qi� f . In the former case the proof is completed because, by
Proposition 4.11 and Theorem 6.30, (⌘) ✓ (') ⇢ (�pcxt), hence ⌫b h�, Qi� f �pcxt

⌫a0 h�0, P0i� f and ⌫b h�, Qi X ⌫a0 h�0, P0i. In the latter case, by (5) and Defini-
tion 2.7, we have that there exists Q0 such that

⌫a0 h�, P0i� f !⇤ Q0 (6)

⌫b h�, Qi� f �pcxt Q0 (7)

By (6) and Corollary 7.6, there exist b0, c,↵, and Q00 such that f (↵) = c and

Q0 ⌘ ⌫b0 h�0, Q00i
�

f |
Y

c2{c}

c?.0 (8)

⌫a0 h�0, P0i ⌧
=) ⌫b0 h�0, Q00 |

Y

↵2{↵}

app↵i
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By (7), (8), the fact that (⌘) ✓ (') ⇢ (�pcxt), and Lemma 7.8 we have

⌫b h�, Qi� f �pcxt ⌫b0 h�0, Q00i
�

f | Q
c2{c} c?.0

�pcxt ⌫b0 h�0, Q00i
�

f | Q
c2{c} app �c?.0

= ⌫b0 h�0, Q00 |
Q
↵2{↵} app↵i

�
f

thus

⌫b h�, Qi X ⌫b0 h�0, Q00 |
Y

↵2{↵}

app↵i

Proposition 7.11. If ⌫a h�1, Pi X ⌫a0 h�01, P0i and for some ⌘ , ⌧, ⌫a h�1, Pi
⌘�!

⌫b h�2, Qi then there exist b0, �02, and Q0 such that

⌫a0 h�01, P0i
⌘
=) ⌫b0 h�02, Q0i ⌫b h�2, Qi X ⌫b0 h�02, Q0i

Proof. We proceed by cases on ⌘.

Case ⌘ = app↵: By the second premise and Proposition 3.4 (v),

�1 = �2 P =̂ Q | app↵ {a} = {b}

Thus by the first premise and Definition 7.9 we get that there exists f such that

⌫a h�1, Q | app↵i
�

f �pcxt ⌫a0 h�01, P0i
�

f

Because (�pcxt) preserves parallel contexts we pick the context C = [·] | c!.0, where
f (↵) = c. We have

⌫a h�1, Q | app↵i
�

f | c!.0 = ⌫a h�1, Qi
�

f | app �c?.0 | c!.0
�pcxt ⌫a0 h�01, P0i

�
f | c!.0

Thus, by Definition 2.7 and because

⌫a h�1, Qi
�

f | app �c?.0 | c!.0!⇤ ⌫a h�1, Qi
�

f ⌫a h�1, Qi
�

f ��+c

there must be Q0 such that

⌫a0 h�01, P0i
�

f | c!.0!⇤ Q0 Q0 ��+c

⌫a h�1, Qi
�

f �pcxt Q0 (9)

Therefore, there exists Q01 such that

⌫a0 h�01, P0i
�

f !⇤ Q01 | c?.0

⌫a0 h�01, P0i
�

f | c!.0!⇤ Q01 | c?.0 | c!.0!⇤ Q01 !⇤ Q0 (10)
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and by Corollary 7.6 there exist b0, c,↵, Q00 such that f (↵i) = ci and

Q01 | c?.0 ⌘ ⌫b0 h�01, Q00i
�

f | c?.0 |
Y

ci2{c}

ci?.0 (11)

⌫a0 h�01, P0i
⌧
=) ⌫b0 h�01, Q00 | app↵ |

Y

↵i2{↵}

app↵ii (12)

By (10) and (11),

⌫b0 h�01, Q00i
�

f |
Y

ci2{c}

ci?.0!⇤ Q0

and thus

⌫b0 h�01, Q00 |
Y

↵i2{↵}

app↵ii
�

f !⇤ ⌫b0 h�01, Q00i
�

f |
Y

ci2{c}

ci?.0!⇤ Q0

By Corollary 7.6 there exist d0, c0,↵0, Q02 such that f (↵0i) = c0i and

Q0 ⌘ ⌫d0 h�01, Q02i
�

f |
Y

c0i2{c0}

c0i?.0 (13)

⌫b0 h�01, Q00 |
Y

↵i2{↵}

app↵ii
⌧
=) ⌫d0 h�01, Q02 |

Y

↵0i2{↵0}

app↵0ii (14)

Hence by (12) and (14)

⌫a0 h�01, P0i
⌧
=) ⌫b0 h�01, Q00 | app↵ |

Q
↵i2{↵}

app↵ii
app↵�! ⌫b0 h�01, Q00 | 0 |

Q
↵i2{↵}

app↵ii
⌧
=) ⌫d0 h�01, Q02 | 0 |

Q
↵0i2{↵0}

app↵0ii

Furthermore, by (9) and (13), the fact that (⌘) ✓ (') ⇢ (�pcxt), and Lemma 7.8 we have

⌫a h�1, Qi
�

f �pcxt ⌫d0 h�01, Q02i
�

f | Q
c0i2{c0}

c0i?.0

�pcxt ⌫d0 h�01, Q02i
�

f | Q
c0i2{c0}

app �c0i?.0

= ⌫d0 h�01, Q02 | 0 |
Q
↵0i2{↵0}

app↵0ii
�

f

Hence,

⌫a h�1, Qi X ⌫d0 h�01, Q02 | 0 |
Y

↵0i2{↵0}

app↵0ii

The rest of the cases are proved similarly using the following contexts (in which r
is a fresh channel):

48



• For ⌘ = c!n we use the context

c?(x).if x= n then (r!.0 | r?.0) else 0

when n 2 names(�1), and

c?(x).if x 2 names(�1) then 0 else (r!.0 | r?.0)

otherwise. Here if x 2 names(�1) then P elseQ is expressible in terms of
if x= ni then P elseQ because names(�1) is a finite set of names. Moreover,
r is a barb of the context in parallel with the process. After the communication
between the process and the context on c and the communication on r it is no
longer a barb—in this way we “force” the communication on channel c.

• For ⌘ = c?n we use the context

c!hni.(r!.0 | r?.0)

• For ⌘ = c! we use the context

c?(X).(⇤(cfr?.app X) | r!.0 | r?.0)

where cfr is a fresh name.

• For ⌘ = c?↵ we use the context

c!h�cfr?.0i.(r!.0 | r?.0)

where cfr is a fresh name.

• For ⌘ = app  we use the context

c!.0

and a concretion function with f () = c.

Proposition 7.12. X is a weak bisimulation.

Proof. By Propositions 7.10 and 7.11 and by symmetry, X satisfies the conditions of
Definition 4.4 for a weak bisimulation.

Theorem 7.13 (Completeness). (�pcxt) ✓ (').

Proof. If P �pcxt P0 then for names n ✓ fn(P, P0) we have

P = h{n}, Pi�; �pcxt h{n}, P0i
�; = P0

By Definition 7.9 h{n}, Pi X h{n}, P0i and by Proposition 7.12, h{n}, Pi ⇡ h{n}, P0i.
Thus, by Definition 4.9, P ' P0.
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8. Full Barbed Congruence

In this section we study reduction-closed barbed congruence (�cxt) with arbitrary
contexts. By the definitions of (�pcxt) and (�cxt) (Definitions 2.7 and 8.2) and Theo-
rem 7.13 we have that

(�cxt) ✓ (�pcxt) ✓ (')

We show that weak bisimilarity implies reduction-closed barbed congruence ((') ✓
(�cxt)) and therefore, as with the first-order ⇡-calculus, parallel contextual equivalence
coincides with reduction-closed barbed congruence for pp-⇡.

This property of bisimilarity is particularly useful because it means that it is a full
congruence. In Sections 5.2 and 5.3 we used this fact to factor out the common repli-
cation context ⇤(�) of related processes, and therefore reduce the complexity of the
bisimulation proofs.

First we give the definition for contexts.

Definition 8.1 (Contexts). A context K is derived from the following grammar:

K ::= [·] | 0 | VK!hVK :ti.K | VK?(x:t).K | K | K
| ⌫n.K | appVK | ⇤(K) | ifVK =VK thenK elseK

VK ::= x | �K | n | ↵

We write K[P] (resp. VK[P]) to mean the replacement of all holes in K (resp. VK)
with P. We write K and VK when contexts are derived by a core syntax that does not
contain abstract constants ↵.

Definition 8.2 (Reduction-Closed Barbed Congruence (�cxt)). (�cxt) is the largest con-
gruence on closed processes that preserves barbs and is reduction closed; i.e. P �cxt P0

if and only if

(i) Barb preserving: for all b, P +b i↵ P0 +b,

(ii) Reduction closed: for all P1 with P! P1 there exists P01 such that P0 !⇤ P01 and
P1 �cxt P01, and vice-versa, and

(iii) Preserves contexts: for all K, K[P] �cxt K[P0].

The conditions of (�cxt) are stronger than those of (�pcxt), hence the following
Proposition.

Proposition 8.3. (�cxt) ✓ (�pcxt).

We will show that (') ✓ (�cxt). As we proved in Section 6.2, (') is reduction-closed
and barb-preserving. Therefore it su�ces to show that (') preserves contexts.

Proposition 8.4. Let h{↵, n}, Pi ⇡ h{↵, n}, P0i and V and Q are closed well-typed
terms using names from n. Then:

(i) h{↵, n}, P | Qi ⇡ h{↵, n}, P0 | Qi
(ii) h{↵, n}, ⌫ni.Pi ⇡ h{↵, n}, ⌫ni.P0i
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(iii) h{↵, n}, app �Pi ⇡ h{↵, n}, app �P0i
(iv) h{↵, n}, if ni = n j thenP elseQi ⇡ h{↵, n}, if ni = n j thenP0 elseQi
(v) h{↵, n}, if ni = n j thenQ elsePi ⇡ h{↵, n}, if ni = n j thenQ elseP0i

(vi) h{↵, n}, c?(x:Nm).P{x/b}i ⇡ h{↵, n}, c?(x:Nm).P0{x/b}i
(vii) h{↵, n}, c?(x:Pr).P{x/↵}i ⇡ h{↵, n}, c?(x:Pr).P0{x/↵}i

(viii) h{↵, n}, c!h�P:Pri.Qi ⇡ h{↵, n}, c!h�P0:Pri.Qi
(ix) h{↵, n}, c!hV:ti.Pi ⇡ h{↵, n}, c!hV:ti.P0i
(x) h{↵, n}, ⇤(P)i ⇡ h{↵, n}, ⇤(P0)i

Proof. We prove each property separately:

(i) By Theorem 6.28, using that h{n}, Qi ⇡ h{n}, Qi.
(ii) By Lemma 4.14, ⌫ni h{↵, n} \ {ni}, Pi ⇡ ⌫ni h{↵, n} \ {ni}, P0i. This congruence

property follows by Lemmas 4.16 and 4.13.
(iii) By proving that the relation

(⇡) [ {(h{↵, n}, app �Pi, h{↵, n}, app �P0i) |
h{↵, n}, Pi ⇡ h{↵, n}, P0i}

is a weak bisimulation.
(iv) Similar to (iii)
(v) Similar to (iii)

(vi) We first prove that renaming channels in the observer’s knowledge preserves
weak bisimulation by showing that the relation

{(⌫a h(�{m/b}) ] {m}, P{m/b}i, ⌫a0 h(�0{m/b}) ] {m}, P0{m/b}i) |
b < {a, a0} and ⌫a h�, Pi R ⌫a0 h�0, P0i}

is a weak bisimulation when R is a weak bisimulation. The property follows by
showing that the relation

(⇡) [ {(h{↵, n}, c?(x:Nm).P{x/b}i, h{↵, n}, c?(x:Nm).P0{x/b}i) |
c 2 {n} and h{↵, n}, Pi ⇡ h{↵, n}, P0i}

is a weak bisimulation.
(vii) Similar to (vi)

(viii) We consider the relation

J def
= {(⌫a h� [ {↵, n,  7!�P}, Qi, ⌫a0 h�0 [ {↵, n,  7!�P0}, Q0i) |

 fresh and ⌫a h�, Qi ⇡ ⌫a0 h�0, Q0i}

where P and P0 are given by the premise of the proposition. We show that it is a
weak bisimulation by cases on ⌘:
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⌥ ⌘ , app : We have:

⌫a h� [ {↵, n,  7!�P}, Qi ⌘�! ⌫b h�1 [ {↵, n,  7!�P0}, Q1i

By Proposition 3.6 (ii),

⌫a h�, Qi ⌘�! ⌫b h�1, Q1i

Because (⇡) is a weak bisimulation, there exist b0, �01, Q01 such that

⌫a0 h�0, Q0i ⌘
=) ⌫b0 h�01, Q01i ⌫b h�1, Q1i ⇡ ⌫b0 h�01, Q01i

By Proposition 3.6 (i),

⌫a0 h�0 [ {↵, n,  7!�P}, Q0i ⌘
=) ⌫b0 h�01 [ {↵, n,  7!�P0}, Q01i

and by definition of J,

⌫b h�1 [ {↵, n,  7!�P}, Q1i J ⌫b0 h�01 [ {↵, n,  7!�P0}, Q01i

⌥ ⌘ = app : We have:

⌫a h� [ {↵, n,  7!�P}, Qi app �! ⌫a h� [ {↵, n,  7!�P}, P | Qi
⌫a0 h�0 [ {↵, n,  7!�P0}, Q0i app �! ⌫a0 h�0 [ {↵, n,  7!�P0}, P0 | Q0i

By Theorem 6.28:

⌫a h�, P | Qi ⇡ ⌫a0 h�0, P0 | Q0i

and by definition of J:

⌫a h� ] { 7!�P}, P | Qi J ⌫a0 h�0 ] { 7!�P0}, P0 | Q0i

(ix) Similar to (viii)
(x) Similar to (viii) considering the relation:

J def
= {(⌫a h�, Q | ⇤(P)i, ⌫a0 h�0, Q0 | ⇤(P0)i) |

↵, n 2 � and ⌫a h�, Qi ⇡ ⌫a0 h�0, Q0i}

From the above theorem we conclude that (') preserves arbitrary contexts.

Theorem 8.5 (Compositionality). If P ' P0 then for any context K, K[P] ' K[P0].

Proof. We prove that for all K , h{↵, n}, K[P]i ⇡ h{↵, n}, K[P0]i by induction on the
size of K , using Theorem 8.4.
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We can now show that reduction-closed barbed congruence (�cxt) coincides with
parallel contextual equivalence (�pcxt) and weak bisimilarity (').

Theorem 8.6 (Coincidence of process equivalences). (�cxt) = (�pcxt) = (').

Proof. By the definitions of (�cxt) and (�pcxt) and Theorem 7.13 we have

(�cxt) ✓ (�pcxt) ✓ (')

It remains to show (') ✓ (�cxt).
In Propositions 6.4 and 6.3 and Theorem 8.5 we have shown that (') preserves

barbs, is reduction-closed, and preserves arbitrary contexts. Thus, (') is included in
the largest relation with these properties, namely (�cxt).

This latter result states that the observational power of arbitrary contexts can be ad-
equately captured by the very restricted class of parallel contexts. It also states that our
proof technique is both sound and complete with respect to the touchstone behavioural
equivalence (�cxt).

9. First-Order Processes

The first-order ⇡-calculus, from Chapter 1 of [22], can be considered to be a sub-
language of pp-⇡; let us refer to this sub-language as fo-⇡ and use p, q to range over
closed processes from fo-⇡. The more standard theory for this sub-language is given
in terms of the standard LTS in which the nodes are processes and the actions have
labels of the form c?n – input, c!n – free output, (⌫n) c!n – bound output, or ⌧ for
internal activity; note in particular the use of extrusion in the bound outputs. For these
first-order (closed) processes we have the following equivalences:

(i) p �cxt p0 from Definition 8.2: intuitively this means that the first-order processes
p and p0 can not be distinguished by any higher-order context.

(ii) p ' p0 from Definition 4.9: this means that processes p and p0 are weakly bisimi-
lar when viewed as (degenerate) configurations in the LTS described in Section 3.
Notice that the LTS generated by such first-order configurations only contains ac-
tions whose labels take the form c?n, c!n, or ⌧.

(iii) p 'fo p0: meaning that p and p0 are weakly bisimilar in the standard LTS alluded
to above, as given in [9, 22].

For the purpose of analysis let us now introduce a fourth [9].

Definition 9.1 (First-order p-contextual equivalence (�fo) ). (�fo) is the largest relation
on closed fo-⇡ processes that preserves barbs, is reduction closed, and is preserved by
first-order parallel contexts.

It is known from the literature that ('fo) coincides with (�fo) ([22], Chapter 2); we
show that (') also coincides with (�fo):

Theorem 9.2. In fo-⇡ p ' p0 if and only if p �fo p0
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Our LTSpp-⇡ fo-⇡ Std. LTS

'�cxt

�pcxt

�fo 'fo
Thm. 8.6

Thm. 6.30 & 7.13

Thm. 9.2
[22], Ch. 2

Figure 6: The big picture

Proof. (Outline) A very easy adaptation of Theorems 6.30 and 7.13. Note that for
the right-to-left direction we reuse the fo-⇡ contexts for first-order transitions in Theo-
rem 7.13.

The above theorem completes the link between contextual equivalence in pp-⇡ and
weak bisimilarity in the standard LTS for fo-⇡ as shown in Figure 6. We can now derive
the following interesting consequences:

Corollary 9.3. In fo-⇡,

(i) p ' p0 i↵ p 'fo p0

(ii) p 'fo p0 i↵ p �cxt p0

Result (i) means that the standard bisimulation equivalence ('fo) which uses extru-
sion in output actions, is captured precisely by our extrusion-free bisimulation equiva-
lence ('). Result (ii) on the other hand states that our higher-order contextual equiva-
lence (�cxt) is a conservative extension over the standard bisimulation equivalence ('fo)
for first-order processes. This latter result has significant implications for verification;
if we prove an equivalence between two first-order processes using the first-order the-
ory, this equivalence remains true even when these first-order processes are used in a
higher-order setting.

10. Conclusions and Related Work

The main achievement of this paper is a simple and e↵ective proof technique for
equivalence for higher-order concurrency. Our technique extends the standard theory
of weak bisimulations, and its corresponding Hennessy-Milner Logic to this setting.
Previous work on logics for higher-order concurrency [1, 2] aims at characterisations
of higher-order bisimilarity and relies on the use of constructive implication.

As discussed in the introduction, our proof technique combines and improves ex-
isting theories, particularly those in [10] and [21], and employs a novel treatment of
extrusion. Compared to [21, 23], our bisimulations have significantly weaker con-
ditions, do not quantify over input contexts, and do not rely on an up-to context to
e↵ectively reason about higher-order processes. This technique is robust with respect
to other behavioural theories and languages; for instance we have recently applied this
technique to develop a may-testing theory for a higher-order concurrent language with
cryptographic primitives [12].

Sangiorgi has given a translation of HO⇡ with finite types to the ⇡-calculus [19]
based on triggers, and a full-abstraction proof [18]. This translation, generating a
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fresh trigger channel at every output, is possible in pp-⇡. However it does not scale
to languages with more complex types, or to languages where the retransmission of
messages is observable, as in cryptographic calculi. An adaptation of the translation
where a trigger is generated at every function definition [22, Sec. 13.2] would be
incomplete for pp-⇡ because first-order contexts can make more observations than the
images of higher-order contexts through the translation [22, pg. 402]. A complex
type system for “receptiveness” in the target language has been proposed to prune the
problematic contexts, but to the extent of our knowledge the details of such a translation
have not been published. Encoding the intuitions of the translation directly in an LTS,
as we do in our work, avoids the issues with full-abstraction and scales to more complex
types and languages (e.g. [12]).

Symbolic techniques that reduce the quantification over first-order messages have
been developed for the spi- and applied ⇡-calculus [3, 5, 6]. Our symbolic treatment
addresses the quantification over higher-order, rather than first-order, values.

Laird [14] has developed a games semantic model for HO⇡ that is fully abstract
with respect to may-testing, but is not sound with respect to reduction closed barbed
congruence. However we intend to investigate possible connections between our LTS
and this game semantics. It is also our intent to use our approach for other behavioural
equivalences, such as must testing [4], and higher-order languages with distribution
and passivation [15, 17].
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