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» Formalise the notion of Fault Tolerance (in a
distributed setting)

» Develop proof technigues to show fault-tolerance.




» Fault Tolerance Intuitions
» Language

» Formal Definition

» Proof Techniques.




» Fault Tolerance Intuitions
» Language

» Formal Definition

» Proof Techniques.




processes
executing In
parallel and
Interacting




partitioned
across
container
units




Observed
behaviour
IS partial

OBSERVER VIEW




Fault Tolerance

Observed
behaviour
preserved
up to 1 failure

OBSERVER VIEW

A Theory of System Fault Tolerance — 28




Fault Tolerance

Observed
behaviour
preserved
up to 1 failure

OBSERVER VIEW

A Theory of System Fault Tolerance — 28




Fault Tolerance

Observed
behaviour
preserved
up to 1 failure

OBSERVER VIEW

A Theory of System Fault Tolerance — 28




Fault Tolerance

Observed
behaviour
preserved
up to 2 failures

OBSERVER VIEW

A Theory of System Fault Tolerance — 28




Fault Tolerance

Observed
behaviour
preserved
up to 2 failures

OBSERVER VIEW

A Theory of System Fault Tolerance — 28




Fault Tolerance

Observed
behaviour
preserved
up to 3 failures

OBSERVER VIEW

A Theory of System Fault Tolerance — 28




Fault Tolerance

Observed
behaviour
preserved
up to 3 failures

OBSERVER VIEW

A Theory of System Fault Tolerance — 28




Induce
Faults

Observer
View




» Fault Tolerance Intuitions
» Language

» Formal Definition

» Proof Techniques.




Processes
PQ = ukKW).P u?(x).P

if v=uthenPelse Q | xu?(X).P
(vn:T)P go u.P
0 PIQ
ping U.P else Q

Systems

M,N,O == I[P] | N|M

| (vn:T)N




Assuming I+ |:alive

(r-comm)

[»I[al(V).P] | 1[a?(X).Q] — [>I[P] [I[Q{V/X]]

(r-go)

'+ k: alive
I'>1[gokP] — T's k[ P]
(r-ngo)

I'¥ k: alive

['>I[gokP] —s > k[O]



Assuming I+ |:alive

(r-ping)
'+ k: alive
['>I[pingk-Pelse Q] — I'>I[P]
(r-nping)
¥ k: alive

['>I[pingk.PelseQ] — I'>I[Q]
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I[req?(x, ). go ky. datal(x,y, )] ]

server; < (v data)[ | ki[data?(x,y, 2). go z yI{f(X))]




( ( go k;.datal(x, s, ) I
lreq?(X,y). (vS)| | go k..datal(x,s, )
server, < (vdata)| | L | S?(X).y(X) ]|
| ki[data?(x,y, z).go zy!(f(X))]
_ | ke[data?(x,y, 2).g0 zy!(f(x))] )
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go k,.datal(x, s, )
| {{req?(x,y). (vS)
go ks.datal(x, s, |)

servers < (vdata) | L1 872(%).yKX) )
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( go k;.datal(x, s, )

go k,.datal(x, s, )
| {{req?(x,y). (vS)
go ks.datal(x, s, |)

servers < (vdata) | L1 872(%).yKX) )
ki[ data?(x,y, z).go zy!{f(X))]
K[ data?(x,y, z).go zy!{f(X))]
| ks[data?(X,y, 2).go zy!(f(x))] )




( | | serv2(x,y).ping ky.go ky.datal(x,y, 1y ||
else go ky.datal(x, v, |
sPing < (vdata)| - 0 ¥ 0
| ke[ data?(x, y, 2).go z.y!(f(X))]
| | ke[ data?(x,y, 2).go z .y (T(x))] )




( | | serv2(x y).ping ky.go ky.datal(x,y, 1) ||
else go ky.datal(x, v, |
sPing < (vdata)| - 0 ¥
| ke[ data?(x, y, 2).go z.y!(f(X))]
| | ke[ data?(x,y, 2).go z .y (T (x))] )
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» We partition I" into two sets of live locations (R, U)
Reliable: denoted by R. They are immortal !
Unreliable: denoted by ¢/. They may fail !

» We limit observations to reliable locations
Contexts: for all [-] | N we have fI(N) C R
Barbs: I'> M |a@ iff > M —*=T"» (vil)) M|I[a!(V).P]
where l,a¢ hand |l e R

» We define reduction barbed congurence = for
configurations with the same reliable network R

(RU>M = (R,U)Y>N




Inducing Faults

Static: (R, UY -1 = (R, U/}
(r-kill)

Co (Kl — (T = 1) » 1[O]

Dynamic:

Fault Contexts

Static: F(I') = I'-11... =1,
Dynamic: Fg(M) = M|[I[kill] | ... [I[kill]




Static Fault Tolerance

['> M is statically fault tolerant up to n faults if for any F2(-)

we have
r-M = F)>M

Dynamic Fault Tolerance

['> M is dynamically fault tolerant up to n faults if for any
F2(-) we have
'>M = I'sF3(M)
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Good to show negative results. Assuming
I' = ({l}, {ke, ko, ka}):
s I'>servery Is not 1-statically fault tolerant because

['>server; 2 I'—Kq > servery

s I'>servers is not 2-dynamically fault tolerant because

['>servero & I'>serverp | Ky[[kill] | ko[ kill]
» I'>sPing is not 1-dynamically fault tolerant because

I'>sPing ¢ I'>sPing | K[ kil]




Hard to prove positive results:

It is difficult to prove that I » server; Is 1-dynamic fault
tolerant because:

1. = quantifies over all valid contexts .

2. Dynamic fault tolerance definition quantifies over all
fault contexts , amongst which there is considerable
overlap .

3. There are a number of confluent reductions that
Increase the burden of our analysis.
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» Define lts over configurations

(I-out)

(V) e R
(R, U > [a(V).P] —S (R, U I[P]

» Define bisimulation, ~, for configurations based on lts
» Prove Soundness

(R, UY> M ~ (R, U )> N
Implies
(R, UY> M = (R, U")>N




Hard to prove positive results with our fault tolerance
definition because:

1. = quantifies over all valid contexts .

2. Dynamic fault tolerance definition quantifies over all
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...recall

Dynamic Fault Tolerance

['> M is dynamically fault tolerant up to n faults if for any
Fo(-) we have
'>M = I'sF3(M)

Thus for every FJ(-) we have to show

'>M ~ I's F3(M)




Nodes are
bisimular

Edges are
transitions

tuples.
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cll(ky)
kill (ko)

[-]




cll(ky)
kill (kg)

[-]




Merging
the two
relations




Define new transition that counts failures

(I-fail)
| e U

fail

(R, UY> N — (R, U)—-1>N




Define Fault Tolerant Simulation , <}, the largest
asymmetric relation over configurations such that
['1> My SB I'>> My implies
s I'1>Mq l> F?LD MZ,L ImplleS I['5> Ms :7>
I, > M, such that I} » M7 <} I, > M;
s T'y> My 5 T, » My implies Ty > My =
[, » M7 such that”; » N7 <3 I'), » M,
: falil : :
s IfNn>0,Io» Mzir’z > M impliesI'y » M=
I, » M7 such thatl, » M7 <2117 » M),




Give an alternative definition for Fault Tolerance up to
n-dynamic faults.

I'>M <3T'>M
Prove its Soundness with respect to the previous definition
Fl > Mlﬁr[])rz > Mz
implies V F5(-)
['1> M=o > FS(M2)




Hard to prove positive results with our fault tolerance
definition because:

1. = quantifies over all valid contexts .

2. Dynamic fault tolerance definition quantifies over all
fault contexts , amongst which there is considerable

overlap .

3. There are a number of confluent reductions that
Increase the burden of our analysis.




ldentify Confluent Moves

(b-eq)

['»>I[ifu=uthen P else Q] ri>ﬁ I

(b-ngo)
kg RUU

(R, UY > [go kP] 4 (R, Uy »>K[O]




Extend Equivalence Relation
((bs-dead))
(R, UY>IP] = (R, U I[Q]

l¢ RUU




Proving Confluence

F>NI—T>ﬁF>M

|

[" >N’




Proving Confluence

> N——=T>M or > N———=T» M

| |

"> N T;IBI—-/DM/ I’'>N = I">M

oru=rtand I'>-M =1">N’




Fault Tolerance up to-moves

I'1> My ﬁlg I'>> My implies

K

1> Mliﬂ“’l > M7 implies I'z» Mzér’z > M7 such that
F?LD Miﬂl o ﬁB O Xent F,2[> Mé
o> Mo AN [, > M implies 'y » My £ [} > M7 such that

I, > Méﬂ|05’20zr’1> M

fail o
If n>0thenT'>>M> = I7,>Mj implies 'y > M; = I'} » M7 such that

’ r n=-1 _ 17 ’

where A Is the relation =3 o =
~cnt IS @ bisimulation ranging over u and the new counting action fail.




Soundness ofsg
['1> My 52 ['5> Mo
Implies

Fll> M]_ ﬁg F21> M2
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To show that I'> M Is fault tolerant up to n faults we just have
to give a witness fault tolerant simulation up to S8-moves
satifying

[>M 52 [>M
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