A Theory of System Fault Tolerance
Fossacs 06

Adrian Francalanza and Matthew Hennessy

adrian. francalanza@um.edu.mt matthew.hennessy@sussex.ac.uk

» Formalise the notion of Fault Tolerance (in a
distributed setting)

» Develop proof technigues to show fault-tolerance.

» Fault Tolerance Intuitions
» Language

» Formal Definition

» Proof Techniques.

» Fault Tolerance Intuitions
» Language

» Formal Definition

» Proof Techniques.

processes
executing In
parallel and
Interacting

partitioned
across
container
units

Observed
behaviour
IS partial

OBSERVER VIEW

Fault Tolerance

Observed
behaviour
preserved
up to 1 failure

OBSERVER VIEW

A Theory of System Fault Tolerance — 28

Fault Tolerance

Observed
behaviour
preserved
up to 1 failure

OBSERVER VIEW

A Theory of System Fault Tolerance — 28

Fault Tolerance

Observed
behaviour
preserved
up to 1 failure

OBSERVER VIEW

A Theory of System Fault Tolerance — 28

Fault Tolerance

Observed
behaviour
preserved
up to 2 failures

OBSERVER VIEW

A Theory of System Fault Tolerance — 28

Fault Tolerance

Observed
behaviour
preserved
up to 2 failures

OBSERVER VIEW

A Theory of System Fault Tolerance — 28

Fault Tolerance

Observed
behaviour
preserved
up to 3 failures

OBSERVER VIEW

A Theory of System Fault Tolerance — 28

Fault Tolerance

Observed
behaviour
preserved
up to 3 failures

OBSERVER VIEW

A Theory of System Fault Tolerance — 28

Induce
Faults

Observer
View

» Fault Tolerance Intuitions
» Language

» Formal Definition

» Proof Techniques.

Processes
PQ = ukKW).P u?(x).P

if v=uthenPelse Q | xu?(X).P
(vn:T)P go u.P
0 PIQ
ping U.P else Q

Systems

M,N,O == I[P] | N|M

| (vn:T)N

Assuming I+ |:alive

(r-comm)

[»I[al(V).P] | 1[a?(X).Q] — [>I[P] [I[Q{V/X]]

(r-go)

'+ k: alive
I'>1[gokP] — T's k[P]
(r-ngo)

I'¥ k: alive

['>I[gokP] —s > k[O]

Assuming I+ |:alive

(r-ping)
'+ k: alive
['>I[pingk-Pelse Q] — I'>I[P]
(r-nping)
¥ k: alive

['>I[pingk.PelseQ] — I'>I[Q]

I[req?(x,). go ky. datal(x,y,)]]

server; < (v data)[| ki[data?(x,y, 2). go z yI{f(X))]

I[req?(x,). go ky. datal(x,y,)]]

server; < (v data)[| ki[data?(x,y, 2). go z. y!{ f(X))]

I[req?(x,). go ky. datal(x,y,)]]

server; < (v data)[| ki[data?(x,y, 2). go z yI{f(X))]

((go k;.datal(x, s,) I
lreq?(X,y). (vS)| | go k..datal(x,s,)
server, < (vdata)| | L | S?(X).y(X)]|
| ki[data?(x,y, z).go zy!(f(X))]
_ | ke[data?(x,y, 2).g0 zy!(f(x))])

((go k;.datal(x,s,) I
lreq?(X,y). (vS)| | go k.datal(x,s,I)
server, < (vdata)| | L | S?(X).y(X)]|
| ke[data?(x,y, 2).go zy!{f(X))]
| ke[data?(x,y, 2).90 zy!(f(x))])

((go k;.datal(x, s,) I
llreq?(X,y). (vS)| | go k..datal(x,s,)
server, < (vdata)| | L [S?(X).y(X))|
| ki[data?(x,y, z).go zy!(f(X))]
| ke[data?(x,y, 2).g0 zy!(f(x))])

(go k;.datal(x, s,)

go k,.datal(x, s,)
| {{req?(x,y). (vS)
go ks.datal(x, s, |)

servers < (vdata) | L1 872(%).yKX))
ki[data?(x,y, z).go zy!{f(X))]
K[data?(x,y, z).go zy!{f(X))]
| ks[data?(X,y, 2).go zy!(f(x))])

(go k;.datal(x, s,)

go k,.datal(x, s,)
| {{req?(x,y). (vS)
go ks.datal(x, s, |)

servers < (vdata) | L1 872(%).yKX))
ki[data?(x,y, z).go zy!{f(X))]
K[data?(x,y, z).go zy!{f(X))]
| ks[data?(X,y, 2).go zy!(f(x))])

(| | serv2(x,y).ping ky.go ky.datal(x,y, 1y ||
else go ky.datal(x, v, |
sPing < (vdata)| - 0 ¥ 0
| ke[data?(x, y, 2).go z.y!(f(X))]
| | ke[data?(x,y, 2).go z .y (T(x))])

(| | serv2(x y).ping ky.go ky.datal(x,y, 1) ||
else go ky.datal(x, v, |
sPing < (vdata)| - 0 ¥
| ke[data?(x, y, 2).go z.y!(f(X))]
| | ke[data?(x,y, 2).go z .y (T (x))])

server; =

IT...]
(vdata)[Kl]]

N/

OBSERVER VIEW

N/

OBSERVER VIEW

server, =

(v data)

(

[..]
kil .]
ko[- ..])

= = =

. server, =
(I[...])

(v data) 2
\ / Lkl]

OBSERVER VIEW

sPing =

L])
(vdata)| | kqif...]
kel

N/

OBSERVER VIEW

» Fault Tolerance Intuitions
» Language

» Formal Definition

» Proof Techniques

» We partition I" into two sets of live locations (R, U)

» We partition I" into two sets of live locations (R, U)
Reliable: denoted by R. They are immortal !

» We partition I" into two sets of live locations (R, U)
Reliable: denoted by R. They are immortal !
Unreliable: denoted by ¢/. They may fail !

» We partition I" into two sets of live locations (R, U)
Reliable: denoted by R. They are immortal !
Unreliable: denoted by ¢/. They may fail !

» We limit observations to reliable locations

» We partition I" into two sets of live locations (R, U)
Reliable: denoted by R. They are immortal !
Unreliable: denoted by ¢/. They may fail !

o We limit observations to reliable locations
Contexts: for all [-] | N we have fI(N) C R

» We partition I" into two sets of live locations (R, U)
Reliable: denoted by R. They are immortal !
Unreliable: denoted by ¢/. They may fail !

o We limit observations to reliable locations
Contexts: for all [-] | N we have fI(N) C R

Barbs: I'> M |a@ iff > M —*=T"» (vil)) M|I[a!(V).P]
where l,a¢ hand | e R

» We partition I" into two sets of live locations (R, U)
Reliable: denoted by R. They are immortal !
Unreliable: denoted by ¢/. They may fail !

» We limit observations to reliable locations
Contexts: for all [-] | N we have fI(N) C R
Barbs: I'> M |a@ iff > M —*=T"» (vil)) M|I[a!(V).P]
where l,a¢ hand |l e R

» We define reduction barbed congurence = for
configurations with the same reliable network R

(RU>M = (R,U)Y>N

Inducing Faults

Static: (R, UY -1 = (R, U/}
(r-kill)

Co (Kl — (T = 1) » 1[O]

Dynamic:

Fault Contexts

Static: F(I') = I'-11... =1,
Dynamic: Fg(M) = M|[I[kill] | ... [I[kill]

Static Fault Tolerance

['> M is statically fault tolerant up to n faults if for any F2(-)

we have
r-M = F)>M

Dynamic Fault Tolerance

['> M is dynamically fault tolerant up to n faults if for any
F2(-) we have
'>M = I'sF3(M)

Recall...

Induce
Faults

Observer
View

Good to show negative results. Assuming
I' = ({l}, {ke, ko, ka}):
s I'>servery Is not 1-statically fault tolerant because

['>server; 2 I'—Kq > servery

s I'>servers is not 2-dynamically fault tolerant because

['>servero & I'>serverp | Ky[[kill] | ko[kill]
» I'>sPing is not 1-dynamically fault tolerant because

I'>sPing ¢ I'>sPing | K[kil]

Hard to prove positive results:

It is difficult to prove that I » server; Is 1-dynamic fault
tolerant because:

1. = quantifies over all valid contexts .

2. Dynamic fault tolerance definition quantifies over all
fault contexts , amongst which there is considerable
overlap .

3. There are a number of confluent reductions that
Increase the burden of our analysis.

» Fault Tolerance Intuitions
» Language

» Formal Definition

» Proof Techniques

Hard to prove positive results with our fault tolerance
definition because:

1. = quantifies over all valid contexts .

2. Dynamic fault tolerance definition quantifies over all
fault contexts , amongst which there is considerable

overlap .

3. There are a number of confluent reductions that
Increase the burden of our analysis.

» Define Its over configurations

(I-out)

(V) e R
(R, U > [a(V).P] —S (R, U I[P]

» Define Its over configurations

(I-out)

(V) e R
(R, U > [a(V).P] —S (R, U I[P]

» Define bisimulation, =, for configurations based on lts

» Define lts over configurations

(I-out)

(V) e R
(R, U > [a(V).P] —S (R, U I[P]

» Define bisimulation, ~, for configurations based on lts
» Prove Soundness

(R, UY> M ~ (R, U)> N
Implies
(R, UY> M = (R, U")>N

Hard to prove positive results with our fault tolerance
definition because:

1. = quantifies over all valid contexts .

2. Dynamic fault tolerance definition quantifies over all
fault contexts , amongst which there is considerable

overlap .

3. There are a number of confluent reductions that
Increase the burden of our analysis.

...recall

Dynamic Fault Tolerance

['> M is dynamically fault tolerant up to n faults if for any
Fo(-) we have
'>M = I'sF3(M)

Thus for every FJ(-) we have to show

'>M ~ I's F3(M)

Nodes are
bisimular

Edges are
transitions

tuples.

0 <
O PO O K 2
oSO
e e
a5
VOVOVOAOAOA x5
peeity
S0

K,

o

cll(ky)
kill (ko)

[-]

cll(ky)
kill (kg)

[-]

Merging
the two
relations

Define new transition that counts failures

(I-fail)
| e U

fail

(R, UY> N — (R, U)—-1>N

Define Fault Tolerant Simulation , <}, the largest
asymmetric relation over configurations such that
['1> My SB I'>> My implies
s I'1>Mq l> F?LD MZ,L ImplleS I['5> Ms :7>
I, > M, such that I} » M7 <} I, > M;
s T'y> My 5 T, » My implies Ty > My =
[, » M7 such that”; » N7 <3 I'), » M,
: falil : :
s IfNn>0,Io» Mzir’z > M impliesI'y » M=
I, » M7 such thatl, » M7 <2117 » M),

Give an alternative definition for Fault Tolerance up to
n-dynamic faults.

I'>M <3T'>M
Prove its Soundness with respect to the previous definition
Fl > Mlﬁr[])rz > Mz
implies V F5(-)
['1> M=o > FS(M2)

Hard to prove positive results with our fault tolerance
definition because:

1. = quantifies over all valid contexts .

2. Dynamic fault tolerance definition quantifies over all
fault contexts , amongst which there is considerable

overlap .

3. There are a number of confluent reductions that
Increase the burden of our analysis.

ldentify Confluent Moves

(b-eq)

['»>I[ifu=uthen P else Q] ri>ﬁ I

(b-ngo)
kg RUU

(R, UY > [go kP] 4 (R, Uy »>K[O]

Extend Equivalence Relation
((bs-dead))
(R, UY>IP] = (R, U I[Q]

l¢ RUU

Proving Confluence

F>NI—T>ﬁF>M

|

[" >N’

Proving Confluence

> N——=T>M or > N———=T» M

| |

"> N T;IBI—-/DM/ I’'>N = I">M

oru=rtand I'>-M =1">N’

Fault Tolerance up to-moves

I'1> My ﬁlg I'>> My implies

K

1> Mliﬂ“’l > M7 implies I'z» Mzér’z > M7 such that
F?LD Miﬂl o ﬁB O Xent F,2[> Mé
o> Mo AN [, > M implies 'y » My £ [} > M7 such that

I, > Méﬂ|05’20zr’1> M

fail o
If n>0thenT'>>M> = I7,>Mj implies 'y > M; = I'} » M7 such that

’ r n=-1 _ 17 ’

where A Is the relation =3 o =
~cnt IS @ bisimulation ranging over u and the new counting action fail.

Soundness ofsg
['1> My 52 ['5> Mo
Implies

Fll> M]_ ﬁg F21> M2

» Fault Tolerance Intuitions
» Language

» Formal Definition

» Proof Techniques

Induce
Faults

Observer
View

To show that I'> M Is fault tolerant up to n faults we just have
to give a witness fault tolerant simulation up to S8-moves
satifying

[>M 52 [>M

	Aim of The Paper
	Talk Overview
	Talk Overview

	Fault Tolerance
	Fault Tolerance
	Fault Tolerance
	Fault Tolerance
	Fault Tolerance
	Fault Tolerance
	Fault Tolerance
	Fault Tolerance
	Fault Tolerance
	Fault Tolerance

	Fault Tolerance Analysis
	Talk Overview
	The Language
	The Language
	The Language

	Examples
	Examples
	Examples
	Examples
	Examples
	Examples
	Examples
	Examples
	Examples
	Examples

	Server Fault Tolerance
	Server Fault Tolerance
	Server Fault Tolerance
	Server Fault Tolerance

	Talk Overview
	Defining Fault Tolerance Preliminaries
	Defining Fault Tolerance Preliminaries
	Defining Fault Tolerance Preliminaries
	Defining Fault Tolerance Preliminaries
	Defining Fault Tolerance Preliminaries
	Defining Fault Tolerance Preliminaries
	Defining Fault Tolerance Preliminaries

	Definition Fault Tolerance
	Definition Fault Tolerance

	Examples
	Examples
	Examples

	Talk Overview
	Problems we need to address
	Solving Observer Quantification
	Solving Observer Quantification
	Solving Observer Quantification

	Problems we need to address
	Fault Context Quantification and Overlap (1)
	Fault Context Quantification and Overlap (1)
	Fault Context Quantification and Overlap (1)
	Fault Context Quantification and Overlap (1)
	Fault Context Quantification and Overlap (1)

	Fault Context Quantification and Overlap (2)
	Fault Context Quantification and Overlap (2)
	Fault Context Quantification and Overlap (2)

	Problems we need to address
	Confluent $	au $-transitions
	Confluent $	au $-transitions
	Confluent $	au $-transitions
	Confluent $	au $-transitions
	Confluent $	au $-transitions
	Confluent $	au $-transitions

	Talk Summary
	Main Result
	Main Result

