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Aim of The Paper

Formalise the notion of Fault Tolerance (in a
distributed setting)

Develop proof techniques to show fault-tolerance.
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Fault Tolerance

OBSERVER  VIEW

processes
executing in
parallel and
interacting

A Theory of System Fault Tolerance – p. 4/23



Fault Tolerance

OBSERVER  VIEW

partitioned
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container
units
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Fault Tolerance

OBSERVER  VIEW

Observed
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is partial

A Theory of System Fault Tolerance – p. 4/23



Fault Tolerance

OBSERVER  VIEW

Observed
behaviour
preserved
up to 1 failure

A Theory of System Fault Tolerance – p. 4/23



Fault Tolerance

OBSERVER  VIEW

Observed
behaviour
preserved
up to 1 failure

A Theory of System Fault Tolerance – p. 4/23



Fault Tolerance

OBSERVER  VIEW

Observed
behaviour
preserved
up to 1 failure

A Theory of System Fault Tolerance – p. 4/23



Fault Tolerance

OBSERVER  VIEW

Observed
behaviour
preserved
up to 2 failures

A Theory of System Fault Tolerance – p. 4/23



Fault Tolerance

OBSERVER  VIEW

Observed
behaviour
preserved
up to 2 failures

A Theory of System Fault Tolerance – p. 4/23



Fault Tolerance

OBSERVER  VIEW

Observed
behaviour
preserved
up to 3 failures

A Theory of System Fault Tolerance – p. 4/23



Fault Tolerance

OBSERVER  VIEW

Observed
behaviour
preserved
up to 3 failures

A Theory of System Fault Tolerance – p. 4/23



Fault Tolerance Analysis
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Observer
View

Induce
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4
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Talk Overview

Fault Tolerance Intuitions

Language

Formal Definition

Proof Techniques.
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The Language

Processes
P,Q ::= u!〈V〉.P | u?(X).P

| if v=u then P else Q | ∗ u?(X).P

| (ν n :T) P | go u.P

| 0 | P|Q

| ping u.P else Q

Systems
M,N,O ::= l[[ P]] | N|M

| (ν n :T)N
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The Language

Assuming Γ ⊢ l :alive

(r-comm)

Γ ⊲ l[[a!〈V〉.P]] | l[[a?(X).Q]] −→ Γ ⊲ l[[ P]] | l[[ Q{V/X}]]

(r-go)

Γ ⊲ l[[go k.P]] −→ Γ ⊲ k[[ P]]
Γ ⊢ k : alive

(r-ngo)

Γ ⊲ l[[go k.P]] −→ Γ ⊲ k[[0]]
Γ 0 k : alive
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The Language

Assuming Γ ⊢ l :alive

(r-ping)

Γ ⊲ l[[ping k.P else Q]] −→ Γ ⊲ l[[ P]]
Γ ⊢ k : alive

(r-nping)

Γ ⊲ l[[ping k.P else Q]] −→ Γ ⊲ l[[ Q]]
Γ 0 k : alive
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Examples

server1 ⇐ (νdata)


l[[ req?(x, y). go k1. data!〈x, y, l〉]]

| k1[[data?(x, y, z). go z. y!〈 f (x)〉]]
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Examples

server2 ⇐ (ν data)



l




req?(x, y). (νs)



go k1.data!〈x, s, l〉

| go k2.data!〈x, s, l〉

| s?(x).y!〈x〉
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Examples
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Examples

server3 ⇐ (ν data)



l





req?(x, y). (νs)



go k1.data!〈x, s, l〉

| go k2.data!〈x, s, l〉

| go k3.data!〈x, s, l〉

| s?(x).y!〈x〉







| k1[[data?(x, y, z).go z.y!〈 f (x)〉]]

| k2[[data?(x, y, z).go z.y!〈 f (x)〉]]

| k3[[data?(x, y, z).go z.y!〈 f (x)〉]]
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Examples
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Examples

sPing ⇐ (ν data)



l




serv?(x, y).ping k1.go k1.data!〈x, y, l〉

else go k2.data!〈x, y, l〉





| k1[[data?(x, y, z).go z .y!〈 f (x)〉]]

| k2[[data?(x, y, z).go z .y!〈 f (x)〉]]
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Examples

sPing ⇐ (ν data)



l




serv?(x, y).ping k1.go k1.data!〈x, y, l〉

else go k2.data!〈x, y, l〉





| k1[[data?(x, y, z).go z .y!〈 f (x)〉]]

| k2[[data?(x, y, z).go z .y!〈 f (x)〉]]
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Server Fault Tolerance

3

OBSERVER  VIEW

k

k

k

l

1

2

server1 =

(νdata)


l[[ . . .]]

| k1[[ . . .]]
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Server Fault Tolerance
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Defining Fault Tolerance Preliminaries

We partition Γ into two sets of live locations 〈R,U〉
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Defining Fault Tolerance Preliminaries

We partition Γ into two sets of live locations 〈R,U〉
Reliable: denoted by R. They are immortal !
Unreliable: denoted by U. They may fail !

We limit observations to reliable locations
Contexts: for all [−] |N we have fl(N) ⊆ R
Barbs: Γ ⊲ M ⇓a@l iff Γ ⊲ M −→∗≡ Γ ⊲ (νñ) M|l[[a!〈V〉.P]]

where l, a < ñ and l ∈ R

We define reduction barbed congurence � for
configurations with the same reliable network R

〈R,U〉 ⊲ M � 〈R,U′〉 ⊲ N
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Definition Fault Tolerance

Inducing Faults

Static: 〈R,U〉 − l = 〈R,U/{l}〉

Dynamic:
(r-kill)

Γ ⊲ l[[kill]] −→ (Γ − l) ⊲ l[[0]]

Fault Contexts

Static: Fn
S (Γ) = Γ − l1 . . . − ln

Dynamic: Fn
D(M) = M | l1[[kill]] | . . . | ln[[kill]]
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Definition Fault Tolerance

Static Fault Tolerance

Γ ⊲ M is statically fault tolerant up to n faults if for any Fn
S (−)

we have
Γ ⊲ M � Fn

S (Γ) ⊲ M

Dynamic Fault Tolerance

Γ ⊲ M is dynamically fault tolerant up to n faults if for any
Fn

D(−) we have
Γ ⊲ M � Γ ⊲ Fn

D(M)
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Examples

Recall...

Faults
Observer
View

Induce

3
2

1
4
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Examples

Good to show negative results. Assuming
Γ = 〈{l}, {k1, k2, k3}〉:

Γ ⊲ server1 is not 1-statically fault tolerant because

Γ ⊲ server1 6� Γ−k1 ⊲ server1

Γ ⊲ server2 is not 2-dynamically fault tolerant because

Γ ⊲ server2 6� Γ ⊲ server2 | k1[[ kill]] | k2[[ kill]]

Γ ⊲ sPing is not 1-dynamically fault tolerant because

Γ ⊲ sPing 6� Γ ⊲ sPing | k1[[ kill]]
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Examples

Hard to prove positive results:

It is difficult to prove that Γ ⊲ server2 is 1-dynamic fault
tolerant because:

1. � quantifies over all valid contexts .

2. Dynamic fault tolerance definition quantifies over all
fault contexts , amongst which there is considerable
overlap .

3. There are a number of confluent reductions that
increase the burden of our analysis.
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Talk Overview

Fault Tolerance Intuitions
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Proof Techniques
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Problems we need to address

Hard to prove positive results with our fault tolerance
definition because:

1. � quantifies over all valid contexts .

2. Dynamic fault tolerance definition quantifies over all
fault contexts , amongst which there is considerable
overlap .

3. There are a number of confluent reductions that
increase the burden of our analysis.
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Solving Observer Quantification

Define lts over configurations

(l-out)

〈R,U〉 ⊲ l[[a!〈V〉.P]]
l:a!〈V〉
−−−−−→ 〈R,U〉 ⊲ l[[ P]]

l ∈ R
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Solving Observer Quantification

Define lts over configurations

(l-out)

〈R,U〉 ⊲ l[[a!〈V〉.P]]
l:a!〈V〉
−−−−−→ 〈R,U〉 ⊲ l[[ P]]

l ∈ R

Define bisimulation, ≈, for configurations based on lts

Prove Soundness :

〈R,U〉 ⊲ M ≈ 〈R,U′〉 ⊲ N

implies
〈R,U〉 ⊲ M � 〈R,U′〉 ⊲ N
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Problems we need to address

Hard to prove positive results with our fault tolerance
definition because:

1. � quantifies over all valid contexts .

2. Dynamic fault tolerance definition quantifies over all
fault contexts , amongst which there is considerable
overlap .

3. There are a number of confluent reductions that
increase the burden of our analysis.
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Fault Context Quantification and Overlap (1)

...recall

Dynamic Fault Tolerance

Γ ⊲ M is dynamically fault tolerant up to n faults if for any
Fn

D(−) we have
Γ ⊲ M � Γ ⊲ Fn

D(M)

Thus for every Fn
D(−) we have to show

Γ ⊲ M ≈ Γ ⊲ Fn
D(M)
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Fault Context Quantification and Overlap (1)

Nodes are
bisimular
tuples.
Edges are
transitions.
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Fault Context Quantification and Overlap (1)

k  deadk  dead1 2

F2
D =



kill(k1)

| kill(k2)

| [−]
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Fault Context Quantification and Overlap (1)

k  dead1
k  dead3

F2
D =



kill(k1)

| kill(k3)

| [−]
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Fault Context Quantification and Overlap (1)

k  dead3

k  dead1

k  dead2

Merging
the two
relations
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Fault Context Quantification and Overlap (2)

Define new transition that counts failures

(l-fail)

〈R,U〉 ⊲ N
fail
−−→ 〈R,U〉 − l ⊲ N

l ∈ U
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Fault Context Quantification and Overlap (2)

Define Fault Tolerant Simulation , �n
D, the largest

asymmetric relation over configurations such that
Γ1 ⊲ M1 �

n
D Γ2 ⊲ M2 implies

Γ1 ⊲ M1
γ
−→ Γ′1 ⊲ M′1 implies Γ2 ⊲ M2

γ̂
=⇒

Γ′2 ⊲ M′2 such that Γ′1 ⊲ M′1 �
n
D Γ
′
2 ⊲ M′2

Γ2 ⊲ M2
γ
−→ Γ′2 ⊲ M′2 implies Γ1 ⊲ M1

γ̂
=⇒

Γ′1 ⊲ M′1 such thatΓ′1 ⊲ N′1 �
n
D Γ
′
2 ⊲ M′2

if n > 0, Γ2 ⊲ M2
fail
−→Γ′2 ⊲ M′2 impliesΓ1 ⊲ M1=⇒

Γ′1 ⊲ M′1 such thatΓ′1 ⊲ M′1�
n−1
D Γ

′
2 ⊲ M′2
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Fault Context Quantification and Overlap (2)

Give an alternative definition for Fault Tolerance up to
n-dynamic faults.

Γ ⊲ M �n
DΓ ⊲ M

Prove its Soundness with respect to the previous definition

Γ1 ⊲ M1�
n
DΓ2 ⊲ M2

implies ∀ Fn
D(−)

Γ1 ⊲ M1≈Γ2 ⊲ Fn
D(M2)
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Problems we need to address

Hard to prove positive results with our fault tolerance
definition because:

1. � quantifies over all valid contexts .

2. Dynamic fault tolerance definition quantifies over all
fault contexts , amongst which there is considerable
overlap .

3. There are a number of confluent reductions that
increase the burden of our analysis.
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Confluent τ-transitions

Identify Confluent Moves

(b-eq)

Γ ⊲ l[[ if u=u then P else Q]]
τ
7−→β Γ ⊲ l[[ P]]

(b-ngo)

〈R,U〉 ⊲ l[[go k.P]]
τ
7−→β 〈R,U〉 ⊲ k[[0]]

k < R ∪U
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Confluent τ-transitions

Extend Equivalence Relation

((bs-dead))

〈R,U〉 ⊲ l[[ P]] ≡f 〈R,U〉 ⊲ l[[ Q]]
l < R ∪U

A Theory of System Fault Tolerance – p. 21/23



Confluent τ-transitions

Proving Confluence

Γ ⊲ N
µ

��

�

τ

β
// Γ ⊲ M

Γ′ ⊲ N′
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Confluent τ-transitions

Proving Confluence

Γ ⊲ N
µ

��

�

τ

β
// Γ ⊲ M
µ

��

Γ′ ⊲ N′ �

τ

β
// Γ′ ⊲ M′

or Γ ⊲ N
µ

��

�

τ

β
// Γ ⊲ M
µ

��

Γ′ ⊲ N′ ≡f Γ′ ⊲ M′

or µ=τ and Γ⊲M = Γ′⊲N′
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Confluent τ-transitions

Fault Tolerance up toβ-moves

Γ1 ⊲ M1 �
n
β
Γ2 ⊲ M2 implies

Γ1⊲M1
µ
−→Γ′1 ⊲ M′1 implies Γ2⊲M2

µ̂
=⇒Γ′2 ⊲ M′2 such that

Γ′1 ⊲ M′1Al ◦ �
n
β
◦ ≈cnt Γ

′
2 ⊲ M′2

Γ2 ⊲ M2
µ
−→ Γ′2 ⊲ M′2 implies Γ1 ⊲ M1

µ̂
=⇒ Γ′1 ⊲ M′1 such that

Γ′2 ⊲ M′2Al ◦ �
n
β
◦ ≈ Γ′1 ⊲ M′1

If n > 0 then Γ2 ⊲M2
fail
−→ Γ′2 ⊲M′2 implies Γ1 ⊲M1 =⇒ Γ

′
1 ⊲M′1 such that

Γ′2 ⊲ M′2 �
n−1
β
◦ ≈ Γ′1 ⊲ M′1

where Al is the relation |==⇒β ◦ ≡

≈cnt is a bisimulation ranging over µ and the new counting action fail.
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Confluent τ-transitions

Soundness of�n
β

Γ1 ⊲ M1 �
n
β
Γ2 ⊲ M2

implies

Γ1 ⊲ M1 �
n
D Γ2 ⊲ M2
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Talk Summary

Fault Tolerance Intuitions
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Proof Techniques
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Main Result

Faults
Observer
View

Induce
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Main Result

To show that Γ ⊲ M is fault tolerant up to n faults we just have
to give a witness fault tolerant simulation up to β-moves
satifying

Γ ⊲ M �n
β Γ ⊲ M
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