
A Theory of System Fault Tolerance
Fossacs 06

Adrian Francalanza and Matthew Hennessy

adrian.francalanza@um.edu.mt matthew.hennessy@sussex.ac.uk

A Theory of System Fault Tolerance – p. 1/23

Aim of The Paper

Formalise the notion of Fault Tolerance (in a
distributed setting)

Develop proof techniques to show fault-tolerance.

A Theory of System Fault Tolerance – p. 2/23

Talk Overview

Fault Tolerance Intuitions

Language

Formal Definition

Proof Techniques.

A Theory of System Fault Tolerance – p. 3/23

Talk Overview

Fault Tolerance Intuitions

Language

Formal Definition

Proof Techniques.

A Theory of System Fault Tolerance – p. 3/23

Fault Tolerance

OBSERVER VIEW

processes
executing in
parallel and
interacting

A Theory of System Fault Tolerance – p. 4/23

Fault Tolerance

OBSERVER VIEW

partitioned
across
container
units

A Theory of System Fault Tolerance – p. 4/23

Fault Tolerance

OBSERVER VIEW

Observed
behaviour
is partial

A Theory of System Fault Tolerance – p. 4/23

Fault Tolerance

OBSERVER VIEW

Observed
behaviour
preserved
up to 1 failure

A Theory of System Fault Tolerance – p. 4/23

Fault Tolerance

OBSERVER VIEW

Observed
behaviour
preserved
up to 1 failure

A Theory of System Fault Tolerance – p. 4/23

Fault Tolerance

OBSERVER VIEW

Observed
behaviour
preserved
up to 1 failure

A Theory of System Fault Tolerance – p. 4/23

Fault Tolerance

OBSERVER VIEW

Observed
behaviour
preserved
up to 2 failures

A Theory of System Fault Tolerance – p. 4/23

Fault Tolerance

OBSERVER VIEW

Observed
behaviour
preserved
up to 2 failures

A Theory of System Fault Tolerance – p. 4/23

Fault Tolerance

OBSERVER VIEW

Observed
behaviour
preserved
up to 3 failures

A Theory of System Fault Tolerance – p. 4/23

Fault Tolerance

OBSERVER VIEW

Observed
behaviour
preserved
up to 3 failures

A Theory of System Fault Tolerance – p. 4/23

Fault Tolerance Analysis

Faults
Observer
View

Induce

3
2

1
4

A Theory of System Fault Tolerance – p. 5/23

Talk Overview

Fault Tolerance Intuitions

Language

Formal Definition

Proof Techniques.

A Theory of System Fault Tolerance – p. 6/23

The Language

Processes
P,Q ::= u!〈V〉.P | u?(X).P

| if v=u then P else Q | ∗ u?(X).P

| (ν n :T) P | go u.P

| 0 | P|Q

| ping u.P else Q

Systems
M,N,O ::= l[[P]] | N|M

| (ν n :T)N

A Theory of System Fault Tolerance – p. 7/23

The Language

Assuming Γ ⊢ l :alive

(r-comm)

Γ ⊲ l[[a!〈V〉.P]] | l[[a?(X).Q]] −→ Γ ⊲ l[[P]] | l[[Q{V/X}]]

(r-go)

Γ ⊲ l[[go k.P]] −→ Γ ⊲ k[[P]]
Γ ⊢ k : alive

(r-ngo)

Γ ⊲ l[[go k.P]] −→ Γ ⊲ k[[0]]
Γ 0 k : alive

A Theory of System Fault Tolerance – p. 7/23

The Language

Assuming Γ ⊢ l :alive

(r-ping)

Γ ⊲ l[[ping k.P else Q]] −→ Γ ⊲ l[[P]]
Γ ⊢ k : alive

(r-nping)

Γ ⊲ l[[ping k.P else Q]] −→ Γ ⊲ l[[Q]]
Γ 0 k : alive

A Theory of System Fault Tolerance – p. 7/23

Examples

server1 ⇐ (νdata)

l[[req?(x, y). go k1. data!〈x, y, l〉]]

| k1[[data?(x, y, z). go z. y!〈 f (x)〉]]

A Theory of System Fault Tolerance – p. 8/23

Examples

server1 ⇐ (νdata)

l[[req?(x, y). go k1. data!〈x, y, l〉]]

| k1[[data?(x, y, z). go z. y!〈 f (x)〉]]

A Theory of System Fault Tolerance – p. 8/23

Examples

server1 ⇐ (νdata)

l[[req?(x, y). go k1. data!〈x, y, l〉]]

| k1[[data?(x, y, z). go z. y!〈 f (x)〉]]

A Theory of System Fault Tolerance – p. 8/23

Examples

server2 ⇐ (ν data)

l

req?(x, y). (νs)

go k1.data!〈x, s, l〉

| go k2.data!〈x, s, l〉

| s?(x).y!〈x〉

| k1[[data?(x, y, z).go z.y!〈 f (x)〉]]

| k2[[data?(x, y, z).go z.y!〈 f (x)〉]]

A Theory of System Fault Tolerance – p. 8/23

Examples

server2 ⇐ (ν data)

l

req?(x, y). (νs)

go k1.data!〈x, s, l〉

| go k2.data!〈x, s, l〉

| s?(x).y!〈x〉

| k1[[data?(x, y, z).go z.y!〈 f (x)〉]]

| k2[[data?(x, y, z).go z.y!〈 f (x)〉]]

A Theory of System Fault Tolerance – p. 8/23

Examples

server2 ⇐ (ν data)

l

req?(x, y). (νs)

go k1.data!〈x, s, l〉

| go k2.data!〈x, s, l〉

| s?(x).y!〈x〉

| k1[[data?(x, y, z).go z.y!〈 f (x)〉]]

| k2[[data?(x, y, z).go z.y!〈 f (x)〉]]

A Theory of System Fault Tolerance – p. 8/23

Examples

server3 ⇐ (ν data)

l

req?(x, y). (νs)

go k1.data!〈x, s, l〉

| go k2.data!〈x, s, l〉

| go k3.data!〈x, s, l〉

| s?(x).y!〈x〉

| k1[[data?(x, y, z).go z.y!〈 f (x)〉]]

| k2[[data?(x, y, z).go z.y!〈 f (x)〉]]

| k3[[data?(x, y, z).go z.y!〈 f (x)〉]]

A Theory of System Fault Tolerance – p. 8/23

Examples

server3 ⇐ (ν data)

l

req?(x, y). (νs)

go k1.data!〈x, s, l〉

| go k2.data!〈x, s, l〉

| go k3.data!〈x, s, l〉

| s?(x).y!〈x〉

| k1[[data?(x, y, z).go z.y!〈 f (x)〉]]

| k2[[data?(x, y, z).go z.y!〈 f (x)〉]]

| k3[[data?(x, y, z).go z.y!〈 f (x)〉]]

A Theory of System Fault Tolerance – p. 8/23

Examples

sPing ⇐ (ν data)

l

serv?(x, y).ping k1.go k1.data!〈x, y, l〉

else go k2.data!〈x, y, l〉

| k1[[data?(x, y, z).go z .y!〈 f (x)〉]]

| k2[[data?(x, y, z).go z .y!〈 f (x)〉]]

A Theory of System Fault Tolerance – p. 8/23

Examples

sPing ⇐ (ν data)

l

serv?(x, y).ping k1.go k1.data!〈x, y, l〉

else go k2.data!〈x, y, l〉

| k1[[data?(x, y, z).go z .y!〈 f (x)〉]]

| k2[[data?(x, y, z).go z .y!〈 f (x)〉]]

A Theory of System Fault Tolerance – p. 8/23

Server Fault Tolerance

3

OBSERVER VIEW

k

k

k

l

1

2

server1 =

(νdata)

l[[. . .]]

| k1[[. . .]]

A Theory of System Fault Tolerance – p. 9/23

Server Fault Tolerance

3

2

OBSERVER VIEW

k

k

k

l

1

server2 =

(νdata)

l[[. . .]]

| k1[[. . .]]

| k2[[. . .]]

A Theory of System Fault Tolerance – p. 9/23

Server Fault Tolerance

31

2

OBSERVER VIEW

k

k

k

l

server2 =

(νdata)

l[[. . .]]

| k1[[. . .]]

| k2[[. . .]]

| k3[[. . .]]

A Theory of System Fault Tolerance – p. 9/23

Server Fault Tolerance

3

2

OBSERVER VIEW

k

k

k

l

1

sPing =

(νdata)

l[[. . .]]

| k1[[. . .]]

| k2[[. . .]]

A Theory of System Fault Tolerance – p. 9/23

Talk Overview

Fault Tolerance Intuitions

Language

Formal Definition

Proof Techniques

A Theory of System Fault Tolerance – p. 10/23

Defining Fault Tolerance Preliminaries

We partition Γ into two sets of live locations 〈R,U〉

A Theory of System Fault Tolerance – p. 11/23

Defining Fault Tolerance Preliminaries

We partition Γ into two sets of live locations 〈R,U〉
Reliable: denoted by R. They are immortal !

A Theory of System Fault Tolerance – p. 11/23

Defining Fault Tolerance Preliminaries

We partition Γ into two sets of live locations 〈R,U〉
Reliable: denoted by R. They are immortal !
Unreliable: denoted by U. They may fail !

A Theory of System Fault Tolerance – p. 11/23

Defining Fault Tolerance Preliminaries

We partition Γ into two sets of live locations 〈R,U〉
Reliable: denoted by R. They are immortal !
Unreliable: denoted by U. They may fail !

We limit observations to reliable locations

A Theory of System Fault Tolerance – p. 11/23

Defining Fault Tolerance Preliminaries

We partition Γ into two sets of live locations 〈R,U〉
Reliable: denoted by R. They are immortal !
Unreliable: denoted by U. They may fail !

We limit observations to reliable locations
Contexts: for all [−] |N we have fl(N) ⊆ R

A Theory of System Fault Tolerance – p. 11/23

Defining Fault Tolerance Preliminaries

We partition Γ into two sets of live locations 〈R,U〉
Reliable: denoted by R. They are immortal !
Unreliable: denoted by U. They may fail !

We limit observations to reliable locations
Contexts: for all [−] |N we have fl(N) ⊆ R
Barbs: Γ ⊲ M ⇓a@l iff Γ ⊲ M −→∗≡ Γ ⊲ (νñ) M|l[[a!〈V〉.P]]

where l, a < ñ and l ∈ R

A Theory of System Fault Tolerance – p. 11/23

Defining Fault Tolerance Preliminaries

We partition Γ into two sets of live locations 〈R,U〉
Reliable: denoted by R. They are immortal !
Unreliable: denoted by U. They may fail !

We limit observations to reliable locations
Contexts: for all [−] |N we have fl(N) ⊆ R
Barbs: Γ ⊲ M ⇓a@l iff Γ ⊲ M −→∗≡ Γ ⊲ (νñ) M|l[[a!〈V〉.P]]

where l, a < ñ and l ∈ R

We define reduction barbed congurence � for
configurations with the same reliable network R

〈R,U〉 ⊲ M � 〈R,U′〉 ⊲ N

A Theory of System Fault Tolerance – p. 11/23

Definition Fault Tolerance

Inducing Faults

Static: 〈R,U〉 − l = 〈R,U/{l}〉

Dynamic:
(r-kill)

Γ ⊲ l[[kill]] −→ (Γ − l) ⊲ l[[0]]

Fault Contexts

Static: Fn
S (Γ) = Γ − l1 . . . − ln

Dynamic: Fn
D(M) = M | l1[[kill]] | . . . | ln[[kill]]

A Theory of System Fault Tolerance – p. 12/23

Definition Fault Tolerance

Static Fault Tolerance

Γ ⊲ M is statically fault tolerant up to n faults if for any Fn
S (−)

we have
Γ ⊲ M � Fn

S (Γ) ⊲ M

Dynamic Fault Tolerance

Γ ⊲ M is dynamically fault tolerant up to n faults if for any
Fn

D(−) we have
Γ ⊲ M � Γ ⊲ Fn

D(M)

A Theory of System Fault Tolerance – p. 12/23

Examples

Recall...

Faults
Observer
View

Induce

3
2

1
4

A Theory of System Fault Tolerance – p. 13/23

Examples

Good to show negative results. Assuming
Γ = 〈{l}, {k1, k2, k3}〉:

Γ ⊲ server1 is not 1-statically fault tolerant because

Γ ⊲ server1 6� Γ−k1 ⊲ server1

Γ ⊲ server2 is not 2-dynamically fault tolerant because

Γ ⊲ server2 6� Γ ⊲ server2 | k1[[kill]] | k2[[kill]]

Γ ⊲ sPing is not 1-dynamically fault tolerant because

Γ ⊲ sPing 6� Γ ⊲ sPing | k1[[kill]]

A Theory of System Fault Tolerance – p. 13/23

Examples

Hard to prove positive results:

It is difficult to prove that Γ ⊲ server2 is 1-dynamic fault
tolerant because:

1. � quantifies over all valid contexts .

2. Dynamic fault tolerance definition quantifies over all
fault contexts , amongst which there is considerable
overlap .

3. There are a number of confluent reductions that
increase the burden of our analysis.

A Theory of System Fault Tolerance – p. 13/23

Talk Overview

Fault Tolerance Intuitions

Language

Formal Definition

Proof Techniques

A Theory of System Fault Tolerance – p. 14/23

Problems we need to address

Hard to prove positive results with our fault tolerance
definition because:

1. � quantifies over all valid contexts .

2. Dynamic fault tolerance definition quantifies over all
fault contexts , amongst which there is considerable
overlap .

3. There are a number of confluent reductions that
increase the burden of our analysis.

A Theory of System Fault Tolerance – p. 15/23

Solving Observer Quantification

Define lts over configurations

(l-out)

〈R,U〉 ⊲ l[[a!〈V〉.P]]
l:a!〈V〉
−−−−−→ 〈R,U〉 ⊲ l[[P]]

l ∈ R

A Theory of System Fault Tolerance – p. 16/23

Solving Observer Quantification

Define lts over configurations

(l-out)

〈R,U〉 ⊲ l[[a!〈V〉.P]]
l:a!〈V〉
−−−−−→ 〈R,U〉 ⊲ l[[P]]

l ∈ R

Define bisimulation, ≈, for configurations based on lts

A Theory of System Fault Tolerance – p. 16/23

Solving Observer Quantification

Define lts over configurations

(l-out)

〈R,U〉 ⊲ l[[a!〈V〉.P]]
l:a!〈V〉
−−−−−→ 〈R,U〉 ⊲ l[[P]]

l ∈ R

Define bisimulation, ≈, for configurations based on lts

Prove Soundness :

〈R,U〉 ⊲ M ≈ 〈R,U′〉 ⊲ N

implies
〈R,U〉 ⊲ M � 〈R,U′〉 ⊲ N

A Theory of System Fault Tolerance – p. 16/23

Problems we need to address

Hard to prove positive results with our fault tolerance
definition because:

1. � quantifies over all valid contexts .

2. Dynamic fault tolerance definition quantifies over all
fault contexts , amongst which there is considerable
overlap .

3. There are a number of confluent reductions that
increase the burden of our analysis.

A Theory of System Fault Tolerance – p. 17/23

Fault Context Quantification and Overlap (1)

...recall

Dynamic Fault Tolerance

Γ ⊲ M is dynamically fault tolerant up to n faults if for any
Fn

D(−) we have
Γ ⊲ M � Γ ⊲ Fn

D(M)

Thus for every Fn
D(−) we have to show

Γ ⊲ M ≈ Γ ⊲ Fn
D(M)

A Theory of System Fault Tolerance – p. 18/23

Fault Context Quantification and Overlap (1)

Nodes are
bisimular
tuples.
Edges are
transitions.

A Theory of System Fault Tolerance – p. 18/23

Fault Context Quantification and Overlap (1)

k deadk dead1 2

F2
D =

kill(k1)

| kill(k2)

| [−]

A Theory of System Fault Tolerance – p. 18/23

Fault Context Quantification and Overlap (1)

k dead1
k dead3

F2
D =

kill(k1)

| kill(k3)

| [−]

A Theory of System Fault Tolerance – p. 18/23

Fault Context Quantification and Overlap (1)

k dead3

k dead1

k dead2

Merging
the two
relations

A Theory of System Fault Tolerance – p. 18/23

Fault Context Quantification and Overlap (2)

Define new transition that counts failures

(l-fail)

〈R,U〉 ⊲ N
fail
−−→ 〈R,U〉 − l ⊲ N

l ∈ U

A Theory of System Fault Tolerance – p. 19/23

Fault Context Quantification and Overlap (2)

Define Fault Tolerant Simulation , �n
D, the largest

asymmetric relation over configurations such that
Γ1 ⊲ M1 �

n
D Γ2 ⊲ M2 implies

Γ1 ⊲ M1
γ
−→ Γ′1 ⊲ M′1 implies Γ2 ⊲ M2

γ̂
=⇒

Γ′2 ⊲ M′2 such that Γ′1 ⊲ M′1 �
n
D Γ
′
2 ⊲ M′2

Γ2 ⊲ M2
γ
−→ Γ′2 ⊲ M′2 implies Γ1 ⊲ M1

γ̂
=⇒

Γ′1 ⊲ M′1 such thatΓ′1 ⊲ N′1 �
n
D Γ
′
2 ⊲ M′2

if n > 0, Γ2 ⊲ M2
fail
−→Γ′2 ⊲ M′2 impliesΓ1 ⊲ M1=⇒

Γ′1 ⊲ M′1 such thatΓ′1 ⊲ M′1�
n−1
D Γ

′
2 ⊲ M′2

A Theory of System Fault Tolerance – p. 19/23

Fault Context Quantification and Overlap (2)

Give an alternative definition for Fault Tolerance up to
n-dynamic faults.

Γ ⊲ M �n
DΓ ⊲ M

Prove its Soundness with respect to the previous definition

Γ1 ⊲ M1�
n
DΓ2 ⊲ M2

implies ∀ Fn
D(−)

Γ1 ⊲ M1≈Γ2 ⊲ Fn
D(M2)

A Theory of System Fault Tolerance – p. 19/23

Problems we need to address

Hard to prove positive results with our fault tolerance
definition because:

1. � quantifies over all valid contexts .

2. Dynamic fault tolerance definition quantifies over all
fault contexts , amongst which there is considerable
overlap .

3. There are a number of confluent reductions that
increase the burden of our analysis.

A Theory of System Fault Tolerance – p. 20/23

Confluent τ-transitions

Identify Confluent Moves

(b-eq)

Γ ⊲ l[[if u=u then P else Q]]
τ
7−→β Γ ⊲ l[[P]]

(b-ngo)

〈R,U〉 ⊲ l[[go k.P]]
τ
7−→β 〈R,U〉 ⊲ k[[0]]

k < R ∪U

A Theory of System Fault Tolerance – p. 21/23

Confluent τ-transitions

Extend Equivalence Relation

((bs-dead))

〈R,U〉 ⊲ l[[P]] ≡f 〈R,U〉 ⊲ l[[Q]]
l < R ∪U

A Theory of System Fault Tolerance – p. 21/23

Confluent τ-transitions

Proving Confluence

Γ ⊲ N
µ

��

�

τ

β
// Γ ⊲ M

Γ′ ⊲ N′

A Theory of System Fault Tolerance – p. 21/23

Confluent τ-transitions

Proving Confluence

Γ ⊲ N
µ

��

�

τ

β
// Γ ⊲ M
µ

��

Γ′ ⊲ N′ �

τ

β
// Γ′ ⊲ M′

or Γ ⊲ N
µ

��

�

τ

β
// Γ ⊲ M
µ

��

Γ′ ⊲ N′ ≡f Γ′ ⊲ M′

or µ=τ and Γ⊲M = Γ′⊲N′

A Theory of System Fault Tolerance – p. 21/23

Confluent τ-transitions

Fault Tolerance up toβ-moves

Γ1 ⊲ M1 �
n
β
Γ2 ⊲ M2 implies

Γ1⊲M1
µ
−→Γ′1 ⊲ M′1 implies Γ2⊲M2

µ̂
=⇒Γ′2 ⊲ M′2 such that

Γ′1 ⊲ M′1Al ◦ �
n
β
◦ ≈cnt Γ

′
2 ⊲ M′2

Γ2 ⊲ M2
µ
−→ Γ′2 ⊲ M′2 implies Γ1 ⊲ M1

µ̂
=⇒ Γ′1 ⊲ M′1 such that

Γ′2 ⊲ M′2Al ◦ �
n
β
◦ ≈ Γ′1 ⊲ M′1

If n > 0 then Γ2 ⊲M2
fail
−→ Γ′2 ⊲M′2 implies Γ1 ⊲M1 =⇒ Γ

′
1 ⊲M′1 such that

Γ′2 ⊲ M′2 �
n−1
β
◦ ≈ Γ′1 ⊲ M′1

where Al is the relation |==⇒β ◦ ≡

≈cnt is a bisimulation ranging over µ and the new counting action fail.

A Theory of System Fault Tolerance – p. 21/23

Confluent τ-transitions

Soundness of�n
β

Γ1 ⊲ M1 �
n
β
Γ2 ⊲ M2

implies

Γ1 ⊲ M1 �
n
D Γ2 ⊲ M2

A Theory of System Fault Tolerance – p. 21/23

Talk Summary

Fault Tolerance Intuitions

Language

Formal Definition

Proof Techniques

A Theory of System Fault Tolerance – p. 22/23

Main Result

Faults
Observer
View

Induce

3
2

1
4

A Theory of System Fault Tolerance – p. 23/23

Main Result

To show that Γ ⊲ M is fault tolerant up to n faults we just have
to give a witness fault tolerant simulation up to β-moves
satifying

Γ ⊲ M �n
β Γ ⊲ M

A Theory of System Fault Tolerance – p. 23/23

	Aim of The Paper
	Talk Overview
	Talk Overview

	Fault Tolerance
	Fault Tolerance
	Fault Tolerance
	Fault Tolerance
	Fault Tolerance
	Fault Tolerance
	Fault Tolerance
	Fault Tolerance
	Fault Tolerance
	Fault Tolerance

	Fault Tolerance Analysis
	Talk Overview
	The Language
	The Language
	The Language

	Examples
	Examples
	Examples
	Examples
	Examples
	Examples
	Examples
	Examples
	Examples
	Examples

	Server Fault Tolerance
	Server Fault Tolerance
	Server Fault Tolerance
	Server Fault Tolerance

	Talk Overview
	Defining Fault Tolerance Preliminaries
	Defining Fault Tolerance Preliminaries
	Defining Fault Tolerance Preliminaries
	Defining Fault Tolerance Preliminaries
	Defining Fault Tolerance Preliminaries
	Defining Fault Tolerance Preliminaries
	Defining Fault Tolerance Preliminaries

	Definition Fault Tolerance
	Definition Fault Tolerance

	Examples
	Examples
	Examples

	Talk Overview
	Problems we need to address
	Solving Observer Quantification
	Solving Observer Quantification
	Solving Observer Quantification

	Problems we need to address
	Fault Context Quantification and Overlap (1)
	Fault Context Quantification and Overlap (1)
	Fault Context Quantification and Overlap (1)
	Fault Context Quantification and Overlap (1)
	Fault Context Quantification and Overlap (1)

	Fault Context Quantification and Overlap (2)
	Fault Context Quantification and Overlap (2)
	Fault Context Quantification and Overlap (2)

	Problems we need to address
	Confluent $	au $-transitions
	Confluent $	au $-transitions
	Confluent $	au $-transitions
	Confluent $	au $-transitions
	Confluent $	au $-transitions
	Confluent $	au $-transitions

	Talk Summary
	Main Result
	Main Result

