
A Theory for Observational Fault Tolerance
(Extended Abstract)

Adrian Francalanza1 and Matthew Hennessy2

1 University of Malta, Msida MSD 06, Malta,afra1@um.edu.mt
2 University of Sussex, Brighton BN1 9RH, England,matthewh@sussex.ac.uk

Abstract. In general, faults cannot be prevented; instead, they need to be toler-
ated to guarantee certain degrees of software dependability. We develop a theory
for fault tolerance for a distributed pi-calculus, whereby locations act as units
of failure and redundancy is distributed across independently failing locations.
We give formal definitions for fault tolerant programs in our calculus, based on
the well studied notion of contextual equivalence. We then develop bisimulation
proof techniques to verify fault tolerance properties of distributed programs and
show they are sound with respect to our definitions for fault tolerance.

1 Introduction

One reason for the study of programs in the presence offaults, i.e. defects at the lowest
level of abstractions [2], is to be able to construct moredependablesystems, mean-
ing systems exhibiting a high probability ofbehavingaccording to theirspecification
[13]. System dependability is often expressed through attributes like maintainability,
availability, safety andreliability, the latter of which is defined as a measure of the
continuous deliveryof correct behaviour, [13]. There are a number of approaches for
achieving system dependability in the presence of faults, ranging from fault removal,
fault prevention andfault tolerance.

The fault tolerant approach to system dependability consist of various techniques
that employredundancyto prevent faults from generatingfailure, i.e. abnormal be-
haviour caused by faults [2]. Two forms of redundancy arespace redundancy(replica-
tion), i.e. using several copies of the same system components, andtime redundancy,
i.e. performing the same chunk of computation more than once. Certain fault tolerant
techniques are based onfault detectionwhich subsequently triggerfault recovery. If
enough redundancy is used, fault recovery can lead tofault masking, where the speci-
fied behaviour is preserved without noticeable glitch.

Fault tolerance is of particular relevance in distributed computing; distribution yield
a natural notion ofpartial failure, whereby faults affect asubsetof the computation. Par-
tial failure, in turn, gives scope for introducing redundancy asreplication, distributed
across independently failing entities such as locations. In general, the higher the repli-
cation, the greater the potential for fault tolerance. Nevertheless, fault tolerance also
depends on how replicas are managed. One classification, due to [13], identifies three
classes, namelyactive replication(all replicas are invoked for every operation),pas-
sive replication(operations are invoked on primary replicas and secondary replicas are

updated in batches at checkpoints), andlazy replication(a hybrid of the previous two,
exploiting the separation between write and read operations).

In this paper we address fault tolerance in a distributed setting, focussing on simple
examples usingstateless(read-only) replicas which are invoked only once. We code
these examples in Dπ [8] with failing locations [5], a simple distributed version of the
standardπ-calculus [11], where the locations that host processes model closely physical
network nodes.

Example 1.Consider the systemsserveri , three server implementations accepting client
requests on channelreq with two arguments,x being the value to process andy being
the reply channel on which the answer is returned.

server1 ⇐ (ν data)

(
l[[req?(x, y).go k1.data!〈x, y, l〉]]
| k1[[data?(x, y, z).go z.y!〈 f (x)〉]]

)

server2 ⇐ (ν data)


l


req?(x, y).(νsync)

go k1.data!〈x, sync, l〉
| go k2.data!〈x, sync, l〉
| sync?(x).y!〈x〉





| k1[[data?(x, y, z).go z.y!〈 f (x)〉]]
| k2[[data?(x, y, z).go z.y!〈 f (x)〉]]



server3 ⇐ (ν data)



l


req?(x, y).(νsync)


go k1.data!〈x, sync, l〉
| go k2.data!〈x, sync, l〉
| go k3.data!〈x, sync, l〉
| sync?(x).y!〈x〉





| k1[[data?(x, y, z).go z.y!〈 f (x)〉]]
| k2[[data?(x, y, z).go z.y!〈 f (x)〉]]
| k3[[data?(x, y, z).go z.y!〈 f (x)〉]]


Requests are forwarded to internal databases, denoted by the scoped channeldata, dis-
tributed and replicated across the auxiliary locationski . A database looks up the map-
ping of the valuex using some unspecified functionf (−) and returns the answer,f (x),
back on porty. When multiple replicas are used, as inserver2,3, requests are sent to
all replicas in an arbitrary fashion, without the use of failure detection, and multiple
answers are synchronised atl on the scoped channelsync, returning the first answer
received ony.

The theory developed in [5] enables us todifferentiatebetween these systems, based
on the different behaviour observed when composed with systems such as

client ⇐ l[[req!〈v, ret〉]]

in a setting where locations may fail. Here we go one step further, allowing us to
quantify in some sense the difference between these systems. Intuitively, if locations
ki , i = 1,2,3, can fail in fail-stop fashion[12] and observations are limited to locationl
only, thenserver2 seems to be morefault tolerantthanserver1; observers limited tol,
such asclient, cannot observe changes in behaviour inserver2 whenat most 1location

2

from ki fails. Similarly,server3 is morefault tolerantthanserver1 andserver2 because
server3 | client preserves its behaviour atl up to 2faults occurring atk1..3.

In this paper we give a formal definition of when a system is deemed to be fault
tolerant up ton-faults, which coincides with this intuition. As in [5] we need to consider
systemsM, running on some network, which we will represent asΓ . M. Then we will
say thatM is fault-tolerant up ton faults if

Fn[Γ . M] � Γ . M (1)

whereFn[] is some context which induces at mostn faults, and� is some behavioural
equivalence between systems descriptions. A key aspect of this behavioural equivalence
is the implicit separation betweenreliable locations, which are assumed not to fail, and
unreliablelocations, which may fail. In the above examplel is reliable, at which obser-
vations can be made, while theki are assumed unreliable, subject to failure. Furthermore
it is essential that observers not have access to to these unreliable locations, at any time
during a computation. Otherwise (1) would no longer representM being fault tolerant;
for example we would no longer have

F1[Γ . server2] � Γ . server2

as an observer with access toki would be able to detect possible failures inF1[Γ .
server2], not present inΓ . server2.

We enforce this separation between reliable, observable, locations, and unreliable,
unobservable, locations, using a simple type system in which the former are called
public, and the latterconfined. This is outlined in Section 2, where we also formally de-
fine the language we use, DπLoc, give its reduction semantics, and also outline the be-
havioural equivalence�; this last is simply an instance ofreduction barbed congruence,
[6], modified so that observations can only be made at public locations. In Section 3 we
give our formal definition of fault-tolerance; actually we give two versions of (1) above,
calledstaticanddynamicfault tolerance; we also motivate the difference with examples.
Proof techniques for establishing fault tolerance are given in Section 4; in particular we
give a complete co-induction characterisation of�, using labelled actions, and some
useful up-to techniques for presenting witness bisimulations. In Section 5 we refine
these proof techniques for the more demanding fault tolerant definition,dynamic fault
tolerance, usingsimulations. Finally Section 6 outlines the main contributions of the
paper and discusses future and related work.

2 The Language

We assume a set ofvariables V, ranged over byx, y, z, . . . and a separate set of
names, N, ranged over byn,m, . . . , which is divided into locations, L, ranged
over byl, k, . . . and channels, C, ranged over bya,b, c, Finally we useu, v, . . .
to range over the set ofidentifiers, consisting of either variables and names.

The syntax of our language, DπLoc, is a variation of Dπ [8] and is given in Table 1.
The main syntactic category is that ofsystems, ranged over byM,N: these are essen-
tially a collection oflocated processes, or agents, composed in parallel where location

3

Table 1.Syntax of typed DπF

Types
T ::= chv〈P̃〉 | loc

s
v (stateful types) s ::= a | d (status)

U ::= chv〈P̃〉 | locv (stateless types) v ::= p | c (visibility)
P ::= chp〈P̃〉 | locp (public stateless types)

Processes
P,Q ::= u!〈V〉.P (output) | u?(X).P (input)

| if v=u then Pelse Q (matching) | ∗ u?(X).P (replicated input)
| (ν n:T)P (channel/location definition) | go u.P (migration)
| 0 (inertion) | P|Q (fork)
| ping u.Pelse Q (status testing)

Systems
M,N,O ::= l[[P]] (located process) | N|M (parallel)

| (ν n:T)N (hiding)

and channel names may be scoped to a subset of agents. The syntax for processes,
P,Q, is an extension of that in Dπ: there is input and output on channels - hereV is a
tuple of identifiers, andX a tuple of variables, to be interpreted as a pattern - and stan-
dard forms of parallel composition, inertion, replicated input, local declarations, a test
for equality between identifiers and migration. The only addition on the original Dπ is
pingk.Pelse Q, which tests for thestatusof k in the style of [1, 10] and branches toP if
k is alive andQ otherwise. For these terms we assume the standard notions offreeand
boundoccurrences of both names and variables, together with the associated concepts
of α-conversion andsubstitution. We also assume that systems areclosed, that is they
have no free variable occurrences.

As explained in the Introduction we use a variation (and simplification) of the type
system of Dπ [8] in which the the two main categories, channels and locations, are
now annotated by visibility constraints, givingchv〈P̃〉 andlocv, wherevmay either be
p (i.e. public) orc (i.e. confined); in Table 1 these are calledstatelesstypes, and are
ranged over byU. As explained in [5] a simple reduction semantics can be defined if
we also allow types which record the status of a location, whether it is alive,a, or dead,
d; these are refereed to asstatefultypes, ranged over byT. Finally P ranges overpublic
types, the types assigned to all names which are visible to observers.

Type System:Γ denotes a type environment, an unordered list of tuples assigning a
singlestatefultype to names, and we writeΓ ` n : T to mean thatΓ assigns the type
T to n; when it is not relevant to the discussion we will sometimes drop the various
annotations on these types; for exampleΓ ` n : ch〈U〉 signifies thatchv〈U〉 for some
visibility statusv. Typing judgements take the formΓ ` N and defined by the rules
in Table 2. In these rules, we use an extended form of type environment,Σ, which, in
addition to names, also mapsvariablesto statelesstypes. Note that none of the rules
depend on the status (dead or alive) of names in the environment. Also the visibility
constraints are enforced indirectly, by virtue of the formation rules for valid types, given
in Figure 1.

In this extended abstract we omit even the statement of the Subject Reduction and
appropriate Type Safety result for our language.

4

Table 2.Typing rules for typed DπLoc

Processes
(t-out)
Σ ` u:ch〈Ũ〉
Σ ` V : Ũ
Σ ` P
Σ ` u!〈V〉.P

(t-in-rep)
Σ ` u:ch〈Ũ〉
Σ,X : Ũ ` P
Σ ` u?(X).P
Σ ` ∗u?(X).P

(t-nw)
Σ, ñ: T̃ ` P
Σ ` (ν ñ: T̃)P

(t-cond)
Σ ` u:U, v:U
Σ ` P, Q
Σ ` if u=v then Pelse Q

(t-fork)
Σ ` P, Q
Σ ` P|Q

(t-axiom)

Σ ` 0

(t-go)
Σ ` u : loc
Σ ` P
Σ ` go u.P

(t-ping)
Σ ` u : loc
Σ ` P, Q
Σ ` ping u.Pelse Q

Systems Observers

(t-rest)
Γ, ñ: T̃ ` N
Γ ` (ν ñ: T̃)N

(t-par)
Γ ` N, M
Γ ` N|M

(t-proc)
Γ ` l : loc
Γ ` P
Γ ` l[[P]]

(t-obs)
pub(Γ) ` O
Γ `obs O

Table 3.Reduction Rules for DπLoc

Assuming Γ ` l :alive

(r-comm)

Γ . l[[a!〈V〉.P]] | l[[a?(X).Q]] −→ Γ . l[[P]] | l[[Q{V/X}]]

(r-rep)

Γ . l[[∗a?(X).P]] −→ Γ . l[[a?(X).(P| ∗ a?(X).P)]]

(r-fork)

Γ . l[[P|Q]] −→ Γ . l[[P]] | l[[Q]]

(r-eq)

Γ . l[[if u=u then Pelse Q]] −→ Γ . l[[P]]

(r-neq)

Γ . l[[if u=v then Pelse Q]] −→ Γ . l[[Q]]
u , v

(r-go)

Γ . l[[go k.P]] −→ Γ . k[[P]]
Γ ` k : alive

(r-ngo)

Γ . l[[go k.P]] −→ Γ . k[[0]]
Γ 0 k : alive

(r-ping)

Γ . l[[ping k.Pelse Q]] −→ Γ . l[[P]]
Γ ` k : alive

(r-nping)

Γ . l[[ping k.Pelse Q]] −→ Γ . l[[Q]]
Γ 0 k : alive

(r-new)

Γ . l[[(ν n:T)P]] −→ Γ . (ν n:T) l[[P]]

(r-str)
Γ . N′ ≡ Γ . N Γ . N −→ Γ′ . M Γ′ . M ≡ Γ′ . M′

Γ . N′ −→ Γ′ . M′

(r-ctxt-rest)
Γ + n : T . N −→ Γ′ + n : U . M
Γ . (ν n : T)N −→ Γ′ . (ν n : U)M

(r-ctxt-par)
Γ . N −→ Γ′ . N′

Γ . N|M −→ Γ′ . N′|M
Γ . M|N −→ Γ′ . M|N′

5

Table 4.Structural Rules for DπLoc

(s-comm) N|M ≡ M|N
(s-assoc) (N|M)|M′ ≡ N|(M|M′)
(s-unit) N|l[[0]] ≡ N
(s-extr) (ν n:T)(N|M) ≡ N|(ν n:T)M n < fn(N)
(s-flip) (ν n:T)(νm:U)N ≡ (νm:U)(ν n:T)N
(s-inact) (ν n:T)N ≡ N n < fn(N)

Reduction Semantics:We call pairsΓ .N configurations, wheneverΓ ` N. Reductions
then take the form of a binary relation over configurations

Γ . N −→ Γ . N′

defined in terms of the reduction rules in Table 3, whereby systems reduce with respect
to the status of the locations inΓ; we writeΓ ` l :alive as a shorthand forΓ ` l : loca.
So all reduction rules assume the location where the code is executing is alive. More-
over, (r-go), (r-ngo), (r-ping) and (r-nping) reduce according to the status of the remote
location concerned. The reader is refered to [5] for more details; but note that here the
status of locations is unchanged by reductions.

Behavioural equivalence:First note that the type system does indeed enforce the intu-
itive separation of concerns discussion in the Introduction. For example letΓe denote
the environment

Γe = l :locap, k1 :locac, k2 :locac, k3 :locac, req :chp〈T, chp〈T〉〉, a:chp〈A〉, ret :chp〈T〉

whereT is an arbitrary public type; Then one can check

Γe ` serveri

whereserveri is defined in the Introduction, provided the locally declared channelsdata
and sync are declared at the typesch〈T, chp〈T〉, locp〉 andch〈T〉 respectively. Now
consider

serverBad⇐ server1 | l[[a!〈k1〉]]

which attempts to export a confined locationk1, which could subsequently could be
tested for failure by a public observer. Once more one can check thatΓe 0 serverBad.

Intuitively an observer is any system which only uses public names. Formally let
pub(Γ) be the environment obtained by omitting fromΓ any name not assigned a public
type. Thenpub(Γ) ` O ensures thatO can only use public names. For example consider

observer ⇐ l[[req!〈v, ret〉]]

observerBad ⇐ l[[go k1.go l.ok!〈〉]]

Here one can check thatpub(Γe) ` observer andpub(Γe) 0 observerBad.
Our behavioural equivalence will in general relate arbitrary configurations; but we

would expect equivalent configurations to have the samepublic interface, and be pre-
served by public observers.

6

Definition 1 (p-Contextual). A relation over configurations is called p-Contextual if,
wheneverΓ.M R Γ′.N

– (p-Interfaces:)pub(Γ) = pub(Γ′)
– (Parallel:) Γ.M | O R Γ′.N | O andΓ.M | O R Γ′.N | O wheneverpub(Γ) ` O
– (Fresh extensions:)Γ,n ::P.M R Γ′,n ::P.N whenever n is fresh

Definition 2 (p-Barb). Γ .N ⇓p
a@l denotes ap-observable barbby configurationΓ .N,

on channel a at location l, defined as:

∃N′. Γ.N −→∗ Γ.N′ such that N′≡ (ν ñ: T̃)M|l[[a!〈V〉.Q]] whereΓ ` l : locap,a : chp〈P̃〉

Using this concept, we can now modify the standard definition ofreduction barbed
equivalence, [6]:

Definition 3 (Reduction barbed congruence).Let � be the largest relation between
configurations which is p-contextual, reduction-closed (see [6]) and preserves p-barbs.

3 Defining Fault Tolerance

Our first notion ofn-fault-tolerance, formalising the intuitive (1), is when the faulting
context induces at mostn location failures, prior to the execution of the system; of
course these failures must only be induced on locations which are not public. Formally
for any set of location names̃l let F l̃

S be the function which maps any configuration
Γ . N to Γ − l̃ . N, whereΓ − l̃ is the environment obtained fromΓ by changing the
status of everyl i to dead. We sayF l̃

S is avalid static n-fault contextwith respect toΓ,
if the size ofl̃ is at most n, and for everyl i ∈ l̃, l i is confined and alive (Γ ` l i : locac).

Definition 4 (Static Fault Tolerance).A configurationΓ.N is n-static fault tolerant if

Γ . N � F l̃
S(Γ) . N

for every static n-fault context Fl̃S which is valid with respect toΓ.

With this formal definition we can now examine the systemsserveri , using theΓe

defined above. We can easily check thatΓ . server1 is not 1-fault tolerant, by consider-
ing the fault contextFk1

S . Similarly we can show thatΓe . server2 is not 2-fault tolerant,
by consideringFk1,k2

S . But establishing positive results, for example thatΓe . server2

is 1-fault tolerant, is difficult because the definition of� quantifies over all valid ob-
servers. This point will be addressed in the next section, when we give a co-inductive
characterisation of�.

Instead let us consider another manner of inducing faults. Letl[[kill]] be a system
which asynchronously kills a confined locationl. Its operation is defined by the rule

(r-kill)

Γ . l[[kill]] −→ (Γ − l) . l[[0]]

For any set of locations̃l let F l̃
D denote the function which maps the systemM to

M | l1[[kill]] | . . . | ln[[kill]]. It is said to be a valid dynamicn-fault context with respect toΓ
if again the size of̃l is at mostn andΓ ` l i : locac, for everyl i in l̃.

7

Definition 5 (Dynamic Fault Tolerance). A configurationΓ .N is n-dynamic fault
tolerant if

Γ . F l̃
D(M) � Γ . M

for every dynamic n-fault context which is valid with respect toΓ.

Example 2.The systemsPassive defined below uses two identical replicas of the dis-
tributed database atk1 andk2, but treats the replica atk1 asprimary replica and the one
atk2 as asecondary(backup) replica - once againW = ch〈T, chp〈T〉, locp〉.

sPassive⇐ (ν data:W)


l

[[
serv?(x, y).ping k1.go k1.data!〈x, y, l〉

else go k2.data!〈x, y, l〉

]]
| k1[[data?(x, y, z).go z .y!〈 f (x)〉]]
| k2[[data?(x, y, z).go z .y!〈 f (x)〉]]


The coordinating interface atl uses the ping construct todetect failuresin the pri-

mary replica: ifk1 is alive, the request is sent to the primary replica and the secondary
replica atk2 is not invoked; if, on the other hand, the primary replica is dead, then the
passive replica atk2 is promoted to a primary replica and the request is sent to it. This
implementation saves ontime redundancysince, for any request, only one replica is
invoked. Another passive replication server issMonitor, defined as

sMonitor⇐ (ν data:W)


l


serv?(x, y).(ν sync:ch〈〉)

go k1.data!〈x, sync, l〉
| mntr k1.go k2.data!〈x, sync, l〉
| sync?(z).y!〈z〉





| k1[[data?(x, y, z).go z .y!〈 f (x)〉]]
| k2[[data?(x, y, z).go z .y!〈 f (x)〉]]


where again,W = ch〈T, chp〈T〉, locp〉. It uses amonitorprocess for failure detection

mntr k.P⇐ (ν test:ch〈〉)(test!〈〉 | ∗ test?().ping k. test!〈〉 else P)

instead of asingleping test on the primary replica atk1; mntr k.P repeatedlytests the
status of the monitored location (k) and continues asP whenk becomes dead. Similar
to server2..3, sMonitor synchronises multiple answers from replicas with channelsync.

Using the techniques of the next section, one can show that bothΓe . sPassive and
Γ .sMonitor, are 1-static fault tolerant, similar toserver2. However there is a difference
between these two systems;ifk1 fails after sPassive tests for its status, then an answer
will never reachl. ThussPassive is not1-dynamic fault tolerant; formally one can show
Γe . Fk1

D (sPassive) 6� Γe . sPassive. But, as we will see in the next section,sMonitor
can be shown to be 1-dynamic fault tolerant, just likeserver2..3.

4 Proof Techniques for Fault Tolerance

We define a labelled transition system (lts) for DπLoce, which consists of a collection

of actions over (closed) configurations,Γ . N
µ
−→ Γ′ . N′, whereµ can be an internal

action,τ, a bound input, (˜n : T̃)l : a?(V) or bound output, (˜n : T̃)l : a!〈V〉. These actions

8

Table 5.Operational Rules for Typed DπLoc

Assuming Γ ` l : alive

(l-in)

Γ . l[[a?(X).P]]
l:a?(V)
−−−−→ Γ . l[[P{V/X}]]

Γ `obs l, Γ ` a : chp〈W̃〉, V : W̃
(l-fork)

Γ . l[[P|Q]]
τ
−→ Γ . l[[P]] | l[[Q]]

(l-out)

Γ . l[[a!〈V〉.P]]
l:a!〈V〉
−−−−→ Γ . l[[P]]

Γ `obs l,a

(l-in-rep)

Γ . l[[∗a?(X).P]]
τ
−→ Γ . l[[a?(X).(P| ∗ a?(Y).P{Y/X})]]

(l-eq)

Γ . l[[if u=u then Pelse Q]]
τ
−→ Γ . l[[P]]

(l-neq)

Γ . l[[if u=v then Pelse Q]]
τ
−→ Γ . l[[Q]]

u , v

(l-new)

Γ . l[[(νn : T)P]] −→ Γ . (ν n : T) l[[P]]

(l-kill)

Γ . l[[kill]]
τ
−→ (Γ − l) . l[[0]]

(l-go)

Γ . l[[go k.P]]
τ
−→ Γ . k[[P]]

Γ ` k : alive
(l-ngo)

Γ . l[[go k.P]]
τ
−→ Γ . k[[0]]

Γ 0 k : alive

(l-ping)

Γ . l[[ping k.Pelse Q]]
τ
−→ Γ . l[[P]]

Γ ` k : alive
(l-nping)

Γ . l[[ping k.Pelse Q]]
τ
−→ Γ . l[[Q]]

Γ 0 k : alive

(l-open)

Γ + n : T . N
(ñ:T̃)l:a!〈V〉
−−−−−−−→ Γ′ . N′

Γ . (ν n : T)N
(n:T,ñ:T̃)l:a!〈V〉
−−−−−−−−−−→ Γ′ . N′

l,a , n ∈ V

(l-weak)

Γ + n : T . N
(ñ:T̃)l:a?(V)
−−−−−−−−→ Γ′ . N′

Γ . N
(n:T,ñ:T̃)l:a?(V)
−−−−−−−−−−→ Γ′ . N′

l,a , n ∈ V

(l-rest)

Γ + n : T . N
µ
−→ Γ′ + n : U . N′

Γ . (ν n : T)N
µ
−→ Γ′ . (ν n : U)N′

n < fn(µ)

(l-par-ctxt)

Γ . N
µ
−→ Γ′ . N′

Γ . N |M
µ
−→ Γ′ . N′ |M

Γ . M |N
µ
−→ Γ′ . M |N′

(l-par-comm)

↑ (Γ) . N
(ñ:↑(T̃))l:a!〈V〉
−−−−−−−−−→ Γ′ . N′ ↑ (Γ) . M

(ñ:↑(T̃))l:a?(V)
−−−−−−−−−→ Γ′′ . M′

Γ . N |M
τ
−→ Γ . (ν ñ : T̃)(N′ |M′)

Γ . M |N
τ
−→ Γ . (ν ñ : T̃)(M′ |N′)

are defined by transition rules given in Table 5, inspired by [7, 6, 5]. In accordance
with Definition 2 (observable barbs) and Definitions 1 (valid observers),(l-in) and (l-
out) restrict external communication topublic channels atpublic locations (Γ `obs l,a).
Furthermore, in(l-in) we require that the type of the values inputted,V, match the object
type of channela; sincea is public and configurations are well-typed, this also implies
that V are public values defined inΓ. The restriction on output action, together with
the assumption of well-typed configurations also means that, in(l-open), we only scope

9

Table 6.β-Transition Rules for Typed DπLoc

Assuming Γ ` l : alive

(b-in-rep)

Γ . l[[∗a?(X).P]]
τ
7−→β Γ . l[[a?(X).(P| ∗ a?(Y).P{Y/X})]]

(b-fork)

Γ . l[[P|Q]]
τ
7−→β Γ . l[[P]] | l[[Q]]

(b-eq)

Γ . l[[if u=u then Pelse Q]]
τ
7−→β Γ . l[[P]]

(b-neq)

Γ . l[[if u=v then Pelse Q]]
τ
7−→β Γ . l[[Q]]

u , v

(b-ngo)

Γ . l[[go k.P]]
τ
7−→β Γ . k[[0]]

Γ 0 k : alive
(b-nping)

Γ . l[[ping k.Pelse Q]]
τ
7−→β Γ . l[[Q]]

Γ 0 k : alive

(b-new)

Γ.l[[(ν n:T)P]]
τ
7−→β Γ.(ν n:T)l[[P]]

(b-rest)

Γ,n:T.N
τ
7−→β Γ

′,n:W.N′

Γ.(ν n:T)N
τ
7−→β Γ

′.(ν n:W)N′

(b-par)

Γ . N
τ
7−→β Γ

′ . N′

Γ.N|M
τ
7−→β Γ

′.N′|M

Γ.M|N
τ
7−→β Γ

′.M|N′

extrude public values. Contrary to [5], the lts does not allow external killing of locations
(through the labelkill : l) since public locations are reliable and never fail. Finally, the
transition rule for internal communication,(l-par-comm), uses an overloaded function
↑ () for inferring input/output capabilities of the sub-systems: when applied to types,
↑ (T) transforms all the type tags to public (p); when applied to environments,↑ (Γ)
changes all the types to public types in the same manner. All the remaining rules are a
simplified version of the rules in [5].

Definition 6 (Weak bisimulation equivalence).This is denoted as≈, and is defined
to be the largest typed relation over configurations such that ifΓ . M ≈ Γ′ . N then

– Γ . M
µ
−→ Γ′′ . M′ impliesΓ′ . N

µ̂
=⇒ Γ′′′ . N′ such thatΓ′′ . M′ ≈ Γ′′′ . N′

– Γ′ . N
µ
−→ Γ′′ . N′ impliesΓ . M

µ̂
=⇒ Γ′′ . M′ such thatΓ′′ . M′ ≈ Γ′′′ . N′

Theorem 1 (Full Abstraction). For any DπLoc configurationsΓ.M, Γ′.N:

Γ . M � Γ′.N if and only if Γ . M ≈ Γ′.N

Theorem 1 allows us to provepositivefault tolerance results by giving a bisimula-
tion for every reduction barbed congruent pair required by Definitions 4 and 5. We next
develop up-to bisimulation techniques that can relieve some of the burden of exhibiting
the required bisimulations. We identify a number ofτ actions, which we refer to asβ-

actions orβ-moves, inspired by the work in [3]. These are denoted asΓ .N
τ
7−→β Γ

′ .N
and are defined in Table 6. With theseβ-moves we develop up-to bisimulation tech-
niques, by showing that our witness bisimulations can abstract away from matching
configurations that denoteβ-moves. Our details are more complicated than in [3] be-
cause we deal with failure: apart from local rules ((b-eq) and(b-fork)) and context rules
((b-rest) and(b-par)), Table 6 includes rules dealing with failed locations such as(b-ngo)

10

Table 7.β-Equivalence Rules for Typed DπLoc

(bs-comm) Γ |= N|M ≡f M|N
(bs-assoc) Γ |= (N|M)|M′ ≡f N|(M|M′)
(bs-unit) Γ |= N|l[[0]] ≡f N
(bs-extr) Γ |= (ν n:T)(N|M) ≡f N|(ν n:T)M n < fn(N)
(bs-flip) Γ |= (ν n:T)(νm:U)N ≡f (νm:U)(ν n:T)N
(bs-inact) Γ |= (ν n:T)N ≡f N n < fn(N)
(bs-dead) Γ |= l[[P]] ≡f l[[Q]] Γ 0 l : alive

and(b-nping). To obtain the required results forβ-moves with failure, we define a new
structural equivalence ranging overconfigurations, denoted as≡f and defined by the
rules in Table 7, which takes into considerationlocation statusas well. This enables
us to obtain confluence forβ-moves with respect to actions that change the status of
locations. The only rule worth highlighting is(bs-dead), which allows us to ignore dead
code.

Lemma 1 (Confluence ofβ-moves).
τ
7−→β observes the diamond property:

Γ . N

µ

��

� τ

β
// Γ . M

Γ′ . N′ Γ′ . M′

implies Γ . N

µ

��

� τ

β
// Γ . M

µ

��
Γ′ . N′

�� τ
β
+3 ≡f Γ

′ . M′

or µ=τ andΓ.M = Γ′.N′

Proof. The proof proceeds by case analysis of the different types ofµ and then by
induction on the derivation of theβ-move.

Proposition 1. SupposeΓ . N |==⇒β Γ′ . M. ThenΓ . N≈Γ′ . M.

Proof. We prove the above statement by definingR =
{
Γ.N , Γ′.M |Γ.N |==⇒βΓ′.M

}
and showing thatR is a bisimulation, which follows as a consequence of Lemma 1.

Definition 7 (Bisimulation up-to β-moves).Bisimulation up-toβ-moves, denoted as
≈β, is the largest typed relation between configurations such thatΓ1.M1 ≈β Γ2.M2 and

– Γ1.M1
µ
−→ Γ′1.M

′
1 impliesΓ2.M2

µ̂
=⇒ Γ′2.M

′
2 such thatΓ′1.M

′
1Al◦ ≈β ◦ ≈ Γ

′
2.M

′
2

– Γ2.M2
µ
−→ Γ′2.M

′
2 impliesΓ1.M1

µ̂
=⇒ Γ′1.M

′
1 such thatΓ′2.M

′
2Al◦ ≈β ◦ ≈ Γ

′
1.M

′
1

whereAl is the relation|==⇒β ◦ ≡.

Proposition 1 provides us with a powerful method for approximating bisimulations.

In the approximate bisimulation≈β, an actionΓ1 . M1
µ
−→ Γ′1 . M′1 can be matched by

a β-derivative ofΓ′1 . M′1, that isΓ′1 . M′1 |==⇒β Γ
′
1 . M′′1 , and a weak matching action

Γ2 . M2
µ̂
=⇒ Γ′2 . M′2 such that, up to structural equivalence on the one side and up-to

bisimilarity on the other, the pairsΓ′1.M
′′
1 andΓ′2.M

′
2 are once more related. Intuitively

then, in any relation satisfying≈β, a configuration can represent all the configurations to
which it can evolve usingβ-moves. We justify the use of≈β by proving Proposition 2.

11

Proposition 2 (Inclusion of bisimulation up-to β-moves).If Γ1 .M1 ≈β Γ2 .M2 then
Γ1 . M1 ≈ Γ2 . M2

Proof. We prove the above proposition by defining the relationR as

R =
{
Γ1 . M1 , Γ2 . M2 Γ1 . M1 ≈ ◦ ≈β ◦ ≈ Γ2 . M2

}
and show thatR ⊆≈. The required result can then be extracted from this result by
considering the special cases where the≈ on either side are the identity relations.

Example 3.We are now in a position to prove positive fault tolerance result. For in-
stance to show thatΓ . sPassive is 1-static fault tolerant we just need to provide 3
witness bisimulations up-toβ-moves to prove∏3

i=1 Γ . sPassive � (Γ − ki) . sPassive

We here give the witness relation for the most involving case (wherei = 1), and leave
the simpler relations for the interested reader. Thus, the witness relation isR defined as

R
def
= {〈Γ . sPassive, Γ − k1 . sPassive〉} ∪

 ⋃
u,v∈N

R′(u, v)



R′(u, v)
def
=



Γ . (νd)l[[Png(u, v)]] | R1 | R2 , Γ − k1 . (νd)l[[Png(u, v)]] | R1 | R2

Γ . (νd)l[[Q1(u, v)]] |R1 |R2 , Γ − k1 . (νd)l[[Q2(u, v)]] |R1 |R2

Γ . (νd)k1[[d!〈u, v, l〉]] |R1 |R2 , Γ − k1 . (νd)k2[[d!〈u, v, l〉]] |R1 |R2

Γ . (νd)k1[[go l .v!〈 f (u)〉]] |R2 , Γ − k1 . (νd)R1 | k2[[go l .v!〈 f (u)〉]]
Γ . (νd)l[[v!〈 f (u)〉]] |R2 , Γ − k1 . (νd)R1 | l[[v!〈 f (u)〉]]
Γ . (νd)R2 , Γ − k1 . (νd)R1


whered stands fordataand
Png(x, y)⇐ ping k1.Q1(x, y) else Q2(x, y)

Qi(x, y)⇐ go ki .d!〈x, y, l〉
Ri ⇐ ki [[d?(x, y, z).go z .y!〈 f (x)〉]]

5 Generic Techniques for Dynamic Fault Tolerance

Despite the fault tolerance proof techniques developed in Section 4, proving positive
fault tolerance results entails a lot of unnecessary repeated work because Definition 4
and Definition 5 quantify over all valid fault contexts: to prove thatserver3 is 2-dynamic
fault tolerant, we need to provide 6 relations, one for every different case in∏3

i, j=1 Γ . server3 � Γ . server3|ki [[kill]] |k j [[kill]]

A closer inspection of the required relations reveals that there is a lot of overlap between
them: these overlapping states would be automatically circumvented if we require a sin-
gle relation that is somewhat the merging of all of these separate relations. Hence we

12

reformulate our fault tolerance definition for dynamic fault tolerance (the most demand-
ing), to reflect such a merging of relations; a similar definition for the static case should
not be more difficult to construct. The new definition is based on the actions given
earlier in Section 4 together with a new action,fail, defined as

(l-fail)

Γ . N
fail
−−→ (Γ − l) . N

Γ ` l :locac

permitting external killing of confined locations. Intuitively, this action allow us to
countthe number of failures, but prohibits us from determining which specific location
failed.3 The asymmetric relation�n

D, defined below, is parameterised with an integern,
denoting the number of confined locations that can still be killed on the right hand side:
the additional third clause states that afail move on the right hand side may be matched
by a weakτ-move on the left hand side and the two residuals need to be related in�n−1

D .

Definition 8 (Dynamic Fault Tolerance Simulation).Dynamic n-fault tolerantsim-
ulation, denoted�n

D, is the largestasymmetrictyped relation over configurations such
that wheneverΓ1 . M1 �

n
D Γ2 . M2,

– Γ1 . M1
γ
−→ Γ′1 . M′1 impliesΓ2 . M2

γ̂
=⇒ Γ′2 . M′2 such thatΓ′1 . M′1 �

n
D Γ

′
2 . M′2

– Γ2 . M2
γ
−→ Γ′2 . M′2 impliesΓ1 . M1

γ̂
=⇒ Γ′1 . M′1 such thatΓ′1 . N′1 �

n
D Γ

′
2 . M′2

– if n > 0, Γ2.M2
fail
−→Γ′2.M

′
2 impliesΓ1.M1=⇒Γ

′
1.M

′
1 such thatΓ′1 . M′1�

n−1
D Γ

′
2 . M′2

Before we can use Definition 8 to prove dynamic fault tolerance, we need to show
that the new definition is sound with respect to Definition 5.

Proposition 3 (Soundness of�n
D). If Γ |= M1 �

n
D M2 then for any dynamicn-fault

context Fl̃
D that is valid with respect toΓ we haveΓ |= M1 � F l̃

D(M2)

Proof. LetRn be a relation parameterised by a numbern and defined as

Rn
def
=

{
Γ1 . M1 , Γ2 . M2 | F i

D Γ1 . M1�
i
DΓ2 . M2,

∏2
j=1Γ j ` F i

D and 0≤ i ≤ n
}

By showingRn ⊆≈ we prove that�n
D is sound with respect ton-dynamic fault tolerance

It would be ideal if we could reuse up-to techniques and give relations satisfying
�n

D that abstract away fromβ-moves. Similar to Section 4, we define a fault tolerance
simulation up-toβ-moves and show that this is sound with respect to�n

D. This definition
uses a weak bisimulation (Definition 6) that ranges overα actions, that isµ andthe new
actionfail. We refer to this bisimulation as acountingbisimulation over configurations,
denoted as≈cnt, because it allows us to count failing confined locations on each side
and match subsequent observable behaviour.

Definition 9 (Fault Tolerant Simulation up-to β-moves).An n-fault tolerant simula-
tion up-toβ-moves, denoted as�n

β, is the largest typed relationR between configurations
parameterised by the number n, such that whenever we haveΓ1 . M1 �

n
β Γ2 . M2

3 This point differs from [5], where labels for external killing carried the location name,kill:l.

13

– Γ1.M1
µ
−→Γ′1.M

′
1 impliesΓ2.M2

µ̂
=⇒Γ′2.M

′
2 such thatΓ′1.M

′
1Al ◦ �

n
β ◦ ≈cnt Γ

′
2.M

′
2

– Γ2.M2
µ
−→ Γ′2.M

′
2 impliesΓ1.M1

µ̂
=⇒ Γ′1.M

′
1 such thatΓ′2.M

′
2Al◦ �

n
β ◦ ≈ Γ

′
1.M

′
1

– If n > 0 thenΓ2 . M2
fail
−→ Γ′2 . M′2 impliesΓ1 . M1 =⇒ Γ

′
1 . M′1 such that

Γ′2 . M′2 �
n−1
β ◦ ≈ Γ′1 . M′1

whereAl is the relation|==⇒β ◦ ≡. We highlight the use of≈cnt for matching configura-
tions in the first clause.

The work required to show that�n
β is sound with respect to�n

D is similar to earlier
up-toβ-moves work discussed in Section 4: we have to show thatβ-move confluence
(similar to Lemma 1) is also preserved for the new actionfail; we also have to show that
after aβ-move, the redex and reduct configurations are counting-bisimilar (similar to
Proposition 1). Finally we prove the following proposition

Proposition 4 (Inclusion of fault tolerant simulation up-to β-moves).
If Γ1 . M1 �

n
β Γ2 . M2 thenΓ1 . M1 �

n
D Γ2 . M2

Proof. We prove the above proposition by defining the relationRn as

Rn =
{
Γ1 . M1 , Γ2 . M2 Γ1 . M1 ≈ ◦ �

i
β ◦ ≈cnt Γ2 . M2 and 0≤ i ≤ n

}
and show thatRn ⊆�

n
D. The required result can then be extracted from this result by

considering the special cases where≈ and≈cnt on either side are the identity relations.

Example 4.The results of Proposition 3 and Proposition 4 allow us to prove that the
configurationΓ . server2 is 1-dynamically fault tolerant by providing asinglewitness
fault tolerance simulation up-toβ-moves showing thatΓ . server2 �

1
β Γ . server2 Due

to lack of space, we relegate the presentation of this relation to the full paper [4].

6 Conclusions and Related Work

We adopted a subset of [5] and developed a theory for system fault tolerance in the pres-
ence of fail-stop node failure. We formalised two definitions for fault tolerance based
on the well studied concept of observational equivalence. Subsequently, we developed
various sound proof techniques with respect to these definitions.

Future Work The immediate next step is to apply the theory to a wider spectrum of
examples, namely using replicas with state and fault tolerance techniques such as lazy
replication: we postulate that the existing theory should suffice. Another avenue worth
considering is extending the theory to deal with link failure and the interplay between
node and link failure [5]. In the long run, we plan to develop of a compositional the-
ory of fault tolerance, enabling the construction of fault tolerant systems from smaller
component sub-systems. For both cases, this paper should provide a good starting point.

14

Related WorkTo the best of our knowledge, Prasad’s thesis [9] is the closest work
to ours, addressing fault tolerance for process calculi. Even though similar concepts
such as redundancy (called ”duplication”) and failure-free execution are identified, the
setting and development of Prasad differs considerably form ours. In essence, three
new operators (”displace”, ”audit” and ”checkpoint”) are introduced in a CCS variant;
equational laws for terms using these operators are then developed so that algebraic
manipulation can be used to show that terms in this calculus are, in some sense, fault
tolerant with respect to their specification.

References

1. Roberto M. Amadio and Sanjiva Prasad. Localities and failures.FSTTCS: Foundations of
Software Technology and Theoretical Computer Science, 14, 1994.

2. Flavin Christian. Understanding fault tolerant distributed systems.Communications of the
ACM, 34(2):56–78, February 1991.

3. Alberto Ciaffaglione, Matthew Hennessy, and Julian Rathke. Proof methodologies for be-
havioural equivalence in Dπ. Technical Report 03/2005, University of Sussex, 2005.

4. Adrian Francalanza and Matthew Hennessy. A theory for observational fault tolerance.
www.cs.um.edu.mt/˜ afran/.

5. Adrian Francalanza and Matthew Hennessy. A theory of system behaviour in the presence
of node and link failures. InCONCUR, volume 3653 ofLecture Notes in Computer Science,
pages 368–382. Springer, 2005.

6. Matthew Hennessy, Massimo Merro, and Julian Rathke. Towards a behavioural theory of
access and mobility control in distributed systems.Theoretical Computer Science, 322:615–
669, 2004.

7. Matthew Hennessy and Julian Rathke. Typed behavioural equivalences for processes in the
presence of subtyping.Mathematical Structures in Computer Science, 14:651–684, 2004.

8. Matthew Hennessy and James Riely. Resource access control in systems of mobile agents.
Information and Computation, 173:82–120, 2002.

9. K. V. S. Prasad.Combinators and Bisimulation Proofs for Restartable Systems. PhD thesis,
Department of Computer Science, University of Edinburgh, December 1987.

10. James Riely and Matthew Hennessy. Distributed processes and location failures.Theoretical
Computer Science, 226:693–735, 2001.

11. Davide Sangiorgi and David Walker.Theπ-calculus. Cambridge University Press, 2001.
12. Richard D. Schlichting and Fred B. Schneider. Fail-stop processors: An approach to design-

ing fault-tolerant computing systems.Computer Systems, 1(3):222–238, 1983.
13. Paulo Verissimo and Luis Rodrigues.Distributed Systems for System Architects. Kluwer

Academic Publishers, 2001.

15

