A Theory for Observational Fault Tolerance
(Extended Abstract)

Adrian FrancalanZaand Matthew Hennessy

1 University of Malta, Msida MSD 06, Maltafral@um.edu.mt
2 University of Sussex, Brighton BN1 9RH, Englameht thewh@sussex.ac.uk

Abstract. In general, faults cannot be prevented; instead, they need to be toler-
ated to guarantee certain degrees of software dependability. We develop a theory
for fault tolerance for a distributed pi-calculus, whereby locations act as units
of failure and redundancy is distributed across independently failing locations.
We give formal definitions for fault tolerant programs in our calculus, based on
the well studied notion of contextual equivalence. We then develop bisimulation
proof techniques to verify fault tolerance properties of distributed programs and
show they are sound with respect to our definitions for fault tolerance.

1 Introduction

One reason for the study of programs in the presentautifs i.e. defects at the lowest
level of abstractions [2], is to be able to construct mdependablesystems, mean-
ing systems exhibiting a high probability bEhavingaccording to theispecification
[13]. System dependability is often expressed through attributes like maintainability,
availability, safety andeliability, the latter of which is defined as a measure of the
continuous deliveryf correct behaviour[13]. There are a number of approaches for
achieving system dependability in the presence of faults, ranging from fault removal,
fault prevention andault tolerance

The fault tolerant approach to system dependability consist of various techniques
that employredundancyto prevent faults from generatinfgilure, i.e. abnormal be-
haviour caused by faults [2]. Two forms of redundancysgrace redundandfyeplica-
tion), i.e. using several copies of the same system componentsinamdedundancy
i.e. performing the same chunk of computation more than once. Certain fault tolerant
techniques are based éawult detectionwhich subsequently triggdault recovery If
enough redundancy is used, fault recovery can leddulh masking where the speci-
fied behaviour is preserved without noticeable glitch.

Fault tolerance is of particular relevance in distributed computing; distribution yield
a natural notion opartial failure, whereby faults fiect asubsebf the computation. Par-
tial failure, in turn, gives scope for introducing redundancyegdication distributed
across independently failing entities such as locations. In general, the higher the repli-
cation, the greater the potential for fault tolerance. Nevertheless, fault tolerance also
depends on how replicas are managed. One classification, due to [13], identifies three
classes, namelgctive replication(all replicas are invoked for every operatiopgs-
sive replication(operations are invoked on primary replicas and secondary replicas are

updated in batches at checkpoints), &l replication(a hybrid of the previous two,
exploiting the separation between write and read operations).

In this paper we address fault tolerance in a distributed setting, focussing on simple
examples usingtatelesqread-only) replicas which are invoked only once. We code
these examples in/D[8] with failing locations [5], a simple distributed version of the
standardr-calculus [11], where the locations that host processes model closely physical
network nodes.

Example 1.Consider the systenserver;, three server implementations accepting client
requests on channetq with two argumentsx being the value to process apdbeing
the reply channel on which the answer is returned.

[[req?(x, y).go ki.data(x,y,)])

server, < (vdatg (| ki[date(x. y. 2).90 zy! F(x)]

I Nreq’?(x, y).(vsyng| | go ke.data(x, syncl)
| syn@(x).yH{x)

| ki[data?(x, y, 2).go zy!(f(x))]

| ke[data?(x, y, 2).go zy!(f(x))]

go ky.datal(x, sync|)]ﬂ

server, < (vdata)

go ky.datal(x, syngl)

| go kp.data(x, syncl)
|| req(x.y)-(vsyng | go ks.datal (X, sznc I
server; < (vdata) | syn@(x).y!{x)

| ku[date?(X, y, 2).g0 zy!(f(x))]

| ko[data?(x, y, 2).go zy!(f(x))]

| ks[data?(x, y, 2).go zy!(f(x))]

Requests are forwarded to internal databases, denoted by the scoped dataait-
tributed and replicated across the auxiliary locatikn®\ database looks up the map-
ping of the valuex using some unspecified functidif—) and returns the answefr(x),

back on porty. When multiple replicas are used, assirver, 3, requests are sent to
all replicas in an arbitrary fashion, without the use of failure detection, and multiple
answers are synchronisedlabn the scoped channseyng returning the first answer
received ory.

The theory developed in [5] enables ugligerentiatebetween these systems, based
on the ditferent behaviour observed when composed with systems such as

client < I[reqi(v, ret)]

in a setting where locations may fail. Here we go one step further, allowing us to
gquantifyin some sense the ftitrence between these systems. Intuitively, if locations
ki,i = 1,2, 3, can fail in fail-stop fashion[12] and observations are limited to locdtion
only, thenserver, seems to be morult tolerantthanserver;; observers limited td,

such aglient, cannot observe changes in behaviousenver, whenat most llocation

from k; fails. Similarly, servers is morefault tolerantthanserver; andserver, because
servers| client preserves its behaviour latip to 2faults occurring ak; 3.

In this paper we give a formal definition of when a system is deemed to be fault
tolerant up tar-faults, which coincides with this intuition. As in [5] we need to consider
systemaM, running on some network, which we will represenfasM. Then we will
say thatM is fault-tolerant up ton faults if

F'[r'esM]=T>M (1)

whereF"[] is some context which induces at masfaults, and= is some behavioural
equivalence between systems descriptions. A key aspect of this behavioural equivalence
is the implicit separation betweeeliable locations, which are assumed not to fail, and
unreliablelocations, which may fail. In the above exampie reliable, at which obser-
vations can be made, while tkeare assumed unreliable, subject to failure. Furthermore

it is essential that observers not have access to to these unreliable locations, at any time
during a computation. Otherwise (1) would no longer reprebtbeing fault tolerant;

for example we would no longer have

FY[I > server,y] = I' > server,

as an observer with access kowould be able to detect possible failuresRA[I" >
server;], not present i > server,.

We enforce this separation between reliable, observable, locations, and unreliable,
unobservable, locations, using a simple type system in which the former are called
public, and the latteconfined This is outlined in Section 2, where we also formally de-
fine the language we usenDoc, give its reduction semantics, and also outline the be-
havioural equivalence; this last is simply an instance sfduction barbed congruengce
[6], modified so that observations can only be made at public locations. In Section 3 we
give our formal definition of fault-tolerance; actually we give two versions of (1) above,
calledstaticanddynamidfault tolerance; we also motivate thetgrence with examples.
Proof techniques for establishing fault tolerance are given in Section 4; in particular we
give a complete co-induction characterisatioregfusing labelled actions, and some
useful up-to techniques for presenting witness bisimulations. In Section 5 we refine
these proof techniques for the more demanding fault tolerant defindjoramic fault
tolerance usingsimulations Finally Section 6 outlines the main contributions of the
paper and discusses future and related work.

2 The Language

We assume a set ofariables Vars, ranged over by,y,z ... and a separate set of
names Nawmes, ranged over by, m,.. ., which is divided into locations, dcs, ranged
over byl, k, ... and channels, s, ranged over by, b, c,.... Finally we usay, v, ...
to range over the set adentifiers consisting of either variables and names.

The syntax of our languageDoc, is a variation of @ [8] and is given in Table 1.
The main syntactic category is that ®fstemsranged over by, N: these are essen-
tially a collection oflocated processe®sr agents composed in parallel where location

Table 1.Syntax of typed BEF
I
Types

T = chy(P) | loc; (stateful types) si=a |d (status)
U = chy(P) | loc, (stateless types) vi=p|c (visibility)
P = chp(f’) | Loc, (public stateless types)
Processes
P, Q = ulV).P (output) |u?(X).P (input)
| if v=uthen Pelse Q (matching) | « u?(X).P (replicated input)
| (vn:T)P (channel/location definition) | go u.P (migration)
| O (inertion) | PIQ (fork)
| pingu.Pelse Q (status testing)
Systems
M,N,O = I[P] (located process) | NIM (parallel)

| (vn:T)N (hiding)

and channel names may be scoped to a subset of agents. The syntax for processes,
P, Q, is an extension of that in/D there is input and output on channels - heres a

tuple of identifiers, an a tuple of variables, to be interpreted as a pattern - and stan-
dard forms of parallel composition, inertion, replicated input, local declarations, a test
for equality between identifiers and migration. The only addition on the originakD

ping k.P else Q, which tests for thetatusof k in the style of [1, 10] and brancheskaf

k is alive andQ otherwise. For these terms we assume the standard notidreseahd
boundoccurrences of both names and variables, together with the associated concepts
of a-conversion andubstitution We also assume that systems al@sed that is they

have no free variable occurrences.

As explained in the Introduction we use a variation (and simplification) of the type
system of Dr [8] in which the the two main categories, channels and locations, are
now annotated by visibility constraints, givirg,(P) andloc,, wherev may either be
p (i.e. public) orc (i.e. confined); in Table 1 these are calktdtelesdypes, and are
ranged over byl. As explained in [5] a simple reduction semantics can be defined if
we also allow types which record the status of a location, whether it is alieg,dead,

d; these are refereed to smtefultypes, ranged over by. Finally P ranges ovepublic
types, the types assigned to all names which are visible to observers.

Type System:” denotes a type environment, an unordered list of tuples assigning a
singlestatefultype to names, and we writé + n : T to mean thaf” assigns the type
T to n; when it is not relevant to the discussion we will sometimes drop the various
annotations on these types; for example n : ch(U) signifies thatch,(U) for some
visibility statusv. Typing judgements take the form + N and defined by the rules
in Table 2. In these rules, we use an extended form of type environgigwhich, in
addition to names, also mapariablesto statelessypes. Note that none of the rules
depend on the status (dead or alive) of names in the environment. Also the visibility
constraints are enforced indirectly, by virtue of the formation rules for valid types, given
in Figure 1.

In this extended abstract we omit even the statement of the Subject Reduction and
appropriate Type Safety result for our language.

Table 2.Typing rules for typed BLoc
I

Processes
(t-out) (t-in-rep) s
Sruich(@ Truich@ (tnw) (t ;ofﬂ) N
VD 2. X:UrP 2 ATEP ZI—P.(_L) ‘
2rP 2+ u?(X).P 2+ (AT)P ——
TrUMP Ik 2(X)P 2 +ifu=vthenPelse Q
. (t-go) (t-ping)
(t;o:k')a 0 (t-axiom) Sru:loc ZXru:loc
W Zr0 Z+P 2+P Q
2+rgouP 2+ pingu.Pelse Q
Systems Observers
(t-rest) (t-par) (t_ﬁ“:(l:)_ loc (t-obs)
IA:TrN I'tN, M rep pub(r) + O
Fl—(vn:T)N I+ NIM W rFObSO
L 1
Table 3.Reduction Rules for £L.oc
I 1
Assuming I + | : alive
(r-comm)
r>1[av).P [1[a?(X).Q] — I'>I[P] [1[Q{V/X]]
(r-rep) (r-fork)

T [+a?X).P] — I »1[a?X).(Pl*a?X).P)] T~I[PQ] — I ~I[P][Q]

(r-eq) (r-neq)

u£v
I'>I[ifu=uthenPelse Q] — I'>1[P] > |[ifu=vthenPelse Q] — I'>1[Q]

(r-go) (r-ngo)
'+ k: alive I ¢ k: alive

I'>1[gokP] — I'>K[P] I'>1[gok.P] — I'>k[0]

(r-ping) (r-nping)

I'+k: alive

I'>1[pingk.Pelse Q] — I'>I[P] I'>I[pingk.Pelse Q] — I'>I[Q]

(r-new) (r-str)

r=1[(vn:T)P] — I'>(vn:T)I[P]

I ¥ k: alive

I'sN=I'sN I'sN—I">M I"'sM=I">M

I'sN —TI'">M

(r-ctxt-par)
I'>sN — I">N
I'sNM — TI">NI|M
I'sMIN — I">M|N

(r-ctxt-rest)
Ir+n:TeN — I"+n:U>M
's(vn:T)IN — I">(vn:U)M

Table 4.Structural Rules for BLoc

I
(s-comm) NIM

= M|N
(s-assoc) NIM)IM’ = N|(M|M’)
(s-unit) N|I[O] =N
(s-extr) ¢n:T)(N|JM) = N|(vn:T)M n ¢ fn(N)
(s-flip) (vn:T)(vm:U)N = (vm:U)(vn:T)N
(s-inact) ¢n:T)IN=N n¢ fn(N)

Reduction Semanticae call pairs/"> N configurationswhenever” + N. Reductions
then take the form of a binary relation over configurations

I'sN — I'sN

defined in terms of the reduction rules in Table 3, whereby systems reduce with respect
to the status of the locations iy we writeI" + | : alive as a shorthand far + | : 1oc?.

So all reduction rules assume the location where the code is executing is alive. More-
over, (r-go), (r-ngo), (r-ping) and (r-nping) reduce according to the status of the remote
location concerned. The reader is refered to [5] for more details; but note that here the
status of locations is unchanged by reductions.

Behavioural equivalenceFirst note that the type system does indeed enforce the intu-
itive separation of concerns discussion in the Introduction. For exampig ¢note

the environment

I'e = l:1locp, ki:locg, ka:locg, Ks:locg, req:chy(T, chy(T)), a:chy(A), ret:chy(T)

c?
whereT is an arbitrary public type; Then one can check
Te + server;

whereserver; is defined in the Introduction, provided the locally declared chanfaes
andsync are declared at the type3(T, ch,(T), loc,) and ch(T) respectively. Now
consider

serverBad < server; | [[al(k:)]

which attempts to export a confined locatikf) which could subsequently could be
tested for failure by a public observer. Once more one can checkilxaderverBad.
Intuitively an observer is any system which only uses public names. Formally let
pub(I') be the environment obtained by omitting frdhany name not assigned a public
type. Therpub(I') + O ensures thad can only use public names. For example consider

observer < I[reqi(v, ret)]
observerBad < I[go k;.go .ok ()]

Here one can check thptub(I"e) + observer andpub(l"e) ¥ observerBad.

Our behavioural equivalence will in general relate arbitrary configurations; but we
would expect equivalent configurations to have the spuidic interface and be pre-
served by public observers.

Definition 1 (p-Contextual). A relation over configurations is called p-Contextual if,
whenevel >M R I'’>N

— (p-Interfaces:yub(I") = pub(I™)
— (Parallel:) r'>M |O R I"'>N | O andI'>M | O R I'">N | O whenevepub(I') + O
— (Fresh extensionsd),n :P>M R I'",n :P>N whenever n is fresh

Definition 2 (p-Barb). I'>N Ug@l denotes g-observable barby configuration” > N,
on channel a at location |, defined as:

IN’. I'>N —* I'>N’ such that N=(vA: T)M|I[al(V).Q] wherel'+ | : 1oc3,a: chy(P)

Using this concept, we can now modify the standard definitioreddiction barbed
equivalence[6]:

Definition 3 (Reduction barbed congruence)Let = be the largest relation between
configurations which is p-contextual, reduction-closed (see [6]) and preserves p-barbs.

3 Defining Fault Tolerance

Our first notion ofn-fault-tolerance, formalising the intuitive (1), is when the faulting
context induces at most location failures, prior to the execution of the system; of
course these failures must only be induced on locations which are not public. Formally
for any set of location namdslet F' be the function which maps any configuration
I'>Ntol —i>N, wherel - {is the environment obtained froim by changing the
status of every; to dead We sayF is avalid static n-fault contextvith respect ta’",

if the size off is at most nand for every. e, 1 is confined and alivel(+ |; : locy).

Definition 4 (Static Fault Tolerance).A configuration/>N is n-static fault tolerant if
rsN=FL()»N

for every static n-fault contextQ:which is valid with respect td.

With this formal definition we can now examine the systesmver;, using thele
defined above. We can easily check thatserver; is not 1-fault tolerant, by consider-
ing the fault context:gl. Similarly we can show thdt, > server; is not 2-fault tolerant,
by consideringzgl’kz. But establishing positive results, for example that server;
is 1-fault tolerant, is dficult because the definition ef quantifies over all valid ob-
servers. This point will be addressed in the next section, when we give a co-inductive
characterisation of.

Instead let us consider another manner of inducing faults![lkét] be a system
which asynchronously kills a confined locatibrits operation is defined by the rule

(r-kill)
T[] — (T —1)»>1[0]

For any set of location§ let F|~ denote the function which maps the systéinto
M 1a[kil] |.. . [1n[kill]. Itis said to be a valid dynamic-fault context with respect tb
if again the size of is at mostn andr" r |; : 1oc?, for everyl; in .

Definition 5 (Dynamic Fault Tolerance). A configurationI"> N is n-dynamic fault
tolerant if i
r>FL(M)=I>M

for every dynamic n-fault context which is valid with respedt'to

Example 2.The systensPassive defined below uses two identical replicas of the dis-
tributed database &t andk;, but treats the replica & asprimaryreplica and the one
atk; as asecondary(backup) replica - once agaih= ch(T, chy(T), 1loc,).

| [serv2(x.y).ping ka.go ky.datal(x.y, 1) H
else go kp.datd(x,y,)

| ka[data?(x,y, 2).go z .y f (X))]

| ko[data?(x,y, 2).go z .Y/ {(f(X))]

The coordinating interface atuses the ping construct ttetect failuresn the pri-
mary replica: ifk; is alive, the request is sent to the primary replica and the secondary
replica atk; is not invokedl if, on the other hand, the primary replica is dead, then the
passive replica & is promoted to a primary replica and the request is sent to it. This
implementation saves aime redundancyince, for any request, only one replica is
invoked. Another passive replication servesigonitor, defined as

go k;.datal(x, sync)]]l

sPassive < (vdata: W)

| mntr ky.go kp.data{x, syncl)
| syn®(2).y\(2)

| ky[data?(x,y, 2).go z .y f (X))]

| ko[data?(x,y, 2).go z .y {f(X))]

[Nser\/?(x, y).(vsync ch())

sMonitor < (v data: W)

where againy = ch(T, ch,(T), loc,). It uses amonitorprocess for failure detection
mntr k.P < (vtest ch{))(test()| = tesP().ping k. test() else P)

instead of asingleping test on the primary replica &; mntr k.P repeatedlytests the
status of the monitored locatiok)(and continues aB whenk becomes dead. Similar
to server,_s3, sMonitor synchronises multiple answers from replicas with charped.

Using the techniques of the next section, one can show that'ietbPassive and
I'>sMonitor, are 1-static fault tolerant, similar sgrver,. However there is a flierence
between these two systemskiffails after sPassive tests for its status, then an answer
will never reacH. ThussPassive is not 1-dynamic fault tolerant; formally one can show
Tev F‘S(sPassive) # I'e > sPassive. But, as we will see in the next sectiaionitor
can be shown to be 1-dynamic fault tolerant, just Ekever; 3.

4 Proof Techniques for Fault Tolerance

We define a labelled transition system (lts) forldc,, which consists of a collection

of actions over (closed) configurationsy N e N’, whereu can be an internal
action,r, a bound input,i{” T)I : a?(V) or bound output,r(T)I : al{V). These actions

Table 5.0perational Rules for TypedAoc

I
Assuming I' + | : alive
(I-in) (I-fork)
[rops |, ' a: chy(iy, Vi -
r'>I[PIQ] — I'>I[P] |1[Q]

r1[a?(0).P] 2%, re1p{Vix

(l-out) (I-in-rep)
s 1[=a?(X).P] — > 1[a2(X).(P| = a2(Y).P{Y/X})]

EI%) Fovs |, @

r
s 1[al(V).P] — > 1[P]

(I-eq) (I-neq)
I'»1[ifu=uthenPelse Q] —T>1">I[P] I'>I[ifu=vthen Pelse Q] —T>F>I[Q] Y

(I-new) (I-kill)
I>[(":T)P] — I'>(vn: DI[P] e[kl = (I =1)»1[0]

(I-go) (I-ngo)
- I'+k:alive = I ¢ k: alive
r'>1[gokP] -5 I'>K[P] I'>1[gokP] - I'>K[0]
(I-ping) (I-nping)

+ k: alive I ¥ k: alive

' I[ping k. Pelse Q] — I'>1[Q]

- r
I'>I[pingk.Pelse Q] — I'>I[P]

(l-open) (I-weak)
(A:T)l:al(V) (f:T)l:a?(V)
'+n:TeN———> I">N | v F+n:T>N———>F’>N’I v
— a#ne — a#ne
:T,RT):al(V) ’ ;TR T):a? ’
rs(vn: TN LEED2O p N o N ORIV N

(I-par-ctxt)
F>NL>F'>N'
ngm@ I'sNIM—5I"sN|M
Ir'sM|IN-517sM|N

(I-rest)
Fr+n:TeN-5 17 +n:Us N
F>(vn:T)NL>F’>(vn:U)N’

(I-par-comm)
fi:(T))l:al (V. fi:(T))l:a?
NN EAAS 1) M @ADLV, 1y e

I>NIM -5 s (vi: TN | M)
r'>MIN -5 s (v T (M |NY)

are defined by transition rules given in Table 5, inspired by [7,6,5]. In accordance
with Definition 2 (observable barbs) and Definitions 1 (valid observersy), and (-

out) restrict external communication public channels apubliclocations { Fops |, @).
Furthermore, irgl-in) we require that the type of the values inputtégdmatch the object
type of channed; sincea is public and configurations are well-typed, this also implies
thatV are public values defined in. The restriction on output action, together with
the assumption of well-typed configurations also means thétppen), we only scope

Table 6,3-Transition Rules for TypedALoc

I
Assuming I' + | : alive

(b-in-rep) (b-fork)

e 1[xa2(X).P] + I'>1[a2(X).(P + a?(Y).PIYXD] I'>1[PIQ] +—, I'>I[P]|1[Q]
(b-eq) (b-neq)

r»I[ifu=uthenPelse Q] +—; I'sI[P] I'>I[ifu=vthenPelse Q] +—; I'>1[Q] Y
(b-ngo) (b-nping)

= I'¢k:alive = I'¢k:alive
r>1[gokP] +; I'>K[0] r»I[pingkPelse Q] +—; I'>1[Q]
(b-par)

(b-neW) (b-reSt) I'sN ';)ﬁ s N

Ln:TsN —, I7,n:WeN’
r>(vn:TN —, I (vn:WN’

I>N|M +, I">N'[M
I>MIN +55 I'>MIN’
1

rel[(vn:T)P] +, Me(vn:T)I[P]

extrude public values. Contrary to [5], the Its does not allow external killing of locations
(through the labekill : 1) since public locations are reliable and never fail. Finally, the
transition rule for internal communicatiog;par-comm), uses an overloaded function

T () for inferring inpufoutput capabilities of the sub-systems: when applied to types,

T (T) transforms all the type tags to publip){ when applied to environment$,(I")
changes all the types to public types in the same manner. All the remaining rules are a
simplified version of the rules in [5].

Definition 6 (Weak bisimulation equivalence).This is denoted as, and is defined
to be the largest typed relation over configurations such thasitM ~ I'" » N then

—reM5S e w impliesI™” » N = " » N’ such thatr”’ » M’ ~ I » N’
—I'sNS e N impliesl"> M =5 I » M’ such thatt™ » M’ ~ I » N’

Theorem 1 (Full Abstraction). For any DrLoc configurationg™>M, I">N:
'>M=T1">N ifandonlyif '> M ~ I'">N

Theorem 1 allows us to provositivefault tolerance results by giving a bisimula-
tion for every reduction barbed congruent pair required by Definitions 4 and 5. We next
develop up-to bisimulation techniques that can relieve some of the burden of exhibiting
the required bisimulations. We identify a numberradctions, which we refer to g
actions opB-moves, inspired by the work in [3]. These are denoted abl |i>ﬁ I''>N
and are defined in Table 6. With the8enoves we develop up-to bisimulation tech-
niques, by showing that our witness bisimulations can abstract away from matching
configurations that denof@moves. Our details are more complicated than in [3] be-
cause we deal with failure: apart from local rulésdq) and(b-fork)) and context rules
((b-rest) and(b-par)), Table 6 includes rules dealing with failed locations suctbago)

10

Table 7 8-Equivalence Rules for TypediDoc
I

(bs-comm) I' E NIM = M|N

(bs-assoc) I' E (NIM)IM’ =; N|(M|M’)

(bs-unit) I'E NJI[0] =N

(bs-extr) r'E (vn:T)(NIM) =¢ N|(vn:T)M n ¢ fn(N)
(bs-flip) I'E (vn:T)(vm:U)N =; (vm:U)(vn:T)N

(bs-inact) e (vn:T)N =N n¢ fn(N)
(bs-dead) r'E I[P] =I[Q] I'¢1:alive

and (b-nping). To obtain the required results f8rmoves with failure, we define a new
structural equivalence ranging oveonfigurations denoted ass; and defined by the
rules in Table 7, which takes into consideratiocation statusas well. This enables

us to obtain confluence f@-moves with respect to actions that change the status of
locations. The only rule worth highlighting {ss-dead), which allows us to ignore dead
code.

Lemma 1 (Confluence Oﬁ-mOVES)J;)ﬁ observes the diamond property:

F>N%73F>M implies F>N|—T731">M oru=7tandlI'>M = I">N’

g (O

T

I’ >N I'>M F’>N’t:IEEfF’>M’

Proof. The proof proceeds by case analysis of thiedént types ofx and then by
induction on the derivation of th&move.

Proposition 1. Supposd > N =3 I'" > M. Thenl'»> N=[" » M.

Proof. We prove the above statement by definiRg- { I'>N ., I">M |[I'>NE=3I">M }
and showing thar is a bisimulation, which follows as a consequence of Lemma 1.

Definition 7 (Bisimulation up-to g-moves).Bisimulation up-tg3-moves, denoted as
~g, is the largest typed relation between configurations suchiiipe¥l, ~z I'>>M, and
— I'>M; 25 1> M impliesTz» M, = I'y>Mj such thatrj>M{ Ao x5 o ~ Iy M}
— I'»»M, 5 oMy impliesr 'y My = I'j>M; such thatr s M) Ao ~4 0 ~ I'>M;
wheredA, is the relation=; o =.

Proposition 1 provides us with a powerful method for approximating bisimulations.

In the approximate bisimulatios;, an action/’; > My N I} » M7 can be matched by
ap-derivative ofl"; » M7, that isl"; » M} =5 I'1 » M7, and a weak matching action

I'>> My HaN I, » M, such that, up to structural equivalence on the one side and up-to
bisimilarity on the other, the paids > M]" andl,> M, are once more related. Intuitively
then, in any relation satisfyings, a configuration can represent all the configurations to
which it can evolve using-moves. We justify the use ef; by proving Proposition 2.

11

Proposition 2 (Inclusion of bisimulation up-to 8-moves).If I'y > My =~ 2> M then
F]_ > M]_ ~ F2 > M2

Proof. We prove the above proposition by defining the relafoas
'R:{f1>M1,F2>M2 ‘F1>Mlzozﬁoz1"2>M2}

and show thatR C~. The required result can then be extracted from this result by
considering the special cases wheredhmn either side are the identity relations.

Example 3.We are now in a position to prove positive fault tolerance result. For in-
stance to show thaf » sPassive is 1-static fault tolerant we just need to provide 3
witness bisimulations up-{-moves to prove

3 I'ssPassive = (I' - k) > sPassive

We here give the witness relation for the most involving case (wheré), and leave
the simpler relations for the interested reader. Thus, the witness relaffaefined as

R L' (I » sPassive, I' — k; » sPassive)} U { U R'(u, v)]

u,veNAMES

I'> (vd)l[Png(u,V)] | R1 | Rz ,I" = kg > (vd)I[Png(u,V)] | R1 | R2
Ie (vaI[QuuVIIR1IR2 I =k (vA)I[Q2(u, V)] [R1]R2
def | I'> (Vd)k1[d|<u, V, |>] | Rl | R2 I — k]_ > (Vd)kg[C“(U, V, |>] | R]_ | R2

RN =13 1y (ke [go | VICEUD] Ry T — ko » (v8)Ry | ko[go | VI F(U))]
I GAIVICEWN] IRs T — kg > (ve)Ry [I[VICF(U))]
I's (vd)R, I~k > (v)Ry

whered stands fodataand
Png(x,y) < ping k1.Q1(x, y) else Qz(X,y)
Qi(x.y) = goki.di{x,y,)
Ri < k[d?(xy,2).g0 z.yKf(X)]

5 Generic Techniques for Dynamic Fault Tolerance

Despite the fault tolerance proof techniques developed in Section 4, proving positive
fault tolerance results entails a lot of unnecessary repeated work because Definition 4
and Definition 5 quantify over all valid fault contexts: to prove thatvers is 2-dynamic
fault tolerant, we need to provide 6 relations, one for evefiedint case in

i3;tj:1 I'>servers = ['»servers|k[Kkill]|k;[kill]
A closer inspection of the required relations reveals that there is a lot of overlap between
them: these overlapping states would be automatically circumvented if we require a sin-
gle relation that is somewhat the merging of all of these separate relations. Hence we

12

reformulate our fault tolerance definition for dynamic fault tolerance (the most demand-
ing), to reflect such a merging of relations; a similar definition for the static case should
not be more diicult to construct. The new definition is based on the actions given
earlier in Section 4 together with a new actitail, defined as

(I-fail)

Tl I'+1:loc

I'sN — (I'-1)>N
permitting external killing of confined locations. Intuitively, this action allow us to
countthe number of failures, but prohibits us from determining which specific location
failed® The asymmetric relatiog!), defined below, is parameterised with an integer
denoting the number of confined locations that can still be killed on the right hand side:
the additional third clause states thda&move on the right hand side may be matched
by a weakr-move on the left hand side and the two residuals need to be relatdpfin

Definition 8 (Dynamic Fault Tolerance Simulation). Dynamic n-fault toleransim-
ulation, denoted<?, is the largestasymmetridyped relation over configurations such
that whenevef’; > My <} I'> > M,

— I'1> My 5 1> MY impliesT > My = 'y > My such that' > M}, <8 Iy » M,
— Iz> My 5 > My impliesTy > My = I, > M such that”) » N <0 Iy> M;,
. fail . .
— ifn > 0, I'»>M, —5 I'My impliesT>M; = > M such thatr”) » M, <177 » M,

Before we can use Definition 8 to prove dynamic fault tolerance, we need to show
that the new definition is sound with respect to Definition 5.

Proposition 3 (Soundness ok]). If I' = My < My then for any dynamia-fault
context I‘—E that is valid with respect té' we havel” = M; = F'D(Mz)

Proof. Let R, be a relation parameterised by a numband defined as

R, dgf{rlel,F2>M2|F:D \r1>M15iDr2>M2, Hj?zlrj + Fl and Osisn}

By showingR,, C~ we prove thaky is sound with respect to-dynamic fault tolerance

It would be ideal if we could reuse up-to techniques and give relations satisfying
<p that abstract away frog-moves. Similar to Section 4, we define a fault tolerance
simulation up-tgg-moves and show that this is sound with respeetoThis definition
uses a weak bisimulation (Definition 6) that ranges avactions, that ig andthe new
actionfail. We refer to this bisimulation as@untingbisimulation over configurations,
denoted asy, because it allows us to count failing confined locations on each side
and match subsequent observable behaviour.

Definition 9 (Fault Tolerant Simulation up-to g-moves).An n-fault tolerant simula-
tion up-toB-moves, denoted @ is the largest typed relatioR between configurations
parameterised by the number n, such that whenever wehavl, 52 I'oe M,

3 This point difers from [5], where labels for external killing carried the location nakiid,

13

— I'pM; = I'y>M; impliesI'»M, == I'y>Mj such thatl ;> M; Ao <5 o e I'p> My
— I'»Mp = Iy My impliesr;»> My == I';>M; such thai My Ao <5 o ~ I'»Mj

fail . .
— Ifn > Othenl > My — Iy > M impliesTy » My = I} > M such that
1"’2>M§52,‘1oz1"1>M1

wheredA, is the relation=; o =. We highlight the use afc for matching configura-
tions in the first clause.

The work required to show that] is sound with respect tg} is similar to earlier
up-toB-moves work discussed in Section 4: we have to showghabve confluence
(similar to Lemma 1) is also preserved for the new actiiinwe also have to show that
after ag-move, the redex and reduct configurations are counting-bisimilar (similar to
Proposition 1). Finally we prove the following proposition

Proposition 4 (Inclusion of fault tolerant simulation up-to 8-moves).
If ' > Mg §2F21> M, thenl'; » M, 5% o> Mo

Proof. We prove the above proposition by defining the relafRras

Rn:{r1>M1,r2>M2 ‘F]_DM]_%OS};OzcntFZDMZandOSiSn}

and show thaRR, c<J}. The required result can then be extracted from this result by

considering the special cases wherand~.; on either side are the identity relations.

Example 4.The results of Proposition 3 and Proposition 4 allow us to prove that the
configuration/” > server, is 1-dynamically fault tolerant by providingsinglewitness
fault tolerance simulation up-f-moves showing thalt » server, < I" > server, Due
to lack of space, we relegate the presentation of this relation to the full paper [4].

6 Conclusions and Related Work

We adopted a subset of [5] and developed a theory for system fault tolerance in the pres-
ence of fail-stop node failure. We formalised two definitions for fault tolerance based
on the well studied concept of observational equivalence. Subsequently, we developed
various sound proof techniques with respect to these definitions.

Future Work The immediate next step is to apply the theory to a wider spectrum of
examples, namely using replicas with state and fault tolerance techniques such as lazy
replication: we postulate that the existing theory shoulticet Another avenue worth
considering is extending the theory to deal with link failure and the interplay between
node and link failure [5]. In the long run, we plan to develop of a compositional the-
ory of fault tolerance, enabling the construction of fault tolerant systems from smaller
component sub-systems. For both cases, this paper should provide a good starting point.

14

Related Work To the best of our knowledge, Prasad’s thesis [9] is the closest work
to ours, addressing fault tolerance for process calculi. Even though similar concepts
such as redundancy (called "duplication”) and failure-free execution are identified, the
setting and development of Prasadfelis considerably form ours. In essence, three
new operators ("displace”, "audit” and "checkpoint”) are introduced in a CCS variant;
equational laws for terms using these operators are then developed so that algebraic
manipulation can be used to show that terms in this calculus are, in some sense, fault
tolerant with respect to their specification.

References

1. Roberto M. Amadio and Sanjiva Prasad. Localities and failuF&TTCS: Foundations of
Software Technology and Theoretical Computer Sciet¢e1994.

2. Flavin Christian. Understanding fault tolerant distributed syste@@mnmunications of the
ACM, 34(2):56-78, February 1991.

3. Alberto Cidfaglione, Matthew Hennessy, and Julian Rathke. Proof methodologies for be-
havioural equivalence in® Technical Report 2005, University of Sussex, 2005.

4. Adrian Francalanza and Matthew Hennessy. A theory for observational fault tolerance.
www.cs.um.edu.mt/” afran/.

5. Adrian Francalanza and Matthew Hennessy. A theory of system behaviour in the presence
of node and link failures. ICONCUR volume 3653 of.ecture Notes in Computer Science
pages 368-382. Springer, 2005.

6. Matthew Hennessy, Massimo Merro, and Julian Rathke. Towards a behavioural theory of
access and mobility control in distributed systefiseoretical Computer Sciencg?22:615—

669, 2004.

7. Matthew Hennessy and Julian Rathke. Typed behavioural equivalences for processes in the
presence of subtypind/athematical Structures in Computer Scient4:651-684, 2004.

8. Matthew Hennessy and James Riely. Resource access control in systems of mobile agents.
Information and Computatiqri73:82-120, 2002.

9. K. V. S. PrasadCombinators and Bisimulation Proofs for Restartable Systdth® thesis,
Department of Computer Science, University of Edinburgh, December 1987.

10. James Riely and Matthew Hennessy. Distributed processes and location faiheetical
Computer Scienc®26:693-735, 2001.

11. Davide Sangiorgi and David Walkérhern-calculus Cambridge University Press, 2001.

12. Richard D. Schlichting and Fred B. Schneider. Fail-stop processors: An approach to design-
ing fault-tolerant computing system8omputer System&(3):222-238, 1983.

13. Paulo Verissimo and Luis RodrigueBistributed Systems for System Architeckduwer
Academic Publishers, 2001.

15

