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1 Introduction

One reason for the study of programs in the presence offaults, i.e. defects at the
lowest level of abstractions [2], is to be able to construct more dependablesys-
tems, meaning systems exhibiting a high probability ofbehavingaccording to their
specification[18]. System dependability is often expressed through attributes like
maintainability, availability, safety andreliability, the latter of which is defined as a
measure of thecontinuous deliveryof correct behaviour, [18]. There are a number
of approaches for achieving system dependability in the presence of faults, ranging
from fault removal, fault prevention andfault tolerance.

The fault tolerant approach to system dependability consist of various techniques
that employredundancyto prevent faults from generatingfailure, i.e. abnormal
behaviour caused by faults [2]. Two forms of redundancy arespace redundancy
(replication), i.e. using several copies of the same system components, and time
redundancy, i.e. performing the same chunk of computation more than once. Re-
dundancy can also be managed in various ways: certain fault tolerant techniques
are based onfault detectionwhich subsequently triggerfault recovery; other tech-
niques do not use fault detection and still attain fault masking - these, however, tend
to be more expensive in terms of redundancy usage (time redundancy). If enough
redundancy is used and it is managed appropriately, this canlead tofault masking,
where the specified behaviour is preserved without noticeable glitches.

Fault tolerance is of particular relevance in distributed computing. Distribution
yields a natural notion ofpartial failure, whereby faults affect asubsetof the com-
putation. Partial failure, in turn, gives scope for introducing redundancy asreplica-
tion, distributed across independently failing entities such as locations. In general,
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the higher the replication, the greater the potential for fault tolerance. Nevertheless,
fault tolerance also depends on how replicas are managed. One classification, due to
[18], identifies three classes, namelyactive replication(all replicas are invoked for
every operation),passive replication(operations are invoked on primary replicas
and secondary replicas are updated in batches at checkpoints), andlazy replication
(a hybrid of the previous two approaches, exploiting the separation between write
and read operations).

In this paper we address fault tolerance in a distributed setting, focusing on simple
examples usingstateless(read-only) replicas which are invoked only once. This
simplification obviates the need for additional machinery to sequence multiple re-
quests (in the case of active replication) or synchronise the state of replicas (in
the case of passive replication); as a result management techniques based on lazy
replication simply collapse into passive replication category. Nevertheless, these
simple examples still capture the essence of the concepts wechoose to study.We
code these examples in a simplified version of Dπ [10] with failing locations [4],
a distributed version of the standardπ-calculus [16], where the locations that host
processes model closely physical network nodes.

Example 1 (Fault Tolerant Servers) Consider the systemsserveri, three server
implementations accepting client requests on channel req with two arguments, x
being the value to process and y being the reply channel on which the answer
is returned. Requests are forwarded to internal databases,denoted by the scoped
channel data, distributed and replicated across the auxiliary locations k1, k2 and
k3. A database looks up the mapping of the value x using some unspecified func-
tion f(−) and returns the answer, f(x), back on port y. When multiple (database)
replicas are used, as inserver2 and server3, requests are sent to all replicas in
an arbitrary fashion, without the use of failure detection,and multiple answers are
synchronised at l on the scoped channel sync, returning the first answer received
on y.

server1 ⇐ (ν data)


l[[ req?(x, y).go k1.data!〈x, y, l〉]]

| k1[[data?(x, y, z).go z.y!〈 f (x)〉]]



server2 ⇐ (νdata)



l




req?(x, y).(νsync)



go k1.data!〈x, sync, l〉

| go k2.data!〈x, sync, l〉

| sync?(x).y!〈x〉







| k1[[data?(x, y, z).go z.y!〈 f (x)〉]]

| k2[[data?(x, y, z).go z.y!〈 f (x)〉]]


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server3 ⇐ (νdata)



l





req?(x, y).(νsync)



go k1.data!〈x, sync, l〉

| go k2.data!〈x, sync, l〉

| go k3.data!〈x, sync, l〉

| sync?(x).y!〈x〉







| k1[[data?(x, y, z).go z.y!〈 f (x)〉]]

| k2[[data?(x, y, z).go z.y!〈 f (x)〉]]

| k3[[data?(x, y, z).go z.y!〈 f (x)〉]]



The theory developed in [4] enables us todifferentiatebetween these systems, based
on the different behaviour observed when composed with systems such as

client ⇐ l[[ req!〈v, ret〉]]

in a setting where locations may fail; in the definition ofclient, ret is the name of
a reply channel, andv is some value appropriate to the unspecified functionf (−).
Here we go one step further, allowing us toquantify, in some sense, the difference
between these systems. Intuitively, if locationsk1, k2 andk3 can fail in fail-stop
fashion[17] and observations are limited to locationl only, thenserver2 seems to
be morefault tolerant thanserver1. In fact observers limited tol, such asclient,
cannot observe changes in behaviour inserver2 whenat most 1location fromk1,
k2 andk3 fails. Similarly,server3 is morefault tolerant thanserver1 andserver2

because the composite system

server3 | client

preserves its behaviour atl up to 2faults occurring at any ofk1, k2 andk3.

In this paper we give a formal definition of when a system is deemed to be fault
tolerant up ton-faults, which coincides with this intuition. As in [4] we need to
consider systemsM, running on a network, which we will represent asΓ ⊲ M,
whereΓ is some representation of the current state of the network. Then we will
say thatM is fault-tolerant up ton faults, when running on networkΓ, if

Γ ⊲ M � Fn[Γ ⊲ M] (1)

whereFn[ ] is some context which induces at mostn faults onΓ, and� is some
behavioural equivalence between system descriptions.

A key aspect of this behavioural equivalence is the implicitseparation betweenre-
liable locations, which are assumed not to fail, andunreliablelocations, which may
fail. In the above example,l is reliable whilek1, k2 andk3 are assumed unreliable,
thus subject to failure. Furthermore, it is essential that observers not have access to
these unreliable locations, at any time during a computation. The general intuition
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is that we shield users from unreliable resources, thereby ensuring that no user code
fails. But another important reason, which is more specific to this work, is that if
observers are allowed to access unreliable locations then the proposed (1) above
would no longer capture the intuitive notion of fault-tolerance up ton faults. For
instance, we would no longer have

Γ ⊲ server2 � F1[Γ ⊲ server2]

An observer with access to any of the locationsk1, k2, k3 would be able to detect
possible failures inF1[Γ⊲server2], not present inΓ⊲server2, and thus discriminate
between the two configurations.

We enforce this separation between reliable, observable locations and unreliable,
unobservable locations using a simple type system in which reliable locations are
represented aspublic values, and unreliable locations are represented asconfined.
In particular the typing system ensures that confined values, that is the unreliable
locations, never become available at public locations.

In the second part of the paper we develop co-inductive prooftechniques for prov-
ing system fault tolerance, that is establishing identities of the form (1) above; this
can be seen as a continuation of the work in [4]. One novel aspect of the current
paper is the use ofextended configurationswhich have the form

〈Γ, n〉 ⊲ M (2)

Here, the networkΓ is bounded by the numbern, denoting the maximum number
of faults thatΓ can still incurat unreliable locations. This extra network informa-
tion allows us to define transitions which model the effect of the fault contexts on
the network state in (1). More importantly however, it givesus more control over
our proofs. For instance, it allows us to express how many unreliable locations may
still fail, without committing ourselves to stating precisely which of these locations
will fail, as is the case with fault contexts in (1). In addition, when we reach an ex-
tended configuration wheren = 0 in (2) above, we can treat unreliable locations as
immortal (reliable) since the extended configuration failure bound prohibits further
unreliable locations from failing. All this turns out to alleviate some of the burden
of constructing our proofs for fault tolerance.

The rest of the paper is organised as follows. Section 2 formally defines the lan-
guage we use, DπLoc, together with a reduction semantics. It also contains the
type system for enforcing the separation between public andconfined locations.
With this reduction semantics we can adapt the standard notion ofreduction barbed
congruence, [11,8], to DπLoc. But because of our type system, we are assured that
the resulting behavioural equivalence� reflects the fact that observations can only
be made at public locations. In Section 3 we give our formal definitions of fault-
tolerance, which relies on considering public locations asreliable and confined
locations as unreliable. More specifically, we give two versions of (1) above, called

4



Table 1.Syntax of typed DπF

Types

U, W ::= chc〈Ũ〉 | P | locV (stateless types) V ::= p | c (visibility)

P ::= chp〈P̃〉 | locp (public types)

T, R ::= chc〈Ũ〉 | P | locSV (stateful types) S ::= a | d (liveness status)

Processes

P,Q ::= u!〈V〉.P (output) | u?(X).P (input)

| if v=u then P else Q (matching) | ∗ u?(X).P (replicated input)

| (ν n:T)P (name declaration)| go u.P (migration)

| 0 (inertion) | P|Q (fork)

| ping u.P else Q (status testing)

Systems

M,N,O ::= l[[P]] (located process) | N|M (parallel)

| (ν n:T)N (hiding)

static anddynamicfault tolerance, motivating the difference between the two via
examples. Proof techniques for establishing fault tolerance are given in Section 4
where we give a complete co-inductive characterisation of� using labelled ac-
tions. In Section 5 we refine these proof techniques for the more demanding fault
tolerant definition,dynamic fault tolerance, using co-inductive definitions over ex-
tended configurations. We also develop useful up-to techniques for presenting wit-
ness bisimulations for extended configurations. Section 6 concludes by outlining
the main contributions of the paper and discussing future and related work.

2 The Language

We assume a set ofvariables V, ranged over byx, y, z, . . . and a separate set
of names, N, ranged over byn,m, . . . , which is divided into locations, L,
ranged over byl, k, . . . and channels, C, ranged over bya, b, c, . . .. Finally we
useu, v, . . . to range over the set ofidentifiers, consisting of either variables and
names.

The syntax of our language, DπLoc, is a variation of Dπ [10] and is given in Ta-
ble 1. The main syntactic category is that ofsystems, ranged over byM,N: these
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are essentially a collection oflocated processes, or agents, composed in parallel
where location and channel names may be scoped to a subset of agents. The syntax
for processes,P,Q, is an extension of that in Dπ. There is input and output on chan-
nels; in the latterV represents a tuple of identifiers, while in the formerX is tuple
of variables, to be interpreted as a pattern. There are also the standard constructs
for parallel composition, replicated input, local declarations, a test for equality be-
tween identifiers, migration and a zero process. The only addition to the original
Dπ is ping k.P else Q, which tests for theliveness statusof k in the style of [1,15]
and branches toP if k is alive andQ otherwise. For these terms we assume the stan-
dard notions offreeandboundoccurrences of both names and variables, together
with the associated concepts ofα-conversion andsubstitution. We also assume that
systems areclosed, that is they have no free variable occurrences. Note that all of
the examples discussed in Section 1 are valid system level terms in DπLoc. But it
is worth emphasising that when we write definitions of the form

sys⇐ S

the identifiersys is not part of our language; such definitions merely introduce
convenient abbreviations for system level terms; in the above sysis simply an ab-
breviation for the termS.

Types: The original Dπ [10] comes endowed with a rich type system used to en-
force access control policies. This is ignored in the current paper as it addresses
issues which are orthogonal to our concerns. Instead, as explained in the Introduc-
tion, we use a simple type system for enforcing visibility constraints on values. The
two main type categories, channels and locations, are decorated by visibility anno-
tations, givingchV〈Ũ〉 andlocV, whereVmay either bep, public, orc, confined. In
Table 1 these are calledstatelesstypes, and are ranged over byU.

The essential constraint enforced by the typing system is that public channels, that
is channels whose visibility isp, can only be used to transmitpurely publicvalues;
we useP to range over the types of these values. The type system also enforces a
secondary constraint, namely that all confined locations are free and their number
is fixed throughout execution. Stated otherwise, it prohibits scoped confined loca-
tions and the creation of fresh confined locations. The reason for the primary con-
straint is to prohibit observers, which are restricted to public channels/locations,
from gaining access to confined channel/location names through interaction. The
reason for the secondary restriction is that our definitionsof fault tolerance depend
on complete knowledge of the unreliable (confined) locations at the beginning of
the analysis; we revisit this point later in Section 3.

However there is a complication. As explained in [4], the reduction semantics is
considerably simplified if we also allow types to record theliveness statusof a
location, whether it is alive or dead. Thus we introduce two further annotations,a
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andd, which can be added to the locations types, giving the formslocaV andlocdV.
This gives a new class of types, thestatefultypes, ranged over byT, R. It should
be emphasised however that although these stateful types are used in the typing
system, typeability does not depend in any way on theseliveness statusannotations
used on the location types.

A type environmentΓ is a partial function from names tostateful types whose
domain is finite. However when type-checking we wish to ignore theliveness status
annotation on types. Consequently we define judgements of the form

Γ ⊢ n : U (3)

whereU is a stateless type. The returned typeU is obtained simply by dropping the
any liveness statusannotation inΓ(n).

Example 2 (Public Types) We can have the type assignments

Γ ⊢ a : chp〈chp〈chp〈〉〉〉 andΓ ⊢ a : chc〈chp〈chp〈〉〉〉

We can assign channel names to public channel types that communicate public
values (first assignment) or to confined channel types that communicate arbitrary
values (second assignment). However, we cannot have

Γ ⊢ a : chp〈chc〈chp〈〉〉〉

because the object type of a public channel type must also be apublic type. Simi-
larly, we cannot have the type assignment

Γ ⊢ a : chc〈chp〈chc〈〉〉〉

because, even though public values can be communicated on confined channels,
the public channel communicated does not constitute avalid public type since its
object type is a confined channel.

Our typing judgements take the form

Γ ⊢ N

and are defined by the rules in Table 2, which use an extended form of type envi-
ronment,Σ; these, in addition to names, also mapvariablesto statelesstypes. The
rules are standard value passing ones designed to ensure that the values transmitted
respect the declared object type of the channels on which they are communicated.
The rule(t-out) uses the obvious generalisation of the judgement (3) to valuesV,
while in (t-rest) the standard notationΓ, n : T is used to denote the new environ-
ment obtained by extending the functionΓ so that it now mapsn to the typeT. But
inherent in the use of this notation is thatn is new todom(Γ). Similar notation is
used in(t-nw). The only non-standard feature in the typing rules of Table 2is the
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Table 2.Typing rules for typed DπLoc

Processes

(t-out)

Σ ⊢ u:chV〈Ũ〉

Σ ⊢ V : Ũ

Σ ⊢ P

Σ ⊢ u!〈V〉.P

(t-in-rep)

Σ ⊢ u:chV〈Ũ〉

Σ,X : Ũ ⊢ P

Σ ⊢ u?(X).P

Σ ⊢ ∗u?(X).P

(t-nw)

T , locc

Σ, n:T ⊢ P

Σ ⊢ (ν n:T)P

(t-cond)

Σ ⊢ u:U, v:U

Σ ⊢ P, Q

Σ ⊢ if u=v then P else Q

(t-fork)

Σ ⊢ P, Q

Σ ⊢ P|Q

(t-axiom)

Σ ⊢ 0

(t-go)

Σ ⊢ u : locV

Σ ⊢ P

Σ ⊢ go u.P

(t-ping)

Σ ⊢ u : locV

Σ ⊢ P, Q

Σ ⊢ ping u.P else Q

Systems

(t-rest)

T , locc

Γ, n:T ⊢ N

Γ ⊢ (ν n:T)N

(t-par)

Γ ⊢ N, M

Γ ⊢ N|M

(t-proc)

Γ ⊢ l : locV

Γ ⊢ P

Γ ⊢ l[[P]]

conditionT , locc in (t-nw) and (t-rest). This additional condition precludes the
creation ofnew confinedlocations and the existence ofscoped confinedlocations,
thereby guaranteeing the secondary restriction of the typesystem discussed earlier,
namely that all confined locations are free.

Example 3 (Type-checking Systems)LetΓe denote the environment

Γe =


l :locap, k1 :locac, k2 :locac, k3 :locac,

req:chp〈P1, chp〈P1〉〉, ret:chp〈P1〉, v:P1, a:chp〈P2〉

whereP1 andP2 are arbitrary public types. Then one can check

Γe ⊢ serveri

for i = 1 . . .3, whereserveri is defined in the Introduction, provided the locally
declared channelsdataandsyncare declared at the typeschV〈T, chp〈T〉, locp〉 and
chV〈T〉 respectively, with arbitrary visibilityV.

Consider the alternative server

serverBad ⇐ server1 | l[[a!〈k1〉]]

8



which acts asserver1 but also communicates the confined location k1 on channel a
at l. It is easy to see that our type system rejectsserverBad, that is

Γe 0 serverBad

because it outputs a confined value, k1, on a public channel a. We know that the
object type of the public channel a must be public,P2, which cannot be matched
with the confined type of the value outputted k1 when applying the typing rule(t-
out).

Consider another server

serverBad2 ⇐ (ν k1 : locac) server1

If we consider the slightly modified type environment

Γ′e = Γe\k1 : locac

removing the type assignment to k1 from Γe, then our type system also rejects
serverBad2, that is

Γ′e 0 serverBad2

because the confined location k1 is scoped.

The main property required of our type system is that, in somesense, typing is pre-
served by substitution of values for variables, provided their types are in agreement:

Lemma 4 (Substitution) If Σ, x:U ⊢ P and Σ ⊢ v:U, thenΣ ⊢ P{v/x}

PROOF. By induction on the derivation ofΣ, x:U ⊢ P.

Reduction Semantics:

Definition 5 The pairΓ ⊲ M is called aconfigurationif all the free names in M
have a type assigned to them inΓ, that is fn(M) ⊆ dom(Γ). It is called avalid
configuration if in additionΓ ⊢ M.

Reductions then take the form of a binary relation over configurations

Γ ⊲ N −→ Γ′ ⊲ N′ (4)

defined in terms of the reduction rules in Table 3, whereby systems reduce with
respect to theliveness statusof the locations inΓ; here we should emphasise that
the reductions depend in no way on the type information inΓ, other than the liveness
annotations on location types.
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Table 3.Reduction Rules for DπLoc

Assuming Γ ⊢ l :alive

(r-comm)

Γ ⊲ l[[a!〈V〉.P]] | l[[a?(X).Q]] −→ Γ ⊲ l[[P]] | l[[Q{V/X}]]

(r-rep)

Γ ⊲ l[[∗a?(X).P]] −→ Γ ⊲ l[[a?(X).(P| ∗ a?(X).P)]]

(r-fork)

Γ ⊲ l[[P|Q]] −→ Γ ⊲ l[[P]] | l[[Q]]

(r-eq)

Γ ⊲ l[[ if u=u then P else Q]] −→ Γ ⊲ l[[P]]

(r-neq)

Γ ⊲ l[[ if u=v then P else Q]] −→ Γ ⊲ l[[Q]]
u , v

(r-go)

Γ ⊲ l[[go k.P]] −→ Γ ⊲ k[[P]]
Γ ⊢ k : alive

(r-ngo)

Γ ⊲ l[[go k.P]] −→ Γ ⊲ k[[0]]
Γ 0 k : alive

(r-ping)

Γ ⊲ l[[ping k.P else Q]] −→ Γ ⊲ l[[P]]
Γ ⊢ k : alive

(r-nping)

Γ ⊲ l[[ping k.P else Q]] −→ Γ ⊲ l[[Q]]
Γ 0 k : alive

(r-new)

Γ ⊲ l[[(ν n:T)P]] −→ Γ ⊲ (ν n:T) l[[P]]

(r-str)

Γ ⊲ N′ ≡ Γ ⊲ N Γ ⊲ N −→ Γ′ ⊲ M Γ′ ⊲ M ≡ Γ′ ⊲ M′

Γ ⊲ N′ −→ Γ′ ⊲ M′

(r-ctxt-rest)

Γ, n : T ⊲ N −→ Γ′, n : T ⊲ M

Γ ⊲ (ν n : T)N −→ Γ′ ⊲ (ν n : T)M

(r-ctxt-par)

Γ ⊲ N −→ Γ′ ⊲ N′

Γ ⊲ N|M −→ Γ′ ⊲ N′|M

Γ ⊲ M|N −→ Γ′ ⊲ M|N′

In these rules, in order to emphasise the meaning and abstract away from visibility
type information, we write

Γ ⊢ l :alive

instead ofΓ ⊢ l : locaV; we also writeΓ 0 l : alive instead ofΓ ⊢ l : locdV. Thus all
reduction rules assume the location where the code is executing is alive. Moreover,
(r-go), (r-ngo), (r-ping) and (r-nping) reduce according to the status of the remote

10



Table 4.Structural Rules for DπLoc

(s-comm) N|M ≡ M|N

(s-assoc) (N|M)|M′ ≡ N|(M|M′)

(s-unit) N|l[[0]] ≡ N

(s-extr) (ν n:T)(N|M) ≡ N|(ν n:T)M n < fn(N)

(s-flip) (ν n:T)(νm:R)N ≡ (νm:R)(ν n:T)N

(s-inact) (ν n:T)N ≡ N n < fn(N)

Table 5.Error reductions in DπLoc

(e-out)

∃vi ∈ V such thatΓ ⊢ vi :locc or Γ ⊢ vi :chc〈W̃〉

Γ ⊲ l[[a!〈V〉.P]] −→err

(e-scope)

Γ ⊲ (ν l :locSc)M −→err

(e-par)

Γ ⊲ M −→err

Γ ⊲ M |N −→err

Γ ⊲ N |M −→err

(e-rest)

Γ, n : T ⊲ M −→err

Γ ⊲ (ν n:T)M −→err

location concerned. All the remaining rules are standard, including the use of a
structural equivalence≡ between systems; see [4] for more details. The attentive
reader should have noted that when using the rules in Table 3,wheneverΓ ⊲ N −→
Γ′ ⊲ N′ it can be deduced thatΓ′ always coincides withΓ. Even though this is
certainly true, in later sections we will introduce reductions that change network
status of the reductΓ′ ⊲ N′.

Proposition 6 (Subject Reduction) If Γ ⊢ M andΓ ⊲ M −→ Γ ⊲ N, thenΓ ⊢ N.

PROOF. By induction on the derivation ofΓ ⊲ M −→ Γ ⊲ N. As usual the main
difficulty occurs with the communication rules,(r-comm) and(r-rep), where the Sub-
stitution lemma, Lemma 4 is used. Treatment of(r-str) also requires us to prove that
typeability is preserved by the structural equivalence.

We can also show that the type system does indeed fulfill its intended purpose.
More specifically, in well-typed systems

• confined values will never be made public.
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• confined locations are never scoped.

In Table 5 we formalise these notions of runtime errors, writing

Γ ⊲ N −→err

to mean that, intuitively,N is either about to export some confined value on a pub-
lic channel,(e-out), or currently holds a scoped confined location,(e-scope) - the
remaining two rules in Table 5 are standard contextual rules. We show that such
errors can never occur in a valid environment.

Proposition 7 (Type Safety) SupposeΓ ⊲N is a valid configuration, that isΓ ⊢ N.
If Γ ⊲ N −→∗ Γ ⊲ N′ thenΓ ⊲ N′ 6−→err

PROOF. From Subject Reduction, Proposition 6, we know thatΓ ⊢ N′. It is also
straightforward to show, using the rules in Figure 5, thatΓ⊲M −→err impliesΓ 0 M,
from which the result follows.

In the remainder of the paper we will confine our attention tovalid configurations;
from the two previous propositions we know that they are preserved under reduc-
tions and they do not give rise to runtime errors.

Behavioural equivalence: As the appropriate semantic equivalence for DπLoc,
we propose a contextual equivalence based on the standard notion of reduction
barbed congruence, [11,8], which is adapted to the presence of configurations.
More importantly, as explained in the Introduction, we refine it further so as to
ensure that observations can only be made at public locations. This restriction is
enforced using our type system.

For anyΓ let pub(Γ) be the environment obtained by restricting to names which are
assigned public types. Then we writeΓ ⊢obs O, meaning intuitively thatO is a valid
observer with respect toΓ, wheneverpub(Γ) ⊢ O.

Example 8 (Type System prevents Errors)Referring back to Example 3, we have
already seen that

Γe ⊢ serveri

for i = 1 . . .3 but we can also check that theclient, defined in the Introduction, is
also a valid observer with respect topub(Γe) which translates to

pub(Γe) = l :locap, req:chp〈P1, chp〈P1〉〉, ret:chp〈P1〉, v:P1, a:chp〈P2〉

We can thus show
Γe ⊢obs client

12



On the other hand consider

obseverBad ⇐ l[[go k1.go l.ok!〈〉]]

Intuitively this should not be considered a valid observer because it uses the con-
fined value k1, and indeed we have

Γe 6⊢obs observerBad

By prohibiting their use ofanyconfined values, valid observers are not only forced
to be located to public locations, but also constrained to migrate to public locations
only.

Our typing system ensures that a valid observer can never obtain confined values
under any sequence of interactions within a well-formed configuration. Consider
again the alternative serverserverBad, already discussed in Example 3. If we com-
poseserverBad in parallel with the valid observer

observerGood ⇐ l[[a?(x).go x.go l.ok!〈〉]]

then one reduction step involving the communication of k1 on channel a yields

Γe ⊲ serverBad | observerGood −→ Γe ⊲ server1 | observerBad

Here the valid observerobserverGood reduces to the invalid observerobserver-
Bad, which has obtained knowledge of the confined location k1.

Our type system ensures that this never happens because, although we have

Γe ⊢obs observerGood

our type system rejectsserverBad (Example 3).

It is convenient to define our behavioural equivalence so that it can relate arbi-
trary configurations, which now are assumed to be valid; however, we would expect
equivalent configurations to have the samepublic interface. We also only expect it
to be preserved by composition with valid observers. This leads to the following
definition.

Definition 9 (o-Contextual) A relation overR configurations is called o-Contextual
if, wheneverΓ⊲M R Γ′⊲N

Interfaces: pub(Γ) = pub(Γ′)

Parallel Observers:
Γ⊲M | O R Γ′⊲N | O

Γ⊲O | M R Γ′⊲O | N


wheneverΓ ⊢obs O.

Fresh extensions: Γ, n ::P⊲M R Γ′, n ::P⊲N.1

1 Recall that this impliesn is fresh to bothΓ andΓ′.
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Since we want to limit observation to public resources, we restrict the standard
notion of a barb and limit it topublic channelsat public, live locations.

Definition 10 (o-Barb) Γ ⊲ N ⇓o
a@l denotes an o-observable barb by configuration

Γ ⊲ N, on channel a at location l. This is true whenΓ ⊲ N −→∗ Γ ⊲ N′ for some N′

such that

N′≡ (ν ñ: T̃)M|l[[a!〈V〉.Q]]

whereΓ ⊢ l : locap, a : chp〈P̃〉. We say a relation over configurationspreserves
barbsif:

Γ⊲M R Γ′⊲N

Γ ⊲ M ⇓o
a@l


impliesΓ ⊲ N ⇓o

a@l

The next definition is standard (see [8]), but is added for completeness.

Definition 11 (Reduction closure) A relation overR configurations isreduction-
closedwhenever

ΓM ⊲M R ΓN⊲N

ΓM ⊲M −→ Γ′M ⊲M
′


impliesΓN⊲N −→∗ Γ′N⊲N

′

for some configurationΓ′N⊲N
′ such thatΓ′M ⊲M

′ R Γ′N⊲N
′.

Combining these we obtain our touchstone equivalence for DπLoc:

Definition 12 (Reduction barbed congruence)Let � be the largest relation be-
tween configurations which is:

• o-contextual
• reduction-closed
• preserves o-barbs

Example 13 (Equivalent Configurations with Restricted View) Our definition of
reduction barbed congruence allows us to limit observations to certain locations,
thereby allowing apartial viewof a system. For instance, even though the equiv-
alences defined in [4] could discriminate betweenserver1, server2 and server3

running on a network without failure, we can now say that these servers are obser-
vationally equivalent if observations are limited to location l. More specifically, it
turns out that

Γe ⊲ serveri � Γe ⊲ server j for i, j ∈ {1, 2, 3}

whereΓe, previously defined in Example 3, is limiting observations to the only pub-
lic location, l; the locations k1, k2 and k3 are confined inΓe.
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3 Defining Fault Tolerance

We now give contextual definitions of fault-tolerance in thestyle of (1), outlined
in the Introduction. We use the touchstone behavioural equivalence, Definition 12,
to compare failure-free and failure-induced configurations. We also quantify over
all possible fault contexts, special contexts that induce faults. The specific form of
these fault contexts embody our assumptions about faults, which in turn determine
the nature of our fault tolerance definitions.

Our definitions of fault tolerance are based on the clear separation of locations into
two disjoint sets:reliable locations andunreliablelocations. Reliable locations are
assumed to be immortal, whereas unreliable locations may bedead already (per-
manently in fail-stop fashion[17]) or may die in future. An important assumption
of our fault tolerance definitions is that the separation between reliable and unre-
liable locations happens once,at the start of the analysis, based on the location
information at that moment; intuitively, we pick a subset from thefree locations
which we assume to be unreliable. Since scoped locations arenot known to us at
this stage, we cannot tag them as unreliable, which is why thetype system in Sec-
tion 2 precluded scoped unreliable(confined) locations. Once unreliable locations
are determined, we take a prescriptive approach and force observers to reside at
reliable locations only, thereby ensuring that they never incur failuredirectly. To
put it more succinctly, observations never fail.

Nevertheless, an observer can still be affected by failureindirectly. This happens
when an observer interacts with system code residing at public locations whose be-
haviourdepends, in some way or another, on code residing at unreliable locations.
In such a setting, fault tolerance would be a property of the system code at public
locations, whichpreservesits behaviour up to acertain levelof fault, even when
the unreliable code it depends on (residing at unreliable locations) fails. If we map
public locations to reliable locations and confined locations as unreliable, then the
framework developed in Section 2 fits our requirements for such a definition; the
type system also ensures that this clear separation betweenreliable and unreliable
code is preserved during interaction, by ensuring that an observer will never receive
an unreliable location, when it is expecting a reliable one.In the remainder of the
document we will interchangeably use the terms reliable andunreliable for public
and confined types respectively.

Our first notion ofn-fault-tolerance, formalising the intuition behind (1), is when
the faulting context induces at mostn location failuresprior to the execution of
the system. Of course, these failures must only be induced on locationswhich are
confined, based on the prior assumption that public locations are reliable, and thus
immortal. The implicit assumptions behind our first fault tolerance definition are
that:
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• either the unreliable locations have always been dead and nomore failure will
occur in future.

• or the frequency of failure occurrence, which often happensin bursts, is much
lower than that of reduction steps, within a give period of time. Thus we can
assume that computations will not be interleaved by furtherfailures.

Formally, we define the operationΓ − l as:

Γ − l
def
=


Γ′, l : locdc if Γ = Γ′, l : locac

Γ otherwise

Definition 14 (Static Fault Tolerance) For any set of location names̃l let F l̃
S(−)

be the function which maps any networkΓ toΓ− l̃; that is the environment obtained
by ensuring that the status of any confined li in Γ is dead. We say Fl̃S(−) is a valid
staticn-fault contextif the size of̃l is at mostn. A configurationΓ⊲N is static n-fault
tolerant if for every valid static n-fault context Fl̃

S

Γ ⊲ N � F l̃
S(Γ) ⊲ N

With this formal definition we can now examine the systemsserveri, using theΓe

defined in Example 3.

Example 15 (Static Fault Tolerance)We can formally check thatΓe ⊲ server1 is
not static1-fault tolerant because by considering the fault context Fk1

S we can show
that

Γe ⊲ server1 6� Fk1
S (Γe) ⊲ server1

Similarly we can show thatΓe ⊲ server2 is not2-fault tolerant, by considering its
behaviour in the static2-fault tolerant context Fk1,k2

S . More specifically here let
client denote the system

l[[ req!〈v, ret〉.ret?(x).ok!〈x〉]]

Then, assumingΓe has a suitable type for the channel ok, the configuration

Γe ⊲ server2 | client

can perform the barb ok@l, whereas with the configuration

Γe − {k1, k2} ⊲ server2 | client

this is not possible.

We can also examine other systems which employpassivereplication. The system
sPassive defined below uses two identical replicas of the distributeddatabase at
k1 and k2, but treats the replica at k1 as theprimary replica and the one at k2 as
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a secondary(backup) replica. Once again, the type of the scoped channeldatais
T = chc〈P, chp〈P〉, locp〉, where we recall thatP denotes a public type.

sPassive ⇐ (ν data:T)



l




serv?(x, y).ping k1.go k1.data!〈x, y, l〉

else go k2.data!〈x, y, l〉





| k1[[data?(x, y, z).go z .y!〈 f (x)〉]]

| k2[[data?(x, y, z).go z .y!〈 f (x)〉]]



The coordinating interface at l uses the ping construct todetect failuresin the
primary replica: if k1 is alive, the request is sent to the primary replica and the
secondary replica at k2 is not invoked; if, on the other hand, the primary replica is
dead, then the passive replica at k2 is promoted to a primary replica and the request
is sent to it. This implementation saves ontime redundancysince, for any request,
only one replica is invoked.

It turns out thatΓe ⊲ sPassive is static 1-fault tolerant, as areΓe ⊲ server2 andΓe ⊲

server3. The latter,Γe⊲server3, is also static2-fault tolerant. However, establishing
positive results is problematic because the definition of� quantifies over all valid
observers and over all possible static n-fault contexts. The problems associated
with the quantification over all valid observers is addressed in the next section,
when we give a co-inductive characterisation of�.

Our second notion ofn-fault tolerance is based on faults that may occur asyn-
chronouslyat any stage duringthe execution of a system. This translates to a
weaker assumption about the periodicity of faults than thatunderlying Defini-
tion 14. Also, this second fault tolerance definition does not assume any depen-
dency between faults. It only assumes an upper-bound of faults and that faults are
permanent.

To formalise this notion we to extend the language DπLoc, by introducing a new
process calledkill. Then the new systeml[[kill]] simply asynchronously kills loca-
tion l. The reduction semantics, and typing rule, for this new construct is given in
Table 6. We use DπLoce to denote the extended language, and note that because of
the typing rule only confined locations can be killed. In particular this means that
if O is an observer, that isΓ ⊢obs O, thenO does not have the power to kill any lo-
cations. The net effect is that reduction barbed congruence,M � N, only compares
the systemsM, N from DπLoce, in contexts which have no power to kill locations
in M or N, although these systems themselves may have this power.

Definition 16 (Dynamic Fault Tolerance) For any set of locations̃l let F l̃
D(−) de-

note the function which maps the system M to M| l1[[kill]] | . . . | ln[[kill]] for any li ∈ l̃.
Such a function is said to be a valid dynamic n-fault context if the size of̃l is at
most n. A configurationΓ⊲N is dynamic n-fault tolerant if for every valid dynamic
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Table 6.Thekill construct

(t-kill)

Γ ⊢ l : locc

Γ ⊢ l[[kill]]

(r-kill)

Γ ⊲ l[[kill]] −→ (Γ − l) ⊲ l[[0]]

n-fault context
Γ ⊲ M � Γ ⊲ F l̃

D(M)

Example 17 (Dynamic Fault Tolerance)As we shall see later on, it turns out that
Γe⊲server2 andΓe⊲server3 are both dynamic fault tolerant up to1 fault; Γe⊲server3
is also dynamic2-fault tolerant. We however note that, contrary to the static case,
Γe ⊲ sPassive is not dynamic1-fault tolerant. This can be proved using Fk1

D (−) and
showing that

Γe ⊲ sPassive 6� Γe ⊲ sPassive | k1[[kill]]

The equivalence does not hold because k1 may failaftersPassive tests for its status.
In this case, the backup database at k2 is never queried and thus an answer will
never reach l.

However, this is not the case for any passive replication server with two replicas.
For instance, we can considersMonitor, defined as

sMonitor ⇐ (ν data:T)



l




serv?(x, y).(ν sync:R)



go k1.data!〈x, sync, l〉

| mntr k1.go k2.data!〈x, sync, l〉

| sync?(z).y!〈z〉







| k1[[data?(x, y, z).go z .y!〈 f (x)〉]]

| k2[[data?(x, y, z).go z .y!〈 f (x)〉]]



where again,T = ch〈P, chp〈P〉, locp〉 and the type of the synchronisation channel
sync is R = chc〈P〉. This passive replication server still treats the databaseat k1

as the primary replica and the database at k2 as the secondary replica. However,
instead of asingleping test on the primary replica at k1, it uses amonitorprocess
for failure detection

mntr k.P⇐ (ν test:ch〈〉)( test!〈〉 | ∗ test?().ping k. test!〈〉 else P )

The monitor processmntr k.P repeatedlytests the status of the monitored location
(k) and continues as P only when k becomes dead. Due to the asynchrony across
locations, insMonitor there are cases when we still receive two database answers at
l (the queried database at k1 may first return an answer and then fail). At this point
the server interface detects the failure and queries the backup at k2 which, in turn,
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returns a second answer.sMonitor solves this problem by synchronising multiple
answers from replicas with the channelsync, similar to server2 and server3 in
Example 1.

It turns out thatΓe ⊲ sMonitor is also dynamic1-fault tolerant, but as in the case
of Γe ⊲ server2 andΓe ⊲ server3, such a positive result is hard to show because�
quantifies over all possible observers.

4 Proof Techniques for Fault Tolerance

We define a labelled transition system (lts) for DπLoce, which consists of a collec-

tion of transitions over (closed) configurations,Γ ⊲ N
µ
−→ Γ′ ⊲ N′, whereµ can be

any of the following:

• internal action,τ
• output action, (˜n : T̃)l : a!〈V〉
• input action, (ñ : T̃)l : a?(V)

where the names ˜n bind a subset of the names inV in both the input and output
transitions. Bound names in output labels denote scope extruded names whereas
bound names in input labels denote fresh names introduced bythe (implicit) ob-
server. These three transitions are defined inductively by the rules given in Table 7
and Table 8, inspired by [9,8,4], but with a number of differences.

In accordance with Definition 10 (observable barbs) and Definitions 9 (valid ob-
servers),(l-in) and(l-out) restrict external communication topublicchannels atpub-
lic locations, where the notationΓ ⊢obs l andΓ ⊢obs a denoteΓ ⊢ l : locp and
Γ ⊢ a : chp〈P̃〉 respectively, for some types̃P. Furthermore, in(l-in) we require that
the types of the values received,V, match the object type of channela; sincea is
public and configurations are well-typed, this also impliesthat V are public val-
ues defined inΓ. More prosaically, the object type of the input channel isP̃, and by
Lemma 4, we know the reduct is still well-typed. The restriction on the rule for out-
put transitions, together with the assumption that all configurations are well-typed,
also means that in(l-open) we only scope extrude public values. Contrary to [4],
the lts does not allow external killing of locations (through the labelkill : l) since
public locations are reliable and never fail. Finally, the transition rule for internal
communication,(l-par-comm), uses an overloaded function↑ (−) for inferring in-
put/output capabilities of the sub-systems: when applied to types,↑ (T) transforms
all the type tags to public (p); when applied to environments,↑ (Γ) changes all the
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Table 7.Operational Rules(1) for Typed DπLoc

Assuming Γ ⊢ l : alive

(l-in)

Γ ⊲ l[[a?(X).P]]
l:a?(V)
−−−−−→ Γ ⊲ l[[P{V/X}]]

Γ ⊢obs l, Γ ⊢ a : chp〈P̃〉, V : P̃

(l-in-rep)

Γ ⊲ l[[∗a?(X).P]]
τ
−→ Γ ⊲ l[[a?(X).(P| ∗ a?(X).P)]]

(l-out)

Γ ⊲ l[[a!〈V〉.P]]
l:a!〈V〉
−−−−−→ Γ ⊲ l[[P]]

Γ ⊢obs l, a

(l-fork)

Γ ⊲ l[[P|Q]]
τ
−→ Γ ⊲ l[[P]] | l[[Q]]

(l-eq)

Γ ⊲ l[[ if u=u then P else Q]]
τ
−→ Γ ⊲ l[[P]]

(l-neq)

Γ ⊲ l[[ if u=v then P else Q]]
τ
−→ Γ ⊲ l[[Q]]

u , v

(l-new)

Γ ⊲ l[[(νn : T)P]]
τ
−→ Γ ⊲ (ν n : T) l[[P]]

(l-kill)

Γ ⊲ l[[kill]]
τ
−→ (Γ − l) ⊲ l[[0]]

(l-go)

Γ ⊲ l[[go k.P]]
τ
−→ Γ ⊲ k[[P]]

Γ ⊢ k : alive

(l-ngo)

Γ ⊲ l[[go k.P]]
τ
−→ Γ ⊲ k[[0]]

Γ 0 k : alive

(l-ping)

Γ ⊲ l[[ping k.P else Q]]
τ
−→ Γ ⊲ l[[P]]

Γ ⊢ k : alive

(l-nping)

Γ ⊲ l[[ping k.P else Q]]
τ
−→ Γ ⊲ l[[Q]]

Γ 0 k : alive

types to public types in the same manner. The definitions for these operations are

↑ (T1, . . . , Tn)
def
= (↑ (T1), . . . , ↑ (Tn))

↑ (Γ, n : T)
def
= ↑ (Γ), n :↑ (T)

↑ (T)
def
=


chP〈↑ (R̃)〉 if T = chV〈R̃〉

locSP if T = locSV
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Table 8.Operational Rules (2) for Typed DπLoc

(l-open)

Γ, n : T ⊲ N
(ñ:T̃)l:a!〈V〉
−−−−−−−−→ Γ′ ⊲ N′

Γ ⊲ (ν n : T)N
(n:T,ñ:T̃)l:a!〈V〉
−−−−−−−−−−−→ Γ′ ⊲ N′

l, a , n ∈ V

(l-weak)

Γ, n : T ⊲ N
(ñ:T̃)l:a?(V)
−−−−−−−−→ Γ′ ⊲ N′

Γ ⊲ N
(n:T,ñ:T̃)l:a?(V)
−−−−−−−−−−−→ Γ′ ⊲ N′

l, a , n ∈ V

(l-rest)

Γ, n : T ⊲ N
µ
−→ Γ′, n : T ⊲ N′

Γ ⊲ (ν n : T)N
µ
−→ Γ′ ⊲ (ν n : T)N′

n < fn(µ)

(l-par-ctxt)

Γ ⊲ N
µ
−→ Γ′ ⊲ N′

Γ ⊲ N |M
µ
−→ Γ′ ⊲ N′ |M

Γ ⊲ M |N
µ
−→ Γ′ ⊲ M |N′

(l-par-comm)

↑ (Γ) ⊲ N
(ñ:↑(T̃))l:a!〈V〉
−−−−−−−−−−→ Γ′ ⊲ N′ ↑ (Γ) ⊲ M

(ñ:↑(T̃))l:a?(V)
−−−−−−−−−−→ Γ′′ ⊲ M′

Γ ⊲ N |M
τ
−→ Γ ⊲ (ν ñ : T̃)(N′ |M′)

Γ ⊲ M |N
τ
−→ Γ ⊲ (ν ñ : T̃)(M′ |N′)

All the remaining rules are simplified versions of the corresponding rules in [4].

Using the lts of actions we can now define, in the standard manner,weak bisimula-
tion equivalenceover configurations. Our definition uses the standard notation for
weak actions; we use=⇒ as a shorthand for the reflexive transitive closure on silent

transitions
τ

−→∗. Hence,
µ

=⇒ denotes=⇒
µ
−→=⇒, and

µ̂

=⇒ denotes
τ

−→∗ if µ = τ and
µ

=⇒ otherwise.

Definition 18 (Weak bisimulation equivalence)A relationR over configurations
is called abisimulationif wheneverΓM ⊲ M R ΓN ⊲ N, then

• ΓM ⊲ M
µ
−→ Γ′M ⊲ M′ impliesΓN ⊲ N

µ̂

=⇒ Γ′N ⊲ N′ such thatΓ′M ⊲ M′ R Γ′N ⊲ N′

• ΓN ⊲ N
µ
−→ Γ′N ⊲ N′ impliesΓM ⊲ M

µ̂

=⇒ Γ′M ⊲ M′ such thatΓ′M ⊲ M′ R Γ′N ⊲ N′

Weak bisimulation equivalence, denoted by≈, is taken to be the largest bisimula-
tion.

Theorem 19 (Full Abstraction) Supposepub(Γ) = pub(Γ′). Then for any DπLoce

configurationsΓ⊲M, Γ′⊲N:

Γ⊲M � Γ′⊲N if and only if Γ⊲M ≈ Γ′⊲N
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PROOF. (Outline)To prove

Γ⊲M ≈ Γ′⊲N implies Γ⊲M � Γ′⊲N

we show that≈ satisfies all the defining properties of� (Definition 12). The most
involved task is showing that≈ is o-Contextual(Definition 9). This has already
been done in [4] for more complex contexts. Following the approach there, we
inductively define a relationR as the least relation over configurations satisfying:

R =



〈Γ1 ⊲ M1, Γ2 ⊲ M2〉 | Γ1 ⊲ M1≈Γ2 ⊲ M2, pub(Γ1) = pub(Γ2)

〈Γ1 ⊲ M1|O, Γ2 ⊲ M2|O〉

〈Γ1 ⊲O|M1, Γ2 ⊲O|M2〉

∣∣∣∣∣∣∣∣
Γ1 ⊲ M1 R Γ2 ⊲ M2 andΓ1 ⊢obs O

〈Γ1, n:T ⊲ M1, Γ2, n:T ⊲ M2〉

∣∣∣∣∣∣∣∣
Γ1 ⊲ M1 R Γ2 ⊲ M2,

n is fresh inΓ1, Γ2

〈Γ1 ⊲ (ν n:T)M1, Γ2 ⊲ (ν n:U)M2〉 | Γ1, n:T ⊲ M1 R Γ2, n:U ⊲ M2



In R we add an extra clause from those given in Definition 9, namelythe last one
for name scoping. We then show thatR is a bisimulation; since≈ is the largest
possible bisimulation it follows thatR ⊆ ≈. Because of the definition ofR it then
follows that≈, when confined to configurations with the same public interface, is
o-Contextual.

The proof for the converse,

Γ⊲M � Γ′⊲N implies Γ⊲M ≈ Γ′⊲N

relies on the notion ofdefinability, that is, for every action, relative to a type envi-
ronmentΓ, there is an observer which uses the public knowledge ofΓ to completely
characterise the effect of that action. In our case, we only need to prove definability
for input/output actions, which has already been done for a more complex setting
in [4]. For instance the context which characterises the input transition labeled by
(ñ : T̃)l : a?(V) would be

[−] | O

whereO is the system (ν ñ : T̃)l[[a!〈V〉.go k0.eureka!〈〉]] andk0 andeurekaare fresh
public location and channel names, respectively. Because of the restrictions on the
manner in which transitions can be inferred, we are assured thatO is allowed as an
observer, that isΓ ⊢obs 0.
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Theorem 19 allows us to provepositivefault tolerance results by giving a bisim-
ulation for every reduction barbed congruent pair requiredby Definitions 14 and
16.

Example 20 (Proving Static Fault Tolerance)To show thatΓe⊲sPassive, defined
earlier in Example 15, is static 1-fault tolerant we needed to show thatsPassive
preserves the same behaviour under any static 1-fault contexts. Now, by the defini-
tion of the operationΓ − l, we know that the only l we need to consider are cases
where l is confined inΓ; otherwiseΓ − l = Γ and the relation we have to prove
would be a simple case of the identity relation. For our specific case, sinceΓe has
only 3 confined locations, we only need to consider three static 1-fault contexts,
and by Theorem 19, showing thatΓe⊲ sPassive is static 1-fault tolerant boils down
to constructing 3 witness bisimulations to show

Γ ⊲ sPassive � (Γ − k1) ⊲ sPassive

Γ ⊲ sPassive � (Γ − k2) ⊲ sPassive

Γ ⊲ sPassive � (Γ − k3) ⊲ sPassive

Here we give the witness relation for the most involved case,for k1, and leave the
other simpler cases for the interested reader. The witness relation isR defined as

R
def
= {〈Γ ⊲ sPassive, Γ − k1 ⊲ sPassive〉} ∪


⋃

n,m∈N

R′(n,m)



R′(x, y)
def
=



Γ ⊲ (νd)l[[Png(x, y)]] | R1 | R2 , Γ − k1 ⊲ (νd)l[[Png(x, y)]] | R1 | R2

Γ ⊲ (νd)l[[Q1(x, y)]] |R1 |R2 , Γ − k1 ⊲ (νd)l[[Q2(x, y)]] |R1 |R2

Γ ⊲ (νd)k1[[d!〈x, y, l〉]] |R1 |R2 , Γ − k1 ⊲ (νd)k2[[d!〈x, y, l〉]] |R1 |R2

Γ ⊲ (νd)k1[[go l .y!〈 f (x)〉]] |R2 , Γ − k1 ⊲ (νd)R1 | k2[[go l .y!〈 f (x)〉]]

Γ ⊲ (νd)l[[y!〈 f (x)〉]] |R2 , Γ − k1 ⊲ (νd)R1 | l[[y!〈 f (x)〉]]

Γ ⊲ (νd)R2 , Γ − k1 ⊲ (νd)R1



where d stands for data and

Png(x, y) ⇐ ping k1.Q1(x, y) else Q2(x, y)

Qi(x, y) ⇐ go ki .d!〈x, y, l〉

Ri ⇐ ki[[d?(x, y, z).go z .y!〈 f (x)〉]]

R is the union of all the relationsR′(n,m) where n,m denote the possible names for
the value and return channel that are received on channelserv.
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To facilitate our presentation, the general form of everyR′(n,m) is described through
R′(x, y), a relation between configurations having two free variables, x and y; each
R′(n,m) is obtained by instantiating x and y for n and m respectively.In a similar
fashion,R′(x, y) uses convenient abbreviations for processes, such asPng(x, y) -
a shorthand for a process with free variables x and y. InR′(n,m) this shorthand
denotes the closed processPng(n,m).

EveryR′(n,m) relatesΓ ⊲ sPassive and(Γ− k1) ⊲ sPassive and captures the essen-
tial mechanism of how(Γ − k1) ⊲ sPassive uses redundancy to preserve the same
observable behaviour ofΓ ⊲ sPassive. In this mapping, all the requests are ser-
viced by the primary replica at k1 in Γ ⊲ sPassive, whereas they are serviced by the
secondary replica at k2 in (Γ − k1)⊲sPassive.

5 Generic Techniques for Dynamic Fault Tolerance

In spite of the benefits gained from proof techniques developed in Section 4, prov-
ing positive fault tolerance results still entails a lot of unnecessary repeated work.
This problem is mainly due to Definition 14 and Definition 16, which quantify over
all fault contexts. The universal quantification of fault contexts can generally be
bounded, as in Example 20, through then index of the fault contexts (indicating
the maximum failure to induce) and by the number of unreliable locations defined
in the environment, which limits the witness bisimulationswe need to construct.
Despite such bounds on fault contexts, we are still requiredto perform much re-
dundant work. For instance, to prove thatserver3 is 2-fault tolerant, we need to
provide 6 bisimulation relations2 , one for every different case in

Γ ⊲ server3 � Γ ⊲ server3|ki[[kill]] |kj[[kill]] for i, j ∈ {1, 2, 3}

A closer inspection of the required relations reveals that there is a lot of overlap
between them. For instance, in the witness bisimulation where i = 1, j = 2 and
in the witness bisimulation fori = 1, j = 3, in each case part of our analysis
requires us to consider the behavior ofserver3 under a setting wherek1 dies first,
leading to a large number of bisimilar tuples which are common to both witness
bisimulations. These overlapping states would be automatically circumvented if
we require a single relation that is somewhat the merging of all of these separate
relations.

Hence, in this section we reformulate our fault tolerance definition for dynamic
fault tolerance (the most demanding) to reflect such a merging of relations; a similar

2 The cases where the numbern is less than 2 (in our casen = 1) is handled by the instance
where bothi and j are the same location; it is not hard to show thatΓ ⊲ M|ki[[kill]] |ki [[kill]] ≈
Γ ⊲ M|ki[[kill]] for i ∈ {1, 2, 3} since a location cannot be killed twice.
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Table 9.Fail Silent Transition Rule DπLoc

(l-fail)

〈Γ, n〉 ⊲ N
τ
−→ 〈Γ − k, n− 1〉 ⊲ N

Γ ⊢ k:locac

definition for the static case should be amenable to similar treatment. We start by
definingextended configurations, which have the form

〈Γ, n〉 ⊲ M

whereM is a system from DπLoc andΓ ⊲ M is a (valid) configuration. Intuitively,
the extended configuration above denotes a systemM, without any sub-systems of
the form l[[kill]], that is running on the networkΓ, where at mostn unreliable lo-
cations may fail. The additional network information in theform of a fault bound
gives us anupper limiton the unreliable locations thatmay still fail. It provides a
more succinct way of expressing dynamic failure, without recurring to the fault in-
ducing code of the forml[[kill]]. More specifically, it allows us to express how many
unreliable locations may still fail, in line with Definition16, without committing
ourselves as to which of these locations will fail, as is the case when using fault
contexts. This leads to an alternative definition for dynamic fault tolerance that is
easier to work with.

The network fault upper bound gives us further advantages. For instance it gives
us more control when, after a possibly empty sequence of transitions, we reach
configurations withn = 0; it less obvious to discern this from systems containing
asynchronous killsl[[kill]]. In these extreme cases, we can treat code at unreliable
locations as reliable, since the network failure upper-bound guarantees that none of
these will fail, thereby simplifying our analysis.

We define transitions between tuples of extended configurations as

〈Γ, n〉 ⊲ M
µ
−→ 〈Γ′, n′〉 ⊲ M′ (5)

in terms of all the transition rules given in Tables 7 and 8, with the exception of
(l-kill), which is replaced by the new transition(l-fail) defined in Table 9, describing
dynamic failure. Even though the transitions in Table 7 and Table 8 are defined on
configurations, they can be applied to extended configurations in the obvious way.
For example, the previous transition(l-out) applied to extended configurations now
reads

(l-out)

〈Γ, n〉 ⊲ l[[a!〈V〉.P]]
l:a!〈V〉
−−−−→ 〈Γ, n〉 ⊲ l[[P]]

Γ ⊢obs l, a

We note that, for all transitions adapted from Tables 7 and 8,the network upper-
bound does not change from the source to the target configuration.
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Our previous configurationsΓ ⊲ M can be viewed as a simple instance of extended
configurations of the form〈Γ, 0〉 ⊲ M where the maximum number dynamic fail-
ures that may occur at unreliable locations is 0. Also, usingtransitions defined
over extended configurations (5), we smoothly carry over theprevious definition of
bisimulation, Definition 18, to extended configurations. Wenext give an alternative
(co-inductive) definition of dynamicn-fault tolerance, based on extended configu-
rations.

Definition 21 (Co-inductive Dynamic Fault Tolerance) A configurationΓ⊲N is
co-inductive n (-dynamic) fault tolerant if

〈Γ, 0〉 ⊲ M ≈ 〈Γ, n〉 ⊲ M

Before we can use Definition 21 to prove dynamic fault tolerance, we need to show
that the new definition is sound with respect to our previous definition of dynamic
fault tolerance, Definition 16. This proof requires a lemma stating the correspon-
dence between actions in configurations and actions in extended configurations.

Lemma 22 (Actions for Configurations and Extended Configurations) Suppose
M is a DπLoc system. Then for every n≥ 0,

(1) Γ ⊲ M
µ
−→ Γ ⊲ M′ if and only if〈Γ, n〉 ⊲ M

µ
−→ 〈Γ, n〉 ⊲ M′

(2) Γ ⊲M|l[[kill]]
τ
−→ Γ − l ⊲M|l[[0]] if and only if〈Γ, n+ 1〉 ⊲M

τ
−→ 〈Γ − l, n〉 ⊲M.

PROOF. The first statement is proved by induction the derivations ofΓ ⊲ M
µ
−→

Γ⊲M′ and〈Γ, n〉⊲M
µ
−→ 〈Γ, n〉⊲M′. The second is a simple analysis of the transitions

involved. Note that here, becauseΓ ⊲M|l[[kill]] is assumed to be a configuration, we
are assured thatΓ ⊢ l : locac. See(t-kill) in Table 6.

Theorem 23 (Soundness of Co-inductive Dynamic Fault Tolerance)

〈Γ, 0〉 ⊲ M1 ≈ 〈Γ, n〉 ⊲ M2 implies


for any dynamicn-fault context Fl̃D

Γ ⊲ M1 � Γ ⊲ F l̃
D(M2)

PROOF. LetRn be a relation parameterised by a numbern and defined as

Rn
def
=


Γ1 ⊲ M1 , Γ2 ⊲ M2 | l i[[kill]] | . . . |l j[[kill]]︸                ︷︷                ︸

m

〈Γ1, 0〉 ⊲ M1 ≈ 〈Γ2,m〉 ⊲ M2

and 0≤ m≤ n


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We proceed by showing thatRn is a bisimulation over DπLoc configurations, up to
structural equivalence; that is

Rn ⊆ ≈ (6)
The required soundness result then follows because if

〈Γ, 0〉 ⊲ M ≈ 〈Γ, n〉 ⊲ M

then by (6) and the definition ofRn we know that for every dynamicn-fault context
F l̃

D(−), we also have
Γ ⊲ M ≈ Γ ⊲ F l̃

D(M)
Finally, by Theorem 19 we obtain

Γ ⊲ M � Γ ⊲ F l̃
D(M)

which by Definition 16 means thatΓ ⊲ M is dynamicn-fault tolerant.

In the proof of (6), we focus on matching the actions of the right hand side configu-
ration inRn; we leave the simpler case, that is matching the actions of the left hand
side, to the interested reader. We thus assume

Γ1 ⊲ M1 Rn Γ2 ⊲ M2 | l i[[kill]] | . . . |l j[[kill]]︸                ︷︷                ︸
m

(7)

for some 0≤ m≤ n and we have

Γ2 ⊲ M2 | l i[[kill]] | . . . |l j[[kill]]
µ
−→ Γ′2 ⊲ M′2 (8)

We have to show that

Γ1 ⊲ M1
µ̂

=⇒ Γ1 ⊲ M′1 such thatΓ1 ⊲ M′1 Rn Γ
′
2 ⊲ M′2

From the structure ofl i[[kill]] | . . . |l j[[kill]], we deduce that there can be no interaction
betweenM2 andl i[[kill]] | . . . |l j[[kill]] and, by(l-par), we conclude that this action can
be caused by either of the following actions:

(a) Γ2 ⊲ M2
µ
−→ Γ2 ⊲ M′′2 whereM′2 ≡ M′′2 | l i[[kill]] | . . . |l j[[kill]]

(b) Γ2 ⊲ l i[[kill]] | . . . |l j[[kill]]
µ
−→ Γ2 − lk ⊲ l i[[kill]] | . . . |lk[[0]] | . . . |l j[[kill]] whereµ must

beτ andM′2 ≡ M2 | l
′
i [[kill]] | . . . |l′j[[kill]]︸                 ︷︷                 ︸

m−1

(a) In this case, from (7) and the definition ofRn we know

〈Γ1, 0〉 ⊲ M1 ≈ 〈Γ2,m〉 ⊲ M2 (9)

Also, by (a) and Lemma 22(1) we also have

〈Γ2,m〉 ⊲ M2
µ
−→ 〈Γ2,m〉 ⊲ M′′2 (10)
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From (9) we know that (10) can be matched by

〈Γ1, 0〉 ⊲ M1
µ̂

=⇒〈Γ1, 0〉 ⊲ M′1 (11)
where 〈Γ1, 0〉 ⊲ M′1 ≈ 〈Γ2,m〉 ⊲ M′′2 (12)

From (11) and Lemma 22(1) we deduce

Γ1 ⊲ M1
µ̂

=⇒ Γ1 ⊲ M′1

and from (12) and the definition ofRn we also know

Γ1 ⊲ M′1 Rn Γ2 ⊲ M′′2 | l i[[kill]] | . . . |l j[[kill]]

(b) In this case, once again from (7) and the definition ofRn we know

〈Γ1, 0〉 ⊲ M1 ≈ 〈Γ2,m〉 ⊲ M2 (13)

Using (8) and Lemma 22(2) we can derive

〈Γ2,m〉 ⊲ M2
τ
−→ 〈Γ2 − lk,m− 1〉 ⊲ M2 (14)

From (13) we know (14) can be matched by

〈Γ1, 0〉 ⊲ M1
τ̂
=⇒〈Γ1, 0〉 ⊲ M′1 (15)

where 〈Γ1, 0〉 ⊲ M′1 ≈ 〈Γ2 − lk,m− 1〉 ⊲ M2 (16)

From (15) and Lemma 22(1) we obtain

Γ1 ⊲ M1
τ̂
=⇒ Γ1 ⊲ M′1

and from (16) we get the required pairing

Γ1 ⊲ M′1 Rn Γ2 − lk ⊲ M2| l
′
i [[kill]] | . . . |l′j[[kill]]︸                 ︷︷                 ︸

m−1

With Theorem 23, we can now give a single witness bisimulation to show the dy-
namic fault tolerance of a configuration. However, a considerable number of tran-
sitions in these witness bisimulations turn out to beconfluentsilent transitions,
meaning that they do not affect the set of transitions we can undertake in our bisim-
ulations, now or in the future. One consequence of this fact is that reduction via
such confluent moves produces bisimilar configurations. We thus develop up-to
bisimulation techniques that abstract over such moves. This alleviates the burden
of exhibiting our witness bisimulations and allows us to focus on the transitions
that really matter.
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Table 10.β-Transition Rules (1) for Typed DπLoc

Assuming Γ ⊢ l : alive

(b-in-rep)

〈Γ, n〉 ⊲ l[[∗a?(X).P]]
τ
7−→β 〈Γ, n〉 ⊲ l[[a?(X).(P| ∗ a?(Y).P{Y/X})]]

(b-eq)

〈Γ, n〉 ⊲ l[[ if u=u then P else Q]]
τ
7−→β 〈Γ, n〉 ⊲ l[[P]]

(b-neq)

〈Γ, n〉 ⊲ l[[ if u=v then P else Q]]
τ
7−→β 〈Γ, n〉 ⊲ l[[Q]]

u , v

(b-fork)

〈Γ, n〉 ⊲ l[[P|Q]]
τ
7−→β 〈Γ, n〉 ⊲ l[[P]] | l[[Q]]

(b-new)

〈Γ, n〉⊲l[[(ν n:T)P]]
τ
7−→β 〈Γ, n〉⊲(ν n:T)l[[P]]

(b-par)

〈Γ, n〉 ⊲ N
τ
7−→β 〈Γ

′, n′〉 ⊲ N′

〈Γ, n〉⊲N|M
τ
7−→β 〈Γ

′, n′〉⊲N′|M

〈Γ, n〉⊲M|N
τ
7−→β 〈Γ

′, n′〉⊲M|N′

(b-rest)

〈Γ,m:T, n〉 ⊲ N
τ
7−→β 〈Γ

′,m:T, n′〉 ⊲ N′

〈Γ, n〉 ⊲ (νm:T)N
τ
7−→β 〈Γ

′, n′〉 ⊲ (νm:T)N′

Based on [3], we denoteβ-actions orβ-moves as

〈Γ, n〉 ⊲ N
τ
7−→β 〈Γ

′, n〉 ⊲ N′

Theseβ-transitions are defined in Table 10 and Table 11. Our situation is more
complicated than that in [3] because we also have to deal withfailure. While we
directly inherit local rules, such as(b-eq) and (b-fork), and context rules, such as
(b-rest) and(b-par), we do not carry over distributed silent transitions such ascode
migration across locations. Instead, we here identify three sub-cases when migra-
tion is aβ-move, that is

• when we aremigrating toa location that isdead, (b-ngo).
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Table 11.β-Transition Rules (2) for Typed DπLoc

Assuming Γ ⊢ l : alive

(b-ngo)

〈Γ, n〉 ⊲ l[[go k.P]]
τ
7−→β 〈Γ, n〉 ⊲ k[[0]]

Γ 0 k : alive

(b-go-pub)

〈Γ, n〉 ⊲ l[[go k.P]]
τ
7−→β 〈Γ, n〉 ⊲ k[[P]]

Γ ⊢obs l, Γ ⊢ k : alive

(b-go-ff)

〈Γ, 0〉 ⊲ l[[go k.P]]
τ
7−→β 〈Γ, 0〉 ⊲ k[[P]]

Γ ⊢ k : alive

(b-nping)

〈Γ, n〉 ⊲ l[[ping k.P else Q]]
τ
7−→β 〈Γ, n〉 ⊲ l[[Q]]

Γ 0 k : alive

(b-ping-pub)

〈Γ, n〉 ⊲ l[[ping k.P else Q]]
τ
7−→β 〈Γ, n〉 ⊲ l[[P]]

Γ ⊢obs k

(b-ping-ff)

〈Γ, 0〉 ⊲ l[[ping k.P else Q]]
τ
7−→β 〈Γ, 0〉 ⊲ l[[P]]

Γ ⊢ k : alive

• when we aremigrating froma public location (thus immortal) to another live
location(b-go-pub).

• when both the source and destination locations are alive andwe cannot induce
further dynamic failures,(b-go-ff).

Migration across locations is generally not a confluent movebecause it can be in-
terfered with by failure. More specifically, the source location may fail before the
code migrates, killing the code that could otherwise exhibit observable behaviour at
the destination location. However, migrations to a dead locationk, (b-ngo), are con-
fluent because they all reduce to the systemk[[0]] which has no further transitions.
Migrations from an immortal location,(b-go-pub), are confluent because failure can
only affect the destination location; if the code migrates before the destination lo-
cation fails then it crashes at the destination; if it migrates after the destination fails
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Table 12.Structural Equivalence Rules for Typed DπLoc Configurations

(bs-comm) 〈Γ, n〉 ⊲ N|M ≡f 〈Γ, n〉 ⊲ M|N

(bs-assoc) 〈Γ, n〉 ⊲ (N|M)|M′ ≡f 〈Γ, n〉 ⊲ N|(M|M′)

(bs-unit) 〈Γ, n〉 ⊲ N|l[[0]] ≡f 〈Γ, n〉 ⊲ N

(bs-extr) 〈Γ, n〉 ⊲ (νm:T)(N|M) ≡f 〈Γ, n〉 ⊲ N|(νm:T)M m < fn(N)

(bs-flip) 〈Γ, n〉 ⊲ (νm1 :T)(νm2 :U)N ≡f 〈Γ, n〉 ⊲ (νm2 :U)(νm1 :T)N

(bs-inact) 〈Γ, n〉 ⊲ (νm:T)N ≡f 〈Γ, n〉 ⊲ N m< fn(N)

(bs-dead) 〈Γ, n〉 ⊲ l[[P]] ≡f 〈Γ, n〉 ⊲ l[[Q]] Γ 0 l : alive

then the case is similar to that of(b-ngo). 3 Finally, if we cannot induce more fail-
ures, as is the case of(b-go-ff), then trivially we cannot interfere with migration
between two live locations.

Similarly, pinging is generally not confluent because the location tested for may
change its status and affect the branching of the ping’s transition. However there
are specific cases where it is aβ-move, namely

• when the location tested is alive and no more failures can occur, (b-ping-ff).
• when the location tested is dead,(b-nping).
• when the location tested is public, and therefore immortal,(b-ping-pub).

In all three cases, the location tested for cannot change itsstatus before or after the
ping.

Even though a setting with failure requires us to analyse many more states than in a
failure-free setting and limits the use ofβ-moves, we can exploit the permanent na-
ture of the failure assumed in our model to define a stronger structural equivalence
than the one defined earlier in Table 4. The new structural equivalence, denoted
as≡f, is strengthened by defining it overextended configurationsinstead of over
systems. It is the least relation satisfying the rules in Table 12 and closed under the
obvious generalisation of the operations of parallel composition and name restric-
tion to extended configurations. Taking advantage of thenetwork status, we can
add a new structural rule,(bs-dead), which allows us to equate dead code, that is
code residing at (permanently) dead locations.

Example 24 (Stronger Structural Equivalence) Using≡f , we can now equate the
arbitrary systems l[[P]] and k[[Q]] running over the network〈Γ, n〉 when both l and

3 The additional condition on the liveness of the destinationlocation is extra but excludes
cases when(b-ngo) can be applied instead.
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k are dead inΓ. The derivation is as follows:

〈Γ, n〉 ⊲ l[[P]] ≡f 〈Γ, n〉 ⊲ l[[0]] (bs-dead)

≡f 〈Γ, n〉 ⊲ l[[0]] | k[[0]] (bs-unit)

≡f 〈Γ, n〉 ⊲ k[[0]] (bs-unit)

≡f 〈Γ, n〉 ⊲ k[[Q]] (bs-dead)

As with the standard structural equivalence, one can show that≡f is a strong bisim-
ulation:

Lemma 25 (≡f is a strong bisimulation)

〈Γ, n〉 ⊲ N

µ

��

≡f 〈Γ, n〉 ⊲ M

〈Γ′, n′〉 ⊲ N′

implies 〈Γ, n〉 ⊲ N

µ

��

≡f 〈Γ, n〉 ⊲ M

µ

��

〈Γ′, n′〉 ⊲ N′ ≡f 〈Γ′, n′〉 ⊲ M′

PROOF. A long but straightforward induction on the proof of〈Γ, n〉 ⊲ N ≡f

〈Γ, n〉 ⊲ M.

Lemma 26 (Commutativity of ≡f and
τ
7−→β) ≡f ◦

τ
7−→β implies

τ
7−→β ◦ ≡f

PROOF. If 〈Γ, n〉 ⊲N ≡f ◦
τ
7−→β 〈Γ, n〉 ⊲M then we know that there is someN′ such

that

〈Γ, n〉 ⊲ N ≡f 〈Γ, n〉 ⊲ N′ (17)

〈Γ, n〉 ⊲ N′
τ
7−→β 〈Γ, n〉 ⊲ M (18)

Now, mimicking the proof strategy of the previous lemma, we can use induction
on the proof of (17) to find a matching transition〈Γ, n〉 ⊲ N

τ
7−→β 〈Γ, n〉 ⊲ M′ such

that〈Γ, n〉 ⊲ M′ ≡f 〈Γ, n〉 ⊲ M. The existence of thisM′ ensures that〈Γ, n〉 ⊲ N
τ
7−→β

◦ ≡f 〈Γ, n〉 ⊲ M.

Lemma 27 (Confluence ofβ-moves)
τ
7−→β observes the following diamond prop-

erty:

〈Γ, n〉 ⊲ N

µ

��

� τ

β
// 〈Γ, n〉 ⊲ M

〈Γ′, n′〉 ⊲ N′
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implies eitherµ is τ and〈Γ, n〉⊲M = 〈Γ′, n′〉⊲N′ or else

〈Γ, n〉 ⊲ N

µ

��

� τ

β
// 〈Γ, n〉 ⊲ M

µ

��

〈Γ′, n′〉 ⊲ N′ R 〈Γ′, n′〉 ⊲ M′

whereR is the relation
(
τ
7−→β ∪ ≡f ∪

τ
7−→β ◦ ≡f

)

PROOF. The proof proceeds by induction on the structure ofN and then by case
analysis of the different types ofµ and induction on the derivation of theβ-move.

As examples, we consider two of the more interesting cases. First we consider the
case where the relationR required to complete the confluence diamond is a case of
≡f . The second case is an instance whereR is

τ
7−→β ◦ ≡f .

(1) Consider the case where

N = l[[ if n=n then Q1 else Q2]] for somen, Q1, Q2 (19)
µ = τ andn′ = n− 1 (a confined location was killed) (20)

By case analysis and (19), we know that theβ-move is the local reduction
(b-eq) and thus

M = l[[Q1]] (21)
From (20) we know the last rule used to derive the other actionis (l-fail) and
thus, using (19), we also derive

N′ = l[[ if n=n then Q1 else Q2]]
Γ′ =Γ − k′ for some confined locationk′ whereΓ ⊢ k′ : alive

We focus on the case wherek′ = l and leave the case whenk′ , l to the
interested reader. On one side, using (21) we can produce

〈Γ, n〉 ⊲ l[[Q1]]
τ
−→ 〈Γ − l, n− 1〉 ⊲ l[[Q1]]

But on the other side we cannot produce a matchingβ-move becausel, the
location the name matchingβ-move is performed, is dead inΓ − l. However,
the two reducts differ only with respect to dead code and we can useR =≡f

and(bs-dead) to get

〈Γ − l, n− 1〉 ⊲ l[[ if n=n then Q1 else Q2]] ≡f 〈Γ − l, n− 1〉 ⊲ l[[Q1]]

(2) Consider a second case where

N = l[[go k.P]] (22)
µ = τ andn′ = n− 1 ( a confined location was dynamically killed) (23)
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and moreover

l is public (immortal) inΓ (24)
k is confined (unreliable) but still alive inΓ (25)

Using (22), (24), (25) and case analysis we know that theβ-move was derived
using(b-go-pub), and thus we obtain

M = k[[P]] (26)

From (23) we know the last rule used to derive the other actionis (l-fail) and
thus, using (22), we also obtain

N′ = l[[go k.P]]
Γ′ =Γ − k′ for some confined locationk′ whereΓ ⊢ k′ : alive

We focus on the case wherek′ = k and leave the case whenk′ , k to the
interested reader. On one side, using (26) we can produce

〈Γ, n〉 ⊲ k[[P]]
τ
−→ 〈Γ − k, n− 1〉 ⊲ k[[P]]

But on the other side we cannot produce a matchingβ-move using the same
β-rule (b-go-pub) becausek, the destination of the migration, is dead inΓ − k.
Instead, we can use an alternativeβ-move, this time using(b-ngo) to obtain

〈Γ − k, n− 1〉 ⊲ l[[go k.P]]
τ
7−→β 〈Γ − k, n− 1〉 ⊲ k[[0]]

and use the case whenR = (
τ
7−→β ◦ ≡f) to relate the two reducts, which differ

only with respect to dead code. More precisely, we use(bs-dead) once again
to get

〈Γ − k, n− 1〉 ⊲ k[[P]] ≡f 〈Γ − k, n− 1〉 ⊲ k[[0]]

Example 28 Here we illustrate the fact that not all distributed migrations are con-
fluent. Consider the configuration

〈Γ, n〉 ⊲ k[[go l.a!〈〉]]

where

• we can induce more dynamic failures, n≥ 1
• k, the source location of the migrating code, is alive but unreliable,Γ ⊢ k:locac
• l, the destination location is alive,Γ ⊢ l : alive.

Here, contrary to [3], the silent migration transition,

Γ ⊲ k[[go l.a!〈〉]]
τ
−→ Γ ⊲ l[[a!〈〉]]
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can notbe aβ-move, even if we abstract over dead code. The problem occurswhen
we consider the transition killing k, and obtaining

Γ ⊲ k[[go l.a!〈〉]]
τ
−→ 〈Γ − k, n− 1〉 ⊲ k[[go l.a!〈〉]]

Here we can never complete the diamond diagram for these two transitions, as
required in Lemma 27.

Lemma 29 (Confluence over Weak moves)

〈Γ, n〉 ⊲ N

µ̂

��

� τ

β

∗// 〈Γ, n〉 ⊲ M

〈Γ′, n′〉 ⊲ N′

implies 〈Γ, n〉 ⊲ N

µ̂

��

� τ

β

∗// 〈Γ, n〉 ⊲ M

µ̂

��

〈Γ′, n′〉 ⊲ N′ � τ

β

∗// ◦ ≡f 〈Γ
′, n′〉 ⊲ M′

where the length of the derivation of〈Γ, n〉 ⊲N
µ̂

=⇒ 〈Γ′, n′〉 ⊲N′ is of theat mostthat

of 〈Γ, n〉 ⊲ M
µ̂

=⇒ 〈Γ′, n′〉 ⊲ M′.

PROOF. The proof is by induction on the length of derivation, using Lemma 27,
Corollary 26 and Lemma 25.

Proposition 30 Suppose〈Γ, n〉 ⊲ N
τ
7−→

∗

β 〈Γ, n〉 ⊲ M. Then〈Γ, n〉 ⊲ N≈〈Γ, n〉 ⊲ M.

PROOF. We defineR as

R =


〈Γ, n〉⊲N , 〈Γ,m〉⊲M |〈Γ, n〉⊲N

τ
7−→β 〈Γ,m〉⊲M

〈Γ, n〉⊲N , 〈Γ,m〉⊲M |〈Γ, n〉⊲N ≡f 〈Γ,m〉⊲M



Using Lemma 27 and Lemma 25 it is easy to show thatR a bisimulation. Then by
transitivity of≈ we obtain the required result.

Definition 31 (Bisimulation up-to β-moves) A relationR over configurations is
called abisimulation up-toβ-moves, if whenever〈ΓN, n〉⊲N R 〈ΓM ,m〉⊲M then

• 〈ΓN, n〉 ⊲ N
µ
−→ 〈Γ′N, n

′〉 ⊲ N′ implies〈ΓM ,m〉 ⊲ M
µ̂

=⇒ 〈Γ′M ,m
′〉 ⊲ M′ such that

〈Γ′N, n
′〉 ⊲ N′

τ
7−→

∗

β ◦ ≡f ◦ R ◦ ≈ 〈Γ
′
M ,m

′〉 ⊲ M′

• 〈ΓM ,m〉 ⊲ M
µ
−→ 〈Γ′M ,m

′〉 ⊲ M′ implies 〈Γ, n〉 ⊲ N
µ̂

=⇒ 〈Γ′N, n
′〉 ⊲ N′ such that

〈Γ′M ,m
′〉 ⊲ M′

τ
7−→

∗

β ◦ ≡f ◦ R ◦ ≈ 〈Γ
′
N, n

′〉 ⊲ N′

We use≈β to denote the largest such relation.

35



Definition 31 provides us with a powerful method for approximating bisimulations.

In a bisimulation up-to-β-moves an action〈ΓN, n〉 ⊲ N
µ
−→ 〈Γ′N, n

′〉 ⊲ N′ can be

matched by a weak matching action〈ΓM ,m〉 ⊲ M
µ̂

=⇒ 〈Γ′M ,m
′〉 ⊲ M′ such that up-to

β-derivatives of〈Γ′N, n
′〉 ⊲ N′ modulo structural equivalence on the one side, and

up-to bisimilarity on the other side, the pairs〈Γ′N, n
′〉 ⊲ N′ and〈Γ′M ,m

′〉 ⊲ M′ are
once more related. Intuitively then, in such a relation a configuration can represent
all the configurations to which it can evolve usingβ-moves. in order to justify the
use of these approximate bisimulations we need the following result:

Lemma 32 Suppose〈Γ1, n1〉⊲M1 ≈β 〈Γ2, n2〉⊲M2 and〈Γ1, n1〉⊲M1
µ̂

=⇒ 〈Γ′1, n
′
1〉⊲M

′
1.

Then〈Γ2, n2〉 ⊲ M2
µ̂

=⇒ 〈Γ′2, n
′
2〉 ⊲ M′2, where〈Γ′1, n

′
1〉 ⊲ M′1 ≈ ◦ ≈β ◦ ≈ 〈Γ

′
2, n
′
2〉 ⊲ M′2.

PROOF. We proceed by induction on the length of〈Γ1, n1〉 ⊲M1
µ̂

=⇒ 〈Γ′1, n
′
1〉 ⊲M′1.

The base case, when the length is zero andΓ1 ⊲ M1 = Γ
′
1 ⊲ M′1 is trivial. There are

two inductive cases. Here we focus on one case where

〈Γ1, n1〉 ⊲ M1
τ
−→ 〈Γ1

1, n
1
1〉 ⊲ M1

1

µ̂

=⇒ 〈Γ′1, n
′
1〉 ⊲ M′1 (27)

and leave the other (similar) case for the interested reader.

By the definition of≈β, Definition 31, there exists〈Γ1
2, n

1
2〉 ⊲ M1

2 such that〈Γ2, n2〉 ⊲

M2

τ

−→∗ 〈Γ1
2, n

1
2〉 ⊲ M1

2 and

〈Γ1
1, n

1
1〉 ⊲ M1

1

τ
7−→

∗

β≡ ◦ ≈β ◦ ≈ 〈Γ
1
2, n

1
2〉 ⊲ M1

2 (28)

By (27) and the expansion of (28) we have the following diagram to complete, for
someΓ1

1, Γ
2
2, M2

1, M2
2.

〈Γ1
1, n

1
1〉 ⊲ M1

1

µ̂

��

� τ

β

∗// ◦ ≡f 〈Γ
1
1, n

1
1〉 ⊲ M2

1
≈β 〈Γ2

2, n
2
2〉 ⊲ M2

2 ≈ 〈Γ
1
2, n

1
2〉 ⊲ M1

2

〈Γ′1, n
′
1〉 ⊲ M′1

We immediately fill the first part of the diagram, using Lemma 29 and Lemma 25,
to get the following:

〈Γ1
1, n

1
1〉 ⊲ M1

1

µ̂

��

� τ

β

∗// ◦ ≡f 〈Γ
1
1, n

1
1〉 ⊲ M2

1

µ̂

��

≈β 〈Γ2
2, n

2
2〉 ⊲ M2

2 ≈ 〈Γ
1
2, n

1
2〉 ⊲ M1

2

〈Γ′1, n
′
1〉 ⊲ M′1

� τ

β

∗// ◦ ≡f 〈Γ
1
1, n

1
1〉 ⊲ M3

1
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By our inductive hypothesis we fill in the third part whereR =≈ ◦ ≈β ◦ ≈

〈Γ1
1, n

1
1〉 ⊲ M1

1

µ̂

��

� τ

β

∗// ◦ ≡f 〈Γ
1
1, n

1
1〉 ⊲ M2

1

µ̂

��

≈β 〈Γ2
2, n

2
2〉 ⊲ M2

2

µ̂

��

≈ 〈Γ1
2, n

1
2〉 ⊲ M1

2

〈Γ′1, n
′
1〉 ⊲ M′1

� τ

β

∗// ◦ ≡f 〈Γ
1
1, n

1
1〉 ⊲ M3

1 R 〈Γ3
2, n

3
2〉 ⊲ M3

2

And finally we complete the diagram by the definition of≈

〈Γ1
1, n

1
1〉 ⊲ M1

1

µ̂

��

� τ

β

∗// ◦ ≡f 〈Γ
1
1, n

1
1〉 ⊲ M2

1

µ̂

��

≈β 〈Γ2
2, n

2
2〉 ⊲ M2

2

µ̂

��

≈ 〈Γ1
2, n

1
2〉 ⊲ M1

2

µ̂

��

〈Γ′1, n
′
1〉 ⊲ M′1

� τ

β

∗// ◦ ≡f 〈Γ
1
1, n

1
1〉 ⊲ M3

1 R 〈Γ3
2, n

3
2〉 ⊲ M3

2 ≈ 〈Γ′2, n
′
2〉 ⊲ M′2

The required result follows from the above completed diagram and the fact that
τ
7−→

∗

β ⊆ ≈, from Proposition 30, and≡f ⊆∼ ⊆ ≈, from Lemma 25.

Proposition 33 (Soundness of bisimulations up-to-β-moves)

〈Γ, n〉 ⊲ N ≈β 〈Γ
′,m〉 ⊲ M implies 〈Γ, n〉 ⊲ N ≈ 〈Γ′,m〉 ⊲ M

PROOF. We prove the proposition by defining the relationR as

R =

{
〈Γ, n〉 ⊲ N , 〈Γ′,m〉 ⊲ M 〈Γ, n〉 ⊲ N ≈ ◦ ≈β ◦ ≈ 〈Γ′,m〉 ⊲ M

}

and showing that it is a bisimulation. The result then follows, since≈⊆ R.

Assume〈Γ1, n1〉⊲M1
µ
−→ 〈Γ′1, n

′
1〉⊲M

′
1. By our definition ofR, there exists〈Γ1

1, n
1
1〉⊲

M1
1 and〈Γ′2, n

′
2〉 ⊲ M′2 such that

〈Γ1, n〉 ⊲ M1≈〈Γ
1
1, n

1
1〉 ⊲ M1

1 (29)

〈Γ1
1, n

1
1〉 ⊲ M1

1 ≈β 〈Γ
′
2, n
′
2〉 ⊲ M′2 (30)

〈Γ′2, n
′
2〉 ⊲ M′2 ≈ 〈Γ2, n2〉 ⊲ M2 (31)

From (29) and the definition of bisimulation we know

〈Γ1
1, n

1
1〉 ⊲ M1

1

µ̂

=⇒ 〈Γ2
1, n

2
1〉 ⊲ M2

1 such that〈Γ′1, n
′
1〉 ⊲ M′1 ≈ 〈Γ

2
1, n

2
1〉 ⊲ M2

1 (32)

By Lemma 32, (32), and (30) we know
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〈Γ′2, n
′
2〉 ⊲ M′2

µ̂

=⇒ 〈Γ1
2, n

1
2〉 ⊲ M1

2 such that

〈Γ2
1, n

2
1〉 ⊲ M2

1 ≈ ◦ ≈β ◦ ≈ 〈Γ
1
2, n

1
2〉 ⊲ M1

2 (33)

and by (33) and (31) we also conclude

〈Γ2, n2〉 ⊲ M2
µ̂

=⇒ 〈Γ2
2, n

2
2〉 ⊲ M2

2 such that〈Γ1
2, n

1
2〉 ⊲ M1

2 ≈ 〈Γ
2
2, n

2
2〉 ⊲ M2

2 (34)

which is our matching move, where〈Γ′1, n
′
1〉⊲M

′
1 R 〈Γ

2
2, n

2
2〉⊲M

2
2 by (32), (33), (34)

and the transitivity of≈.

As a result of Theorem 23, in order to prove thatserver2 is dynamically 1-fault
tolerant, we can use Definition 21 and give asinglewitness bisimulation relation
satisfying

〈Γe, 0〉 ⊲ server2 ≈ 〈Γe, 1〉 ⊲ server2,

as opposed to three separate relations otherwise required by Definition 16. But now,
because of Proposition 33 we can go one step further and limitourselves to a single
witness bisimulation up-toβ-moves. This approach is taken in the following, final,
example.

Example 34 (Proving Dynamic Fault Tolerance)Consider the relationR over
extended configurations, defined by

R
def
= {〈Γ ⊲ server2, Γ ⊲ server2〉} ∪


⋃

m,m′∈N

R′(m,m′)



R is the union of all the relationsR′(m,m′) where we substitute the variables x, y
in R′(x, y) by names m,m′ ∈ N. For clarity, the presentation ofR′(x, y):

• omits type information associated with scoped namesdataandsync
• uses the shorthand̃n for data, syncandΓ for Γe defined earlier;Γ is also used

as an abbreviation for〈Γ, n〉 whenever n= 0
• uses the following process definitions from Example 20:

S(y)⇐ sync?(x).y!〈x〉
Ri⇐ ki[[data?(x, y, z).go z .y!〈 f (x)〉]]

The mapping of the intermediary states inR′(x, y) is based on the separation of
the sub-systems making upserver2 (and its derivatives) into two classes, based on
their dependencies on the unreliable locations k1, k2 and k3:

Independent: sub-systems whose behaviour is not affected by the state of ki for i =
1..3. An example of such code is the located process l[[sync?(x).y!〈x〉]] , denoted
as l[[S(y)]] above.
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Dependent: sub-systems whose behaviour depends on the state of ki for i = 1..3.
Examples of such sub-systems are
• located processes that intend togo toki, such as the queries sent to the database

replica go ki .d!〈x, y, l〉.
• processes thatreside atki, such as the database replicas themselves, denoted

asRi above and its derivative ki[[go l .y!〈 f (x)〉]] .
• located processes that havemigrated fromki, such as replies from these repli-

cas, l[[y!〈 f (x)〉]] .

In server2 there are sub-systems dependent on k1 and k2 but not on k3. To relate sub-
systems dependent on unreliable locations,R′(x, y) uses three asymmetric relations
ranging over systems:

• RId
i (x, y) is a (quasi) identity relation; when we define the actual relation we

explain why it is not exactly the identity.
• R0

i (x, y) maps left systems depending on ki to the null process at ki on the right,
ki[[0]] . We use this mapping when ki is dead, exploiting the structural equivalence
rule (bs-dead).

• R≥i (x, y), maps left systems depending on ki to the null process at l on the right,
l[[0]] . We use this mapping when in order to reach a bisimilar state,the replica at
ki must have been successfully queried and the answer must havebeen success-
fully returned and consumed by l[[S(y)]] .

In R′(x, y), the dependent sub-systems are related with these three sub-relations de-
pending on two factors: (1) the state of the respective ki they depend on (2) whether
the global system is in a position to output an answer back to the observer. More
specifically:

(1) As long as ki is alive in the right configuration, then the sub-systems depending
on ki is related to its corresponding sub-system in the left hand configuration
usingRId

i (x, y) for i = 1..2.
(2) When ki for i = 1..2 dies, then we refer to the second criteria, that is whether

the global system is ready or not to return an answer back to the observer,
derived from the fact that l[[S(y)]] has not yet reduced:
(a) If the global system isnot ready to output an answer back to the observer,

then we relate the sub-systems depending on ki usingR0
1(x, y). We note

that here we make use ofβ-moves such as those using(b-ngo) and struc-
tural rules such as(bs-dead) from Table 11 and Table 12 respectively. To
map dead code and code migrating to dead locations to ki[[0]] . The other
sub-system depending on the other unreliable location (kj for j , i) is
still related usingRId

i (x, y).
(b) If the global system is ready to output an answer back to the observer

(l[[y!〈 f (x)〉]] ), or has already done so, then we relate the sub-systems de-
pending on the dead location ki usingR0

1(x, y). The difference from the
previous case lies in the mapping used for the sub-systems depending on
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kj, the other unreliable location. Here we have two further sub-cases:
(i) If k i diedbeforeservicing the query, that is before returning an an-

swersync!〈 f (x)〉 back to l, then the only way we can output an an-
swer back to the observer is through the complete servicing of the
other replica at kj. Thus we map the sub-system depending on kj in
the left configuration to the corresponding sub-system on the right
using usingR≥2 (x, y).

(ii) If k i diedafterservicing the query, we simply match the sub-systems
depending on the other unreliable location kj using the identity re-
lationRId

i (x, y) as before.

For clarity, the presentation ofR′(x, y) is partitioned into three groups of clauses,
each containing 4 clauses each.

• The first group describes the cases where the configurations are not ready to
output back an answer to the observer (case 2(a)).

• The second group describes the cases where the configurations are ready to out-
put back an answer to the observer (case 2(b)).

• The third group describes the cases where the configurationshave already out-
putted back an answer to the observer.

We note that, in contrast to Example 20, the three sub-relations below abstract
away from mapping the sub-system reduct

Qi(x, y) ⇐ l[[go ki .data!〈x, y, l〉]]

Since we are only required to give a bisimulation up-toβ, the β-rule (b-go-pub)
allows us to automatically abstract away from such an intermediary process in
R′(x, y), since the migration source location l is public, thus immortal. Similarly,
the two sub-relationsR0

i (x, y) andR≥i (x, y) abstract away from mapping tuples like

〈ki[[go l .y!〈 f (x)〉]] , ki[[0]]〉 and〈ki[[go l .y!〈 f (x)〉]] , l[[0]]〉

respectively. Since the left hand configuration executes ina (dynamic) failure-free
setting, we can apply theβ-rule (b-go-ff) to abstract away over the intermediary
process ki[[go l .y!〈 f (x)〉]] . For the same reason,RId

i (x, y) is not exactly the identity
relation; theβ-rule (b-go-ff) allows us to abstract away from ki[[go l .y!〈 f (x)〉]] and
instead we have the pair

〈l[[y!〈 f (x)〉]] , ki [[go l .y!〈 f (x)〉]]〉

We note however that for cases when the potential dynamic failure is also0 in the
right configuration (this happens after we induce one failure), then we can perform
the same abstraction on the right hand side, omit the above pair and obtain an
identity relation. More specifically, inR′(x, y), this happens for the2nd, 3rd, 4th, 8th

and12th clauses.
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R′(x, y)
def
=



Γ ⊲ (νñ)


l[[S(y)]]

|M1 |M2

 , 〈Γ, 1〉 ⊲ (νñ)


l[[S(y)]]

|N1 |N2


〈M1,N1〉 ∈ R

Id
1 (x, s)

〈M2,N2〉 ∈ R
Id
2 (x, s)

Γ ⊲ (νñ)


l[[S(y)]]

|M1 |M2

 , Γ−k1 ⊲ (νñ)


l[[S(y)]]

|N1 |N2


〈M1,N1〉 ∈ R

≥
1 (x, s)

〈M2,N2〉 ∈ R
Id
2 (x, s)

Γ ⊲ (νñ)


l[[S(y)]]

|M1 |M2

 , Γ−k2 ⊲ (νñ)


l[[S(y)]]

|N1 |N2


〈M1,N1〉 ∈ R

Id
1 (x, s)

〈M2,N2〉 ∈ R
≥
2 (x, s)

Γ ⊲ (νñ)


l[[S(y)]]

|M1 |M2

 , Γ−k3 ⊲ (νñ)


l[[S(y)]]

|N1 |N2


〈M1,N1〉 ∈ R

Id
1 (x, s)

〈M2,N2〉 ∈ R
Id
2 (x, s)

Γ ⊲ (νñ)


l[[y!〈 f (x)〉]]

|M1 |M2

 , 〈Γ, 1〉 ⊲ (νñ)


l[[y!〈 f (x)〉]]

|N1 |N2


〈M1,N1〉 ∈ R

Id
1 (x, s)

〈M2,N2〉 ∈ R
Id
2 (x, s)

Γ ⊲ (νñ)


l[[y!〈 f (x)〉]]

|M1 |M2

 , Γ−k1 ⊲ (νñ)


l[[y!〈 f (x)〉]]

|N1 |N2


〈M1,N1〉 ∈ R

0
1(x, s)

〈M2,N2〉 ∈ R
≥
2 (x, s)

Γ ⊲ (νñ)


l[[y!〈 f (x)〉]]

|M1 |M2

 , Γ−k2 ⊲ (νñ)


l[[y!〈 f (x)〉]]

|N1 |N2


〈M1,N1〉 ∈ R

≥
1 (x, s)

〈M2,N2〉 ∈ R
0
2(x, s)

Γ ⊲ (νñ)


l[[y!〈 f (x)〉]]

|M1 |M2

 , Γ−k3 ⊲ (νñ)


l[[y!〈 f (x)〉]]

|N1 |N2


〈M1,N1〉 ∈ R

Id
1 (x, s)

〈M2,N2〉 ∈ R
Id
2 (x, s)

Γ ⊲ (νñ)
(

M1 |M2

)
, 〈Γ, 1〉 ⊲ (νñ)

(
N1 |N2

) 〈M1,N1〉 ∈ R
Id
1 (x, s)

〈M2,N2〉 ∈ R
Id
2 (x, s)

Γ ⊲ (νñ)
(

M1 |M2

)
, Γ−k1 ⊲ (νñ)

(
N1 |N2

) 〈M1,N1〉 ∈ R
0
1(x, s)

〈M2,N2〉 ∈ R
≥
2 (x, s)

Γ ⊲ (νñ)
(

M1 |M2

)
, Γ−k2 ⊲ (νñ)

(
N1 |N2

) 〈M1,N1〉 ∈ R
≥
1 (x, s)

〈M2,N2〉 ∈ R
0
2(x, s)

Γ ⊲ (νñ)
(

M1 |M2

)
, Γ−k3 ⊲ (νñ)

(
N1 |N2

) 〈M1,N1〉 ∈ R
Id
1 (x, s)

〈M2,N2〉 ∈ R
Id
2 (x, s)


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R0
i (x, y)

def
=



ki[[d!〈x, y, l〉]] |Ri , ki[[0]]

l[[y!〈 f (x)〉]] , ki[[0]]

l[[0]] , ki[[0]]


R≥i (x, y)

def
=



ki[[d!〈x, y, l〉]] |Ri , l[[0]]

l[[y!〈 f (x)〉]] , l[[0]]

l[[0]] , l[[0]]



RId
i (x, y)

def
=



ki[[d!〈x, y, l〉]] |Ri , ki[[d!〈x, y, l〉]] |Ri

l[[y!〈 f (x)〉]] , ki[[go l .y!〈 f (x)〉]]

l[[y!〈 f (x)〉]] , l[[y!〈 f (x)〉]]

l[[0]] , l[[0]]



To elucidate the above presentation, we consider a number ofpossible transitions
in R′(x, y) as an example. Assume we are one of the states described by thefirst
clause inR′(x, y)

Γ ⊲ (νñ)


l[[S(y)]]

|M1 |M2

 , 〈Γ, 1〉 ⊲ (νñ)


l[[S(y)]]

|N1 |N2



where

〈M1,N1〉 ∈ R
Id
1 (x, s)

〈M2,N2〉 ∈ R
Id
2 (x, s)

(35)

If in either configuration (left or right), we accept an answer from any replica and
l[[S(y)]] goes to l[[y!〈 f (x)〉]] , then we can match this with an identical transition and
go to a state described by the4th clause

Γ ⊲ (νñ)


l[[y!〈 f (x)〉]]

|M′1 |M
′
2

 , 〈Γ, 1〉 ⊲ (νñ)


l[[y!〈 f (x)〉]]

|N′1 |N
′
2



where

〈M′1,N
′
1〉 ∈ R

Id
1 (x, s)

〈M′2,N
′
2〉 ∈ R

Id
2 (x, s)

If on the other hand, from(35) the right configuration performs aτ-move and in-
jects a dynamic fault at k1 (the case for k2 is dual), we transition to a state described
by the2nd clause

Γ ⊲ (νñ)


l[[S(y)]]

|M1 |M2

 , Γ−k1 ⊲ (νñ)


l[[S(y)]]

|N1 |N2



where

〈M1,N1〉 ∈ R
0
1(x, s)

〈M2,N2〉 ∈ R
Id
2 (x, s)

(36)

At this point, any actions by M2 or N2 are mapped by the identical action on the
opposite side, while still remaining in a state described bythe 2nd clause of the
relation. If however in(36), M1 is involved in an action, then we have two cases:
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• If the action involving M1 causes l[[S(y)]] to reduce to l[[y!〈 f (x)〉]] while reducing
to M′1 itself, then we transition to a state described by the5th clause

Γ ⊲ (νñ)


l[[y!〈 f (x)〉]]

|M′1 |M2

 , Γ−k1 ⊲ (νñ)


l[[y!〈 f (x)〉]]

|N1 |N′2



where

〈M′1,N1〉 ∈ R
0
1(x, s)

〈M2,N′2〉 ∈ R
≥
2 (x, s)

where on the right hand side, N2 has compensate for the inactive N1 and match
the move by weakly reducing to N′2, interacting with its respective l[[S(y)]] so that
it reduces it to l[[y!〈 f (x)〉]] . We highlight the fact that this internal interaction
cannot be done by N1 since k1 is dead.

• Otherwise, if l[[S(y)]] is not affected, we match the silent move from M1 with the
empty move on the right hand side.

6 Conclusions and Related Work

This paper is a revised and extended version of the conference presentation [5]. We
adopted a subset of [4] and developed a theory for system fault tolerance in the
presence of fail-stop node failure. We formalised two definitions for fault tolerance
based on the well studied concept of observational equivalence. The first defini-
tion assumes a static network state whereby the faults have already been induced;
the second definition assumes that faults may be induced dynamically at any stage
of the computation. Subsequently, we developed sound prooftechniques with re-
spect to these definitions which enable us to give tractable proofs to show the fault
tolerance of systems; we gave two example proofs using theseproof techniques.

Future Work The immediate next step is to apply the theory to a wider spectrum
of examples, namely systems using replicas with state and system employing fault
tolerance techniques such as lazy replication: we postulate that the existing the-
ory should suffice. Other forms of fault contexts that embody different assumptions
about failures, such as fault contexts with dependencies between faults, could be
explored. Another avenue worth considering is extending the theory to deal with
link failure and the interplay between node and link failure[4]. In the long run, we
plan to develop of a compositional theory of fault tolerance, enabling the construc-
tion of fault tolerant systems from smaller component sub-systems. For all these
cases, this work should provide a good starting point.

Related Work To the best of our knowledge, Prasad’s thesis [14] is the closest
work to ours, addressing fault tolerance for process calculi. Even though similar
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concepts such as redundancy (called ”duplication”) and failure-free execution are
identified, the setting and development of Prasad differs considerably form ours. In
essence, three new operators (”displace”, ”audit” and ”checkpoint”) are introduced
in a variant of CCS; equational laws for terms using these operators are then devel-
oped so that algebraic manipulation can be used to show that terms in this calculus
are, in some sense, fault tolerant with respect to their specification.

The use of confluence of certainτ-steps as a useful technique for the management
of large bisimulations is not new. It has been already studied extensively in [13,7].
See [6] for particularly good examples of where they have significantly decreased
the size of witness bisimulations. Elsewhere, Nestmannet al. [12] have explored
various other ways of using bounds in the environment to govern permissible fail-
ures.
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