A Theory for Observational Fault Tolerance

Adrian Francalanz3 Matthew Hennessy

3 mperial College, London SW7 2BZ, England
bUniversity of Sussex, Brighton BN1 9RH, England.

Key words:
fault tolerance, distributed calculi, observational eglénces, labelled transition systems,
bisimulations, up-to techniques

1 Introduction

One reason for the study of programs in the presendaulfs, i.e. defects at the
lowest level of abstractions [2], is to be able to construcreependablesys-
tems, meaning systems exhibiting a high probabilithetiavingaccording to their
specification[18]. System dependability is often expressed througlbatts like
maintainability, availability, safety an@liability, the latter of which is defined as a
measure of theontinuous deliverpf correct behaviour[18]. There are a number
of approaches for achieving system dependability in theesree of faults, ranging
from fault removal, fault prevention arfdult tolerance

The fault tolerant approach to system dependability cosigarious techniques
that employredundancyto prevent faults from generatirfgilure, i.e. abnormal
behaviour caused by faults [2]. Two forms of redundancysg&ce redundancy
(replication), i.e. using several copies of the same system componerdginae
redundancyi.e. performing the same chunk of computation more thare oRe-
dundancy can also be managed in various ways: certain fdalant techniques
are based ofault detectionwhich subsequently triggéault recovery other tech-
niques do not use fault detection and still attain fault nregkthese, however, tend
to be more expensive in terms of redundancy usage (time deshay). If enough
redundancy is used and it is managed appropriately, thiseeatofault masking
where the specified behaviour is preserved without notleeglliches.

Fault tolerance is of particular relevance in distribut@mnputing. Distribution
yields a natural notion gbartial failure, whereby faults fiect asubsebf the com-
putation. Partial failure, in turn, gives scope for introthg redundancy agplica-
tion, distributed across independently failing entities sustoaations. In general,

Preprint submitted to Elsevier Science 12 March 2007



the higher the replication, the greater the potential fattflerance. Nevertheless,
fault tolerance also depends on how replicas are managectl@ssification, due to
[18], identifies three classes, namalstive replication(all replicas are invoked for
every operation)passive replicatior{operations are invoked on primary replicas
and secondary replicas are updated in batches at checkpa@intlazy replication

(a hybrid of the previous two approaches, exploiting theasgion between write
and read operations).

In this paper we address fault tolerance in a distributetthggfocusing on simple
examples usingtatelesqread-only) replicas which are invoked only once. This
simplification obviates the need for additional machinergeéquence multiple re-
guests (in the case of active replication) or synchronigestate of replicas (in
the case of passive replication); as a result managemdntitees based on lazy
replication simply collapse into passive replication gaty. Nevertheless, these
simple examples still capture the essence of the concepthaese to study.We
code these examples in a simplified version af [D0] with failing locations [4],

a distributed version of the standaretalculus [16], where the locations that host
processes model closely physical network nodes.

Example 1 (Fault Tolerant Servers) Consider the systenmserver;, three server
implementations accepting client requests on channel lidg two arguments, x
being the value to process and y being the reply channel ochatiie answer
is returned. Requests are forwarded to internal databadespted by the scoped
channel data, distributed and replicated across the aawlilocations k, k, and
ks. A database looks up the mapping of the value x using somecifisd func-
tion f(-) and returns the answer,(X), back on port y. When multiple (database)
replicas are used, as imerver, and servers, requests are sent to all replicas in
an arbitrary fashion, without the use of failure detectiand multiple answers are
synchronised at | on the scoped channel sync, returning tsteainswer received
ony.

I[req?(x, y).go ky.data(x,y, )]
server; < (vdata)

| k[ data?(x,y, 2).go zy!{ f(X))]

go ky.data(x, syncl)
I req?(x,y).(vsyn9| | go k..data(x, syng|)
server, < (vdata | syn@(x).y!{x)
| ki[date?(x, y, 2).go zy!( f(x))]
| ko[ data?(x, Yy, 2).go zy!{(f(X))]




go ky.datd(x, syngl)

o ky.datd (x, sync|
|{[rece y).(vsyng | | 9 & SNED
| go ks.datd(x, syngl)

server; < (vdata | | syn@(x).y!{x)
| ki[data?(x,y, 2).go zy!{f(X))]
| ko[ data?(x,y, 2).go zy!{(f(X))]
| ke[ date?(x, y, 2).go zy!( f(x))]

The theory developed in [4] enables usligerentiatebetween these systems, based
on the diferent behaviour observed when composed with systems such as

client < I[reqi{v,ret)]

in a setting where locations may fail; in the definitionatient, ret is the name of
a reply channel, andis some value appropriate to the unspecified funcfiGs).
Here we go one step further, allowing ustieantify, in some sense, theftkrence
between these systems. Intuitively, if locatidas k, andks can fail in fail-stop
fashion[17] and observations are limited to locatianly, thenserver, seems to
be morefault tolerantthanserver;. In fact observers limited tb such aslient,
cannot observe changes in behaviousénver, whenat most llocation fromkg,
k, andks fails. Similarly, servers is morefault tolerantthanserver; andserver,
because the composite system

serverz | client
preserves its behaviour latip to 2faults occurring at any df;, k, andks.

In this paper we give a formal definition of when a system isnuee to be fault
tolerant up ton-faults, which coincides with this intuition. As in [4] we eé to
consider system#, running on a network, which we will represent Bs M,

whereI" is some representation of the current state of the netwdrknTwve will

say thatM is fault-tolerant up tan faults, when running on netwolk if

'>M=F"T>M] (2)

whereF"[ ] is some context which induces at mastaults onI’, and= is some
behavioural equivalence between system descriptions.

A key aspect of this behavioural equivalence is the impseparation betweene-
liable locations, which are assumed not to fail, amdeliablelocations, which may
fail. In the above examplé,is reliable whilek;, k, andk; are assumed unreliable,
thus subject to failure. Furthermore, it is essential theseovers not have access to
these unreliable locations, at any time during a computalibe general intuition



is that we shield users from unreliable resources, therebyreng that no user code
fails. But another important reason, which is more speatfithts work, is that if
observers are allowed to access unreliable locations theproposed (1) above
would no longer capture the intuitive notion of fault-t@ace up ton faults. For
instance, we would no longer have

I > server, = F[I"» server,]

An observer with access to any of the locatidqsk,, ks would be able to detect
possible failures ifFX[I"> server,], not present i > server,, and thus discriminate
between the two configurations.

We enforce this separation between reliable, observabbditimms and unreliable,
unobservable locations using a simple type system in whatihhle locations are
represented gsublic values, and unreliable locations are representesbagned
In particular the typing system ensures that confined valhes is the unreliable
locations, never become available at public locations.

In the second part of the paper we develop co-inductive grexdfniques for prov-
ing system fault tolerance, that is establishing iderttitiethe form (1) above; this
can be seen as a continuation of the work in [4]. One novelchsgehe current
paper is the use @xtended configurationshich have the form

(T,ny> M (2)

Here, the network is bounded by the number denoting the maximum number
of faults thatl" can still incur at unreliable locations. This extra network informa-
tion allows us to define transitions which model tligeet of the fault contexts on
the network state in (1). More importantly however, it givssmore control over
our proofs. For instance, it allows us to express how mangliairie locations may
still fail, without committing ourselves to stating preelg which of these locations
will fail, as is the case with fault contexts in (1). In additi when we reach an ex-
tended configuration where= 0 in (2) above, we can treat unreliable locations as
immortal (reliable) since the extended configuration fa&lnound prohibits further
unreliable locations from failing. All this turns out to elliate some of the burden
of constructing our proofs for fault tolerance.

The rest of the paper is organised as follows. Section 2 filyrdafines the lan-
guage we use, KlLoc, together with a reduction semantics. It also contalmes t
type system for enforcing the separation between publiccamfined locations.
With this reduction semantics we can adapt the standardmoftreduction barbed
congruence[11,8], to DrLoc. But because of our type system, we are assured that
the resulting behavioural equivalereeeflects the fact that observations can only
be made at public locations. In Section 3 we give our forméhd®ns of fault-
tolerance, which relies on considering public locationge®mble and confined
locations as unreliable. More specifically, we give two i@rs of (1) above, called



Table 1.Syntax of typed BF

Types
U,W = ch(U) | P | loc, (stateless types) Vi=p |c (visibility)
P = chy(P) |loc, (public types)
T,R == ch(U) |P | loc‘S, (stateful types) Su=a |d (liveness status)
Processes
P,Q = ulV).P (output) |u?(X).P  (input)
| if v=uthenP else Q (matching) | = u?(X).P (replicated input)
| (vn:T)P (name declaration) go u.P (migration)
| O (inertion) | PIQ (fork)
| ping u.Pelse Q (status testing)
Systems
M, N, O ::= I[P] (located process) | N|M (parallel)

| (vn:T)N (hiding)

staticand dynamicfault tolerance, motivating the flierence between the two via
examples. Proof techniques for establishing fault toleeeere given in Section 4
where we give a complete co-inductive characterisatior afsing labelled ac-
tions. In Section 5 we refine these proof techniques for theerdemanding fault
tolerant definitiondynamic fault toleranceusing co-inductive definitions over ex-
tended configurations. We also develop useful up-to tectasidor presenting wit-
ness bisimulations for extended configurations. Sectioorelades by outlining
the main contributions of the paper and discussing futuderalated work.

2 The Language

We assume a set ofriables Vars, ranged over by,y,z ... and a separate set
of names Nawmes, ranged over by, m,. .., which is divided into locations, dcs,
ranged over by, k, ... and channels, @ns, ranged over by, b, c, .. .. Finally we
useu,V,... to range over the set aflentifiers consisting of either variables and
names.

The syntax of our language,nDoc, is a variation of @ [10] and is given in Ta-
ble 1. The main syntactic category is thatsystemsranged over by, N: these



are essentially a collection dbcated processe®r agents composed in parallel
where location and channel names may be scoped to a subgetm$alhe syntax

for processes?, Q, is an extension of that in/D There is input and output on chan-
nels; in the latteV represents a tuple of identifiers, while in the fornxeis tuple

of variables, to be interpreted as a pattern. There are hésstindard constructs
for parallel composition, replicated input, local dectaras, a test for equality be-
tween identifiers, migration and a zero process. The onlytiaddo the original

Dr is ping k.P else Q, which tests for théiveness statusf k in the style of [1,15]

and branches tB if k is alive andQ otherwise. For these terms we assume the stan-
dard notions ofree andboundoccurrences of both names and variables, together
with the associated concepts@aionversion andubstitutionWe also assume that
systems arelosed that is they have no free variable occurrences. Note thaf al
the examples discussed in Section 1 are valid system laveste DrLoc. But it

is worth emphasising that when we write definitions of therfor

Sys< S

the identifiersysis not part of our language; such definitions merely intreduc
convenient abbreviations for system level terms; in thevalsysis simply an ab-
breviation for the terns.

Types: The original Dr [10] comes endowed with a rich type system used to en-
force access control policies. This is ignored in the curpaper as it addresses
issues which are orthogonal to our concerns. Instead, daie&g in the Introduc-
tion, we use a simple type system for enforcing visibilitystraints on values. The
two main type categories, channels and locations, are d&swbby visibility anno-
tations, givingchv(ﬁ> andlocy, whereV may either be, public, orc, confined. In
Table 1 these are callefatelessypes, and are ranged over by

The essential constraint enforced by the typing systemaisgihiblic channels, that
is channels whose visibility is, can only be used to transnpitirely publicvalues;
we UseP to range over the types of these values. The type system rilsces a
secondary constraint, namely that all confined locatioadrae and their number
is fixed throughout execution. Stated otherwise, it prakibcoped confined loca-
tions and the creation of fresh confined locations. The re&sothe primary con-
straint is to prohibit observers, which are restricted tblguchannelgocations,
from gaining access to confined charjfloglation names through interaction. The
reason for the secondary restriction is that our definitafrfault tolerance depend
on complete knowledge of the unreliable (confined) locatianthe beginning of
the analysis; we revisit this point later in Section 3.

However there is a complication. As explained in [4], theugtbn semantics is
considerably simplified if we also allow types to record tiveness statusf a
location, whether it is alive or dead. Thus we introduce twdHer annotationsg



andd, which can be added to the locations types, giving the fdroe$ andloc?.
This gives a new class of types, th@tefultypes, ranged over by, R. It should
be emphasised however that although these stateful typessad in the typing
system, typeability does not depend in any way on thieeaess statuannotations
used on the location types.

A type environment is a partial function from names tstatefultypes whose
domain is finite. However when type-checking we wish to igritieliveness status
annotation on types. Consequently we define judgement&dbtim

'+n:U 3)

whereU is a stateless type. The returned typie obtained simply by dropping the
anyliveness statuannotation i"(n).

Example 2 (Public Types) We can have the type assignments
'+ a: chy(ch,(ch,())) andl r a: ch.(ch,(ch,()))

We can assign channel names to public channel types that goioate public
values (first assignment) or to confined channel types thanwonicate arbitrary
values (second assignment). However, we cannot have

I'  a: chy(ch(chy()))

because the object type of a public channel type must alsopubléc type. Simi-
larly, we cannot have the type assignment

I' + a: ch(chy(ch.()))

because, even though public values can be communicatednfimex channels,
the public channel communicated does not constitutal@ public type since its
object type is a confined channel.

Our typing judgements take the form
I'tN

and are defined by the rules in Table 2, which use an extendeddbtype envi-
ronment.X; these, in addition to names, also magriablesto statelesgypes. The
rules are standard value passing ones designed to enstutteethalues transmitted
respect the declared object type of the channels on whighateecommunicated.
The rule(t-out) uses the obvious generalisation of the judgement (3) toegalu
while in (t-rest) the standard notatioh, n: T is used to denote the new environ-
ment obtained by extending the functibrso that it now mapa to the typeT. But
inherent in the use of this notation is thrats new todom(I"). Similar notation is
used in(t-nw). The only non-standard feature in the typing rules of Tabig the



Table 2.Typing rules for typed BLoc

Processes
(t-out) (t-in-rep)
N N (t-nw) (t-cond)
2 + U:chy(U) Z + U: chy(U)
. . T # loc, Ul v:U
+V:U 2, X:UrP
_— NTHP P Q
X+ P zFu?X).P

S+ (vn:T)P Y+ ifu=vthenPelse Q
> ul(\V).P 2+ xU?(X).P

(tfork) (t-go) (t-ping)
(t-axiom) X+ u:locy X+ u:locy
2+-P Q
— Z+0 P 2+P Q
2+ PIQ
X rgouP 2+ ping u.P else Q
Systems
(t-rest) (t-proc)
(t-par)
T # loc, I'k1:1locy
I'tN, M
ILn:Tr N e r-pP
—_— '+ N|M —_—
'+ (vn:T)N r+I1[P]

conditionT # loc. in (t-nw) and (t-rest). This additional condition precludes the
creation ofnew confinedocations and the existence sdoped confinetbcations,
thereby guaranteeing the secondary restriction of thegyptem discussed earlier,
namely that all confined locations are free.

Example 3 (Type-checking Systems) et denote the environment

B I:1ocg, ki:loc?, kp:locg, K3:loc?,

[e =

req. ch,(P1, ch,(P1)), ret:ch,(P1), V:P1, a:ch,(Py)
whereP; andP, are arbitrary public types. Then one can check
I'e + server

fori = 1...3, whereserver is defined in the Introduction, provided the locally
declared channeldataand syncare declared at the typeshy(T, ch,(T), 1oc,) and
chy(T) respectively, with arbitrary visibility.

Consider the alternative server

serverBad < servery | [[al(ky)]



which acts aserver; but also communicates the confined locatigwi channel a
atl. It is easy to see that our type system rejesetserBad, that is

I'e ¥ serverBad

because it outputs a confined value, &n a public channel a. We know that the
object type of the public channel a must be puliig,which cannot be matched
with the confined type of the value outputtedsdhen applying the typing rulg-
out).

Consider another server
serverBad2 < (vk; : loc?)serven,
If we consider the slightly modified type environment
Iy =Te\ks @ locd

removing the type assignment tg fkom I, then our type system also rejects
serverBad2, that is
I, ¥ serverBad2

because the confined locationik scoped.

The main property required of our type system is that, in seemse, typing is pre-
served by substitution of values for variables, providerttypes are in agreement:

Lemma 4 (Substitution) If £, x:U+ P and X + v:U, thenX + P{Vx}

PROOF. By induction on the derivation &, x:U + P.

Reduction Semantics:

Definition 5 The pairl’ > M is called aconfigurationif all the free names in M
have a type assigned to themIinthat isfn(M) € dom(T'). It is called avalid
configuration if in additiod” + M.

Reductions then take the form of a binary relation over caméitjons
'sN — I"sN (4)

defined in terms of the reduction rules in Table 3, wherebyesys reduce with
respect to thdéiveness statusf the locations il"; here we should emphasise that
the reductions depend in no way on the type informatidn wther than the liveness
annotations on location types.



Table 3.Reduction Rules for £Loc

Assuming I' + | : alive

(r-comm)

I'>I[a(V).P] [I[a?(X).Q] — T=I[P] |1[Q{V/X}]

(r-rep) (r-fork)

I's>1[+a?(X).P] — T>I[a?X).(P|«a?X).P)] T»I[PIQ] — T=I[P] |I[Q]

(r-eq) (r-neq)
u#v

I'>l[ifu=uthenP else Q] — I'>I[P] I'>I[ifu=vthenPelse Q] — I'>1[Q]

(r-go) (r-ngo)

'+ k: alive Ik k: alive
I'>1[gokP] — I'=K[P] I'>1[gok.P] — I'>K[O]
(r-ping) (r-nping)
I'+k:alive I'¥k:alive

I'>I[pingkPelseQ] — I'>I[P] I'>I[pingkPelseQ] — T'>I[Q]

(r-new) (r-str)

I'sN=T>N I'N—TI">sM I"sM=I"> M

Ie>l[(vn:T)P] — T'>(vn:T)I[P] o N/ s M/

(r-ctxt-par)
(r-ctxt-rest)
I'sN — I">N
ILn: ToN — I’,n:T>M

I'sNM — I">N|M
I'sMIN — I"»> M|N’

I's(vn: TIN — I"»>(vn:T)M

In these rules, in order to emphasise the meaning and abatvag from visibility
type information, we write
I'+1:alive

instead of" + | : 1oc3; we also writel” ¢ | : alive instead off" + | : 1ocd. Thus all
reduction rules assume the location where the code is ergadstalive. Moreover,
(r-go), (r-ngo), (r-ping) and (r-nping) reduce according to the status of the remote

10



Table 4.Structural Rules for BLoc

(s-comm) NIM = M|N

(s-assoc) NIM)IM’ = N|(M|M”)

(s-unit) NII[O] = N

(s-extr) ¢n:T)Y(N|M) = N|(vn:T)M n ¢ fn(N)
(s-flip) (vn:T)(ym:R)N = (vm:R)(vn:T)N

(s-inact) ¢n:T)IN =N n¢ fn(N)

Table 5.Error reductions in BrLoc

(e-out)

Jv; € V such thatl" r vi:1loc, or I F Vi : ch.(iW)

I's>1[a(V).P] —en
(e-par)

['>M —er

(e-scope) (e-rest)

F, n:T>M_>er|'

F>(V|10C§)M _>e|'|' FDMlN_>e|’|'
I'>(vN:T)M —epy
['>NIM —er

location concerned. All the remaining rules are standarduding the use of a
structural equivalence between systems; see [4] for more details. The attentive
reader should have noted that when using the rules in Tallbénevel > N —

I > N’ it can be deduced that always coincides witl". Even though this is
certainly true, in later sections we will introduce redoos that change network
status of the redudt > N’.

Proposition 6 (Subject Reduction) If '+ M andI'> M — I'> N, thenI" + N.

PROOF. By induction on the derivation df » M — I » N. As usual the main
difficulty occurs with the communication rulgscomm) and(r-rep), where the Sub-
stitution lemma, Lemma 4 is used. Treatmentradtr) also requires us to prove that
typeability is preserved by the structural equivalence.

We can also show that the type system does indeed fulfill tenged purpose.
More specifically, in well-typed systems

e confined values will never be made public.

11



e confined locations are never scoped.
In Table 5 we formalise these notions of runtime errors,ingit
>N —ep

to mean that, intuitivelylN is either about to export some confined value on a pub-
lic channel,(e-out), or currently holds a scoped confined locati@scope) - the
remaining two rules in Table 5 are standard contextual ris show that such
errors can never occur in a valid environment.

Proposition 7 (Type Safety) Supposé& > N is a valid configuration, that if + N.
fT'>N—*T> N thenl'> N £—>g

PROOF. From Subject Reduction, Proposition 6, we know that N’. It is also
straightforward to show, using the rules in Figure 5, ifdl —¢,; impliesI” ¥ M,
from which the result follows.

In the remainder of the paper we will confine our attentiomabd configurations;
from the two previous propositions we know that they are gme=d under reduc-
tions and they do not give rise to runtime errors.

Behavioural equivalence: As the appropriate semantic equivalence failLDc,

we propose a contextual equivalence based on the standtot d reduction
barbed congruencd11,8], which is adapted to the presence of configurations.
More importantly, as explained in the Introduction, we refihfurther so as to
ensure that observations can only be made at public losatidms restriction is
enforced using our type system.

For anyI” let pub(I') be the environment obtained by restricting to names whieh a
assigned public types. Then we write,,s O, meaning intuitively tha© is a valid
observer with respect 0, whenevepub(I') + O.

Example 8 (Type System prevents Errors)Referring back to Example 3, we have
already seen that
I'e + server;

fori = 1...3 but we can also check that tlegient, defined in the Introduction, is
also a valid observer with respect pab(I's) which translates to

pub(l’e) = I:1ocy, req.chy(Py, chy(P1)), ret:.chy(P1), V:P1, a:chy(P2)
We can thus show

re Fobs Client

12



On the other hand consider
obseverBad < I[gok;.gol.ok()]

Intuitively this should not be considered a valid observecduse it uses the con-
fined value k, and indeed we have

I'e ¥ons ObserverBad

By prohibiting their use onyconfined values, valid observers are not only forced
to be located to public locations, but also constrained tgnaiie to public locations
only.

Our typing system ensures that a valid observer can neveaiobbnfined values
under any sequence of interactions within a well-formedigamation. Consider
again the alternative serveserverBad, already discussed in Example 3. If we com-
poseserverBad in parallel with the valid observer

observerGood < I[a?(x).go x.go .0k ()]
then one reduction step involving the communication, airkchannel a yields
I'e> serverBad | observerGood — TI'e» server, | observerBad

Here the valid observeobserverGood reduces to the invalid observebserver-
Bad, which has obtained knowledge of the confined location k

Our type system ensures that this never happens becausa,gitt we have
I'e Fops ObserverGood

our type system rejecterverBad (Example 3).

It is convenient to define our behavioural equivalence so ithean relate arbi-
trary configurations, which now are assumed to be valid; veweve would expect
equivalent configurations to have the sgoodlic interface We also only expect it
to be preserved by composition with valid observers. Thasl$eto the following
definition.

Definition 9 (0-Contextual) A relation overR configurationsis called o-Contextual
if, whenevel>M R I">N

Interfaces. pub(I') = pub(I”)

I'sM|O RI">N|O
Parallel Observers: whenever +,,s O.
I O|M RI">"O|N

Fresh extensions: I',n :P>M R I"",n:P>N.1

1 Recall that this implies is fresh to botH™ andI™.

13



Since we want to limit observation to public resources, wariet the standard
notion of a barb and limit it tgpublic channelst public, live locations

Definition 10 (o-Barb) I'> N |35, denotes an o-observable barb by configuration
I'> N, on channel a at location I. This is true whEm N —* I'> N’ for some N
such that

N’ =(vA:T)M|I[al(V).Q]

wherel' + | : loc?, a: ch,(P). We say a relation over configuratiopseserves

barbsif:

P
I'>M R I">N

I'sM Ug@l

impliesI'> N |3,

The next definition is standard (see [8]), but is added forgeteness.

Definition 11 (Reduction closure) A relation overR configurations igeduction-
closedwhenever

FMPM R FNPN
I'veM — I, > M’

impliesI'yeN —* T'{ >N’

for some configuratioiiy,>N’ such thaflj,>M” R T\ >N".
Combining these we obtain our touchstone equivalence AoD:

Definition 12 (Reduction barbed congruence)Let = be the largest relation be-
tween configurations which is:

e O-contextual
e reduction-closed
e preserves o-barbs

Example 13 (Equivalent Configurations with Restricted View Our definition of
reduction barbed congruence allows us to limit observatitmcertain locations,
thereby allowing gpartial viewof a system. For instance, even though the equiv-
alences defined in [4] could discriminate betwesarver,, server, and server;
running on a network without failure, we can now say that éhesrvers are obser-
vationally equivalent if observations are limited to loicet|. More specifically, it
turns out that

I'e> server, = I'e> server; fori, j € {1,2, 3}

wherel,, previously defined in Example 3, is limiting observatiantghe only pub-
lic location, I; the locations k k, and k are confined if.

14



3 Defining Fault Tolerance

We now give contextual definitions of fault-tolerance in gtgle of (1), outlined

in the Introduction. We use the touchstone behaviourahadgmce, Definition 12,
to compare failure-free and failure-induced configuraioiVe also quantify over
all possible fault contexts, special contexts that indacdt$é. The specific form of
these fault contexts embody our assumptions about fautishwn turn determine
the nature of our fault tolerance definitions.

Our definitions of fault tolerance are based on the clearraéipa of locations into
two disjoint setsreliable locations andinreliablelocations. Reliable locations are
assumed to be immortal, whereas unreliable locations malebd already (per-
manently in fail-stop fashion[17]) or may die in future. Amportant assumption
of our fault tolerance definitions is that the separatiomieen reliable and unre-
liable locations happens oncat, the start of the analysidased on the location
information at that moment; intuitively, we pick a subseinfr thefree locations
which we assume to be unreliable. Since scoped locationsataown to us at
this stage, we cannot tag them as unreliable, which is whyyte system in Sec-
tion 2 precluded scoped unreliable(confined) locationelumreliable locations
are determined, we take a prescriptive approach and forseredrs to reside at
reliable locations only, thereby ensuring that they neweui failuredirectly. To
put it more succinctly, observations never fail.

Nevertheless, an observer can still fBeeted by failurendirectly. This happens
when an observer interacts with system code residing atqlolohtions whose be-
haviourdependsin some way or another, on code residing at unreliable imeat
In such a setting, fault tolerance would be a property of ffstesn code at public
locations, whichpreservests behaviour up to &ertain levelof fault, even when
the unreliable code it depends on (residing at unrelialdations) fails. If we map
public locations to reliable locations and confined loagagias unreliable, then the
framework developed in Section 2 fits our requirements fehsa definition; the
type system also ensures that this clear separation betwkaile and unreliable
code is preserved during interaction, by ensuring that aemer will never receive
an unreliable location, when it is expecting a reliable dnéhe remainder of the
document we will interchangeably use the terms reliablewamdliable for public
and confined types respectively.

Our first notion ofn-fault-tolerance, formalising the intuition behind (13,when
the faulting context induces at mastiocation failuresprior to the execution of
the systemOf course, these failures must only be induced on locatidrish are
confined, based on the prior assumption that public locatawa reliable, and thus
immortal. The implicit assumptions behind our first faulletance definition are
that:

15



e either the unreliable locations have always been dead amdame failure will
occur in future.

e or the frequency of failure occurrence, which often happersursts, is much
lower than that of reduction steps, within a give period afei Thus we can
assume that computations will not be interleaved by furthiéures.

Formally, we define the operatidn- | as:

ro | def I,l:loc? ifT=1"1:1loc?
r otherwise

Definition 14 (Static Fault Tolerance) For any set of location namddet Fg(—)
be the function which maps any netwérto I' - I; that is the environment obtained
by ensuring that the status of any confinehIT" is dead We say E(-) is avalid
staticn-fault contexif the size of is at mosi. A configuratior™>N is static n-fault
tolerant if for every valid static n-fault context;F

I'>N=FLI)>N
With this formal definition we can now examine the systesmser;, using thel'e
defined in Example 3.

Example 15 (Static Fault Tolerance) We can formally check that, » server; is
not staticl-fault tolerant because by considering the fault contégktvFe can show
that

I'e>server; ¢ F gl (Te) > server;

Similarly we can show thdt. > server, is not 2-fault tolerant, by considering its
behaviour in the stati@-fault tolerant context E’kz. More specifically here let
client denote the system

[[req!(v, ret).ret?(x).okl(x)]
Then, assuminbe has a suitable type for the channel ok, the configuration
I'e > server, | client
can perform the barb a®I, whereas with the configuration
I'e — {kq, ko} > server, | client
this is not possible.

We can also examine other systems which emmdegivereplication. The system
sPassive defined below uses two identical replicas of the distributathbase at
ki and k, but treats the replica at;kas theprimary replica and the one atykas

16



a secondarybackup) replica. Once again, the type of the scoped chadiaizlis
T = ch.(P, chy(P), 1loc,), where we recall thak denotes a public type.

| Nserv?(x, y).ping k;.go ky.data(x,y, I)

else goky.data(x,y, |
sPassive < (vdata:T) gok Xy, 1)

| ki[date?(x, y, 2).go z .y (f(X))]
| ke[ date?(x, y, 2).go 2 .y (f(X))]

The coordinating interface at | uses the ping constructiétect failuresn the
primary replica: if g is alive, the request is sent to the primary replica and the
secondary replica atkis not invoked if, on the other hand, the primary replica is
dead, then the passive replica ati& promoted to a primary replica and the request
is sent to it. This implementation savestone redundancgince, for any request,
only one replica is invoked.

It turns out thatl . » sPassive is static 1-fault tolerant, as arE.» server, andI'c>
servers. The latter]'e> servers, is also stati@-fault tolerant. However, establishing
positive results is problematic because the definitior guantifies over all valid
observers and over all possible static n-fault contexte ploblems associated
with the quantification over all valid observers is addresse the next section,
when we give a co-inductive characterisatiorsof

Our second notion of-fault tolerance is based on faults that may occur asyn-
chronouslyat any stage duringhe execution of a system. This translates to a
weaker assumption about the periodicity of faults than thaderlying Defini-
tion 14. Also, this second fault tolerance definition does assume any depen-
dency between faults. It only assumes an upper-bound difanl that faults are
permanent.

To formalise this notion we to extend the language.Bc, by introducing a new
process calledill. Then the new systetfkill] simply asynchronously kills loca-

tion |. The reduction semantics, and typing rule, for this new tracsis given in
Table 6. We use BLoc, to denote the extended language, and note that because of
the typing rule only confined locations can be killed. In gatar this means that

if Ois an observer, that i s O, thenO does not have the power to kill any lo-
cations. The netféect is that reduction barbed congruenigkesz N, only compares

the system®1, N from DrLoc,, in contexts which have no power to kill locations

in M or N, although these systems themselves may have this power.

Definition 16 (Dynamic Fault Tolerance) For any set of locationklet FrD(—) de-
note the function which maps the system M taiffikill] | . ..|l.[kill] for any | €.
Such a function is said to be a valid dynamic n-fault contette size of is at
most n. A configuratiofi>N is dynamic n-fault tolerant if for every valid dynamic

17



Table 6.Thekill construct

(t-kill) (r-kill)

I'rl:loc,

> [kill] — (C=D»I[0
I+ I[kill] r> k] €=~

n-fault context )
> M =T»FL(M)

Example 17 (Dynamic Fault Tolerance) As we shall see later on, it turns out that
I'e>server, andI'e>servers are both dynamic fault tolerant up tfault; T'e>servers

is also dynami@-fault tolerant. We however note that, contrary to the statise,
I'e > sPassive is not dynamicl-fault tolerant. This can be proved usin@lE—) and
showing that

['e > sPassive # I'e > sPassive | ky[ kill]

The equivalence does not hold becausm&y failafter sPassive tests for its status.
In this case, the backup database atik never queried and thus an answer will
never reach |.

However, this is not the case for any passive replicationesewith two replicas.
For instance, we can consideMonitor, defined as

go ky.data(x, syncl)
I|sernv?(x,y).(v syncR) [ | mntr k;.go kp.data (x, syng )
SMonitor < (vdata: T) | syn®(2).y'(z)
| ky[data?(x,y, 2).go z .y!{f(X))]
| ko[ data?(x,y, 2).go z .yI{ T (X))]

where againT = ch(P, ch,(P), 1oc,) and the type of the synchronisation channel
syncis R = ch.(P). This passive replication server still treats the databasé;

as the primary replica and the database atds the secondary replica. However,
instead of asingleping test on the primary replica at;kit uses amonitorprocess
for failure detection

mntr k.P < (vtest ch())(test()| = tes?().ping k. test() else P)

The monitor processintr k.P repeatedlytests the status of the monitored location
(k) and continues as P only when k becomes dead. Due to thehasyg across
locations, insMonitorthere are cases when we still receive two database answers at
| (the queried database at knay first return an answer and then fail). At this point
the server interface detects the failure and queries th&iyaat k which, in turn,

18



returns a second answesMonitor solves this problem by synchronising multiple
answers from replicas with the channgng similar to server, and server; in
Example 1.

It turns out thatl's > sMonitor is also dynamid-fault tolerant, but as in the case
of I'e » server, andT'e > servers, such a positive result is hard to show becaese
guantifies over all possible observers.

4 Proof Techniques for Fault Tolerance

We define a labelled transition system (lts) forlldce, which consists of a collec-

tion of transitions over (closed) configuratiois; N —— T” > N, whereu can be
any of the following:

e internal actiony
e output action, > T)I : al(V)
e inputaction, (: T)l : a?(V)

where the names bind a subset of the names Vhin both the input and output
transitions. Bound names in output labels denote scopededrnames whereas
bound names in input labels denote fresh names introducekebfimplicit) ob-
server. These three transitions are defined inductiveljeyules given in Table 7
and Table 8, inspired by [9,8,4], but with a number dfeliences.

In accordance with Definition 10 (observable barbs) and ifivs 9 (valid ob-
servers)(l-in) and(l-out) restrict external communication public channels apub-
lic locations, where the notatidn +q,s | andT +qs @ denotel’ + | : locP and
ra: chp<15> respectively, for some typds Furthermore, irfl-in) we require that
the types of the values received, match the object type of chanrelsincea is
public and configurations are well-typed, this also impltiest V are public val-
ues defined ifi. More prosaically, the object type of the input channél,iand by
Lemma 4, we know the reduct is still well-typed. The resinicton the rule for out-
put transitions, together with the assumption that all cpmtions are well-typed,
also means that ig-open) we only scope extrude public values. Contrary to [4],
the Its does not allow external killing of locations (thréutpe labelkill : I) since
public locations are reliable and never fail. Finally, thensition rule for internal
communication(l-par-comm), uses an overloaded functign(-) for inferring in-
put/output capabilities of the sub-systems: when applied tesyp(T) transforms
all the type tags to publigl; when applied to environment$(I') changes all the

19



Table 7.0perational Rules(1) for Typedsdoc

Assuming I' + | : alive

(I-in)

a0 Trops |, T-a: chy(B), V: P
s 1[22(X).P] -2, 1o 1[P(VX]]

(l-in-rep)

> I[+a?(X).P] — > 1[a?(X).(P| = a?(X).P)]

(-out) (I-fork)
Falv) [rons 1.2 T
r>I1[a(V).P] ——= T»I[P] I'>I[PIQ] — I'>I[P] |[Q]
(l-eq) (I-neq)

u#v

I'»I[ifu=uthenPelse Q] — I'>I[P]  T»I[if u=vthen P else Q] — T'>I[Q]

(I-new) (I-kill)

Ts1[(vn:T)P] =5 T»(vn:T)I[P] T'sI[kill] = (C=1)»I[0]

(I-go) (I-ngo)
- '+ k: alive p= I'¥ k: alive
I'>1[gokP] — I'>K[P] I'>1[gok.P] — I'>K[O]
(I-ping)
I'+k: alive

I'>I[ping k.P else Q] — I'>I[P]

(I-nping)

. I'¥ k: alive
> I[ping kP else Q] — I'>1[Q]

types to public types in the same manner. The definitiondiiesd operations are

(T T) € (1 (T, 1(Tw) e {chp@ ®) i T=chy(®

) def . (1) = S : _ S
T(,n:T) = 17(I),n:7(T) loc; if T=1locy

20



Table 8.0Operational Rules (2) for Typedsloc

(l-open) (I-weak)

(A:T)l:al(Vv) (A:D)l:a?(V)
ILn: TeN—TI"s N ILn: T>sN—>TIT">N
(n:T,R:T)l:al (V) LhazneV (n:T,A:T)l:a?(V) LhazneV
I's(vn:T)IN ——I"> N’ ' N————STIT"s N
(I-par-ctxt)
(I-rest) p
I'sN—TI">N

F,n:T»NLF’,n:hN’

n ¢ fn(u) F>N|Mi>r'>N’||\/|

Fb(VﬂZT)NLF'b(Vn:T)N, p
'>MI|N—T">M|N

(I-par-comm)
f:(T)l:al(Vv fi:(T))l:a?
1(0)» N (ATD))al(V) o N 10)> M (ANT):a?(V) s M

I's>N|M—T»(i: TN |M)
s> MIN - T»(vii: T)(M|N)

All the remaining rules are simplified versions of the copa@sding rules in [4].

Using the Its of actions we can now define, in the standard eraweak bisimula-
tion equivalencever configurations. Our definition uses the standard ravtdtr
weak actions; we use= as a shorthand for the reflexive transitive closure on silent

. T H Ju u T
transitions—*. Hence,— denotes—-——, and— denotes—" if u = r and
H .
= otherwise.

Definition 18 (Weak bisimulation equivalence) A relationR over configurations
is called abisimulationif whenevel'y, » M R T'y > N, then

e I'y>M -5 T, » M impliesTy > N = T}, > N’ such thafl}, > M’ R T > N’
e Ty>N -5 T > N’ impliesTy > M = T}, » M’ such that, > M’ R T/ > N’

Weak bisimulation equivalence, denoted:hys taken to be the largest bisimula-
tion.

Theorem 19 (Full Abstraction) Suppos@ub(I') = pub(I"’). Then for any 2Loce
configurationd™>M, I">N:

I'>M = I">N ifandonly if I'>M ~ I">N

21



PROOF. (Outline)To prove

I'>M ~T">N implies I'>M =TI">N
we show thatv satisfies all the defining properties ®f(Definition 12). The most
involved task is showing that is o-Contextual(Definition 9). This has already

been done in [4] for more complex contexts. Following therapph there, we
inductively define a relatioR as the least relation over configurations satisfying:

(I'1> My, To> My) | 1> M=o > My, pub(I'y) = pub(I2)

(I'1 > M4]O, T’z > My|O)
(T'1 > O|Mq, I'2 > O|My)

I'i> M1 RI> My andFl Fobs O

F11> M]_RFZD Mz,
T1,N:Te My, I'5,n:Te M)

nis fresh inl", I,

<F1>(vn:T)M1, FzD(VﬂZU)M2> | I',n:T>M;RIL,N:Us>M,

In R we add an extra clause from those given in Definition 9, narttedylast one
for name scoping. We then show thHatis a bisimulation; since: is the largest
possible bisimulation it follows th& < =~. Because of the definition & it then

follows that~, when confined to configurations with the same public interfas

o-Contextual.

The proof for the converse,
I'>M =T">N implies I'>M ~T">N

relies on the notion odlefinability that is, for every action, relative to a type envi-
ronment’, there is an observer which uses the public knowledg&oicompletely
characterise thefiect of that action. In our case, we only need to prove defiitgbil
for input/output actions, which has already been done for a more conspléing
in [4]. For instance the context which characterises thetitansition labeled by
(i : T : a?(V) would be

110

whereQ is the systemy(fi : T)I[a!(V).go ko.eurek&()] and k, andeurekaare fresh
public location and channel names, respectively. Becalfe gestrictions on the
manner in which transitions can be inferred, we are assha®tis allowed as an
observer, that i§ +q,s O.

22



Theorem 19 allows us to proyositivefault tolerance results by giving a bisim-
ulation for every reduction barbed congruent pair requivgdefinitions 14 and
16.

Example 20 (Proving Static Fault Tolerance) To show thaf’'e>sPassive, defined
earlier in Example 15, is static 1-fault tolerant we neededhow thatsPassive
preserves the same behaviour under any static 1-fault gmtsow, by the defini-
tion of the operatiod” — |, we know that the only | we need to consider are cases
where | is confined i’; otherwiseI’ — | = T" and the relation we have to prove
would be a simple case of the identity relation. For our sfieciase, sinc&. has
only 3 confined locations, we only need to consider threacsiatault contexts,
and by Theorem 19, showing tHat> sPassive is static 1-fault tolerant boils down

to constructing 3 witness bisimulations to show

I'> sPassive = (I' — k;) > sPassive

I'> sPassive = (I' — k) > sPassive

I'> sPassive = (I" — k) > sPassive

Here we give the witness relation for the most involved ctasek;, and leave the
other simpler cases for the interested reader. The witnglssion isR defined as

R L' (> sPassive, T — k; » sPassive)} U ( U R'(n, m)]

n,meNAMES

T> (vAI[Png(x, V)] | R Rz , T — k> (vA)I[Png(x,y)] | R1| Rz

e (vAI[O1(X V] IR1IR: T —ki> (vA)I[ Q2. V)] | R1| R2
gef | > (vA)K[d{X Y, D] R1I Rz , T = ky » (vd)ko[dI(X, y, D] | R1 | R2

R'(XY) =
[ (vd)ka[go I.yKTO) [R2 , T = ki > (vd)Ry [ ko[ go | .y (x))]
e (vA)I[yECDT I R2 = ko> (vA) Ry [TLYHCF (X))
I'> (vd)R> I = ky> (vd)Ry

where d stands for data and
Png(x.y) < pingki.Qi(X,y) else Qx(X,Y)
Qi(xYy) & gok.di(xy,l)
R < k[d?(X Yy, 2).g0z.y!{f(xX)]

R is the union of all the relation®’(n, m) where nm denote the possible names for
the value and return channel that are received on chaseel

23



To facilitate our presentation, the general form of evgfgn, m) is described through
R'(X,y), a relation between configurations having two free variableand y; each
R’(n, M) is obtained by instantiating x and y for n and m respectivielya similar
fashion,R’(x,y) uses convenient abbreviations for processes, sudbnggx,y) -

a shorthand for a process with free variables x and yRIfn, m) this shorthand
denotes the closed proceBsg(n, m).

EveryR’(n, m) relatesl'> sPassive and(I" — k; ) » sPassive and captures the essen-
tial mechanism of hoWl” — k;) » sPassive uses redundancy to preserve the same
observable behaviour df > sPassive. In this mapping, all the requests are ser-
viced by the primary replica atkn I' > sPassive, whereas they are serviced by the
secondary replica atkin (I' — k;)>sPassive.

5 Generic Techniques for Dynamic Fault Tolerance

In spite of the benefits gained from proof techniques dewap Section 4, prov-
ing positive fault tolerance results still entails a lot eineécessary repeated work.
This problem is mainly due to Definition 14 and Definition 1@iah quantify over
all fault contexts The universal quantification of fault contexts can gergraé
bounded, as in Example 20, through thédex of the fault contexts (indicating
the maximum failure to induce) and by the number of unreidbtations defined
in the environment, which limits the witness bisimulatioms need to construct.
Despite such bounds on fault contexts, we are still requingoerform much re-
dundant work. For instance, to prove tlsatvers is 2-fault tolerant, we need to
provide 6 bisimulation relatiorfs one for every dferent case in

I'>servers = T'» servers|k[kill] |k;[kill] fori,je{l1,2 3}

A closer inspection of the required relations reveals thatd is a lot of overlap
between them. For instance, in the withess bisimulationrevhe- 1, ) = 2 and

in the witness bisimulation for = 1, ] = 3, in each case part of our analysis
requires us to consider the behaviorsefver; under a setting wherg dies first,
leading to a large number of bisimilar tuples which are comrmwboth witness
bisimulations. These overlapping states would be aut@alti circumvented if
we require a single relation that is somewhat the mergindlaffdhese separate
relations.

Hence, in this section we reformulate our fault tolerancéndesn for dynamic
fault tolerance (the most demanding) to reflect such a mgfirelations; a similar

2 The cases where the numlyeis less than 2 (in our case= 1) is handled by the instance
where both and j are the same location; it is not hard to show thatM|k; [ kill] ki [ kill] ~
I'> M|k [kill] for i € {1, 2, 3} since a location cannot be killed twice.

24



Table 9.Fail Silent Transition Rule BLoc

(I-fail)

= I'+k:locd
T,n>N — T -kn-1)»N

definition for the static case should be amenable to sintéatinent. We start by
definingextended configurationg/hich have the form

I,ny>M

whereM is a system from BLoc andI' > M is a (valid) configuration. Intuitively,
the extended configuration above denotes a sy8femithout any sub-systems of
the formI[kill], that is running on the network, where at mosh unreliable lo-
cations may fail. The additional network information in tleem of a fault bound
gives us arupper limiton the unreliable locations thatay still fail. It provides a
more succinct way of expressing dynamic failure, withoatreng to the fault in-
ducing code of the forrt{ kill]. More specifically, it allows us to express how many
unreliable locations may still fail, in line with Definitioh6, without committing
ourselves as to which of these locations will fail, as is tasecwhen using fault
contexts. This leads to an alternative definition for dyr@afault tolerance that is
easier to work with.

The network fault upper bound gives us further advantagesiristance it gives

us more control when, after a possibly empty sequence o$itrans, we reach
configurations witm = 0; it less obvious to discern this from systems containing
asynchronous killg[kill]. In these extreme cases, we can treat code at unreliable
locations as reliable, since the network failure upperdabguarantees that none of
these will fail, thereby simplifying our analysis.

We define transitions between tuples of extended configuraiis
CeM - (I, M (5)

in terms of all the transition rules given in Tables 7 and &hwhe exception of
(I-kill), which is replaced by the new transiti¢#ail) defined in Table 9, describing
dynamic failure. Even though the transitions in Table 7 aakll@ 8 are defined on
configurations, they can be applied to extended configursiilo the obvious way.
For example, the previous transitigrout) applied to extended configurations now

reads
(I-out)

Fal (V) T rops |2

T,ny»1[al(V).P] — I,ny»1[P]

We note that, for all transitions adapted from Tables 7 anthé& network upper-
bound does not change from the source to the target configirat

25



Our previous configuratiorisS> M can be viewed as a simple instance of extended
configurations of the formdI’, 0) > M where the maximum number dynamic fail-
ures that may occur at unreliable locations is 0. Also, usragsitions defined
over extended configurations (5), we smoothly carry oveptiegious definition of
bisimulation, Definition 18, to extended configurations. Mgt give an alternative
(co-inductive) definition of dynamio-fault tolerance, based on extended configu-
rations.

Definition 21 (Co-inductive Dynamic Fault Tolerance) A configurationl'>N is
co-inductive n (-dynamic) fault tolerant if

T,00>M =~<(,n)>M

Before we can use Definition 21 to prove dynamic fault toleeanve need to show
that the new definition is sound with respect to our previcefindion of dynamic
fault tolerance, Definition 16. This proof requires a lemrtatisg the correspon-
dence between actions in configurations and actions in égteoonfigurations.

Lemma 22 (Actions for Configurations and Extended Configuratons) Suppose
M is a DrLoc system. Then for every>0,

(1) T>M -5 T's M if and only if(T, ny > M - (T, ny > M’
(2) T'> M|I[kill] =5 T =1>MJI[0] if and only if(T,n+ 1)> M — (T — I, n)» M.

PROOF. The first statement is proved by induction the derivationk efM N

I'>M’ and(T", n)>M —= (', n)>M’. The second is a simple analysis of the transitions
involved. Note that here, because M|I[kill] is assumed to be a configuration, we
are assured thatr | : loc?. See(t-kill) in Table 6.

Theorem 23 (Soundness of Co-inductive Dynamic Fault Tolerece)

for any dynamiaifault context FE)

(T',0y> My =~ (I',ny > M, implies )
T[> My = s FL(My)

PROOF. LetR, be arelation parameterised by a numband defined as

Ry € 4 Tre My, Toe M| LIKIND|. .. IGIKIT | (T4, 0> My ~ (Do, my s> M,

m

and 0<m<n

26



We proceed by showing th&, is a bisimulation over BLoc configurations, up to
structural equivalence; that is

Ry, C =~ (6)
The required soundness result then follows because if

T,00>M =~<(,n)>M

then by (6) and the definition &, we know that for every dynamige-fault context
Fi(-), we also have

I'>M ~T»FL(M)
Finally, by Theorem 19 we obtain

I'>M =T»FL(M)
which by Definition 16 means th&t- M is dynamicn-fault tolerant.

In the proof of (6), we focus on matching the actions of thatrlgand side configu-
ration inR,; we leave the simpler case, that is matching the actionsedefhhand
side, to the interested reader. We thus assume

1> My Ry Toe Mo | LKl .. |1 [Kill] (7

m

for some 0< m < nand we have
o> Mo | LK. .. [L[Kill] = T%> Mj (8)

We have to show that

I > My == I3 » M{ such thal'y » M}, R, T > M

From the structure dffkill]|. . . |I;[kill], we deduce that there can be no interaction
betweenM, and|;[kill]|...|I;[kill] and, by(l-par), we conclude that this action can
be caused by either of the following actions:

(@) o> My = Tp > MY whereMy, = My [ L[kl .. . I;[kill]

(b) Ty Likill]l. . . (ki AN Y LIkl ... [OTI. .. II;[kill] where must
ber andM; = M| [[[kill]| ... [I5[kill]

m-1

(@) In this case, from (7) and the definition®f we know
(1, 0) > My = (I'2, M) » My 9)
Also, by (a) and Lemma 22(1) we also have

(T2, My > My =5 (T, my > M (10)

27



(b)

From (9) we know that (10) can be matched by

(I'1, 0) > My == (I'y, 0) > M (11)
where (I';,0)>M; =~ (I, m)»> M7 (12)

From (11) and Lemma 22(1) we deduce
Iy My = Ty s M}

and from (12) and the definition &, we also know

Ty > M R, T > MY LK. .. [;[kill]
In this case, once again from (7) and the definitioRgive know

(I'1, 0) > My = (T2, My > My (13)

Using (8) and Lemma 22(2) we can derive

(Tg, M) > My — (T3 = I, M= 1)> M, (14)

From (13) we know (14) can be matched by

(T3, 0) > My = (I, 0) » M} (15)
where (I'1,0)>M; ~ (I';— I, m—1)> My (16)

From (15) and Lemma 22(1) we obtain
I'i> My ; I'1>M;
and from (16) we get the required pairing

T3> Mj Ra T2 = lc> Ml [Kil| .. |1 [ kill]

m-1

With Theorem 23, we can now give a single witness bisimutet@oshow the dy-
namic fault tolerance of a configuration. However, a considle number of tran-
sitions in these witness bisimulations turn out todmmfluentsilent transitions,
meaning that they do noffact the set of transitions we can undertake in our bisim-
ulations, now or in the future. One consequence of this fathat reduction via
such confluent moves produces bisimilar configurations. Ms tlevelop up-to
bisimulation techniques that abstract over such moves alleviates the burden
of exhibiting our witness bisimulations and allows us tous®n the transitions
that really matter.

28



Table 10,8-Transition Rules (1) for Typeds.oc

Assuming I' + | : alive

(b-in-rep)

(T, ny > [xa?(X).P] 5 (T, n) > [[a?(X).(P| = a?(Y).P{Y/X})]

(b-eq)

(T, ny» I[if u=uthen P else Q] ——4 (I',n)»>I[P]

(b-neq)

u#v

(I, ny»I[if u=vthen P else Q] +—4 (I',ny»>1[Q]

(b-fork)

(T,ny > I[PIQ] +—5 (T,ny>1[P] [1[Q]

(b-new)

(T, Myel[(vn: T)P] +5 (T, ny>(vn: T)I[P]

(b-par)

. (b-rest)
I,ny>N +—p I7,n)> N

I,m:T,n)> N ni>,_; I, m:T,n)y> N’

(T, ny>NIM +5 (7, 7)o N'|M
(T, N> MIN +55 (I, 1 )> MIN/

(T, ny> (yM:T)N 5 (7, 1) > (vM:T)N

Based on [3], we denojgactions oB-moves as
(r,ny> N+ (I, n)> N’

Thesep-transitions are defined in Table 10 and Table 11. Our sdnas more
complicated than that in [3] because we also have to dealfaiitire. While we
directly inherit local rules, such gb-eq) and (b-fork), and context rules, such as
(b-rest) and(b-par), we do not carry over distributed silent transitions suchade
migration across locations. Instead, we here identifyetmab-cases when migra-
tion is aB-move, that is

e when we aremigrating toa location that islead (b-ngo).

29



Table 11 8-Transition Rules (2) for Typedsd.oc

Assuming I' + | : alive

(b-ngo)

I'¥ k: alive

(T,ny»1[go k.P] +4 (I',n)»>k[O]

(b-go-pub)

I'tops I, T +k: alive

(r,ny»1[go k.P] +=4 (I',ny>k[P]

(b-go-ff)

(I, 0y > I[go k.P] +—4 (I, 0)>K[P]

I' + k: alive

(b-nping)

I'¢k: alive

(', ny > I[ping k.P else Q] +—4 (I',ny»>1[Q]

(b-ping-pub)

T Fobs K
(T, ny»> I[ping k.P else Q] +—4 (I, ny»I[P]
(b-ping-ff)

(T, 0y > I[ ping k.P else Q] +—4 (', 0y>I[P]

'+ k: alive

e when we aremigrating froma public location (thus immortal) to another live
location(b-go-pub).

e when both the source and destination locations are aliverendannot induce
further dynamic failuregp-go-ff).

Migration across locations is generally not a confluent mmeeause it can be in-
terfered with by failure. More specifically, the source lttea may fail before the
code migrates, killing the code that could otherwise exlunibservable behaviour at
the destination location. However, migrations to a deadtioak, (b-ngo), are con-
fluent because they all reduce to the sysk§@] which has no further transitions.
Migrations from an immortal locatiorty-go-pub), are confluent because failure can
only afect the destination location; if the code migrates befoeedistination lo-
cation fails then it crashes at the destination; if it migsafter the destination fails

30



Table 12.Structural Equivalence Rules for TypedDoc Configurations

(bs-comm) I,ny> N|M =¢ (I, ny > M|N

(bs-assoc) T, ny> (N|M)|M” =¢ (T, n) » N|(M|M”)

(bs-unit) (T,ny>N|I[O] =¢T,ny>N

(bs-extr) T,ny> (vm:T)(NIM) =¢ T, ny> N|(ym: T)M m ¢ fn(N)
(bs-flip) T,ny>(vm:T)(vmp:U)N =¢ (T, ny»> (vmp:U)(vme: T)N

(bs-inact) T,nmy>(vm:T)N = T,ny>N m¢ fn(N)
(bs-dead) T,ny>I[P] =, ny»1[Q] I'¥1: alive

then the case is similar to that ¢f-ngo). * Finally, if we cannot induce more fail-
ures, as is the case @-go-ff), then trivially we cannot interfere with migration
between two live locations.

Similarly, pinging is generally not confluent because theatmn tested for may
change its status andfect the branching of the ping’s transition. However there
are specific cases where it iganove, namely

e when the location tested is alive and no more failures caarpg¢eping-ff).
e when the location tested is dedihnping).
e when the location tested is public, and therefore immogaling-pub).

In all three cases, the location tested for cannot changtaitss before or after the
ping.

Even though a setting with failure requires us to analyseymaore states than in a
failure-free setting and limits the use®imoves, we can exploit the permanent na-
ture of the failure assumed in our model to define a strongectsiral equivalence
than the one defined earlier in Table 4. The new structuralvakpnce, denoted
as=y, is strengthened by defining it ovektended configuratioriastead of over
systems. It is the least relation satisfying the rules ind4R and closed under the
obvious generalisation of the operations of parallel cositpm and name restric-
tion to extended configurations. Taking advantage ofnié®vork statuswe can
add a new structural rulgps-dead), which allows us to equate dead code, that is
code residing at (permanently) dead locations.

Example 24 (Stronger Structural Equivalence) Using=¢, we can now equate the
arbitrary systems[IP] and Q] running over the networld", n) when both | and

3 The additional condition on the liveness of the destinakimation is extra but excludes
cases whefb-ngo) can be applied instead.

31



k are dead irT". The derivation is as follows:

T,ny»I[P] =<, ny»I1[0] (bs-dead)
=¢ ([, ny» [ O] | K[ O] (bs-unit)
=¢ (", ny » K[ O] (bs-unit)
= (I, n)y>K[Q] (bs-dead)

As with the standard structural equivalence, one can shatwths a strong bisim-
ulation:

Lemma 25 (& is a strong bisimulation)

T,me>N = T,n>M implies T,nye>N = (I,ny>M
7 H H
<l—v,n/>> N’ <1—v’nr>> N’ = <1—v’nr>> M’

PROOF. A long but straightforward induction on the proof @ ,n)> N =
I, ny> M.

Lemma 26 (Commutativity of =; and ) =¢ o — 4 implies——; o =

PROOF. If (', ny> N =¢ o ——4 (I, ny> M then we know that there is sor& such
that

(C,ny s N = (T,nys N (17)
(r,ny> N’ +45 (I, ny > M (18)
Now, mimicking the proof strategy of the previous lemma, @@ ase induction

on the proof of (17) to find a matching transitidin ny > N |L>ﬂ (I',ny » M’ such

that(I', n) > M’ =; (I’, n) > M. The existence of thi&/’ ensures thatl’, n) > N
o= (I',N)> M.

Lemma 27 (Confluence ofs-moves) éﬁ observes the following diamond prop-
erty:

(T, > N——(T",n)>M
M

I, ny»>N

32



implies eithem is  and(I", ny>M = (I, ")>N’ or else

I,n)»> NI—T"?(F, ny> M
It H
I,nysN = {I,n)> M

whereR is the relation(nL)ﬁ U = U Hog0 Ef)

PROOF. The proof proceeds by induction on the structuré&Nadnd then by case
analysis of the dferent types ofi and induction on the derivation of tlfemove.

As examples, we consider two of the more interesting casest.\i/e consider the
case where the relatioR required to complete the confluence diamond is a case of

=r. The second case is an instance whig s o =;.

(1) Consider the case where

N = I[if n=nthen Q, else Q] for somen, Qy, Q> (29)
u=7tandn=n-1 (aconfined location was killed) (20)

By case analysis and (19), we know that gienove is the local reduction
(b-eq) and thus

M =1[Q.] (21)
From (20) we know the last rule used to derive the other adtigkfail) and
thus, using (19), we also derive

N’ =I[if n=nthen Q, else Q]
I" =T — k' for some confined locatiokl wherel - k' : alive

We focus on the case wheké = | and leave the case whdn # | to the
interested reader. On one side, using (21) we can produce

(O, > I[[Q] — (T =1,n-1)»1[Q4]

But on the other side we cannot produce a matclgimgove becauség the
location the name matchinggmove is performed, is dead In— |. However,
the two reducts dier only with respect to dead code and we canRse=;
and(bs-dead) to get

(T-lL,n=1I[ifn=nthenQ  else Q] =f (I'-1,n—1)>1[Q4]
(2) Consider a second case where

N = I[go k.P] (22)
u=7andn" =n-1 (aconfined location was dynamically killed) (23)

33



and moreover

| is public (immortal) inl (24)
k is confined (unreliable) but still alive ifi (25)

Using (22), (24), (25) and case analysis we know thaBth@ove was derived
using(b-go-pub), and thus we obtain

M = k[P] (26)

From (23) we know the last rule used to derive the other adtigkfail) and
thus, using (22), we also obtain

N =I[go k.P]
I" =T — k' for some confined locatioki whereI - k' : alive

We focus on the case wheké = k and leave the case whénh # k to the
interested reader. On one side, using (26) we can produce

(T,ny»>K[P] —> (' = k,n—1)>Kk[P]

But on the other side we cannot produce a matcgimgove using the same
B-rule (b-go-pub) because, the destination of the migration, is deadir k.
Instead, we can use an alternaf+enove, this time usingob-ngo) to obtain

(T —k,n=1y»>1[go k.P] ——4 (I' —k,n—1y»> k0]

and use the case whéh= (|i>,8 o =¢) to relate the two reducts, whichftir
only with respect to dead code. More precisely, we (@salead) once again
to get

T'-k,n=1>K[P] = (I' =k,n-1)>K[O]

Example 28 Here we illustrate the fact that not all distributed migaris are con-
fluent. Consider the configuration

T,ny»>k[gol.a)]

where

e we can induce more dynamic failureszrl
¢ K, the source location of the migrating code, is alive butaliable,I" + k:1oc?
e |, the destination location is alivé; + | : alive.

Here, contrary to [3], the silent migration transition,

I'sk[gola()] — I'>I[a)]

34



can notbe aB-move, even if we abstract over dead code. The problem oatwes
we consider the transition killing k, and obtaining

I'sk[gol.al()] — (I'—kn-1)»k[gol.a()]

Here we can never complete the diamond diagram for these ramsitions, as
required in Lemma 27.

Lemma 29 (Confluence over Weak moves)

T,n)> N»—T;"(I‘, ny> M implies (I',n)»> N»—T;*(I‘, n)>M

] ] ]

I, ny>N I, > N0 =(I", ") > M’

where the Iength of the derivation @f, n)> N N I, n"y»N’is of theat mostthat
of (T, n) » M == (I”, 1) » M.

PROOF. The proof is by induction on the length of derivation, usirghma 27,
Corollary 26 and Lemma 25.

Proposition 30 Suppos€l’, ny> N r;>; T, ny> M. Then(I", n) > N~(I", n) > M.

PROOF. We definerR as

(C,meN (T, mpeM KT, 0N -, (T, my>M
I,ny>N I, my>M [, ny>N = (I, my>M

Using Lemma 27 and Lemma 25 it is easy to show fhatbisimulation. Then by
transitivity of ~ we obtain the required result.

Definition 31 (Bisimulation up-to B-moves) A relation R over configurations is
called abisimulation up-tg3-moves if whenevekI'y, n)>N R (I'y, my>M then

e (I'y, Ny > N N (I, 'y > N implies{I'y, my > M N {Is,,m’)y> M’ such that
Ty e N 5, 0 = 0 Ro ~ (T, My > M’

o Iy, Mm>M e I, m)> M implies{I’,n) > N £ I, ") > N such that
(T M) > M/ 5 0 =0 Ro ~ (T, ) > N’

We usex; to denote the largest such relation.

35



Definition 31 provides us with a powerful method for approating bisimulations.
In a bisimulation up-tgg-moves an actioI'y, n) > N N I,y > N can be

matched by a weak matching actidrn,, m)> M SN I, my> M’ such that up-to
B-derivatives oiI'y,, n") > N’ modulo structural equivalence on the one side, and
up-to bisimilarity on the other side, the paifis,, ) > N" and(I’},,n7) > M" are
once more related. Intuitively then, in such a relation afigomation can represent
all the configurations to which it can evolve usifignoves. in order to justify the
use of these approximate bisimulations we need the follgwasult:

Lemma 32 Supposély, ny)>M1 x4 (I'2, np)> Mz and(I'y, ny)>M; £ (I}, M)»>M1.
Then(Tz, ny) > My = (I, L) > M}, where(I',, 1) > M] & o ~5 o & (I, ) > M.

PROOF. We proceed by induction on the length(®*%, n;) > M, £, (L}, N> M1
The base case, when the length is zeroBneM; = I'} » M is trivial. There are
two inductive cases. Here we focus on one case where

Ty e My — (T nbs M =5 (L) > M, (27)
and leave the other (similar) case for the interested reader
By the definition ofx4, Definition 31, there existd 3, n3) > M3 such thatT’,, ny) »
M, —* (I, nz) > M3 and
T nhy > M2 -5 = 0 a0 & (T3, ) > M3 (28)

By (27) and the expansion of (28) we have the following diagta complete, for
somel'l, I'5, M2, M2.

(C} Ny > Mi——o =¢ ([}, » M2¥s (5, n)» M7~ ([5,m)» Mj
u
Ty 1) > M

We immediately fill the first part of the diagram, using Lemn®ad Lemma 25,
to get the following:

(C} N > M=o = ([}, np > M~ ([5,m) > M2 ~ ([3,n) > M3

|

Iy, np)» |\/|'|—>o =; (I, N> |\/|3

36



By our inductive hypothesis we fill in the third part wheRe=~ o 5 o =

([}, > Mi——o =¢ ([}, np) » MZ ¥ (T5,n)» M7~ ([5,n)» M

N

(C > Mi—=0 = (I1,n) » M7 R ([3,n3) > M3

And finally we complete the diagram by the definitionsof

(rt, ni> > M]J_‘I—T%o = (I}, ni) > I\/I% ~g (T2, ng) > M% (I, n%) > M%

1 g 1 |

(Fp ) > Mi—"o = (I1,np) > MJ R (5, n3) > M3 (I o) > M,

X

2

The required result follows from the above completed diagead the fact that

*

|;>B C =, from Proposition 30, ang;C ~ C =, from Lemma 25.

Proposition 33 (Soundness of bisimulations up-t@-moves)

(I,ny»> N~ IV, my»>M implies (I', n)>» N = (I",m)» M

PROOF. We prove the proposition by defining the relatiRras
R:{<F’n>>N’<r’am>>M <F,n>>N%O%ﬁO%<F’,m>I>M}
and showing that it is a bisimulation. The result then fokoaince~xC R.

Assume&lI's, ny)> My N (I';, my)>Mj. By our definition ofR, there exist$I'}, n})»
M and(I;, n,) » M} such that

(T, ny> My=(T'7, np) > M (29)
(T3 D) s M x4 (I, 0,y > M, (30)
(I, M) » M3 ~ (T2, np) > My (31)

From (29) and the definition of bisimulation we know

@l nhys MI == (T2 n2)» M2 such thatT, n,) > M} ~ (2, %) > M2 (32)
By Lemma 32, (32), and (30) we know

37



(T, ) > Mj == ('3, nky» M2 such that
T2,y > M2 ~ 0 x4 0 ~ ('3, N3) > M3 (33)

and by (33) and (31) we also conclude

(T2, M) > My = (T2, n2)» M2 such thatT3, nk)» M2 ~ (T2 n2)» M2 (34)

which is our matching move, whetg}, n;)>M; R (I's, n3)> M2 by (32), (33), (34)
and the transitivity of.

As a result of Theorem 23, in order to prove tlsatver, is dynamically 1-fault
tolerant, we can use Definition 21 and giveiaglewitness bisimulation relation
satisfying

(I'e, 0y > server, ~ (I'e, 1) > server,,
as opposed to three separate relations otherwise requif@dfimition 16. But now,
because of Proposition 33 we can go one step further anddimselves to a single
witness bisimulation up-t68-moves. This approach is taken in the following, final,
example.

Example 34 (Proving Dynamic Fault Tolerance) Consider the relatiorR over
extended configurations, defined by

R L {{I' > server,, I' > server,)} U [ U R (m, m’ )]

m,nY eENAMES

R is the union of all the relation®’(m, nY) where we substitute the variablesyx
in R'(x,y) by names nm' € Nawmes. For clarity, the presentation o®’(X, y):

e omits type information associated with scoped naofe&aand sync

¢ uses the shorthanid for datg syncandT for I'e defined earlier]" is also used
as an abbreviation fo(T", n) whenever r= 0

e uses the following process definitions from Example 20:

S(y) & syn@(x).y(x)
R k[ dat®(x,y, 2).go z .yI{f(X))]

The mapping of the intermediary statesRf(X,y) is based on the separation of
the sub-systems making s@rver, (and its derivatives) into two classes, based on
their dependencies on the unreliable locationsks and k:

I ndependent: sub-systems whose behaviour is nfgeted by the state of fori =
1..3. An example of such code is the located procksgic?(x).y!(x)], denoted
as [ S(y)] above.

38



Dependent: sub-systems whose behaviour depends on the statdanfik= 1..3.
Examples of such sub-systems are
¢ |ocated processes that intendgo tok;, such as the queries sent to the database
replicagok.di{x, y, ).
e processes thateside at;, such as the database replicas themselves, denoted
asR; above and its derivativekgo | .y!{f(x))].
¢ located processes that hamggrated fromk;, such as replies from these repli-

cas, [y {f(x)].

In server, there are sub-systems dependentoarid k but not on k. To relate sub-
systems dependent on unreliable locatidRigx, y) uses three asymmetric relations
ranging over systems:

e RIY(x,y) is a (quasi) identity relation; when we define the actual tiela we
explain why it is not exactly the identity.

e RY(x,y) maps left systems depending emdkthe null process at;lon the right,
k[ O] . We use this mapping whenikdead, exploiting the structural equivalence
rule (bs-dead).

e R=(x,y), maps left systems depending @mokthe null process at | on the right,
[[O]. We use this mapping when in order to reach a bisimilar stheereplica at
ki must have been successfully queried and the answer musbbemesuccess-
fully returned and consumed by3(y)] .

In R'(X,y), the dependent sub-systems are related with these threestions de-
pending on two factors: (1) the state of the respectjitbhdy depend on (2) whether
the global system is in a position to output an answer backeodbserver. More
specifically:

(1) Aslong asis alive in the right configuration, then the sub-systemsdemg
on k is related to its corresponding sub-system in the left haordiguration
usingRl9(x,y) fori = 1..2.

(2) When kfori = 1..2 dies, then we refer to the second criteria, that is whether
the global system is ready or not to return an answer back ¢oadibserver,
derived from the fact thaf I5(y)] has not yet reduced:

(a) Ifthe global system isotready to output an answer back to the observer,
then we relate the sub-systems depending;arsingR(x, y). We note
that here we make use Bfmoves such as those usiftgngo) and struc-
tural rules such agbs-dead) from Table 11 and Table 12 respectively. To
map dead code and code migrating to dead locations[t@]k The other
sub-system depending on the other unreliable locatigriglkj # i) is
still related usingR%(x, y).

(b) If the global system is ready to output an answer back ¢odbserver
(I[y!<f(x))]), or has already done so, then we relate the sub-systems de-
pending on the dead location ksingRI(x, y). The djference from the
previous case lies in the mapping used for the sub-systependang on

39



kj, the other unreliable location. Here we have two further-salses:

(i) If k; died beforeservicing the query, that is before returning an an-
swersynd(f(x)) back to I, then the only way we can output an an-
swer back to the observer is through the complete servicineo
other replica at k. Thus we map the sub-system depending;om k
the left configuration to the corresponding sub-system erritht
using usingR; (X, y).

(i) If k; diedafterservicing the query, we simply match the sub-systems
depending on the other unreliable locatiopusing the identity re-
lation R%(x, y) as before.

For clarity, the presentation oR’(x, y) is partitioned into three groups of clauses,
each containing 4 clauses each.

e The first group describes the cases where the configurationaa ready to
output back an answer to the observer (case 2(a)).

e The second group describes the cases where the configuwsaiemeady to out-
put back an answer to the observer (case 2(b)).

e The third group describes the cases where the configuratiame already out-
putted back an answer to the observer.

We note that, in contrast to Example 20, the three sub-aiatibelow abstract
away from mapping the sub-system reduct

Qi(xy) < I[gok.data(x,y, ]

Since we are only required to give a bisimulation ugs{ahe g-rule (b-go-pub)
allows us to automatically abstract away from such an ingdrary process in
R’(X,y), since the migration source location | is public, thus imtabrSimilarly,
the two sub-relation&2(x, y) andR>(x, y) abstract away from mapping tuples like

(k[go 1.yt kIOl and<ki[go|.y!(f(x)]. I[C])

respectively. Since the left hand configuration executes(dynamic) failure-free
setting, we can apply thé-rule (b-go-ff) to abstract away over the intermediary
process f gol.y!(f(x))]. For the same reasorR!%(x, y) is not exactly the identity
relation; theg-rule (b-go-ff) allows us to abstract away fromflgo | .y!{f(x))] and
instead we have the pair

(IYKEOT, kilgo L.y (01D

We note however that for cases when the potential dynanhicdas alsoO in the
right configuration (this happens after we induce one f&)uthen we can perform
the same abstraction on the right hand side, omit the abowegral obtain an
identity relation. More specifically, iR’ (x, y), this happens for tha™, 39, 4%, g
and12" clauses.

40



R (x,y) %'

' > (vi)

I'> (vi)

I'> (vid)

I'> (vid)

' > (vi)

I'> (vid)

I'> (vid)

I'> (vi)

LSyl
| M1 | M2

LSy
| M1 M2
LSy
| M1| My

ILs(y)l
| M1 | M2

Iy <f (D]
| M1| M

Iy (F(x))]
| M1 M2
Iy (F(x))]
| M1| My

Iy <f (D]
| M1| M

F>(vﬁ)(M1|M2)

Co 07 (M M, )

F>(vﬁ)(M1|M2)

Co 07) (M M, )

AL, 1) > (vi)

) F_kl > (Vﬁ)

, F—kz > (Vﬁ)

s F_k3 > (Vﬁ)

AL, 1) > (v)

. F—kl > (Vﬁ)

, F—kz > (Vﬁ)

) F_k?) . (Vﬁ)

41

I[S(y)l
| N1 | N2

LSy
I NI N,
LSy
| N1 | Nz

ISyl
| N1 | N2

Iy (x))]
N2 N

Iy (CF(x))]
I NI N,
Iy CF ()01
| N1 | N2

Iy <f (Dl
I N2 N

AT Do 07 Ny N
=k » (Vﬁ)(Nll Nz)
T—ko> () ( Ny | N,

Tks> O) (NN,

(Mg,
(Mg,
(M,
(Mg,
(M,
(Mg,
(Mg,
(Mg,

(My,
(Mg,
(Mg,
(Mg,
(Mg,
(Mg,
(My,
(Mg,

(Mg,
(Mg,
(Mg,
(Mg,
(My,
(Mg,
(Mg,
(Mg,

Np) € Rlld(x, s)
No) € ngd(x, S)
Np) € RE(X, 9)
Np) € RE(X, 9)
N;) € Rlld(X, S)
No) € R5(X, S)
Np) € Rlld(x, S)
Np) € RI(x, s)

Np) € Rlld(x, S)
Np) € RE(x, 9)
Ni) € R(l)(X, S)
No) € R5(X, S)
N1) € R7 (X, S)
Np) € R(X, 9)
Np) € Rlld(x, s)
N2) € RE(X, 9)

Ni) € RY(x, 5)
Np) € RE(X, 9)
Ny) € RI(x, 9)
No) € R5(X, S)
N1) € R7(X, S)
N2) € RI(X, 9)
Np) € RY(X, 9)
Np) € RE(X, 9)




kIdix.y. D] R .k[O] kIdi(x.y. D] R .1[O]
RO Y ENIYEON] k[0 f R ENIyKEe] L I[0]
I[O] K[0] IOl [0]

k[dIy, DI IR kTdix y, DT IR

R (x,y) Iy (x))] .ki[gol.yK(f(x))]
Iy CE (] ALY

It0] 100

To elucidate the above presentation, we consider a numbgogsible transitions
in R'(x,y) as an example. Assume we are one of the states described fsthe
clause inR’(X,y)

where

<Ml3 N1> € R!]_d(x’ S) (35)
(M2, Np) € R¥(x, 9)

ILS(y)I

- [ [EW)!
|

},(F,l)t> (vﬁ)[l

M1 | M, Nz | N2

If in either configuration (left or right), we accept an ansvi®m any replica and
I[S(y)] goesto[y!{f(x))], then we can match this with an identical transition and
go to a state described by tH# clause

ere
(M, N;) € RY(x, 9)
(M3, N3) € RE(x, 9)

Ty <f O]
M1 M,

Iy (E (D]
IN7 N,

I'> (vi)

([, 1) > (vR) [

If on the other hand, fron(35) the right configuration performs amove and in-
jects a dynamic fault atj(the case for kis dual), we transition to a state described
by the2" clause

where

(M1,Ny) € R(l)(X, S) (36)
<M23 N2> € R|2d(x’ S)

ILsy)l
| My [ M2

ILS(y1

I'> (vi) =k > (vﬁ)[
|

N1 | N2

At this point, any actions by Mor N, are mapped by the identical action on the
opposite side, while still remaining in a state describedtiiy 2™ clause of the
relation. If however in36), M; is involved in an action, then we have two cases:

42



¢ If the action involving M causes[| S(y)] to reduce to[y!{f(x))] while reducing
to M itself, then we transition to a state described by $feclause

ere
<M,3 N1> € Rg(x’ S)
(M2, N7) € R5(X, 9)

Iy (x))]
M1 M

Iy (x))]
N2 NG

['> (vid)

=k » (Vﬁ)[

where on the right hand side,;Nas compensate for the inactive &hd match
the move by weakly reducing tg,Nhteracting with its respectivg 5(y)] so that
it reduces it to [y!{f(x))]. We highlight the fact that this internal interaction
cannot be done by N\since kK is dead.

e Otherwise, if [ S(y)] is not gfected, we match the silent move from Wth the
empty move on the right hand side.

6 Conclusions and Related Work

This paper is a revised and extended version of the confergmsentation [5]. We
adopted a subset of [4] and developed a theory for systerhttaalance in the
presence of fail-stop node failure. We formalised two daéins for fault tolerance
based on the well studied concept of observational equigaleThe first defini-
tion assumes a static network state whereby the faults Heaedst been induced,;
the second definition assumes that faults may be inducedmygaby at any stage
of the computation. Subsequently, we developed sound pecbhiques with re-
spect to these definitions which enable us to give tractaiolefp to show the fault
tolerance of systems; we gave two example proofs using firesé techniques.

Future Work  The immediate next step is to apply the theory to a wider spetct
of examples, namely systems using replicas with state astérsyemploying fault

tolerance techniques such as lazy replication: we postulett the existing the-
ory should séfice. Other forms of fault contexts that embodffelient assumptions
about failures, such as fault contexts with dependenciasdes faults, could be
explored. Another avenue worth considering is extendirgtifeory to deal with

link failure and the interplay between node and link fail[#E In the long run, we

plan to develop of a compositional theory of fault tolergreagabling the construc-
tion of fault tolerant systems from smaller component systesms. For all these
cases, this work should provide a good starting point.

Related Work To the best of our knowledge, Prasad’s thesis [14] is theeslos
work to ours, addressing fault tolerance for process calEwien though similar

43



concepts such as redundancy (called "duplication”) andrizifree execution are
identified, the setting and development of Prasdié&i considerably form ours. In
essence, three new operators ("displace”, "audit” and¢kpeint”) are introduced
in a variant of CCS; equational laws for terms using theseaipes are then devel-
oped so that algebraic manipulation can be used to showetlmastin this calculus
are, in some sense, fault tolerant with respect to theiripaion.

The use of confluence of certairsteps as a useful technique for the management

of large bisimulations is not new. It has been already stuidig¢ensively in [13,7].
See [6] for particularly good examples of where they havaiaantly decreased
the size of witness bisimulations. Elsewhere, Nestmeinal. [12] have explored
various other ways of using bounds in the environment to gopermissible fail-
ures.

References

[1] Roberto M. Amadio and Sanjiva Prasad. Localities anldifes.FSTTCS: Foundations
of Software Technology and Theoretical Computer Scieht,e1994.

[2] Flavin Christian. Understanding fault tolerant dibtried systemsCommunications
of the ACM 34(2):56—78, February 1991.

[3] Alberto Ciataglione, Matthew Hennessy, and Julian Rathke. Proof methgis for
behavioural equivalence in/D Technical Report Q2005, University of Sussex, 2005.

[4] Adrian Francalanza and Matthew Hennessy. A theory ofesysbehaviour in the
presence of node and link failures. GONCUR volume 3653 ofLecture Notes in
Computer Scienggages 368—382. Springer, 2005.

[5] Adrian Francalanza and Matthew Hennessy. A theory ofesysfault tolerance. In
L. Aceto and A. Ingolfsdottir, editorsRroc. of 9th Intern. Conf. on Foundations of
Software Science and Computation Structures (FoSSaC¥d@lejme 3921 oL NCS
Springer, 2006.

[6] J.F. Groote and M. P. A. Sellink. Confluence for procegs#ieation. Theor. Comput.
Sci, 170(1-2):47-81, 1996.

[7] Jan Friso Groote and Jaco van de Pol. State space redugsiog partial tau-
confluence. IMathematical Foundations of Computer Scienuages 383—-393, 2000.

[8] Matthew Hennessy, Massimo Merro, and Julian Rathke.arde/a behavioural theory
of access and mobility control in distributed systembeoretical Computer Science
322:615-669, 2004.

[9] Matthew Hennessy and Julian Rathke. Typed behaviouyaivalences for processes
in the presence of subtyping/lathematical Structures in Computer Scient4:651—
684, 2004.

44



[10] Matthew Hennessy and James Riely. Resource acces®lconsystems of mobile
agents.Information and Computatiqri73:82—120, 2002.

[11] K. Honda and N. Yoshida. On reduction-based processasgos. Theoretical
Computer Science52(2):437-486, 1995.

[12] Uwe Nestmann and Rachele Fuzzati. Unreliable FailuegeEtors via Operational
Semantics. IMMSIAN '03 Lecture Notes in Computer Science, pages 54-71, 2003.

[13] Anna Philippou and David Walker. On confluence in thecaleulus. InICALP
'97: Proceedings of the 24th International Colloquium ont@mata, Languages and
Programming pages 314—-324, London, UK, 1997. Springer-Verlag.

[14] K. V. S. Prasad Combinators and Bisimulation Proofs for Restartable SystePhD
thesis, Department of Computer Science, University of Bigligh, December 1987.

[15] James Riely and Matthew Hennessy. Distributed pre&sessd location failures.
Theoretical Computer Science26:693—-735, 2001.

[16] Davide Sangiorgi and David WalkeiThe z-calculus Cambridge University Press,
2001.

[17] Richard D. Schlichting and Fred B. Schneider. Faipspwocessors: An approach to
designing fault-tolerant computing systen@mputer System&(3):222—-238, 1983.

[18] Paulo Verissimo and Luis RodriguesDistributed Systems for System Architects
Kluwer Academic Publishers, 2001.

45



