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Process behaviour is often defined either in terms of the tests they satisfy, or in terms of the logical
properties they enjoy. Here we compare these two approaches, usingextensional testingin the style
of DeNicola, Hennessy, and a recursive version of the property logic HML.

We first characterise subsets of this property logic which can be captured by tests. Then we show
that those subsets of the property logic capture precisely the power of tests.

1 Introduction

One central concern of concurrency theory is to determine whether two processes exhibit the same be-
haviour; to this end, many notions of behavioural equivalence have been investigated [Gla93]. One ap-
proach, proposed in [DH84], is based on tests. Intuitively two processes aretesting equivalent, p≈testq,
relative to a set of testsT if p andq pass exactly the same set of tests fromT. Much here depends of
course on details, such as the nature of tests, how they are applied and how they succeed.

In the framework set up in [DH84] observers have very limitedability to manipulate the processes
under test; informally processes are conceived as completely independent entities who may or may not
react to testing requests; more importantly the application of a test to a process simply consists of a run to
completion of the process in atest harness. Because processes are in general nondeterministic, formally
this leads to two testing based equivalences,p ≈may q and p ≈mustq; the latter is determined by the set
of tests a process guarantees to pass, writtenp must satisfy t, while the former by those it is possible to
pass,p may satisfy t. Themayequivalence provides a basis for the so-called trace theoryof processes
[Hoa85] , while themustequivalence can be used to justify the various denotationalmodels based on
Failuresused in the theory of CSP, [Hoa85, Old87, DN83].

Another approach to behavioural equivalence is to say that two processes are equivalent unless there
is a property which one enjoys and the other does not. Here again much depends on the chosen set of
properties, and what it means for a process to enjoy a property. Hennessy Milner Logic[HM85] is a
modal logic often used for expressing process properties interm of the actions they are able to perform.
It is well-known that it can be used, via differing interpretations, to determine numerous variations on
bisimulation equivalence, [Mil89, AILS07]. What has received very little attention in the literature
however is the relationship between these properties and tests. This is the subject of the current paper.

More specifically, we address the question of determining which formulae of a recursive version
of the Hennessy Milner Logic, which we will refer to asrecHML, can be used to characterise tests.
This problem has already been solved in [AI99] for a non-standard notion of testing; this is discussed
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32 Process Behaviour: Formulae v. Tests

more fully later in the paper. But we will focus on the more standard notions ofmayandmusttesting
mentioned above.

To explain our results, at least intuitively, let us introduce some informal notation; formal definitions
will be given later in the paper. Suppose we have a propertyφ and a testt such that:

for every processp, p satisfiesφ if and only if p may satisfythe testt.

Then we say the formulaφmay-represents the testt. We use similar notation with respect tomusttesting.
Our first result shows that the power of tests can be captured by properties; for every testt

(i) There is a formulaφmay(t) which may-representst; see Theorem 5.2

(ii) There is a formulaφmust(t) which must-representst; see Theorem 4.18

Properties, or at least those expressed inrecHML, are more discriminating than tests, and so one
would not expect the converse to hold. But we can give simple descriptions of subsets ofrecHML, called
mayHMLandmustHMLrespectively, with the following properties:

(a) Everyφ ∈mayHML may-represents some testtmay(φ); see Theorem 5.1

(b) Everyφ ∈mustHML must-represents some testtmust(φ); see Theorem 4.14

Moreover because the formulaeφmay(t), φmust(t) given in (i), (ii) above are inmayHML, mustHMLre-
spectively, these sub-languages ofrecHML have a pleasing completeness property. For example letφ be
any formula fromrecHML which can be represented by some testt with respect tomusttesting; that is
p satisfiesφ if and only if p must satisfy t. Then, up to logical equivalence, the formulaφ is guaranteed
to be already in the sub-languagemustHML; that is, there is a formulaψ ∈mustHMLwhich is logically
equivalent toφ. The languagemayHMLhas a similar completeness property formaytesting.

We now give a brief overview of the remainder of the paper. In the next section we recall the formal
definitions required to state our results precisely. Our results in the may case will only hold when the set
of tests we consider come from a finite state finite branching LTS. Further, we also require for the LTS
of processes to be finite branching when dealing with themusttesting relation. The reader should also
be warned that we use a slightly non-standard interpretation of recHML.

We then explain bothmayandmusttesting, where we take as processes the set of states from an
arbitrary LTS, and give an explicit syntax for tests. In Section 3 we give a precise statement of our results,
including definitions of the sub-languagesmayHML and mustHML, together with some illuminating
examples. The proofs of these results for themustcase are given in Section 4, while those for themay
case are outlined in Section 5. We end with a brief comparisonwith related work.

2 Background

One formal model for describing the behaviour of a concurrent system is given byLabelled Transition
Systems (LTSs):

Definition 2.1. A LTS over a set of actions Act is a tripleL = 〈S, Actτ, −→〉 where:

• S is a countable set of states

• Actτ = Act∪{τ} is a countable set of actions, whereτ does not occur in Act

• −→⊆ S×Actτ ×S is a transition relation.

We use a,b, · · · to range over the set of external actions Act, andα,β, · · · to range over Actτ. The standard

notation s
α
−→ s′ will be used in lieu of(s,α, s′) ∈−→. States of a LTSL will also be referred to as (term)

processes and ranged over by s, s′, p, q �.
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Let us recall some standard notation associated with LTSs. We writes
α
−→ if there exists somes′ such

thats
α
−→ s′, s−→ if there existsα ∈ Actτ such thats

α
−→, ands

α
−→/ , s−→/ for their respective negations.

We use Succ(α, s) to denote the set{s′|s
α
−→ s′}, and Succ(s) for

⋃

α∈Actτ Succ(α, s). If Succ(s) is finite for
every states∈ S the LTS is said to befinite branching. Finally, a statesdiverges, denoteds⇑, if there is

an infinite path of internal movess
τ
−→ s′

τ
−→·· · , while it converges,s⇓, otherwise.

For a given LTS, each action of the form
a
−→ can be interpreted as an observable activity; informally

speaking, this means that each component which is external to the modeled system can detect that such an
action has been performed. On the other hand, the actionτ is meant to represent internal unobservable

activity; this gives rise to the standard notation for weak actions. s
τ
=⇒ s′ Is used to denote reflexive

transitive closure of
τ
−→, while s

a
=⇒ s′ denotess

τ
=⇒ s′′

a
−→ s′′′

τ
=⇒ s′. Whens

α
=⇒ s′ we say thats′ is an

α-derivative ofs. The associated notations
α
=⇒, s=⇒, s

α
=⇒/ ands=⇒/ have the obvious definitions.

It is common to define many operators on LTSs for interpretingprocess algebras. In this paper we
will use only one, a parallel operator designed withtestingin mind.

Definition 2.2 (Parallel composition).
LetL1 = 〈S1, Act1τ , −→〉,L2 = 〈S2, Act2τ , −→〉 be LTSs. The parallel composition ofL1 andL2 is a LTS
L1|L2 = 〈S1×S2, {τ},−→〉, where−→ is defined by the following SOS rules:

s
τ
−→ s′

s|t
τ
−→ s′|t

t
τ
−→ t′

s|t
τ
−→ s|t′

s
a
−→ s′ t

a
−→ t′

s|t
τ
−→ s′|t′

s | t is used as a conventional notation for(s, t). �

The first two rules express the possibility for each component of a LTS to perform independently an
internal activity, which cannot be detected by the other component. The last rule models the synchro-
nization of two processes executing the same action; this will result in unobservable activity.

2.1 Recursive HML

Hennessy Milner Logic(HML), [HM85] has proven to be a very expressive property language for states
in an LTS. It is based on a minimal set of modalities to capturethe actions a process can perform, and
what the effects of performing such actions are. Here we use a variant in which the interpretation depends
on the weak actions of an LTS.

Definition 2.3 (Syntax ofrecHML). Let Var be a countable set of variables. The language recHML is
defined as the set of closed formulae generated by the following grammar:

φ ::= tt | ff | X | Acc(A) | φ1∨φ2 | φ1∧φ2 | 〈α〉φ | [α]φ | min(X,φ) | max(X,φ)

Here X is chosen from the countable set of variables Var. The operators min(X,φ),
max(X,φ) act as binders for variables and we have the standard notionsof free and bound variables, and
associated binding sensitive substitution of formulae forvariables. �

Let us recall the informal meaning ofrecHML operators. A formula of the form〈α〉φ expresses the
need for a process to have anα-derivative which satisfies formulaφ, while formula [α]φ expresses the
need for allα-derivatives (if any) of a converging process to satisfy formulaφ.
FormulaAcc(A) is defined whenA is a finite subset ofAct, and is satisfied exactly by those converging
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~ tt �ρ , S ~ ff �ρ , ∅

~X�ρ , ρ(X) ~Acc(A)�ρ , {s|s⇓, if s
τ
=⇒ s′ then∃a ∈ A.s′

a
=⇒}

~〈α〉φ�ρ , 〈·α·〉(~φ�ρ) ~ [α]φ�ρ , [·α·](~φ�ρ)
~φ1∨φ2�ρ , ~φ1�ρ∪~φ2�ρ ~φ1∧φ2�ρ , ~φ1�ρ∩~φ2�ρ

~min(X,φ)�ρ ,
⋂

{P | ~φ�ρ[X 7→ P] ⊆ P} ~max(X,φ)�ρ ,
⋃

{P | P⊆ ~φ�ρ[X 7→ P]}

Table 1: Interpretation ofrecHML

processes for which eachτ-derivative has at least ana-derivative fora ∈ Act. min(X,φ) andmax(X,φ)
allow the description of recursive properties, respectively being the least and largest solution of the
equationX = φ over the powerset domain of the state space.

Formally, given a LTS〈S,Actτ,−→〉, we interpret each (closed) formula as a subset of 2S. The set 2s

is a complete lattice and the semantics is determined by interpreting each operator in the language as a
monotonic operator over this complete lattice. The binary operators∨, ∧ are interpreted as set theoretic
union and intersection respectively while the unary operators are interpreted as follows:

〈·α·〉P= { s | s
α
=⇒ s′ for somes′ ∈ P }

[·α·]P= { s | s⇓, ands
α
=⇒ s′ implies s′ ∈ P }

whereP ranges over subsets of 2S.
Open formulae inrecHML can be interpreted by specifying, for each variableX, the set of states for

which the atomic formulaX is satisfied. Such a mappingρ : Var→ 2S is called environment. LetEnv
be the set of environments. A formulaφ of recHML will be interpreted as a function~φ� : Env→ 2S.
We will use the standard notationρ[X 7→ P] to refer to the environmentρ′ such thatρ′(X) = P and
ρ′(Y) = ρ(Y) for all variablesY such thatX , Y.
The definition of the interpretation~ ·� is given in Table 2.1. When referring to the interpretation of a
closed formulaφ ∈ recHML, we will omit the environment application, and sometimes use the standard
notationp |= φ for p ∈ ~φ�.

Our version of HML is non-standard, as we have added a convergence requirement for the inter-
pretation of the box operator [α]. The intuition here is that, as in thefailures modelof CSP [Hoa85],
divergence representsunderdefinedness. So if a process does not converge all of its capabilities have not
yet been determined; therefore one can not quantify over allof its α derivatives, as the totality of this set
has not yet been determined. Further, the operatorAcc(A) is also non-standard. It has been introduced
for the sake of simplicity, as it will be useful later; in factit does not add any expressive power to the
logic, since for each finite setA⊆ Act the formulaAcc(A) is logically equivalent to [τ](

∨

a∈A〈a〉 tt ).
As usual, we will writeφ{ψ/X} to denote the formulaφ where all the free occurrences of the variable

X are replaced withψ. We will use the congruence symbol≡ for syntactic equivalence.
The languagerecHML can be extended conservatively by adding simultaneous fixpoints, leading to

the languagerecHML+. Given a sequence of variables (X) of lengthn> 0, and a sequence of formulaeφ
of the same length, we allow the formulamini(X,φ) for 1≤ i ≤ n. This formula will be interpreted as the
i-th projection of the simultaneous fixpoint formula.

Definition 2.4 (Interpretation of simultaneous fixpoints). Let X andφ respectively be sequences of vari-
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ables and formulae of length n.

~min(X,φ)�ρ ,

⋂

{P | ~φi �ρ[X 7→ P] ⊆ Pi ∀1≤ i ≤ n}

~mini(X,φ)�ρ , πi(~min(X,φ)�ρ)

whereπi is the i-th projection operator, and intersection over vectors of sets is defined pointwise. �

Again we will omit the environment application if a formula of the form mini(X,φ) is closed, that
is the only variables that occur inφ are those inX. Intuitively, an interpretation~min(X,φ)�, where
X = 〈X1, · · · ,Xn〉 andφ = 〈φ1, · · · ,φn〉, is the least solution (over the set of vectors of lengthn over 2S) of
the equation system given byXi = φi for all i = 1, · · · ,n, while ~mini(X,φ)� is thei-th projection of such
a vector. Simultaneous fixpoints do not add any expressivityto recHML, as shown below:

Theorem 2.5(Bekı́c, [Win93]).
For each formulaφ ∈ recHML+ there is a formulaψ ∈ recHML such that~φ� = ~ψ�. �

Later we will need the following properties of simultaneousfixpoints:

Theorem 2.6(Fixpoint properties).

(i) Let (P) be a vector of sets from2S satisfying~φi �ρ[X 7→ P] ⊆ Pi for every 1 ≤ i ≤ n. Then
~mini (X,φ)�ρ ⊆ Pi

(ii) Let ρmin be an environments such thatρmin(Xi) = ~mini (X,φ)�. Then~mini (X,φ)� = ~φi �ρmin. �

2.2 Tests

Another way to analyse the behaviour of a process is given by testing. Testing a process can be thought
of as an experiment in which another process, called test, detects the actions performed by the tested
process, reacting to it by allowing or forbidding the execution of a subset of observables. After observing
the behaviour of the process, the test could decree that it satisfies some property for which the test was
designed for by reporting the success of the experiment, through the execution of a special actionω.

Formally speaking, a test is a state from a LTST = 〈T,Actωτ ,−→〉, whereActωτ = Actτ∪{ω} andω is
an action not contained inActτ.

Given a LTS of processesL = 〈S,Actτ,−→〉, an experiment consists of a pairp | t from the product

LTS (L | T ). We refer to a maximal pathp | t
τ
−→ p1 | t1

τ
−→ . . . . . .

τ
−→ pk | tk

τ
−→ . . . as acomputationof p | t.

It may be finite or infinite; it is successful if there exists somen≥ 0 such thattn
ω
−→. As onlyτ-actions can

be performed in an experiment, we will omit the symbolτ in computations and in computation prefixes.
Successful computations lead to the definition of two well known testing relations, [DH84]:

Definition 2.7 (May Satisfy, Must Satisfy). Assuming a LTS of processes and a LTS of tests, let s and t
be a state and a test from such LTSs, respectively. We say

(a) smay satisfyt if there exists a successful computation for the experiment s | t.

(b) smust satisfyt if each computation of the experiment s| t is successful.

Later in the paper we will use a specific LTS of tests, whose states are all the closed terms generated
by the grammar

t ::= 0 | α.t | ω.0 | X | t1+ t2 | µX.t . (1)
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Again in this languageX is bound inµX.t, and the testt{t′/X} denotes the testt in which each free
occurrence ofX is replaced byt′. The transition relation is defined by the following rules:1

α.t
α
−→ t

t1
α
−→ t′1

t1+ t2
α
−→ t′1

t2
α
−→ t′2

t1+ t2
α
−→ t′2

µX.T
τ
−→ t{(µX.t)/X}

The last rule states that a test of the formµX.t can always perform aτ-action before evolving in the
testt{µX.t/X}. This treatment of recursive processes will allow us to prove properties of paths of recursive
tests and experiments by performing an induction on their length. Further, the following properties hold
for a testt in grammar (1):

Proposition 2.8. LetT = 〈T,Actτ,−→〉 be the LTS generated by a state t in grammar(1): thenT is both
branching finite and finite state. �

3 Testing formulae

Relative to a process LTS〈S,Actτ,−→〉 and a test LTS〈T,Actωτ ,−→〉, we now explore the relationship
between tests from our default LTS of tests and formulae ofrecHML. Given a testt, our goal is to
find a formulaφ such that the set of processes whichmay satisfy/must satisfysuch a test is completely
characterised by the interpretation~φ�. Moreover, we aim to establish exactly the subsets ofrecHML
for which each formula can be checked by some test, both in themayand mustcase.

For this purpose some definitions are necessary:

Definition 3.1. Letφ be a recHML formula and t a test. We say that:

• φ must-represents the test t, if for all p∈ S , pmust satisfyt if and only if p|= φ.

• φ is must-testable whenever there exists a test whichφ must-represents.

• t is must-representable, if there exists someφ ∈ recHML whichmust-represents it respectively.

Similar definitions are given for may testing. �

First some examples.

Example 3.2(Negative results).

(a) φ = [a] ff is notmay-testable.

Let s∈ ~ [a] ff �; a new process p can be built starting from s by letting p
τ
−→ p, whenever s

α
−→ s′

then p
α
−→ s′.

Processes p and smay satisfythe same set of tests. However, p< ~ [a] ff �, as p⇑. Therefore
no testmay-represents[a] ff .

(b) φ = 〈a〉 tt is notmust-testable.
We show by contradiction that there exists no test t thatmust-representsφ. To this end, we perform
a case analysis on the structure of t.

• t
ω
−→: Consider the process0 with no transitions. Then0 must satisfyt, whereas0 < ~φ�.

• t
ω
−→/ : Let s∈ ~φ� and consider the process p built up from s according to the rules of the

example above; we have p∈ ~φ�. On the other hand, pmust satisfyt is not true; indeed the
experiment p| t leads to the unsuccessful computation p| t � p | t � · · · .

1For the sake of clarity, the rules use an abuse of notation, byconsideringα as an action fromActτ ∪ω rather than from
Actτ.
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Therefore there is no test t whichmust-representsφ.

(c) φ = 〈a〉 tt ∧〈b〉 tt is notmay-testable.

Let s be the process whose only transitions are s
a
−→0, s

b
−→0. Let also p, p′ be the processes whose

only transitions are p
a
−→0, p′

b
−→0. We have s∈ ~φ�, whereas p, p′ < ~φ�. We show that whenever

smay satisfya test t, then either pmay satisfyt or p′ may satisfyt. Thus there exists no test which
is may-satisfied by exactly those processes in~φ�, and thereforeφ is notmay-representable. First,
notice that if smay satisfyt, then at least one of the following holds:

(i) t
ω
=⇒,

(ii) t
a
=⇒ t′

ω
=⇒,

(iii) t
b
=⇒ t′

ω
=⇒.

If t
ω
=⇒, then trivially both p and p′ may satisfyt. On the other hand, if t

a
=⇒ t′

ω
=⇒, then there exist

t′′, tω such that t
τ
=⇒ t′′

a
−→ t′

τ
=⇒ tω

ω
−→. We can build the computation fragment for p| t such that

p | t � · · ·� p | t′′ � 0 | t′ � · · ·� 0 | tω

which is successful. Hence pmay satisfyt. Finally, The case t
b
=⇒ t′

ω
=⇒ is similar.

(d) In an analogous way to(c) it can be shown that[a] ff ∨ [b] ff is notmust-testable. �

We now investigate precisely which formulae inrecHML can be represented by tests. To this end,
we define two sub-languages, namelymayHMLandmustHML.

Definition 3.3. (Representable formulae)

• The language mayHML is defined to be the set of closed formulaegenerated by the following
recHML grammar fragment:

φ ::= tt | ff | X | 〈α〉φ | φ1∨φ2 | min(X,φ) (2)

• The language mustHML is defined to be the set of closed formulae generated by the following
recHML grammar fragment:

φ ::= tt | ff | Acc(A) | X | [α]φ | φ1∧φ2 | min(X,φ) (3)

Note that both sub-languages use the minimal fixpoint operator only; this is not surprising, as informally
at least testing is an inductive rather than a coinductive property. Since there exist formulae of the form
[α]φ, φ1∧φ2 which are notmay-representable, the [·] modality and the conjunction operator, have not
been included inmayHMLThe same argument applies to the modality〈·〉 and the disjunction operator∨
in the must case, which are therefore not included inmustHML.

Note also that the modality [·] is only used inmustHML, which will be compared withmust-testing.

No diverging process must satisfy a non-trivial testt, i.e. such thatt
ω
−→/ . Hence, in this setting, the

convergence restriction on this modality is natural.
We have now completed the set of definitions setting up our framework of properties and tests. In

the remainder of the paper we prove the results announced, informally, in the Introduction.
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4 The must case

We will now develop the mathematical basis needed to relatemustHMLformulae and themusttesting
relation; in this section we will assume that the LTS of processes is branching finite.

Lemma 4.1. Let φ ∈mustHML, and let p∈ ~φ�, where p⇑: then ~φ� is the entire process space, i.e.
~φ� = S . �

This lemma has important consequences; it means formulae inmustHMLeither have the trivial interpre-
tation as the full set of statesS, or they are only satisfied by convergent states.

Definition 4.2. LetC be the set of subsets of S determined by:

• S ∈ C,

• X ∈ C, s∈ X implies s⇓. �

Proposition 4.3. C ordered by set inclusion is acontinuous partial order, cpo.

Proof. The empty set is obviously the least element inC. So it is sufficient to show that ifX0 ⊆ X1 ⊆ · · ·

is a chain of elements inC then
⋃

n Xn is also inC. �

We can now take advantage of the fact thatmustHMLactually has a continuous interpretation in
(C,⊆). The only non trivial case here is the continuity of the operator [·α·]:

Proposition 4.4. Suppose the LTS of processes is finite-branching: If X0⊆ X1 ⊆ · · · is a chain of elements
in C then

⋃

n

[·α·]Xn = [·α·]
⋃

n

Xn.

�

This continuous interpretation ofmustHMLallows us to use chains of finite approximations for these
formulae ofmustHML. That is givenφ ∈mustHMLandk≥ 0, recursion free formulaeφk will be defined
such that~φk� ⊆ ~φ(k+1)� and

⋃

k≥0 = ~φ�. We can therefore reason inductively on approximations in
order to prove properties of recursive formulae.

Definition 4.5 (Formulae approximations). For each formulaφ in mustHML define

φ0
, ff

φ(k+1)
, φ if φ = tt , ff or Acc(A)

([α]φ)(k+1)
, [α](φ)(k+1)

(φ1∧φ2)(k+1)
, φ

(k+1)
1 ∧φ

(k+1)
2

(min(X,φ))(k+1)
, (φ{min(X,φ)/X})k

�

It is obvious that for everyφ ∈mustHML, ~φk� ⊆ ~φ(k+1) � for everyk≥ 0; The fact that the union of
the approximations ofφ converges toφ itself depends on the continuity of the interpretation:

Proposition 4.6.
⋃

k≥0

~φk
� = ~φ�
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Proof. This is true in the initial continuous interpretation of thelanguage, and therefore also in our
interpretation. For details see [CN78]. �

Having established these properties of the interpretationof formulae inmustHML, we now show that
they are allmust-testable. The required tests are defined by induction on thestructure of the formulae.

Definition 4.7. For eachφ in mustHML define tmust(φ) as follows:

tmust( tt ) = ω.0 (4)

tmust(ff ) = 0 (5)

tmust(Acc(A)) =
∑

a∈A

a.ω.0 (6)

tmust(X) = X (7)

tmust([τ]φ) = τ. tmust(φ) (8)

tmust([a]φ) = a. tmust(φ)+τ.ω.0 (9)

tmust(φ1∧φ2) =







































ω.0 if φ1∧φ2 is closed and

logically equivalent to tt

τ.Tmustφ1+ τ. tmust(φ2) otherwise

(10)

tmust(min(X,φ)) =















tmust(φ) if φ is closed

µX. tmust(φ) otherwise
(11)

�

For each formulaφ in mustHML, the testtmust(φ) is defined in a way such that the set of processes
which must satisfy tmust(φ) is exactly~φ�. Before supplying the details of a formal proof of this state-
ment, let us comment on the definition oftmust(φ).
Cases (4), (5) and (7) are straightforward. In the case ofAcc(A), the test allows only those action which
are inA to be performed by a process, after which it reports success.
For the box operator, a distinction has to be made between [a]φ and [τ]φ. In the former we have to take
into account that a converging process which cannot performa weaka-action satisfies such a property;
thus, synchronisation through the execution of aa-action is allowed, but a possibility for the test to re-
port success after the execution of an internal action is given. In the case of [τ]φ no synchronization
with any action is required; however, since we are adding a convergence requirement to formulaφ, we
have to avoid the possibility that the testtmust([τ]φ) can immediately perform aω action. This is done by
requiring the testtmust([τ]φ) to perform only an internal action.
Finally, (10) and (11) are defined by distinguishing betweentwo cases; this is because a formula of the
form φ1∧φ2 or min(X,φ) can be logically equivalent to tt , whose interpretation isthe entire state space.
However, the second clause in the definition oftmust(φ) for such formulae require the test to perform aτ
action before performing any other activity, thus at most converging processesmust satisfysuch a test.

In order to give a formal proof thattmust(φ) does indeed capture the formulaφ we need to establish
some preliminary properties. The first essentially says that no formula of the formmin(X,φ), with φ not
closed, will be interpreted in the whole state space.

Lemma 4.8. Letφ =min(X,ψ), withψ not closed. Then~φ� , S . �

Then we state some simple properties about recursive tests.



40 Process Behaviour: Formulae v. Tests

Lemma 4.9.

• p must satisfyµX.t implies pmust satisfyt{µX.t/X}.

• p⇓, p must satisfyt{µX.t/X} implies pmust satisfyµX.t. �

Note that the premisep ⇓ is essential in the second part of this lemma, asµX.t cannot perform aω
action; therefore it can bemust-satisfied only by processes which converge.

Proposition 4.10. Suppose the LTS of processes is finitely branching. If pmust satisfytmust(φ) then
p ∈ ~φ�.

Proof. Supposep must satisfy tmust(φ); As both the LTS of processes (by assumption) and the LTS
of tests (Proposition 2.8) are finite branching, the maximallength of a successful computation|p, t| is
defined and finite. This is a direct consequence of Konig’s Lemma [BJ89]. Thus it is possible to perform
an induction over|p, tmust(φ) | to prove thatp ∈ ~φk�. The result will then follow from Proposition 4.6.

• If |p, tmust(φ) | = 0 thentmust(φ)
ω
−→, and hence for eachp ∈ S p must satisfy tmust(φ). Further it is

not difficult to show thatφ is logically equivalent to tt , hencep∈ ~φ�.

• If |p, tmust(φ) | = n+ 1 then the validity of the Theorem follows from an application of an inner
induction onφ. We show only the most interesting case, which isφ = min(X,ψ). There are two
possible cases.

(a) If X is not free inψ then the result follows by the inner induction, asmin(X,ψ) is logically
equivalent toψ, andtmust(min(X,ψ)) ≡ tmust(ψ) by definition.

(b) If X is free inψ then, by Lemma 4.9p must satisfy tmust(ψ){µX. tmust(ψ)/X}, which is syntac-
tically equal totmust(ψ{min(X,ψ)/X}).
Since|p, tmust(ψ{min(X,ψ)/X}) | < |p, tmust(φ) |, by inductive hypothesis we have
p∈ ~ψ{min(X,ψ)/X}k� for somek, hencep ∈ ~φ(k+1)�. �

To prove the converse of Proposition 4.10 we use the following concept:

Definition 4.11 (Satisfaction Relation). Let R⊆ S×mustHML and for anyφ let (Rφ) = {s | s Rφ}.
Then R is a satisfaction relation if it satisfies

(R tt) = S

(R ff ) = ∅

(R Acc(A)) = { s | s⇓, s
τ
=⇒ s′ implies S(s′)∩A, ∅ }

(R [α]φ) ⊆ [·α·](Rφ)

(Rφ1∧φ2) ⊆ (Rφ1)∩ (Rφ2)

(Rφ{min(X,φ)/X}) ⊆ (R min(X,φ))

�

Satisfaction relations are defined to agree with the interpretation~ ·�. Indeed, all implications re-
quired for satisfaction relations are satisfied by|=. Further, as~min(X,φ)� is defined to be the least
solution to the recursive equationX = φ, we expect it to be the smallest satisfaction relation.

Proposition 4.12.The relation|= is a satisfaction relation. Further, it is the smallest satisfaction relation.
�

Proposition 4.12 ensures that, for any satisfaction relation R, |= is included inR; in other words, if
p |= φ thenp Rφ. Next we consider the relationRmustsuch thatp Rmustφwheneverp must satisfy tmust(φ),
and show that it is a satisfaction relation.



A, Cerone & M. Hennessy 41

Proposition 4.13. The relation Rmust is a satisfaction relation.

Proof. We proceed by induction on formulaφ. Again, we only check the most interesting case.
Supposeφ =min(X,ψ). We have to showp must satisfy tmust(ψ{φ/X}) implies p must satisfy tmust(φ).
We distinguish two cases:

(a) X does not appear free inψ. thentmust(φ) = tmust(ψ), andψ{φ/X} = ψ. This case is trivial.

(b) X does appear free inφ: in this casetmust(φ) = µX. tmust(ψ), andtmust(ψ{φ/X}) has the form
tmust(ψ){µX. tmust(ψ)/X}. By Lemma 4.8~φ� , S; therefore Lemma 4.1 ensures thatp ⇓, and hence
by Lemma 4.9 it followsp must satisfy tmust(φ). �

Combining all these results we now obtain our result on the testability ofmustHML.

Theorem 4.14. Suppose the LTS of processes is finite-branching. Then for every φ ∈ mustHML, there
exists a test tmust(φ) such thatφ must-represents the test tmust(φ).

Proof. We have to show that for any processp, p must satisfy tmust(φ) if and only if p ∈ ~φ�. One
direction follows from Proposition 4.10. Conversely suppose p ∈ ~φ�. By Proposition 4.12 it follows
that for all satisfaction relationsR it holds p Rφ; hence, by Proposition 4.13,p Rmustφ, or equivalently
p must satisfy tmust(φ). �

We now turn our attention to the second result, namely that every testt is must-representable by some
formula inmustHML. Let us for the moment assume a branching finite LTS of tests inwhich the state
spaceT is finite.

Definition 4.15. Assume we have a test-indexed set of variables{Xt}. For each test t∈ T defineϕt as
below:

ϕt , tt if t
ω
−→ (12)

ϕt , ff if t −→/ (13)

ϕt , (
∧

a,t′:t
a
−→t′

[a]Xt′ ) ∧ Acc({a|t
a
−→}) if t

ω
−→/ , t

τ
−→/ , t −→ (14)

ϕt , (
∧

t′:t
τ
−→t′

[τ]Xt′ ) ∧ (
∧

a,t′:t
a
−→t′

[a]Xt′ ) if t
ω
−→/ , t

τ
−→ (15)

Takeφt to be the extended formula mint(XT ,ϕT), using the simultaneous least fixed points introduced
in Section 2.1. �

Notice that we have a finite set of variables{Xt} and that the conjunctions in Definition 4.15 are finite,
as the LTS of tests is finite state and finite branching. These two conditions are needed forφt to be well
defined.

Formulaφt captures the properties required by a process tomust satisfytestt. The first two clauses
of the definition are straightforward. Ift cannot make an internal action or cannot report a success, but

can perform a visible actiona to evolve int′, then a process should be able to perform a
a
=⇒ transition

and evolve in a processp′ such thatp′must satisfy t′. The requirementAcc({a | t
a
−→}) is needed because

a synchronisation between the processp and the testt is required forp must satisfy tto be true.
In the last clause, the testt is able to perform at least aτ-action. In this case there is no need for a

synchronisation between a process and the test, so there is no term of the formAcc({a | t
a
−→}) in the

definition ofφt. However, it is possible that a processp will never synchronise with such test, insteadt



42 Process Behaviour: Formulae v. Tests

will perform a transitiont
τ
−→ t′ after p has executed an arbitrary number of internal actions. Thus,we

require that for each transitionp
τ
=⇒ p′, p′ must satisfy t′.

We now supply the formal details which lead to state that formula φt characterises the testt. Our
immediate aim is to show that the two environments, defined by

ρmin(Xt) , ~φt � ρmust(Xt) , {p | p must satisfy t}

are identical. This is achieved in the following two propositions.

Proposition 4.16. For all t ∈ T it holds thatρmin(Xt) ⊆ ρmust(Xt).

Proof. We just need to show that~ϕt �ρmust⊆ ρmust(Xt): the result follows from an application of the
minimal fixpoint property, Theorem 2.6 (i). The proof is carried out by performing a case analysis ont.
We will only consider Case (14), as cases (12) and (13) are trivial and Case (15) is handled similarly.

Assumep∈ ~ϕt �ρmust. We have

(a) p⇓,

(b) wheneverp
τ
=⇒ p′ there exists an actiona ∈ Act such thatt

a
−→ andp′

a
=⇒,

(c) wheneverp
a
=⇒ p′ andt

a
−→ t′, p′ ∈ ρmust(Xt′), i.e. p′ must satisfy t′.

Conditions (a) and (b) are met sincep∈ ~Acc({a | t
a
−→)� andt

a
−→ for somea∈ Act, while (c) is true

because ofp ∈ ~
∧

a,t′: t
a
−→t′

[a]Xt′ �.

To prove thatp ∈ ρmust(Xt) we have to show that every computation ofp | t is successful. To this end,
consider an arbitrary computation ofp | t; condition (b) ensures that such a computation cannot have the
finite form

p | t � p1 | t � · · · pk | t � pk+1 | t � · · ·� pn | t (16)

For such a computation we have thatpn
τ
=⇒ p′, and there existsp′′ with p′

a
−→ p′′ for some actiona

and testt′ such thatt
a
−→ t′. Therefore we have a computation prefix of the form

p | t � p1 | t � · · · pn | t � · · ·� p′ | t � p′′ | t′,

hence the maximality of computation (16) does not hold.

Further, condition (a) ensures that a computation ofp | t cannot have the form

p | t � p1 | t � · · ·� pk | t � pk+1 | t � · · ·

Therefore all computations ofp | t have the form

p | t � p1 | t � · · ·� pn | t � p′ | t′

with p′ must satisfy t′ by condition (c); then for each computation ofp | t there existp′′, t′′ such that

p | t � · · ·� p′ | t′ � · · ·� p′′ | t′′,

andt′′
ω
−→. Hence, every computation fromp | t is successful. �

Proposition 4.17. Assume the LTS of processes is branching finite. For every t∈ T, ρmust(Xt) ⊆ ρmin(Xt).
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Proof. We have to showp must satisfy timplies p∈ ~φt �.
Supposep must satisfy t; since we are assuming that the setT, as well as the setS, contains only finite
branching tests (processes), the maximal length of a successful computation fragment|p, t| is defined and
finite.
Therefore we proceed by induction on|p, t|; the main technical property used is the Fixpoint Property
2.6(ii).

• k = 0: In this case,t
ω
−→, and hence for allp ∈ S we havep must satisfy t. Moreover,ϕt = tt , and

hence for allp∈ S p∈ ~φt �ρmin,

• k> 0. There are several cases to consider, according to the structure of the testt:

1. t
ω
−→/ , t

τ
−→/ , t −→: we first show thatp∈ ~Acc({a|t

a
−→)�ρmin.

Sincep must satisfy t, we havep⇓. Consider a computation fragment of the form

p | t � · · ·� pn | t

As p⇓, we require that all computations rooted inpn | t will eventually contain a term of the

form pk | t′, wheret′ , t. Further, ast
τ
−→/ , such a test should follow from a synchronisation

betweenpk−1 and t. We have that then that, wheneverp
τ
=⇒ pn, there exists an actiona

such thatt
a
−→ t′ and pn a

=⇒ pk, which combined with the constraintp ⇓ is equivalent to

p∈ ~Acc({a|t
a
−→)�.

We also have to show thatp ∈ ~ [a]Xt′ �ρmin. Let p
a
−→ p′. Then p must satisfy timplies

p′ must satisfy t′. Moreover, we have|p′, t′| < k. By inductive hypothesis, we have that
p′ ∈ ~φt′ �, that isp′ ∈ ρmin(Xt′). Then the resultp∈ ~ [a]Xt′ �ρmin holds.

2. t
ω
−→/ , t

τ
−→: A similar analysis as in the case above can be carried out.

�

Combining these two propositions we get our second result. Let us say that a testt from a LTS of tests
T = 〈T,Actωτ ,→〉 is finitary if the derived LTS consisting of all states inT accessible fromt is finite.

Theorem 4.18.Assuming the LTS of processes is finite branching, every finitary test t is
must-representable.

Proof. Consider any testt. We can apply Definition 4.15 to the finite LTS of tests reachable from t to
obtain a formulaφt whichmust-represents testt. Notice that this formula is not contained inrecHML, as
it uses simultaneous least fixpoints. However, by Theorem 2.5 there exists a formulaφmust(t) ∈ recHML
such that~φt � = ~φmust(t)�, thust is must-representable. Further, since each operator used in Definition
4.15 to defineϕt belongs tomustHML, it is ensured thatφmust(t) ∈mustHML. �

As a Corollary we are able to show thatmustHML is actually the largest language (up to logical
equivalence) ofmust-testable formulae.

Corollary 4.19. Supposeφ is a formula in recHML which ismust-testable. Then there exists someψ in
mustHML which is logically equivalent to it.

Proof. Supposeφ is must-testable. By theorem 4.14 there exists a finite testt = tmust(φ) which must-
representsφ. Further, by theorem 4.18 there exists a formulaψ = φmust(t) ∈mustHMLwhich must-tests
for t. Therefore

p ∈ ~φ�⇔ p must satisfy tmust(φ)⇔ p ∈ ~ψ�

�
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5 The may case

In this paper we simply state the corresponding theorems formaytesting:

Theorem 5.1.Suppose the LTS of processes is finite branching. Then for every φ ∈mayHML, there exists
a test tmay(φ) such that,φ may-represents the test tmay(φ).

Theorem 5.2. Assuming the LTS of processes is finite branching, every testt is may-representable.

Corollary 5.3. Supposeφ is a formula in recHML which ismay-testable. Then there exist someψ in
mayHML which is logically equivalent to it.

Proof. Similar to that of Corollary 4.19. �

Our proofs for Theorem 5.2 and Theorem 5.1 are similar in style to the corresponding results for
musttesting, namely, namely Theorem 4.18 and Theorem 4.14. Also, as we point out in the Conclusion,
they can be recovered by dualising the proofs of the corresponding Theorems in [AI99].

6 Conclusions

We have investigated the relationship between properties of processes as expressed in a recursive version
of Hennessy-Milner logic,recHML, andextensionaltests as defined in [DH84]. In particular we have
shown that bothmayandmusttests can be captured in the logic, and we have isolated logically complete
sub-languages ofrecHML which can be captured bymaytesting andmusttesting. One consequence of
these results is that themayandmusttesting preorders of [DH84] are determined by the logical properties
in these sub-languagesmayHMLandmustHMLrespectively; however this is already a well-known result,
[Hen85].

However these results come at the price of modifying the satisfaction relation; to satisfy a box for-
mula a process is required to converge. One consequence of this change is that the languagerecHMLno
longer characterises the standard notion ofweak bisimulation equivalence, as this equivalence is insen-
sitive to divergence. But there are variations onbisimulation equivalencewhich do take divergence into
account; see for example [Wal88, HP80].

The research reported here was initiated after reading [AI99]; there a notion of testing was used which
is different from bothmayandmusttesting. They defines passesthe testt whenever no computation from
s | t can perform the success actionω, and give a sub-language which characterises this form of testing.
It is easy to check thats passes tif and only if, in our terminology,s may tis not true. So their notion
of testing is dual tomay testing, and therefore, not surprisingly, our results onmay testing are simply
dual versions of theirs. However we believe our results onmusttesting, specifically Theorem 4.14 and
Theorem 4.18, are new.

We have concentrated on properties associated essentialy with the behavioural theory based on ex-
tensional testing. However there are a large number of otherbehavioural theories; see [Gla93] for an
extensive survey, including their characterisation in terms ofobservationalproperties.

References

[Abr87] S. Abramsky. Observation equivalence as a testing equivalence. Theoretical Computer Science,
53:225–241, 1987.



A, Cerone & M. Hennessy 45
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