Process Behaviour: Formulae versus Tests

(Extended Abstract)
Andrea Cerone Matthew Hennessy
Trinity College Dublin Trinity College Dublin
Dublin, Ireland Dublin, Ireland

School of Computer Science and Statistics School of Computer Science and Statistics

ceronea@cs.tcd.ie Matthew.Hennessy@cs.tcd.ie

Process behaviour is often defined either in terms of ths they satisfy, or in terms of the logical
properties they enjoy. Here we compare these two approaesiegextensional testinm the style
of DeNicola, Hennessy, and a recursive version of the ptgpagic HML.

We first characterise subsets of this property logic whichtmacaptured by tests. Then we show
that those subsets of the property logic capture precikelpower of tests.

1 Introduction

One central concern of concurrency theory is to determinetidr two processes exhibit the same be-
haviour; to this end, many notions of behavioural equivedehave been investigated [Gla93]. One ap-
proach, proposed in [DH84], is based on tests. Intuitively processes atesting equivalentp ~estd,
relative to a set of tesff if p andq pass exactly the same set of tests fromMuch here depends of
course on details, such as the nature of tests, how they pliedjpnd how they succeed.

In the framework set up in_[DH84] observers have very limigdility to manipulate the processes
under test; informally processes are conceived as conplatiependent entities who may or may not
react to testing requests; more importantly the applioatita test to a process simply consists of a run to
completion of the process intast harnessBecause processes are in general nondeterministic, lfgrma
this leads to two testing based equivalengesmay g and p ~mustg; the latter is determined by the set
of tests a process guarantees to pass, wriitarust satisfy,twhile the former by those it is possible to
pass,p may satisfy.t The mayequivalence provides a basis for the so-called trace thefopyocesses
[Hoa85] , while themustequivalence can be used to justify the various denotatiomalels based on
Failuresused in the theory of CSP, [Hod85, Old87, DN83].

Another approach to behavioural equivalence is to say Waptocesses are equivalent unless there
is a property which one enjoys and the other does not. Heriea agach depends on the chosen set of
properties, and what it means for a process to enjoy a psopeknnessy Milner LogifHM85] is a
modal logic often used for expressing process propertiésrin of the actions they are able to perform.
It is well-known that it can be used, viaftiring interpretations, to determine numerous variatiams o
bisimulation equivalence[Mil89] AILS07]. What has received very little attention the literature
however is the relationship between these properties &gl {Ehis is the subject of the current paper.

More specifically, we address the question of determiningclvfiormulae of a recursive version
of the Hennessy Milner Logic, which we will refer to ascHML, can be used to characterise tests.
This problem has already been solved[in [AI99] for a nond&ad notion of testing; this is discussed

*The financial support of Science Foundation Ireland is §uliyeappreciated.

S. Froschle, F.D. Valencia (Eds.): Workshop on © A, Cerone & M. Hennessy
Expressiveness in Concurrency 2010 (EXPRESS'10). This work is licensed under the
EPTCS 41, 2010, pp. 3I=#5, doi:10.4ZRTCS.41.3 Creative Commoris Attribution License.

http://dx.doi.org/10.4204/EPTCS.41.3
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

32 Process Behaviour: Formulae v. Tests

more fully later in the paper. But we will focus on the morenstard notions ofmayand musttesting
mentioned above.

To explain our results, at least intuitively, let us intraduisome informal notation; formal definitions
will be given later in the paper. Suppose we have a propeayd a test such that:

for every procesp, p satisfiesp if and only if p may satisfithe test.

Then we say the formulamayrepresents the testWe use similar notation with respectrausttesting.
Our first result shows that the power of tests can be capturguidperties; for every test

(i) There is a formulamay(t) which mayrepresents; see Theoreri 5.2
(i) There is a formulapmys(t) which mustrepresents; see Theorem 4.18

Properties, or at least those expressedesHML, are more discriminating than tests, and so one
would not expect the converse to hold. But we can give simeseidptions of subsets odcHML, called
mayHMLandmustHMLrespectively, with the following properties:

(a) Everyp e mayHML mayrepresents some telgfay(¢); see Theorem 5.1
(b) Every¢ € mustHML mustepresents some testus{¢); see Theoremn 4.14

Moreover because the formulggay(t), dmus(t) given in (i), (ii) above are imayHML mustHMLre-
spectively, these sub-languagesefHML have a pleasing completeness property. For exampdeldet
any formula fromrecHML which can be represented by some tesith respect tanusttesting; that is
p satisfiesp if and only if p must satisfy.tThen, up to logical equivalence, the formylas guaranteed
to be already in the sub-languagristHML, that is, there is a formulét € mustHMLwhich is logically
equivalent tap. The languagenayHMLhas a similar completeness property rioaytesting.

We now give a brief overview of the remainder of the paperhmnext section we recall the formal
definitions required to state our results precisely. Ouwiltesn the may case will only hold when the set
of tests we consider come from a finite state finite branchif§.lFurther, we also require for the LTS
of processes to be finite branching when dealing with tingsttesting relation. The reader should also
be warned that we use a slightly non-standard interpretatioecHML.

We then explain botimay and musttesting, where we take as processes the set of states from an
arbitrary LTS, and give an explicit syntax for tests. In $8t8 we give a precise statement of our results,
including definitions of the sub-languagesayHML and mustHML, together with some illuminating
examples. The proofs of these results for tistcase are given in Sectidh 4, while those for thay
case are outlined in Sectibh 5. We end with a brief compangtmrelated work.

2 Background

One formal model for describing the behaviour of a concursgatem is given byabelled Transition
Systems (LTSs)

Definition 2.1. ALTS over a set of actions Act is a tripfe= (S, Act;,, —) where:
e S is a countable set of states
e Act. = Actu{r} is a countable set of actions, where&loes not occur in Act
e —C SxAct, xS is atransition relation.

We use ab,--- to range over the set of external actions Act, ang,--- to range over Agt The standard
notation s— s will be used in lieu ofs a,s) e—. States of a LTZ will also be referred to as (term)
processes and ranged over hyssp, q a.

A, Cerone & M. Hennessy 33

Let us recall some standard notation associated with LT ®swkiYe s—s if there exists some’ such
thats—s s, s— if there existsy € Act, such thatsi>, andsﬁ% , S— for their respective negations.
We use Suc, s) to denote the sé8/|s— g}, and Succg) for [Jyeact Succly,). If Succ(s) is finite for
every statese S the LTS is said to bénite branching Finally, a states diverges, denotedT, if there is
an infinite path of internal moves—s s —s - -, while it convergess |}, otherwise.

For a given LTS, each action of the forms> can be interpreted as an observable activity; informally
speaking, this means that each component which is extertiad modeled system can detect that such an
action has been performed. On the other hand, the actismeant to represent internal unobservable
activity; this gives rise to the standard notation for weakoms. s= ¢ Is used to denote reflexive
transitive closure of—, while s— ¢ denotes— 8’ —» 8" = . Whens— s we say that' is an
a-derivative ofs. The associated notaticmé, S =, s:a& ands=A have the obvious definitions.

It is common to define many operators on LTSs for interpregiragess algebras. In this paper we
will use only one, a parallel operator designed vié@hktingin mind.

Definition 2.2 (Parallel composition)
Let L1 =(S1, Actl, —), L2 =(S,, Act?, —) be LTSs. The parallel composition6f and £, is aLTS
L1|Lr = (S1 xSy, {1},—), where— is defined by the following SOS rules:

s ¢ t-Sst S5 -5t
St— St St— s’ St— S|t/
s|tis used as a conventional notation f&t). m|

The first two rules express the possibility for each compboén LTS to perform independently an
internal activity, which cannot be detected by the other ponent. The last rule models the synchro-
nization of two processes executing the same action; thisegult in unobservable activity.

2.1 Recursive HML

Hennessy Milner Logic(HML), [HM85] has proven to be a very expressive propertyglaage for states
in an LTS. It is based on a minimal set of modalities to capthesactions a process can perform, and
what the éects of performing such actions are. Here we use a variarhiichvthe interpretation depends
on the weak actions of an LTS.

Definition 2.3 (Syntax ofrecHML). Let Var be a countable set of variables. The language recHML i
defined as the set of closed formulae generated by the folipgriammar:

¢ =t | ff I X|ACAA) | g1V 2 | d1Ad2 | ()¢ | [alg | min(X,¢) | maxX,¢)

Here X is chosen from the countable set of variables Var. Peeators mirX, ¢),
max X, ¢) act as binders for variables and we have the standard nowdfiee and bound variables, and
associated binding sensitive substitution of formulaeviables. O

Let us recall the informal meaning ofcHML operators. A formula of the forrw)¢ expresses the
need for a process to have arderivative which satisfies formulg, while formula r]¢ expresses the
need for alle-derivatives (if any) of a converging process to satisfyrfala¢.

FormulaAcdqA) is defined wherA is a finite subset ofct, and is satisfied exactly by those converging

34 Process Behaviour: Formulae v. Tests

[ttlo = S [e = 0

[XTp 2 p(X) [AcdA)Jp £ (gsl, if s= & thendae A.§ —)
[{a)¢ o = (a)[olp) [[a]gTp = [a]([¢]p)

[¢1Ve2lp = [e1lpUlg2le [é1Ad2llp = [orlenle2]p

[min(X,¢)le = N{PI[¢lp[X = PICP}|[maxX.¢)lp = UPIPC[¢lo[X+ P}

Table 1: Interpretation aecHML

processes for which eaahderivative has at least amderivative fora € Act. min(X,¢) and maxX, ¢)
allow the description of recursive properties, respebtiveing the least and largest solution of the
equationX = ¢ over the powerset domain of the state space.

Formally, given a LTSS, Act,, —), we interpret each (closed) formula as a subsefofThe set 2
is a complete lattice and the semantics is determined bypirgting each operator in the language as a
monotonic operator over this complete lattice. The bingugratorsv, A are interpreted as set theoretic
union and intersection respectively while the unary omesadre interpreted as follows:

(a)P={s|s— ¢ for somes € P}

[a]P={s]|sl, ands— ¢ impliess € P}

whereP ranges over subsets of 2

Open formulae imecHML can be interpreted by specifying, for each varia¥)ehe set of states for
which the atomic formul is satisfied. Such a mappinpg: Var — 25 is called environment. LeEnv
be the set of environments. A formueof recHML will be interpreted as a functiofig] : Env— 25.
We will use the standard notatigsi X — P] to refer to the environment’ such thato’(X) = P and
o' (Y) = p(Y) for all variablesY such thatX # Y.

The definition of the interpretatiofy-] is given in Tabld ZJ1. When referring to the interpretatidrao
closed formulap € recHML, we will omit the environment application, and sometimes e standard
notationpkE ¢ for pe [¢1.

Our version of HML is non-standard, as we have added a coemeegrequirement for the inter-
pretation of the box operaton]. The intuition here is that, as in tHailures modelof CSP [Hoa85],
divergence represenimderdefinednesso if a process does not converge all of its capabilitie® mait
yet been determined; therefore one can not quantify overf &8 o derivatives, as the totality of this set
has not yet been determined. Further, the operatafA) is also non-standard. It has been introduced
for the sake of simplicity, as it will be useful later; in fattdoes not add any expressive power to the
logic, since for each finite sét C Actthe formulaAcqA) is logically equivalent tog](\/ zeal@) tt).

As usual, we will writep{ys/ X} to denote the formula where all the free occurrences of the variable
X are replaced witky. We will use the congruence symbeffor syntactic equivalence.

The languageecHML can be extended conservatively by adding simultaneousifitggdeading to
the languageecHML*. Given a sequence of variable$) (of lengthn > 0, and a sequence of formulae
of the same length, we allow the formutan (X, ¢) for 1 < i < n. This formula will be interpreted as the
i-th projection of the simultaneous fixpoint formula.

Definition 2.4 (Interpretation of simultaneous fixpointd)et X and¢ respectively be sequences of vari-

A, Cerone & M. Hennessy 35

ables and formulae of length n.

>

IminX.@)lo £ ([PlIa X —PlcPvi<i<n)
[min(X.¢)lp = m(Imin(X,¢)lo)

wherer; is the i-th projection operator, and intersection over westof sets is defined pointwise. O

Again we will omit the environment application if a formuld the form min(X,¢) is closed, that
is the only variables that occur i are those inX. Intuitively, an interpretatiorf min(X,) I, where
X =(Xq,---,Xny ande = (¢4, - ,dn), is the least solution (over the set of vectors of lengtiver £) of
the equation system given B§ = ¢; for all i = 1,--- ,n, while [min(X,)] is thei-th projection of such
a vector. Simultaneous fixpoints do not add any expressiwitgcHML, as shown below:

Theorem 2.5(Bekic, [Win93])
For each formulap € recHML" there is a formulay € recHML such thafi¢] = [¢ 1. O

Later we will need the following properties of simultanedixpoints:
Theorem 2.6(Fixpoint properties)

(i) Let (P) be a vector of sets frorg> satisfying[[¢; Jo[X — P] c P; for everyl<i<n. Then
[min(X,¢) o < Pi

(ii) Let pmin be an environments such thahin(X) = [min(X,#) 1. Then[min(X,¢) 1 = [#i Tomin. O

2.2 Tests

Another way to analyse the behaviour of a process is giver&tyng. Testing a process can be thought
of as an experiment in which another process, called tetctdethe actions performed by the tested
process, reacting to it by allowing or forbidding the exemubf a subset of observables. After observing
the behaviour of the process, the test could decree thaisfisa some property for which the test was
designed for by reporting the success of the experimerugir the execution of a special action
Formally speaking, a test is a state from a LTS (T, Act’, —), whereAct’ = Act, U {w} andw is
an action not contained ifct,.
Given a LTS of processe$ = (S, Act,,—), an experiment consists of a pait t from the product
LTS (£ | 7). We refer to a maximal path|t—s py [t1 —>-...... 5 peltk—> ... as acomputatiorof p|t.
It may be finite or infinite; it is successful if there existsreen > 0 such thatni>. As onlyr-actions can
be performed in an experiment, we will omit the symbdah computations and in computation prefixes.
Successful computations lead to the definition of two wethkn testing relations[DH84]:

Definition 2.7 (May Satisfy, Must Satisfy) Assuming a LTS of processes and a LTS of tests, let sand t
be a state and a test from such LTSs, respectively. We say

(a) smay satisfyt if there exists a successful computation for the expetiraen
(b) smust satisfit if each computation of the experimenttss successful.

Later in the paper we will use a specific LTS of tests, whosestare all the closed terms generated
by the grammar

ti=0]at| w0 | X |tg+ty | uXt. (1)

36 Process Behaviour: Formulae v. Tests

Again in this languageX is bound inuX.t, and the test{t’/X} denotes the tedtin which each free
occurrence oK is replaced by’. The transition relation is defined by the following rufs:

Y Y
h—f b—1

X T =5 (X 1)/X)

@ - - - <
at—t t1+tzi>t1 t1+tzi>t’2

The last rule states that a test of the fquXt can always perform aaction before evolving in the
testt{uX.t/X}. This treatment of recursive processes will allow us to proroperties of paths of recursive
tests and experiments by performing an induction on thagtle Further, the following properties hold
for a testt in grammarl((IL):

Proposition 2.8. Let7 = (T, Act,,—) be the LTS generated by a state t in gramrff@r then7 is both
branching finite and finite state. m|

3 Testing formulae

Relative to a process LT&, Act,,—) and a test LTST, Act’,—), we now explore the relationship
between tests from our default LTS of tests and formulaeeoHML. Given a test, our goal is to
find a formulag such that the set of processes whiohy satisfymust satisfysuch a test is completely
characterised by the interpretatifg]. Moreover, we aim to establish exactly the subsetseoHML
for which each formula can be checked by some test, both imthgand mustcase.

For this purpose some definitions are necessary:
Definition 3.1. Let¢ be a recHML formula and t a test. We say that:

e ¢ mustrepresents the test t, if for all S, pmust satisfyt if and only if pE ¢.

e ¢ is musttestable whenever there exists a test wigichustrepresents.

e tis mustrepresentable, if there exists soge recHML whichmustrepresents it respectively.
Similar definitions are given for may testing.]

First some examples.
Example 3.2(Negative results)

(&) ¢ =[a]ff is notmay-testable.
Let se [[a]ff]; a new process p can be built starting from s by Iettingip p, whenever s ¢
then pi> s.
Processes p andmay satisfythe same set of tests. Howeveg p[a] /1, as pfl. Therefore
no testmay-representgal /.

(b) ¢ = (aytt is notmusttestable.
We show by contradiction that there exists no test t thastrepresents. To this end, we perform
a case analysis on the structure of t.

e t-%: Consider the proces8 with no transitions. The@ must satisfyt, wherea0 ¢ [#].

o t—1: Let se [#1 and consider the process p built up from s according to thesuf the
example above; we haveed ¢]. On the other hand, pust satisfyt is not true; indeed the
experiment pt leads to the unsuccessful computationtp p|t—---.

1For the sake of clarity, the rules use an abuse of notatiomobgideringe as an action fromAct, U w rather than from
Act;.

A, Cerone & M. Hennessy 37

Therefore there is no test t whichustrepresents.

(c) ¢ ={(a)tt A(bytt is notmay-testable.
" b
Let s be the process whose only transitions arges{), s— 0. Let also pp’ be the processes whose

only transitions are pa—>0, P —b>0. We have & [¢], whereas pp’ ¢ [¢ 1. We show that whenever
smay satisfya test t, then either may satisfyt or p” may satisfyt. Thus there exists no test which
is may-satisfied by exactly those processe§ dr], and thereforep is notmay-representable. First,
notice that if amay satisfyt, then at least one of the following holds:

(i) t=>,

(i) t = t' =,

b w

(i) t =>t'=.
If t==, then trivially both p and pmay satisfyt. On the other hand, if+= t'—, then there exist
t”,t, such that ot -t _;>twi>. We can build the computation fragment foi p such that

pltoroplt' 50— 501,

L. . . b w .,
which is successful. Hencenpay satisfyt. Finally, The case+=t'= is similar.
(d) In an analogous way tfm) it can be shown thd@] ff v [b] ff is notmusttestable. m|

We now investigate precisely which formulaerectHML can be represented by tests. To this end,
we define two sub-languages, namelgyHMLandmustHML

Definition 3.3. (Representable formulae)

e The language mayHML is defined to be the set of closed forngdaerated by the following
recHML grammar fragment:

¢ =1 | f 1 X | ()¢ | 1V | mn(X,¢) 2

e The language mustHML is defined to be the set of closed foargdaerated by the following
recHML grammar fragment:

¢ =1 | ff | AcdA) | X | [a]¢ | p1A¢2 | min(X,¢) 3)

Note that both sub-languages use the minimal fixpoint opeaatly; this is not surprising, as informally
at least testing is an inductive rather than a coinductiepgnty. Since there exist formulae of the form
[a]e, 91 A @2 which are notmayrepresentable, the][modality and the conjunction operator, have not
been included imayHMLThe same argument applies to the modalifyand the disjunction operator
in the must case, which are therefore not includechustHML

Note also that the modality][is only used inmustHML, which will be compared witlmust-testing
No diverging process must satisfy a non-trivial teste. such that %‘@ . Hence, in this setting, the
convergence restriction on this modality is natural.

We have now completed the set of definitions setting up oumdrsork of properties and tests. In
the remainder of the paper we prove the results announdedmially, in the Introduction.

38 Process Behaviour: Formulae v. Tests

4 The must case

We will now develop the mathematical basis needed to refaistHMLformulae and themusttesting
relation; in this section we will assume that the LTS of pssass is branching finite.

Lemma 4.1. Let ¢ € mustHML, and let g [¢], where pfi: then[¢] is the entire process space, i.e.
[o11=S. O

This lemma has important consequences; it means formulaestHMLeither have the trivial interpre-
tation as the full set of stat&® or they are only satisfied by convergent states.

Definition 4.2. LetC be the set of subsets of S determined by:

e SeC,

e Xe(C,se X implies s|. O
Proposition 4.3. C ordered by set inclusion iseontinuous partial ordecpa

Proof. The empty set is obviously the least elementirSo it is suficient to show that iXg € X3 C ---
is a chain of elements i@ thenJ, X, is also inC. i

We can now take advantage of the fact thaistHMLactually has a continuous interpretation in
(C,9). The only non trivial case here is the continuity of the @per [-a-]:

Proposition 4.4. Suppose the LTS of processes is finite-branchingg & X; C - -- is a chain of elements

in C then
el =]l X%

O

This continuous interpretation aiustHMLallows us to use chains of finite approximations for these
formulae ofmustHML That is giveny € mustHMLandk > 0, recursion free formulagt will be defined
such that[¢*] € [¢**D] and s = [¢1. We can therefore reason inductively on approximations in
order to prove properties of recursive formulae.

Definition 4.5 (Formulae approximations)or each formulap in mustHML define

¢° = f
gl 2 ¢ if ¢ = tt, f or Acq(A)
[a]p)®D 2 [a](g)*D
(1A ¢2)(k+1) A ¢(1k+1) A ¢(2k+1)
(min(X,¢)) D 2 (s{min(X, ¢)/X})*

O

It is obvious that for every € mustHML, [¢¥] € [¢**1] for everyk > 0; The fact that the union of
the approximations ap converges t@ itself depends on the continuity of the interpretation:

Proposition 4.6.
g 1=1¢1

k>0

A, Cerone & M. Hennessy 39

Proof. This is true in the initial continuous interpretation of tleguage, and therefore also in our
interpretation. For details s€e [CN78]. i

Having established these properties of the interpretatidormulae inmustHML, we now show that
they are alimusttestable. The required tests are defined by induction osttheture of the formulae.

Definition 4.7. For each¢ in mustHML defineptys{¢) as follows:

tnus(tt) = .0 (4)
tous(ff) = O (5)
trus(ACOA) =) aw.0 (6)
acA
tmus(x) = X (7)
tmus([7]9) = 7.tmus(9) (8)
tmus([al®) = atmus(®)+7.0.0 9)
w.0 if p1 A ¢ is closed and
bl b1 A ds) = logically equivalent to tt (10)
7.Tmushy + 7.tmus{@2) otherwise
. tmus(®) if ¢ is closed
tmus(MIn(X. 4) {ux. tmus(¢) Otherwise (1)
i

For each formula in mustHML, the testtus{¢) is defined in a way such that the set of processes
which must satisfyus(®) is exactly[¢ 1. Before supplying the details of a formal proof of this state
ment, let us comment on the definitiontgfs{¢).

Cases[(4)[(5) and](7) are straightforward. In the caskcofA), the test allows only those action which
are inAto be performed by a process, after which it reports success.

For the box operator, a distinction has to be made betwaergind [r]¢. In the former we have to take
into account that a converging process which cannot pertomeaka-action satisfies such a property;
thus, synchronisation through the execution @faction is allowed, but a possibility for the test to re-
port success after the execution of an internal action isrgivin the case ofrJ¢ no synchronization
with any action is required; however, since we are addingreegence requirement to formua we
have to avoid the possibility that the tégts{[7]¢) can immediately perform a action. This is done by
requiring the testyhus{[7]¢) to perform only an internal action.

Finally, (I0) and[(Il1) are defined by distinguishing betwaem cases; this is because a formula of the
form ¢1 A @2 or min(X, ¢) can be logically equivalent to tt, whose interpretatiothes entire state space.
However, the second clause in the definitiort,@fs{¢) for such formulae require the test to perform a
action before performing any other activity, thus at mosivenging processesust satisfisuch a test.

In order to give a formal proof tha, s{¢) does indeed capture the formuylave need to establish
some preliminary properties. The first essentially saysribdormula of the forrmin(X, ¢), with ¢ not
closed, will be interpreted in the whole state space.

Lemma 4.8. Let¢ = min(X,y), withy not closed. Thefi¢] # S.]

Then we state some simple properties about recursive tests.

40 Process Behaviour: Formulae v. Tests

Lemma 4.9.
e pmust satisfyuX.t implies pmust satisfyt{uX.t/X}.
e pl, pmust satisfyt{uX.t/X} implies pmust satisfyuX.t. O

Note that the premise || is essential in the second part of this lemmay &g cannot perform a
action; therefore it can beustsatisfied only by processes which converge.

Proposition 4.10. Suppose the LTS of processes is finitely branching. nifupt satisfytmus{¢) then
pelel.

Proof. Supposep must satisfypfus{®); As both the LTS of processes (by assumption) and the LTS
of tests (Propositioh 2.8) are finite branching, the maxileagth of a successful computatipmt| is
defined and finite. This is a direct consequence of Konig's ienfBJ89]. Thus it is possible to perform
an induction ovetp, tmus{®) | to prove thatp € [¢*]. The result will then follow from Propositidn 4.6.

o If |p,tmusf{®)| =0 thentmust(gb)in and hence for eache S p must satisfyts{¢). Further it is
not difficult to show that is logically equivalent to tt, hencpe [¢].

e If |p,tmus{®)| = N+ 1 then the validity of the Theorem follows from an applicatiof an inner
induction ong. We show only the most interesting case, whiclp is min(X,y). There are two
possible cases.

(a) If X'is not free iny then the result follows by the inner induction, m(X,) is logically
equivalent tay, andtynus{min(X,¥)) = tmus{y) by definition.
(b) If Xis free iny then, by Lemm&41®% must satisfynus{){uX. tmus{) / X}, which is syntac-
tically equal totyys{y{min(X,y)/X}).
Sincelp, tmus{min(X,¥) /XN | < |p, tmus{®) |, by inductive hypothesis we have
p € [¥{min(X,y)/X}¥] for somek, hencep € [¢+ D1]. O
To prove the converse of Proposition 4.10 we use the follgwioncept:

Definition 4.11 (Satisfaction Relation)Let RC S x mustHML and for any let (R¢) ={s | s R¢}.
Then R is a satisfaction relation if it satisfies

(Rtt) = S
Rf) = 0
(RACEA)) = {s|sl,s= ¢ implies $)NA#0}
(Rlalg) < [e](R¢)
(Re1Aag2) S (Re1)N(Rg2)
(Reimin(X,¢)/X}) < (R min(X,¢))

o
Satisfaction relations are defined to agree with the in&gpion[-]. Indeed, all implications re-
quired for satisfaction relations are satisfied oy Further, agfmin(X,¢)] is defined to be the least
solution to the recursive equatiot= ¢, we expect it to be the smallest satisfaction relation.
Proposition 4.12. The relationk is a satisfaction relation. Further, itis the smallest s#diction relation.
o
Propositio 4.2 ensures that, for any satisfaction @id®, | is included inR; in other words, if

pE ¢ thenp R¢. Next we consider the relatidRy,sisuch thatp Rnust¢ whenevemp must satisfyptus{®),
and show that it is a satisfaction relation.

A, Cerone & M. Hennessy 41

Proposition 4.13. The relation R,stis a satisfaction relation.

Proof. We proceed by induction on formuda Again, we only check the most interesting case.
Suppose = min(X,y). We have to shovp must satisfyptus{w{¢/X}) implies p must satisfyfus{).
We distinguish two cases:

(&) X does not appear free i thentyus{®) = tmusfy), andy{¢/X} = . This case is trivial.

(b) X does appear free i in this casdmnys{@) = uX. tmus(¥), andtmus{y{#/X}) has the form
tmustW) (X tmus() /X}. By Lemmd 48[¢] # S; therefore LemmB4l1 ensures tipa, and hence
by Lemmd4.B it followsp must satisfyitus{®). i

Combining all these results we now obtain our result on teabslity of mustHML

Theorem 4.14. Suppose the LTS of processes is finite-branching. Then éoy ¢\« mustHML, there
exists a testtus(¢) such thatp mustrepresents the teshis(o).

Proof. We have to show that for any proceps p must satisfyptusi¢) if and only if pe [¢]. One
direction follows from Propositioh 4.10. Conversely suppp € [¢]. By Propositior 4.12 it follows
that for all satisfaction relationR it holds p R¢; hence, by Propositidn .13, Rnust#, or equivalently

p must satisfytus{¢). m|

We now turn our attention to the second result, namely thertygestt is mustrepresentable by some
formula inmustHML Let us for the moment assume a branching finite LTS of tesighich the state
spacer is finite.

Definition 4.15. Assume we have a test-indexed set of variapfgs For each test € T definey; as
below:

g =t if t — (12)

o = ff if t — (13)

g = (/\ [AX) A Acd(at—)) ift—h t—p t— (14)
at -5t

e 2 (/XA C A\ [@X) it (15)
-t atit-St

Takeg¢ to be the extended formula reiXt,), using the simultaneous least fixed points introduced
in Sectio Z.11. i

Notice that we have a finite set of variablgg} and that the conjunctions in Definitibn 4115 are finite,
as the LTS of tests is finite state and finite branching. Thesecbnditions are needed fgy to be well
defined.

Formulag; captures the properties required by a processaust satisfytestt. The first two clauses
of the definition are straightforward. ifcannot make an internal action or cannot report a success, bu

can perform a visible actioa to evolve int’, then a process should be able to performiatransition

and evolve in a process such thafy’ must satisfy’t The requiremencd{a | ti>}) is needed because

a synchronisation between the procpesand the test is required forp must satisfy to be true.

In the last clause, the testis able to perform at least &action. In this case there is no need for a
. . . a .

synchronisation between a process and the test, so thecetésm of the formAcq{a | t—}) in the

definition of ¢;. However, it is possible that a processvill never synchronise with such test, instead

42 Process Behaviour: Formulae v. Tests

will perform a transitiont — t’ after p has executed an arbitrary number of internal actions. Thas,

require that for each transitiqm_;> p’, p’ must satisfy’t
We now supply the formal details which lead to state that fdeng; characterises the test Our
immediate aim is to show that the two environments, defined by

Pmin(Xt) = [¢t pPmus{Xt) = {p | p must satisfyjt

are identical. This is achieved in the following two profiosis.
Proposition 4.16. For all t € T it holds thatomin(Xt) € omus(Xt)-

Proof. We just need to show thdlty; Tomust € pmusXt): the result follows from an application of the

minimal fixpoint property Theoreni 26{i). The proof is carried out by performing aecasalysis on.

We will only consider Casé¢ (14), as caded (12) (13) asialtend Case(15) is handled similarly.
Assumep € [¢t lomuse WWe have

@ pl,

(b) wheneverp:T> p’ there exists an actiome Actsuch that— and p’:a>,
(c) wheneverp:a> of andtit’, P’ € pmusXy), i.e. p’ must satisfy’t

Conditionsta) and_{b) are met sinpe [Acq{a | ti>)]] andt— for somea e Act, while (@) is true
because op € [Aat,_ tiw[a] Xe 1.

To prove thatp € pmus(X) we have to show that every computationjoft is successful. To this end,
consider an arbitrary computation pf t; condition [B) ensures that such a computation cannot e t
finite form

pltoprlt—=-pclt=pPer|t=-—=pnlt (16)

. T . . a .
For such a computation we have tht= p’, and there existp” with p’ — p” for some actiora
and test’ such that — t’. Therefore we have a computation prefix of the form

pltoprlt=-pn|t=-op |t=p” |t
hence the maximality of computatidn {16) does not hold.
Further, conditionfa) ensures that a computatiop oft cannot have the form
Plt=oprlt—o=>pc|t=Prsr |t
Therefore all computations gf | t have the form
plt=opift=opy|t-p |t
with p” must satisfy’tby condition (t); then for each computationf t there existp”,t”” such that
Pltoop [V sp’ |t
andt”—%. Hence, every computation from| t is successful. O

Proposition 4.17. Assume the LTS of processes is branching finite. For evely, bmus{Xt) € omin(X%t).

A, Cerone & M. Hennessy 43

Proof. We have to shovwp must satisfy implies p € [¢ 1.
Supposep must satisfy;tsince we are assuming that the $etas well as the se&s, contains only finite
branching tests (processes), the maximal length of a ssfcteemputation fragmenp, t| is defined and
finite.
Therefore we proceed by induction gmt|; the main technical property used is the Fixpoint Property
2.8({).

e k=0: In this caseti>, and hence for alp € S we havep must satisfy.tMoreover,¢; = tt, and

hence for allpe S pe [¢¢ lomin,
e k> 0. There are several cases to consider, according to thestwof the test:

1.t t— ,t —: we first show thap € [Aco{alt—s) Tomin-
Sincep must satisfy,twe havep |J. Consider a computation fragment of the form

plto-—pl|t

As p |, we require that all computations rootedgh | t will eventually contain a term of the
form p* | t/, wheret’ # t. Further, as % , such a test should follow from a synchronisation
betweenpk~! andt. We have that then that, Whenevplé» p", there exists an actioa
such thatt — t' and p" = pX, which combined with the constraint || is equivalent to
pe [Acdfalt—)1. .
We also have to show that e [[a] Xy lomin. Let p— p’. Then p must satisfy tmplies
p’ must satisfy’t Moreover, we havep’,t’| < k. By inductive hypothesis, we have that
P’ €l¢v 1, thatisp’ € pmin(Xy). Then the resulp € [[a] Xy Jomin holds.
2.t ﬂw@ ,ti>: A similar analysis as in the case above can be carried out.
i

Combining these two propositions we get our second reselt.uk say that a testrom a LTS of tests
T =(T,Act?,—) is finitary if the derived LTS consisting of all states#naccessible fromis finite.
Theorem 4.18. Assuming the LTS of processes is finite branching, everarijrtiést t is
mustrepresentable.

Proof. Consider any test We can apply Definitiof 4.15 to the finite LTS of tests readddiom t to
obtain a formulap; which mustrepresents tes$t Notice that this formula is not containedrecHML, as
it uses simultaneous least fixpoints. However, by Thedréhre exists a formulémus(t) € recHML
such thaf ¢ 1 = [#must(t) T, thust is mustrepresentable. Further, since each operator used in Dafini
[4.13 to definey; belongs tanustHML, it is ensured thapmys(t) € mustHML i

As a Corollary we are able to show thaustHMLis actually the largest language (up to logical
equivalence) omusttestable formulae.

Corollary 4.19. Suppose is a formula in recHML which isnusttestable. Then there exists somen
mustHML which is logically equivalent to it.

Proof. Supposep is musttestable. By theorefin 4.114 there exists a finite testys{¢) which must
representg. Further, by theoremn 4.18 there exists a formuta ¢nus(t) € mustHMLwhich musttests
for t. Therefore

pel¢] & pmust satisfytus{¢) © pe [y

44 Process Behaviour: Formulae v. Tests

5 The may case

In this paper we simply state the corresponding theoremsfytesting:

Theorem 5.1. Suppose the LTS of processes is finite branching. Then figr @eenayHML, there exists
atest kay(¢) such thatyp may-represents the teshiy(e).

Theorem 5.2. Assuming the LTS of processes is finite branching, everyitestay-representable.

Corollary 5.3. Supposep is a formula in recHML which isnay-testable. Then there exist somén
mayHML which is logically equivalent to it.

Proof. Similar to that of Corollary 4.19. i

Our proofs for Theorerh 5.2 and Theorém]5.1 are similar inestylthe corresponding results for
musttesting, namely, namely Theorém 4.18 and Thedrem 4.14. Asave point out in the Conclusion,
they can be recovered by dualising the proofs of the correipg Theorems irf [AI99].

6 Conclusions

We have investigated the relationship between propertipeooesses as expressed in a recursive version
of Hennessy-Milner logicrecHML, andextensionatests as defined ih [DH84]. In particular we have
shown that bottmayandmusttests can be captured in the logic, and we have isolateddibgimomplete
sub-languages aecHML which can be captured byaytesting andnusttesting. One consequence of
these results is that tmayandmusttesting preorders of [DH84] are determined by the logicapprties

in these sub-languagesayHMLandmustHMLrespectively; however this is already a well-known result,
[Hen85].

However these results come at the price of modifying thesfsation relation; to satisfy a box for-
mula a process is required to converge. One consequencis chmge is that the languaggeHML no
longer characterises the standard notiomve&k bisimulation equivalencas this equivalence is insen-
sitive to divergence. But there are variationshisimulation equivalence/hich do take divergence into
account; see for example [Wal88, HP80].

The research reported here was initiated after reading@AtBere a notion of testing was used which
is different from bothmayandmusttesting. They defing passethe test whenever no computation from
s|t can perform the success actionand give a sub-language which characterises this fornmstifhge
It is easy to check that passes if and only if, in our terminology,s may tis not true. So their notion
of testing is dual tanaytesting, and therefore, not surprisingly, our resultshoay testing are simply
dual versions of theirs. However we believe our resultsmusttesting, specifically Theorem 4114 and
Theorent4.18, are new.

We have concentrated on properties associated essenttalyhe behavioural theory based on ex-
tensional testing. However there are a large number of dtbbavioural theories; see [Gla93] for an
extensive survey, including their characterisation im&ofobservationalproperties.

References

[Abr87] S. Abramsky. Observation equivalence as a testipgivalence. Theoretical Computer Science
53:225-241,1987.

A, Cerone & M. Hennessy 45

[AI99]
[AILS07]
[BJ8Y]
[BRR87]
[CN78]
[DH84]
[DN83]
[Gla93]
[Hen85]
[HM85]
[Hoa85]
[HP8O]
[Mil89]
[NVO7]

[NYHOO7]

[01d87]
[RS96]

[Tho99]

[Walg8]

[Win78]

[Win93]

Luca Aceto and Anna Ingolfsdottir. Testing henagsnilner logic with recursion. In Thomas
[Tho99], pages 41-55.

Luca Aceto, Anna Ingolfsdottir, Kim Guldstrandarsen, and Jiri SrbaReactive Systems: Modelling,
Specification and VerificatiorCambridge University Press, New York, NY, USA, 2007.

George S. Boolos and Richard Cffdey. Computability and Logic Cambridge University Press,
third edition, 1989.

W. Brauer, W. Reisig, and G. Rozenberg, edit®etri Nets: Applications and Relationships to Other
Models of ConcurrencyNumber 255 in Lecture Notes in Computer Science. Sprivgelag, 1987.
Bruno Courcelle and Maurice Nivat. The algebraic aatits of recursive program schemes. In
Winkowski [Win7§8], pages 16-30.

R. DeNicola and M. Hennessy. Testing equivalencepfocessesTheoretical Computer Science
24:83-113, 1984.

Rocco De Nicola. A Complete Set of Axioms for a TheofyfGCmmmunicating Sequential Processes.
In FCT, pages 115-126, 1983.

Rob J. van Glabbeek. The linear time - branching smectrum ii. ICONCUR '93: Proceedings of
the 4th International Conference on Concurrency Thepages 66—81, London, UK, 1993. Springer-
Verlag.

M. Hennessy. Acceptance tredsurnal of the ACM32(4):896-928, October 1985.

Matthew Hennessy and Robin Milner. Algebraic laws f@ndeterminism and concurrendy. ACM,
32(1):137-161, 1985.

C.A.R. HoareCommunicating Sequential ProcessBEsentice-Hall, 1985.

Matthew C. B. Hennessy and Gordon D. Plotkin. A terndeldor CCS. InMathematical Founda-
tions of Computer Science 1980, Proceedings of the 9th Ssimmorolume 88 ofLecture Notes in
Computer Scieng@ages 261-274, Rydzyna, Poland, 1-5 September 1980g8prin

R. Milner. Communication and ConcurrenclPrentice-Hall, 1989.

Sumit Nain and Moshe Y. Vardi. Branching vs. linean&: Semantical perspective. In Namjoshi
et al. [NYHOOQT], pages 19-34.

Kedar S. Namjoshi, Tomohiro Yoneda, Teruo Higashiand Yoshio Okamura, editor&utomated
Technology for Verification and Analysis, 5th InternatibBgmposium, ATVA 2007, Tokyo, Japan,
October 22-25, 2007, Proceedingslume 4762 ofLecture Notes in Computer Scien&pringer,
2007.

E.-R. Olderog. Tcsp: Theory of communicating setfis processes. In Brauer et al. [BRR87], pages
441-465.

G. Rozenberg and A. Salomaa, editdtandbook of Formal Languagegolume 3. Springer Verlag,
Berlin, Heidelberg, New York, October 1996.

Wolfgang Thomas, editof-oundations of Software Science and Computation Struc8eeond In-
ternational Conference, FoSSaCS’99, Held as Part of th@gean Joint Conferences on the Theory
and Practice of Software, ETAPS’99, Amsterdam, The Nethés, March 22-28, 1999, Proceedings
volume 1578 ot ecture Notes in Computer Scien&pringer, 1999.

David Walker. Bisimulations and divergence Rroceedings of the Third Annual IEEE Symposium on
Logic in Computer Science (LICS 198Bages 186—192. IEEE Computer Society Press, July 1988.

Jozef Winkowski, editor.Mathematical Foundations of Computer Science 1978, Puiiogs, 7th
Symposium, Zakopane, Poland, September 4-8,, AMI@me 64 ofLecture Notes in Computer Sci-
ence Springer, 1978.

Glynn Winskel. The Formal Semantics of Programming Languagd$ie MIT Press, Cambrige,
Massachusetts, 1993.

	1 Introduction
	2 Background
	2.1 Recursive HML
	2.2 Tests

	3 Testing formulae
	4 The must case
	5 The may case
	6 Conclusions

