
Communicating Transactions?

(Extended Abstract)

Edsko de Vries, Vasileios Koutavas, and Matthew Hennessy

Trinity College Dublin
{Edsko.de.Vries,Vasileios.Koutavas,Matthew.Hennessy}@cs.tcd.ie

Dedicated to Robin Milner

Abstract. We propose a novel language construct called communicat-
ing transactions, obtained by dropping the isolation requirement from
classical transactions, which can be used to model automatic error re-
covery in distributed systems. We extend CCS with this construct and
give a simple semantics for the extended calculus, called TransCCS. We
develop a behavioural theory which is sound and complete with respect
to the may-testing preorder, and use it to prove interesting laws and
reason compositionally about example systems. Finally, we prove that
communicating transactions do not increase the observational power of
processes; thus CCS equivalences are preserved in the extended language.

1 Introduction

Distributed systems such as web services [7] consist of a number of autonomous
nodes in a network that communicate through message passing. As web ser-
vices are increasingly designed by combining other web services through so-
called mashup technologies [2], the complexity of these systems grows and error
recovery becomes ever more difficult.

The usefulness of the transaction concept for the treatment of errors in such
a setting has been recognized by both academia [19, 5] and industry [10, 12].
Error recovery in such transactions is based on compensation: services must
programmatically bring the system back to a consistent state when an error has
happened. In a distributed system of many independent components this may
be difficult and error prone.

In many situations, however, automatic error recovery is possible through the
use of classical techniques such as rollback recovery [16]. Processes store enough
local state to be able to roll back after an error, and a rollback in one node
may cause other nodes to rollback so that all nodes have a consistent view of
the system state. The extent of the rollbacks can be limited through coordinated
checkpointing [13], where processes coordinate to create a point beyond which
they do not need to be rolled back.

In this paper we define a novel language construct of communicating trans-
actions, which can be used to model the combination of rollback recovery and
coordinated checkpointing. We give a high-level semantics of communicating

? This research was supported by SFI project SFI 06 IN.1 1898.

2 Edsko de Vries, Vasileios Koutavas, and Matthew Hennessy

transactions in a calculus called TransCCS, an extension of CCS, and develop a
compositional theory for this calculus based on may-testing equivalence.

Unlike traditional transactions, communicating transactions are not isolated:
they may communicate with other processes or transactions in their environment.
When a transaction communicates with its environment and subsequently fails,
both the transaction and its environment will be rolled back to a consistent state.
Transactions can commit to request a checkpoint; when transactions communi-
cate, all must commit before the checkpoint is actually created (cf. the standard
two-phase commit algorithm used for distributed transactions [27]).

In TransCCS we use JP .k QK to denote a transaction named k which cur-
rently runs P ; a transaction is replaced by its default P after a commit, and by
its alternative Q after an abort. Restarting transactions are modelled by recur-
sive transactions µX. JP .k XK. A transaction can be aborted by the system at
any point, and can commit using the language primitive co k.

To give an intuition of communicating transactions we consider an informal
semantics for communicating transactions. An example idealized execution of a
system consisting of a merchant M (left) and a bank B (right) is given by:

req .
q
τ.tr .(co k | ack) .k err

y
| µX. Jtr .τ.co l .l XK

(Place order)
req→

q
τ.tr .(co k | ack) .k err

y
| µX. Jtr .τ.co l .l XK

(Process order)
τ→

q
tr .(co k | ack) .k err

y
| µX. Jtr .τ.co l .l XK

(Request transfer)
τ→

q
(co k | ack) .k err

y
| J τ.co l .l BK

(System aborts l)
τ→ | µX. Jtr .τ.co l .l XK (1)

(Cascading rollback)
q

tr .(co k | ack) .k err
y
|

(Second attempt)
τ→ τ→

q
(co k | ack) .k err

y
| J co l .l BK (2)

(Commit)
τ→ τ→ ack | 0 (3)

(Acknowledge Order)
ack→ 0 | 0

In this trace M accepts an order on channel req and enters transaction k.
Inside the transaction, M processes the order and issues a transfer request on tr
to the bank B, which enters a (restarting) transaction l. The communication on
tr should be considered tentative as it involves transactions k and l which are still
subject to system failure. When the system decides to abort the l transaction
in (1), it must also roll back the k transaction to a point before the transfer
request in order to maintain global consistency; the k transaction, however, does
not need to re-process the order. The second attempt to communicate between
the transactions in (2) is also tentative, and only becomes a definitive action in
(3) when both transactions have issued their commits. The acknowledgement of
the order is then sent on ack . If at any point the system decides to abort the
merchant transaction k (perhaps due to multiple failures to perform the transfer
by the bank), an error signal is sent on err .

A direct formalization of this informal semantics would be quite complicated;
for example dependencies between the various transactions would have to be
maintained dynamically, and some notion of coordinated checkpointing or roll-
back would need to be implemented. In this paper we show that we can abstract
away from such details through a simple concept called embedding. Specifically,
we make the following contributions.

Communicating Transactions (Extended Abstract) 3

1. We give a simple reductions semantics for TransCCS by augmenting the stan-
dard semantics of CCS with a rule for embedding a process into a transaction,
and two simple rules for committing and aborting transactions (Sect. 2).

2. We give a compositional behavioural theory for TransCCS (Sect(s). 3 to 5),
based on non prefix-closed sets of traces derived by a Labelled Transition
System (LTS), which is sound and complete with respect to may-testing [15].
The theory distinguishes between standard processes such as a.b.0 in which
all actions are definitive, and transactions Ja.b.co k .k 0K where the actions
are tentative until transaction k commits.

3. We use the theory to prove a number of interesting laws about communi-
cating transactions, including a theorem that transactions do not increase
the observational power of processes and therefore CCS equivalences are
preserved in TransCCS (Sect. 5). We also use the theory to reason composi-
tionally about simple distributed systems (Sect. 6).

4. We study an extension to our calculus, TransCCSµab, in which aborts are pro-
grammable (Sect. 7). We show that, provided all transactions are restarting,
the characterization of may-testing in TransCCS is also valid in TransCCSµab;
we prove this through a simple fully abstract translation into TransCCS.

2 TransCCS

The syntax of TransCCS is that of CCS extended with a construct JP .k QK,
denoting a transaction which is currently running its default P but which will be
replaced by its alternative Q when it is aborted, and a construct co k to commit
transactions, replacing it by its default.1 The syntax and the reduction semantics
are shown in Fig. 1; as usual a ranges over a set of actions Act on which is defined
a bijective function (·) : Act → Act , used to formalize communication, and µ
ranges over Actτ , the set Act augmented with a new action τ , used to represent
internal activity. We use the standard abbreviations for CCS terms.

Although communication does not cross transaction boundaries, transactions
can communicate through (non-deterministic) embedding:2

Example 1. Consider the reductions from a system consisting of the transaction
Ja.(co | c) .k bK running in parallel with the simple process a. Before communi-
cation can take place, the process must be embedded into the transaction; by
embedding it into both the default and the alternative part of the transaction,
we can restore the process to a consistent state after an abort. The possible
traces are summarized in the graph below; note that a rollback (through R-Ab)
remains possible until the commit has been executed. �

Ja.(co k | c) .k bK | a
R-Emb //

R-Ab
��

Ja.(co k | c) | a .k b | aK
R-Comm //

R-Ab

��

Jco k | c .k b | aK
R-Co //

R-Ab
��

c

b | a

1 After the commit, any remaining (possibly prefixed) co k statements behave like 0.
2 Communication-driven embedding results in an equivalent but more complicated

semantics.

4 Edsko de Vries, Vasileios Koutavas, and Matthew Hennessy

Syntax

P,Q ::=
∑
µi.Pi guarded choice | JP .k QK transaction (k bound in P)

| (P | Q) parallel | co k commit
| νa.P hiding | µX.P recursion

Reduction Rules (→) is the least relation that satisfies

R-Comm
ai = aj∑

i∈I
ai.Pi |

∑
j∈J

aj .Qj → Pi | Qj

R-Emb
k /∈ R

JP .k QK | R→ JP | R .k Q | RK

R-Tau
µi = τ∑

i∈I
µi.Pi → Pi

R-Co

JP | co k .k QK → P

R-Ab

JP .k QK → Q

R-Rec

µX.P → P [X := µX.P]

R-Str
P ≡ P ′ → Q′ ≡ Q

P → Q

and is closed under the contexts C ::= [] | (C | Q) | JC .k QK | νa.C.
Structural equivalence (≡) contains the usual rules for parallel and hiding.

Fig. 1. Language Definition

Two or more transactions can communicate by taking mutual embedding
steps, which is possible because transactions can be nested arbitrarily in TransCCS.3

Example 2. Consider again the Merchant M and Bank B transactions, together
with a client C = req .P . An example trace of (C |M | B) is given by:

req .P | req .
q
τ.tr .(co k | ack) .k err

y
| µX. Jtr .τ.co l .l XK

R-Comm−−−−→ R-Tau−−−→ P |
q

tr .(co k | ack) .k err
y
| µX. Jtr .τ.co l .l XK

R-Emb−−−→ R-Rec−−−→ P |
q

tr .(co k | ack) | Jtr .τ.co l .l BK .k err | B
y

R-Emb−−−→ P |
qq

tr .(co k | ack) | tr .τ.co l .l tr .(co k | ack) | B
y
.k . . .

y

R-Comm−−−−→ P |
qq

(co k | ack) | τ.co l .l tr .(co k | ack) | B
y
.k err | B

y
(∗)

R-Co−−→ P |
q
(co k | ack) .k err | B

y R-Co−−→ P | ack

An alternative trace starting from (∗) begins with an abort of the bank:

P |
qq

(co k | ack) | τ.co l .l tr .(co k | ack) | B
y
.k err | B

y

R-Ab−−→ P |
q

tr .(co k | ack) | B .k err | B
y

3 We can embed B into M or vice-versa, but the two embeddings are equivalent.

Communicating Transactions (Extended Abstract) 5

The application of R-Ab also rolls back the merchant to before the output tr ;
this is in conformance with the informal semantics in the introduction, as is the
fact that the internal computation of the merchant is not rolled back. �

3 May Testing

We now apply the standard definition of may-testing to TransCCS. We will
model a successful outcome of a test by a top-level output on a fresh channel ω.

Definition 1 (Barb). P⇓a iff there exist P1 and P2 such that P →∗ P1 | a.P2.

Definition 2 (May-Testing Preorder). We write P @∼may
Q iff for all pro-

cesses T containing a fresh name ω, (P | T)⇓ω implies (Q | T)⇓ω. We write
P hmay Q if P @∼may

Q and Q @∼may
P .

Example 3. Consider the systems P1 = Ja.b.co k .k 0K, P2 = a.b and the test
T = a.ω. When applied to P2 the test succeeds since we reach the state b | ω, but
when applied to P1 it fails since this leads to the failed state Jb.co k | ω .k 0 | a.ωK
(which does not have an ω-barb). Consequently a.b 6@∼may

Ja.b.co k .k 0K. �

Our definition of barbs as top-level actions ensures that whenever P⇓ω then
the action ω in P is definitive rather than tentative; the structure of processes in
TransCCS ensures that top-level actions do not depend on the commitment of
any transaction.4 This is crucial to our notion of testing; for example the failed
state above has the possibility of performing the action ω but this is tentative,
as it depends on the transaction k committing. If k is aborted then this apparent
success of the test would have to be rolled back.

In Sect. 5 we give a characterization of may-testing equivalence, with which
we can give easy proofs for the following laws.

Proposition 1 (Uncommitted actions). Actions within a transaction are
not observable unless the transaction commits. For all P,Q, and R such that
k /∈ R (in particular, co k /∈ R), we have

JR .k QK hmay Q µX. JR .k XK hmay 0 (1)

JP +R .k QK hmay JP .k QK µX. JP +R .k XK hmay µX. JP .k XK (2)

Proposition 2 (Restarting transactions). µX. JP .k XK hmay JP .k 0K

Proposition 3 (Transactions versus processes).

Ja.co k .k 0K hmay a µX. Ja.co k .k XK hmay a (3)

JP | co k .k 0K hmay P µX. JP | co k .k XK hmay P (4)

JP .k QK @∼may
τ.P + τ.Q µX. JP .k XK @∼may

P (5)

4 The theory of biorthogonality [24] yields the same barbs for our reduction semantics.

6 Edsko de Vries, Vasileios Koutavas, and Matthew Hennessy

L-Act∑
µi.Pi

µi−→ Pi

L-Par

P k̃(µ)−−−→ P ′

P | Q k̃(µ)−−−→ P ′ | Q

L-Trans

P l̃(µ)−−→ P ′

JP .k QK
k(l̃(µ))−−−−→ JP ′ .k QK

L-Rec

µX.P τ−→ P[X := µX.P̂]

L-Hide

P µ−→ P ′ a /∈ µ
νa.P µ−→ νa.P ′

L-Comm

P k̃(a)−−−→ P ′ Q k̃(a)−−−→ Q′

P | Q k̃(τ)−−−→ P ′ | Q′
(eliding L-Trans for secondary transactions)

Fig. 2. LTS: Standard Actions

4 Compositional LTS

4.1 Distributed Transactions

The use of the embedding rule R-Emb in the reduction semantics gives an easy
to understand description of the execution of communicating transactions, but
prevents compositional reasoning: parallel processes are no longer separate after
embedding. For example, when trying to understand why the application of a
test T to a system P is successful, embedding makes it difficult to disentangle the
contributions made by T and P . After a number of reduction steps components
of the test are distributed throughout the system, and vice-versa.

The LTS implements embedding differently. It is defined over an extended
language, TransCCS◦, where transactions are distributed as a primary transac-
tion, denoted by JP .k QK, and zero or more secondary transactions, denoted
by JP .k QK◦. The system from Ex. 1 has the following trace in the LTS:

Ja.(co k | c) .k bK | a
emb k−−−→ Ja.(co k | c) .k bK | Ja .k aK◦

k(τ)−−−→ Jco k | c .k bK | J0 .k aK◦
co k−−→ c

The application of R-Emb is mimicked by the action emb k in the LTS, and the
right process becomes a secondary k-transaction. The parallel composition of the
primary transaction and secondary k-transaction should be thought of as mod-
elling the transaction Ja.(co k | c) | a .k b | aK. The two processes remain sepa-

rate, however, allowing for compositional reasoning. A step P emb k−−−→ JP .k PK◦

into a secondary k-transaction with no corresponding primary transaction mod-
els the embedding of P into a k transaction which is part of the environment.

The LTS is shown in Fig(s). 2 and 3. Judgements take the form:

– Communication actions P l̃(µ)−−→ P ′, which represent the tentative execution
of µ inside the transactions l̃.

– Broadcast actions P β−→ P ′ where β can take the forms (co k) for committing,
(ab k) for aborting, and (emb k) for embedding.

Communicating Transactions (Extended Abstract) 7

B-CoPri
P ≡ P ′ | co k

JP .k QK co k−−→ P ′
B-CoSec

JP .k QK◦ co k−−→ P

B-Ab

JP .k QK ab k−−→ Q

B-Emb

P emb k−−−→ JP .k P̂K◦

B-Trans

P β−→ P ′ β 6= co k, ab k

JP .k QK β−→ JP ′ .k QK

B-Par

P β−→ P ′ Q β−→ Q′

P | Q β−→ P ′ | Q′

B-Rec

µX.P
β−→ µX.P

B-Act∑
µi.Pi

β−→
∑

µi.Pi

B-Co

co k
β−→ co k

B-Hide

P β−→ P ′

νa.P β−→ νa.P ′

(eliding B-Ab and B-Trans for secondary transactions)

Fig. 3. LTS: Broadcast actions

We will refer to k̃(τ) and broadcast actions as silent actions, and likewise to
traces containing only silent actions as silent traces.

Communication actions are marked with their enclosing transactions (rule
L-Trans). A k(a) action can be matched by a parallel k(a) action (L-Comm),
modelling internal communication within the k-transaction.

When a primary k-transaction is ready to commit (B-CoPri), all secondary
k-transactions must follow (B-CoSec). This is achieved by viewing the action
co k as a broadcast action, which is propagated throughout the system (B-Par);
non-transactions are unaffected by this action. Aborts are handled in a simi-
lar manner, although even primary transactions are subject to random system
aborts (B-Ab). Embedding (B-Emb) is also a broadcast action to allow the dis-
tributed components of a process to be embedded simultaneously. Note that
B-Hide does not require a /∈ β since we cannot restrict transaction names.

The rules in the LTS are subject to an implicit wellformedness condition,
formally defined in [26], which guarantees that the distribution of transactions
in a term indeed models a single transaction. For example, it prohibits terms
such as

JJP1 .k Q1K .l . . .K
◦ | JR .k RK◦ (illformed)

The k-transaction cannot both be and not be embedded inside the l-transaction,
and we therefore reject this term as illformed. Wellformedness also includes some
technical but natural conditions that deal with freshness.

To support distribution, transactions are not binders in TransCCS◦ but are
renamed when necessary (B-Emb, L-Rec) using an operation P̂. The implemen-
tation of P̂ is unimportant, but it must have the obvious properties (distribution
over the constructors of the language, replacing names by sufficiently fresh ones,
etc.), and defined so that two components of the same transaction (for instance,
a primary and a secondary k-transaction) must be given the same new name.
We use tn (P) to denote the set of names of the transactions in P.

8 Edsko de Vries, Vasileios Koutavas, and Matthew Hennessy

4.2 Relation to Reduction Semantics

To be able to formalize the relation between the reduction semantics and the
LTS, we need to specify the mapping between terms in TransCCS◦ and TransCCS.
We define an operation () which combines two k-transactions in a TransCCS◦

term into a single k-transaction.

Definition 3 (Merging). () is the least pre-congruence closed under struc-
tural equivalence that satisfies

JP1 .k Q1K | JP2 .k Q2K
◦ JP1 | P2 .k Q1 | Q2K

JP1 .k Q1K
◦ | JP2 .k Q2K

◦ JP1 | P2 .k Q1 | Q2K
◦

We use the symbol (!) for the symmetric closure of ().

If we apply repeatedly, we eventually end up with a process with a single
term for each transaction. If moreover the original process contained a primary
k-transaction for every k (and not just secondary transactions), then we can
regard the result as a TransCCS term. We overload P P to describe this
translation from a TransCCS◦ term to a TransCCS term.

We can now state that the LTS and the reduction semantics coincide:

Theorem 1 (Reduction semantics vs LTS). Let P P .

1. If P → Q then there exist a process Q and silent action µ such that P µ−→ Q
and Q Q. Moreover, if µ = emb k then k ∈ tn (P).

2. If P t−→ Q, where t is a silent trace, and whenever emb k ∈ t then k ∈ tn (P),
then there exist Q such that P →∗ Q and Q Q.

5 Characterization of May Testing

TransCCS encodes the complex interactions between communicating transac-
tions. In this section we prove that the behaviour of transactional processes
with respect to may-testing is characterized by a class of simple traces, which
we call clean traces. We also prove that a weaker preorder which only uses
non-transactional, sequential tests coincides with the may-testing preorder, and
therefore CCS equivalences are preserved in TransCCS.

5.1 Clean Traces

Clean traces correspond to traces in the LTS where actions are never rolled back
and are committed at the end of the trace: intuitively, every action in a clean
trace eventually becomes definitive. Unlike LTS traces, however, clean traces do
not include transaction names or broadcast actions. To enforce that all actions
become definitive, the formal definition of clean traces (Fig. 4) is parametrized
by a finite set of names ∆. Actions within a k-transaction can only occur in a
clean trace if k ∈ ∆ (C-Act, C-Emb), in which case k must commit at the end
of the trace (C-Co) and cannot be aborted (C-Ab). We use co {k1, . . . , kn} for
the process (co k1 | · · · | co kn).

Communicating Transactions (Extended Abstract) 9

P k̃(µ)−−−→ P ′′ t−→∆ P ′ k̃ ⊆ ∆

P µ,t−−→∆ P ′
C-Act

P ab k−−→ P ′′ t−→∆ P ′ k /∈ ∆

P t−→∆ P ′
C-Ab

P emb k−−−→ P ′′ t−→∆ P ′ k ∈ ∆

P t−→∆ P ′
C-Emb

P co ∆−−−→ P ′

P ε−→∆ P ′
C-Co

Fig. 4. Clean Traces

Example 4. Let P = a.b + c. As C-Act does not constrain top-level actions, the
set of clean traces of P is {ε, a, ab, c} irrespective of the choice of ∆. �

Example 5. Let P = Ja.b.co k .k cK. If we choose ∆ = {k}, we can only derive
the clean trace ab:

Ja.b.co k .k cK
k(a)−−−→

Jb.co k .k cK
k(b)−−→

Jco k .k cK
co k−−→ 0

Jco k .k cK
ε−→{k} 0

C-Co
k ∈ {k}

Jb.co k .k cK
b−→{k} 0

C-Act
k ∈ {k}

Ja.b.co k .k cK
a,b−−→{k} 0

C-Act

With this choice of ∆ we cannot derive the empty trace because the k trans-
action is unable to commit immediately (nor can it be aborted). However, if we
pick ∆ = ∅, we can derive the clean traces ε (using C-Co) and c (using C-Ab).

The singleton trace a is not derivable as a clean trace with any choice of ∆.
As in the derivation above, we need k ∈ ∆ to do a k(a) action but the transaction
is unable to commit until the b action. Clean traces are thus not prefix closed:
P cannot do a definite a without also doing a definitive b.

Similarly, the trace abc is not derivable as a clean trace with any choice of
∆, because we need k ∈ ∆ to do the k(a) and k(b) actions, and k /∈ ∆ to abort
the k transaction and do the c action. P can either do a definitive a and b, or a
definitive c, but not both. �

Normally the choice of ∆ is not important:

Definition 4. We write P t−→CL iff t is a clean trace of P, that is ∃∆,P ′ such

that P t−→∆ P ′. We write P t
=⇒CL to denote that t is a weak clean trace of P.5

Example 6. The set of clean traces of Ja.b.co k .k cK (Ex. 5) is {ε, ab, c}. �

Example 7. Let P = νa.
(
Ja.b.co k .k 0K |

q
a.(τ.co l + b) .l 0

y)
. The set of

clean traces of P is {ε, τb}. The trace ττ (internal communication on both a
and b) is not derivable for any ∆ because the l transaction cannot commit after
doing a b. The trace τb is not derivable for similar reasons. �

5 Since clean traces are CCS traces, we can use the standard definition of a weak trace.

10 Edsko de Vries, Vasileios Koutavas, and Matthew Hennessy

5.2 Soundness and Completeness

Our theory of may-testing is based on weak clean trace inclusion.

Definition 5 (Clean Trace Preorder). We write P @∼tr
Q iff P t

=⇒CL implies

Q t
=⇒CL.

The clean trace preorder is sound and complete with respect to the may-
testing preorder (Def. 2).

Theorem 2 (Soundness). If P @∼tr
Q then P @∼may

Q.

Theorem 3 (Completeness). If P @∼may
Q then P @∼tr

Q.

We now define a weaker testing preorder that uses only non-transactional,
sequential tests, which coincides with the may-testing and clean trace preorders.

Definition 6 (Non-Transactional Testing Preorder). We write P @̂∼may
Q

iff for all tests T of the form a1.a2. . . . an.ω, (P | T)⇓ω implies (Q | T)⇓ω.

Theorem 4 (Conservativity). P @̂∼may
Q iff P @∼may

Q.

The final theorem entails that equivalent CCS processes are also equivalent
TransCCS processes; i.e. communicating transactions do not increase the distin-
guishing power of the language.

5.3 Proof Outline

The proof that may-testing is characterized by weak clean traces (Thm(s). 2
and 3) is a non-trivial result, and we can give but a sketch of the proof here. A
more detailed proof can be found in a companion technical report [26].

For may-testing we are interested in (silent) traces that result in a top-level
barb (ω). The first result states that whenever a process can ring with an arbi-
trary trace, it can ring with a clean trace:

Proposition 4. Let s be a silent trace such that P s−→ R | ω. Then there exists

∆, silent clean t, and R′ such that P t−→∆ R′ | ω.

Proof (outline). First we inspect s and pick a ∆ containing exactly the trans-
actions that commit in s. Then we construct t by induction on s. Actions in s
which happen inside transactions that do not commit (and are not in ∆) cannot
contribute to the ring and are simply skipped. Similarly, if a transaction aborts
we make sure to abort it before any other action inside the transaction. Finally,
we delay all commits to the end of the trace. The final process R′ may differ
from the final process after the original trace R, but it will ring. As a simple
example, the trace

Jτ.0 .k 0K | Jτ.0 .l Jτ.ω | co m .m 0KK
k(τ),l(τ),ab l,co m,τ−−−−−−−−−−−−−→ J0 .k 0K | ω

will be converted to the trace ab l,m(τ), co m, used to derive the clean trace

Jτ.0 .k 0K | Jτ.0 .l Jτ.ω | co m .m 0KK
τ−→{m} Jτ.0 .k 0K | ω �

Communicating Transactions (Extended Abstract) 11

We assume the standard definition of “zipping” of two CCS-like traces (t# t′)
that allows interleaving and communication between the actions of the traces
[26]. The next result is crucial; it states that zipping is a meaningful operation
on clean traces; i.e., that the parallel composition of two processes can do any
clean trace in the zip of the clean traces of the individual processes.

Proposition 5 (Zipping). Let P t1−→∆ P ′, Q
t2−→∆ Q′ and tn (P)∩tn (Q) ⊆ ∆.

Then for all t ∈ t1 # t2 there exists R such that P | Q t−→∆ R! (P ′ | Q′).

Prop. 5 is an important but non-trivial result, which requires a proof that
transaction structure does not limit communication. For example, let

Ja.co k .k 0K
a−→{k,l} 0 and Ja.co k .l 0K

a−→{k,l} 0

Then the parallel composition has the trace

Ja.co k .k 0K | Ja.co k .l 0K
emb k−−−→ Ja.co k .k 0K | JJa.co k .l 0K .k Ja.co k .l 0KK

◦

emb l−−−→
q
Ja.co k .l a.co kK

◦
.k 0

y
| JJa.co k .l 0K .k Ja.co k .l 0KK

◦

k(l(τ)),co l,co k−−−−−−−−−−→ 0 | 0

Hence we can derive the clean trace Ja.co k .k 0K | Ja.co k .l 0K
τ−→{k,l} 0.

Proposition 6 (Completeness w.r.t. (@̂∼may
)). If P @̂∼may

Q then P @∼tr
Q.

Proof. Standard, using Prop. 5 and an easy unzipping lemma.

Given Prop(s). 4 and 5 and Thm. 1, soundness (Thm. 2) can be proven in a
standard way. Completeness (Thm. 3) and conservativity (Thm. 4) follow from
Prop. 6 and soundness.

6 Examples

The soundness theorem means that we can prove may-testing equivalences based
on weak clean trace inclusion. In this section we give a few examples.

Proposition 3(5). JP .k QK @∼may
τ.P + τ.Q.

Proof (outline). Let JP .k QK t
=⇒CL, where t = µ1, . . . , µn. That is, ∃R, ∆ such

that JP .k QK t−→∆ R. Either k ∈ ∆ or k /∈ ∆. If k ∈ ∆ then t corresponds to

a trace k(l̃1(µ1)), . . ., k(l̃2(µ2)), . . ., co k of actions inside k interspersed with
broadcast actions and ending on a commit of k. This means that P will have a
trace l̃1(µ1), . . ., l̃2(µ2), . . . which corresponds to the same clean trace t. On the
other hand, if k /∈ ∆ then t is the empty trace, or it must correspond to a trace
that starts with an abort of k, followed by a trace s of Q. Since the abort is not
part of the clean trace, s corresponds to the same clean trace t. Hence τ.P + τ.Q
includes the weak clean traces of JP .k QK. �

12 Edsko de Vries, Vasileios Koutavas, and Matthew Hennessy

Example 8. Ja.b.co k .k cK @∼may
a.b + c but not vice versa.

Proof. The inclusion follows from 3(5). We can also prove it directly, because as
we saw in Sect. 5.1, the set of clean traces of the former process is {ε, a, ab, c}
while the set of clean traces of the latter is {ε, ab, c}. �

Theorem 5 (Compositional reasoning). If P @∼tr
Q then P | R @∼tr

Q | R.

Proof. Since may-testing supports compositional reasoning, this theorem follows
directly from soundness and completeness. �

Example 9. Consider the following alternative implementation of the bank and
merchant example from the introduction, in which the merchant M ′ tries to
complete the order twice before reporting an error back to the client.

req .
q
τ.tr .(co k | ack) .k

q
tr .(co k | ack) .k err

yy
| µX. Jtr .τ.co l .l XK

By compositional reasoning, we only need to prove the two implementations of
the merchant equivalent (M hmay M

′) to prove the two systems equivalent.
Intuitively, an observer cannot distinguish between M and M ′ because when

either merchant aborts, the observer is also rolled back: aborts are not detectable.
Moreover, the observable behaviour of M ′, before or after the first abort, equals
the behaviour of M .

Formally, the set of weak clean traces of both implementations equals the set
{ε, req , req tr, req tr ack , req err}. �

7 Programmable Aborts

In TransCCS aborts are entirely non-deterministic. We now turn our attention
to programmable aborts; i.e. aborts that are triggered by the process through a
new language primitive ab k. The semantics of this new construct is given by
rule R-Prog-Ab, below, replacing rule R-Ab:

R-Prog-Ab

Jab k | P .k QK → Q

This new language, called TransCCSab, does not however preserve consistency af-
ter an abort. Programmable aborts introduce an undesirable causal dependency
between the alternative behaviour of a transaction which follows the abort, and
the actions that led to that abort. For example, after the reduction

a | Ja.ab k .k b.ωK R-Emb−−−→ R-Comm−−−−→ R-Prog-Ab−−−−−→ a | ω

a communication on channel b is available because a communication on channel
a led to an abort; but this communication on a is undone. Hence, from the point
of view of the left process a the communication has not yet happened, but from
the point of view of the transaction it has and led to an abort.

Communicating Transactions (Extended Abstract) 13

This is more than just a philosophical objection: using transactions such as
the above as tests we can show that the basic equivalences in Prop. 1 are not
preserved in TransCCSab. For example, take the two transactions

P = Jb.co l .l 0K Q = Jb.co l + a .l 0K

and the same test T = Ja.ab k .k b.ωK. Then P fails the test T but Q does not,
and hence P 6hmay Q, even though the a action is never committed:

Jb.co l + a .l 0K | Ja.ab k .k b.ωK
R-Emb−−−→ J(b.co l + a) | Ja.ab k .k b.ωK .l T K
R-Emb−−−→ JJ(b.co l + a) | a.ab k .k (b.co l + a) | b.ωK .l T K

R-Comm−−−−→ JJab k .k (b.co l + a) | b.ωK .l T K
R-Prog-Ab−−−−−→ J(b.co l + a) | b.ω .l T K R-Comm−−−−→ Jco l | ω .l T K R-Co−−→ ω

We can recover the preservation of consistency, however, by restricting all trans-
actions to be restarting, i.e. of the form µX. JP .k XK; we call this language
TransCCSµab. Unfortunately, it is difficult to reason directly about TransCCSµab

processes, since the language is not closed under reduction: after a restarting
transaction unfolds and its default process reduces, we are left with a TransCCSab

transaction whose default and alternative processes are different. However, we
can give a theory for TransCCSµab through a fully-abstract translation to TransCCS,
and reason about the behaviour of TransCCSµab processes via the translation.

We consider the translation {| · |} : TransCCSµab → TransCCS, which maps
ab k to 0 and is the identity on all other constructs. We use the annotation
“µab” to refer to the semantics of TransCCSµab. The important property of the
translation is that it preserves barbs. From that and the results of Sect. 5 we
derive the theorems of soundness and full abstraction.

Proposition 7. P⇓µabω iff {|P |}⇓ω.

Theorem 6 (Full Abstraction of {| · |}). P @∼
µab

may
Q iff {|P |} @∼may

{|Q|}.

8 Related Work

To the extent of our knowledge there is little related work on modelling auto-
matic error recovery of communicating systems. Most work has either focused on
models for isolated transactions [4, 17], including software transactional memory
[18, 1], or compensation-based transactions [5, 9, 8, 20, 11] where error recovery
must be programmed explicitly.

TransCCS is motivated by the long literature on implementing distributed
systems with automatic error recovery (e.g. [16, 13, 22, 23]) and their verification
in process calculi (such as [3, 6, 21]). This work, however, is only indirectly re-
lated to ours as we are not proposing a mechanism for implementing automatic

14 Edsko de Vries, Vasileios Koutavas, and Matthew Hennessy

rollback recovery but rather a way to give high-level specifications of, and reason
about, distributed systems that rely on automatic error recovery.

The only other language that we are aware of in which non-isolated trans-
actions can be modelled is Reversible CCS [14]. RCCS extends CCS with the
notion of reversible actions (written a, a, . . .) and irreversible actions (written
a, a, . . .) past which processes cannot be rolled back. This can be used to model
simple (non-nested) transactions; for example, a transaction superficially simi-
lar to µX. Ja+ b.co k .k XK can be written as (a + b) in RCCS. The dynamic
behaviour of these two terms is significantly different however: the RCCS trans-
action is not in charge of when it commits. An irreversible action a by an observer
can interact with the reversible action a of the transaction, forcing the transac-
tion to commit. Thus the test a.ω succeeds when paired with the above trans-
action in RCCS, but must fail in TransCCS. The same observer can distinguish
0 from the transaction Ja .k 0K (in our syntax), which are indistinguishable in
TransCCS. Hence a testing theory of RCCS would have to take into account the
non-committing traces of transactions, in contrast to our theory for TransCCS in
which the behaviour of a transaction only depends on its committing behaviour.

9 Conclusions

We presented a novel language construct called communicating transactions,
which makes it possible to describe the behaviour of distributed systems with
automatic error recovery at a high level of abstraction. We believe that support
for communicating transactions may be beneficial in the design and implemen-
tation of complex distributed systems such as web services.

We introduced TransCCS, an extension of CCS with this construct. To the
extent of our knowledge TransCCS is the first calculus which encapsulates both
rollback recovery and coordinated checkpointing. We gave simple semantics to
TransCCS and developed a basic behavioural theory, based on non prefix-closed
sets of traces, that characterizes may-testing. We used the theory to prove a
number of interesting laws and reason compositionally about example systems.
We also studied TransCCSµab, a variant of the language with programmable
aborts, and gave a fully-abstract translation to TransCCS.

We plan to study the must-testing or fair-testing [25] theory of TransCCS
in order to be able to specify liveness properties in the presence of aborts; we
expect that the translation from TransCCSµab into TransCCS from Sect. 7 will
not be fully abstract with respect to these testing preorders. We also plan to
extend our work to the π-calculus and other behavioural equivalences such as
bisimulation. Finally, we intent to investigate the usefulness of the construct of
communicating transactions in a more realistic programming language.

References

1. Acciai, L., Boreale, M., Zilio, S.D.: A concurrent calculus with atomic transactions.
In: ESOP. LNCS, vol. 4421, pp. 48–63. Springer (2007)

Communicating Transactions (Extended Abstract) 15

2. Benslimane, D., Dustdar, S., Sheth, A.: Services mashups: The new generation of
web applications. IEEE Internet Computing 12, 13–15 (2008)

3. Berger, M., Honda, K.: The two-phase commitment protocol in an extended π-
calculus. In: EXPRESS. ENTCS, vol. 39, pp. 21–46. Elsevier (2003)

4. Black, A.P., Cremet, V., Guerraoui, R., Odersky, M.: An equational theory for
transactions. In: FSTTCS. LNCS, vol. 2914, pp. 38–49. Springer (2003)

5. Bocchi, L.: Compositional nested long running transactions. In: FASE. LNCS, vol.
2984, pp. 194–208. Springer (2004)

6. Bocchi, L., Wischik, L.: A process calculus of atomic commit. In: WS-FM. ENTCS,
vol. 105, pp. 119–132. Elsevier Science Publishers (2004)

7. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., Or-
chard, D.: Web services architecture (February 2004), W3C Working Group Note

8. Bruni, R., Melgratti, H., Montanari, U.: Theoretical foundations for compensations
in flow composition languages. In: POPL. pp. 209–220. ACM (2005)

9. Bruni, R., Melgratti, H., Montanari, U.: Nested commits for mobile calculi: ex-
tending Join. In: IFIP-TCS. pp. 569–582. Kluwer Academic Publishers (2004)

10. Cabrera, L.F., et al.: Web services business activity framework (WS-
BusinessActivity) (August 2005), Whitepaper

11. Caires, L., Ferreira, C., Vieira, H.T.: A process calculus analysis of compensations.
In: TGC. LNCS, vol. 5474, pp. 87–103 (2008)

12. Ceponkus, A., Dalal, S., Fletcher, T., Furniss, P., Green, A., Pope, B.: Business
transaction protocol (June 2002), OASIS Committee Specification

13. Chandy, K.M., Lamport, L.: Distributed snapshots: determining global states of
distributed systems. ACM Trans. Comp. Syst. 3(1), 63–75 (1985)

14. Danos, V., Krivine, J.: Transactions in RCCS. In: CONCUR. LNCS, vol. 3653, pp.
398–412. Springer-Verlag (2005)

15. De Nicola, R., Hennessy, M.C.B.: Testing equivalences for processes. Theoretical
Computer Science 34(1–2), 83–133 (1984)

16. Elnozahy, E.N.M., Alvisi, L., Wang, Y.M., Johnson, D.B.: A survey of rollback-
recovery protocols in message-passing systems. ACM Comp. Surv. 34(3), 375–408
(2002)

17. Gorrieri, R., Marchetti, S., Montanari, U.: A2CCS: atomic actions for CCS. Theor.
Comp. Sci. 72(2-3), 203–223 (1990)

18. Harris, T., Marlow, S., Peyton-Jones, S., Herlihy, M.: Composable memory trans-
actions. In: PPoPP. pp. 48–60. ACM (2005)

19. Little, M.: Transactions and web services. Commun. ACM 46(10), 49–54 (2003)
20. Lucchi, R., Mazzara, M.: A pi-calculus based semantics for WS-BPEL. Journal of

Logic and Algebraic Programming 70(1), 96–118 (2007)
21. Nestmann, U., Fuzzati, R., Merro, M.: Modeling consensus in a process calculus.

In: CONCUR. LNCS, vol. 2761, pp. 399–414. Springer (2003)
22. Nett, E., Mock, M.: How to commit concurrent, non-isolated computations. In:

FTDCS. pp. 343–353. IEEE Comp. Soc. (1995)
23. Park, T., Lee, I., Yeom, H.Y.: An efficient causal logging scheme for recoverable

distributed shared memory systems. Parallel Computing 28(11), 1549–1572 (2002)
24. Rathke, J., Sassone, V., Sobocinski, P.: Semantic barbs and biorthogonality. In:

FoSSaCS. LNCS, vol. 4423, pp. 302–316. Springer-Verlag (2007)
25. Rensink, A., Vogler, W.: Fair testing. Inf. and Comp. 205(2), 125–198 (2007)
26. de Vries, E., Koutavas, V., Hennessy, M.: Communicating transactions—technical

appendix (April 2010), available at http://www.scss.tcd.ie/Edsko.de.Vries
27. Weikum, G., Vossen, G.: Transactional information systems, chap. 20 (Distributed

Transaction Recovery). Morgan Kaufmann Publishers Inc. (2001)

