A Theory of System Behaviour in the Presence of
Node and Link Failures (Extended Abstract)

Adrian FrancalanZaand Matthew Hennes$y

University of Sussex, Falmer Brighton BN1 9RH, England,
{adrianf,matthewh}@sussex.ac.uk

Abstract. We develop a behavioural theory of distributed programs in the pres-
ence of failures such as nodes crashing and links breaking. The framework we
use is that of @, a language in which located processes, or agents, may mi-
grate between dynamically created locations. In our extended framework, these
processes run on a distributed network, in which individual nodes may crash in
fail-stop fashion or the links between these nodes may become permanently bro-
ken. The original language /Bis also extended by a ping construct for detecting
and reacting to these failures.

We define a bisimulation equivalence between these systems, based on labelled
actions which record, in addition to th&ect actions have on the processes, the
effect on the actual state of the underlying network and the view of this state
known to observers. We prove that the equivalendalig abstract in the sense

that two systems will be lierentiated if and only if, in some sense, there is

a computational context, consisting of a surrounding network and an observer,
which can see the fierence.

1 Introduction

It is generally accepted thgiartial failures are one of the principal factors preclud-

ing location transparency in distributed settings suchvide-area networkq4], large
computational infrastructures which may even span the globe. Because of this, vari-
ouslocation-awarecalculi and programming languages have arisen in the literature to
model the behaviour of distributed programs in the presence of failures, and to study
the correctness of algorithms is such a setting. The purpose of this paper is to:

— invent a simple framework, a distributed process calculus, for describing computa-
tions over a distributed network in which individuabdesandlinks between the
nodes are subject to failure

— use this framework to develop a behavioural theory of distributed systems in which
these failures are taken into account.

Our point of departure is D[12], a simple distributed version of the standardalculus
[16], where the locations that host processes model closely physical network nodes.
Ignoring the type system developed for,Bvhich is orthogonal to the issues addressed

here, we consider the following threer@bstract server implementations as motivation:

server < (vdata) (I[req’?(x, y)-data{x,y)])

| I[date?(x, y).y!(f(x))]
[[req?(x, y).go k;.data (x, y)]
servD = (Vdata)(| k[data@(x.y).go 1y f (x)])

go ky.datal{x, syn¢
I [req?(x, y).(vsyng| | go ko. go k;. datal {x, syn¢
| synctP(x).y!(x)

go L. yr(f(x))
|k [[data?(X, y): (go ko.gol. y!<f(X)>)]]

servD2Rt < (vdatd)

The three systenwerver, servD andservD2Rt implement a server that accepts a single
request for processing on chanmed| at locationl with two argumentsx being the
value to be processed agdeing the return channel on which to return the result of
the processing. A typical client for these servers would have the fpmreqg!(n, ret)],
sending the name as the value to be looked up aret as the return channel.

Every server forwards the request to an internal database hidden from the client,
denoted by the scoped chanmilta which processes the value using an unspecified
function f (x). The three implementationsftér by where the internal database is located
and how it is handled. More specificallyerver holds the databadecally at | and
carries out all the processing there; by contrastvD and servD2Rt distribute the
databaseemotelyat locationk;. The latter two server implementations alséeti by
how the remote database is accessediD accesses the database using the direct route
from| toky; servD2Rt forwards the service requests along two concurrent routes, that is
the direct one fronh to k; and an indirect route using an intermediary né&gland non-
deterministically selects one of two results if both routes are active.Intuitively, these
three server implementations are not equivalent because they exhibit distinct behaviour
in a setting with node and link failure. For instance, if nagléails, servD and servD2Rt
may not be able to service a client request whersager would continue to work
seamlessly. MoreoveservD andservD2Rt are also distinct because if the link between
| andk; breaksservD may block and not serve a request whikrvD2Rt would still
operate as intended. Despite the fact that these three implementations are qualitatively
different, it is hard to distinguish between them im theories such as [10].

In this paper, we develop a behavioural theory that tells these three systems apart.
We use extended Dconfigurations of the forn® > N where is a representation
of the current state of the network, ahticonsists of the systems such as those we
have just seen, software executing in a distributed mannerXdvidereX records the
set of nodes in the network, thestatus(whether they aralive or dead, and their
connectivity(the set of symmetric links between these nodes). This results in a succinct
but expressive framework, in which many of the phenomena associated with practical
distributed settings, such as routing algorithms and ad-hoc network discoveries, can be
examined.

The corresponding behavioural theory takes the forifwvefk) bisimulation equiv-
alence based on labelled actions

Z>NL>Z/I>N/ 1)

where the label represents the manner in which an observer, also running on the net-
work X, can interact with the systei. This interaction may not only change the state

of the system, td\’, in the usual manner, but alséfect the nature of the underlying
network. For instance, an observer may extend the network by creating new locations or
otherwise induce faults in the network by killing sites or breaking links between sites,
thereby capturing, at least, some of the reactioN ¢d dynamic failures.

It turns out that the definition of the actions in (1) needs to be relatively sophisti-
cated: although the system and the observer may initially share the same view of the
underlying networky, interactions quickly give rise to situations in which these views
diverge More specifically, observers may learn of new nodes in the system as a result of
interaction (scope extrusion), but at the same time, cannot determine the state of such
nodes and the code executing at them either because the newly discovered nodes are
completely disconnectaat because the observer does not have enough information to
determine a routgvhich leads to these nodes. As a result, in (1) above, the network rep-
resentatior®’ needs to somehow record the actual full state of the underlying network,
together with theobserver's partial vievof it.

We choose to develop the theory in terms of a representation with nodes and links,
despite the widely held view that representation of namtdg is suficient; this would
typically entail encoding a link between locatibmndk as an intermediary nodg,
encoding migration frorhto k as a two step migration frofro Ik andlk tok, and finally
encoding link failure as the intermediary ndédailing. A network representation with
partial connection between nodes is very natural in itself since WANs are rdtea
cligue The resulting calculus also gives rise to an interesting theory of partial views that
deserves to be investigated in its own right. In addition, this setting allows us to study
directly the interplay between node and link failure and their respective observation
from the software’s point of view. Finally, it is unlikely that a theory resulting from an
encoding into anodes onlycalculus would be fully abstract, due to the fact that any
encoding would typically decomposes atomic reductions such as migration into sub-
reductions, which in turnféects the resulting bisimulation equivalence; see [9].

The paper is organised as follows: Section 2 introduces &8nd the reduction se-
mantics. In Section 3 we present an initial definition of actions feFbased on the
general approach of [11]. The resulting bisimulation equivalence can be used to demon-
strate equivalencies between systems, but we show, by a series of examples, that it is
too discriminating. In Section 4, we revise the definition of these actions, by abstract-
ing from internal information present in the action labels, and show that the resulting
equivalence igully abstractwith respect to an intuitive form afontextual equivalence
This means that two systems will befféirentiated by the bisimulation equivalence if
and only if, in some sense, there is a computational context, consisting of a network and
an observer, which can see théfeiience. The complete proofs, elaborate discussions
and extensive examples may be found in the corresponding technical report [8].

Table 1.Syntax of typed BEF

I
Types

T,U,W ::= ch | locs[C] Si=a|d C,D :={uy,...,Un}
Processes
P,Q = ul(V).P |u?(X).P | «u?(X).P |ifv=uthenPelseQ |0 |PIQ |(vn:T)P
| gou.P kil | break u | ping u.Pelse Q
Systems

M,N,O = I[P] | NIM [(vn:T)N

2 The language

We assume a set ofariables Vars, ranged over by, y,z ... and a separate set of
names Nawmes, ranged over by, m,.. ., which is divided into locations, dcs, ranged
over byl, k, ... and channels, s, ranged over by, b, c,.... Finally we usay, v, ...

to range over the set adentifiers consisting of either variables and names.

The syntax of &@F is given in Figure 1, where the main syntactic category is that
of systemsranged over by, N; these are essentially a collectionlofated processes
or agents [P], but there may also be occurrences of tymedped namegyvn: T)N.
Although we could employ the full power of the type system far[DO], for simplicity,
we use a very simple notion of type and adapt it to the purpose at hand. Thus, if
used as a channel M, thenT is simply ch; however if it is a location theli = 1ocs[C]
records it'sstatusS, whether it is alivea or deadd, and the set of locationato which
itis linked,{l4,...,In}.

The syntax for agent®, Q, is an extension of that in/D There are input and output
on channels; her¢ is a tuple of identifiers, an¥ a tuple of variables, to be interpreted
as a pattern. We also have the standard forms of parallel, replicated input, local decla-
rations, a test for equality between identifiers and an asynchronous migration construct.
We also introduce a ping conditional construEping k.P else Q], in the style of [2, 1,

15], branching td[P] or I[Q] depending on thaccessibilityof k from |. Finally we
have two new constructs to simulate failurg&jll] kills the locationl, while k| break I]
breaks the link betwedrandk, if it exists. We are not really interested in programming
with these last two operators. Nevertheless, when we come to cousidiextual be-
haviour, their presence will mean that the behaviour will take into account fiieete

of dynamicfailures.

In this extended abstract, we will assume the standard notiofreeénd bound
occurrences of both names and variables, together with the associated coneepts of
conversion andubstitution Furthermore, we will assume that all system terms are
closed that is they have no free occurrences of variables.

Reduction semanticsThis takes the form of a binary relation
A>N — A4 >N’ (2

where4 and 4’ are representations of the state of the network. Intuitively this must
record the set of locations in existence, whether they are alive or dead, and any live
links between them.

Definition 1 (Network representation). We first introduce some notation to represent
thelinks in a network. A binary relatior over locations is called énksetif it is:

— symmetric, that is{l, k) € £ implies(k, |} is also inL
— reflexive, that is{l, k) € £ implies(l,|) and(k, k) are also inL.

A network representatiod, is any triple(N, D, L) where

— N is a set of names, divided intoc(N) (location names) andhan(N) (channel
names)

— A C loc(N) represents the set of live locations

— L C loc(N) x loc(N) is a linkset representing the set of live connections between
locations

In the sequel, we use the abbreviatiap k in linksets to denote the pait§ 1), (k, k),
{1, ky, <k 1); we also denote the componentsiodsAy, 44 andA4 .

We may therefore takd and4’ in (2) above to be network representations. For-
mally, we call pairs4 > N configurations whenever every free name M occurs in
the name component of, and we define reductions to take place between such con-
figurations. Since not all nodes are interconnected, the reduction semantics is based on
the notions ofaccessibilityandreachabilitybetween nodek is accessible frorhin 4,
denoted agl + k<« |, if and only ifk is alive k € 44) and there is a (direct) live link
between andk ({1, k) € 4,); a nodek is reachablefrom | in 4, denotes ad + ke, if
there exists ahain of live linksbetween the two nodes, wheseery intermediate node
is alive

The rules governing these reductions are given in Figures 2, 3 and 4. Figure 2
gives the standard rules for (local) communication, and the management of replication,
matching and parallelism, derived from the corresponding rules #oin)12]. Every
rule depends on the requirement thdhe location of the activity, is currently alive; this
is the intent of the predicaté + | : alive. The rules in Figure 3 are more interesting.
Rules(r-go) and(r-ngo) state that a migration is successful depending on the accessibility
of the destination. Similarlyy-ping) and(r-nping) are subject to the same condition for
the respective branchings. Note tHating k.P else Q] yields partial informationabout
the state of the underlying network: it can only determine khiainaccessible, but does
not give information on whether this is caused by the failure of Hodee breaking of
the link | & k, or both. The ruleg-kill), (r-brk) make the obvious changes to the current
network;4 — | means changinbto be a dead site id, while 4 — | & k means breaking
the link betweerl andk. Finally (r-newc) and (r-newl) regulates the generation of new
names; for examplé;-newl) launches a new location with a declared types[C] using
the functioninst(locs[C], |, 4). Intuitively, this returns the location tygecs[D], where
the set of locationB, is the subset of locations @u{l} which arereachablefrom |. We
refer the reader to the technical report, [8], for an example explaining how this function
works.

Finally, in Figure 4 we have an adaptation of the standamtextualrules, which
allow the basic reductions to occur @valuation contextsThe rule(r-str) allows re-
ductions up to a structural equivalence, in the standard manner, using the identities in
Figure 5. The only non-trivial identities in Figure 5 gseflip-1) and(s-flip-2), where the

Table 2.Local Reduction Rules forAF+

I
Assuming 4 + | : alive

(r-comm)

A+ 1[a2(V).PI1[a?(X).Q1 — 4»~1[P] [1[Q{V/X}]

(r-rep) (r-fork)
Avl[xa?(X).P] — 4»I[a?(X).(P| = a?(X).P)] A-1[PIQ] — 4+I[P]|I[Q]

(r-eq) (r-neq)
AsI[fu=uthenPelse Q] — A-1[P] A I[ifu=vthenPelse Q] — A-1[Q] "

Table 3.Network Reduction Rules fordB

I
Assuming 4 + | : alive

(r-go) (r-ngo)

Ar kel A¥ kel
A>1[gokP] — 4> K[P] A>1[gokP] — 4> K[0]

(r-ping) (r-nping)

- A+ kel _ Ar kel
Av|[pingk.Pelse Q] — 4+ I[P] AvI[pingk-Pelse Q] — 4»>1[Q]

(r-kill) (r-brk)
s [kl — (A—-1)»1[0] A»I[breakK] — (4 — k) »I[0]

Arleok

(r-newc)
A»1[(vcich)P] — 4> (vcich)I[P]

(r-newl)

locs[D] = inst(Locs[C], 1, 4)
> [(vK: Tocs[C]) P] — 4> (vk: Locs[D]) I[P]
L

Table 4.Contextual Reduction Rules forrB

I

(r-str)

AN =4 N AN —A>M A>M=4>M
A N — A" > M’

(r-ctxt-rest) (r-ctxt-par)

A+n:TeN — A 4+n:Us-M A>N — A >N S
A (vn:T)IN — A'>(vn:U)M A>NM — 4'>N'|M §
|

Table 5.Structural Rules for BF

(s-comm) NIM = M|N

(s-assoc) NIM)IM’ = N|(M|M’)

(s-unit) N|I[O] =N

(s-extr) ¢n:T)(N|JM) = N|(vn:T)M n ¢ fn(N)
(s-flip-1) vn:T)(vm:U)N = (vm:U)(vn:T)N n¢ fn(U)
(s-flip-2) ¢n:T)(vm:U)N = (vm:U-n)(vn: T+m)N ne fn(U)
(s-inact) ¢n:T)N=N n¢ fn(N)

types of the successively scoped locations need to be changed if they denote a link be-
tween them, thus avoiding unwanted name capture. The (rdes-par) and(r-ctxt-rest)

allow reductions to occur under contexts; note that the latter is somewhat non-standard,
but as reductions may induce faults in the network, it may be that the status and con-
nectivity of the scoped (location) names afected by the reduction, thereby changing
TtoU.

This completes our exposition of the reduction semantics. At this point, we should
point out that in a configuration such 4s N, contrary to what we have implied up to
now, 4 does not give a completely true representation of the network on which the code
in N is running; the type information associated with scoped locations encodes parts of
the network4 that is hidden from the observer.

Example 1 (Syntaxl.et4 representthe netwokkl, a}; {I}; {l < 1}) consisting of a chan-
nela and a live nodé andM; the system

(v k2:1oc,[0]) (v ki :1ocq[{l, ka}]) (I[al(k2).P] [ko[Q)

HereM; generates two new locatiolg kp, wherek; is dead and linked to the existing
nodel andk; is alive linked tok;. Although4 only contains one nodk the located
procesd[al(ky).P] (as well ask;[Q]) is running on a network ofhree nodestwo

of which, k;, ky are scoped, that is not available to other systems. We can informally
represent this network by

I ki ko
O > @ ®)

where the nodes ande denote live and dead nodes respectively. Note that the same
network could be denoted by the systéin

(vki:1locg[{}]) (vk2:loca[{ki}]) (I[al<k2).P] [ko[QI)

Note also that the two systems are structurally equivaiat= Ny, through(s-flip-2).
As a notational abbreviation, in all future example we will omit the status annotation
in live location declarations; so for example systiinwould be given as

(vki:locq[{l}]) (vka:{ka}) (I[al(k2).P] [k2[QI)

3 Alabelled transition system

In this section we give a labelled transition system for the language, in which the la-
belled actions are intended to mimic the possible interactions between a system and an

observer; it is natural to assume that both share the same underlying network. However
Example 2 below demonstrates that our representation of this joint network is no longer
suficient if we want to faithfully record thefiect interactions have on systems, because
they may lead to a discrepancy betweenghstem network vieand theobserver net-

work view

Example 2 (Observer’'s Network viewet 4 and M; be defined as in Example 1. An
observerO at sitel, such ad[a?(x).P(x)], can gain knowledge of the new location
ko, thereby evolving td[P(k;)]. But even though it is in possession of the nakag
it's knowledge of the state of the underlying network is no longer representgdand
there is now a mismatch between the observer view of the network, and the system view.
The system view is now’ = {{a, |, ko}; {l. ko}; {l &1, ko & ko}), that is4 augmented by
the scope extrusion of tHeve nodek; linked to a private (dead) nodg, which is, in
turn, linked tol. But the observer’s view is quiteftierent: the nodeéis accessible to the
observer, since it has code running there; nevertheless, even though the observer knows
aboutk; atl in P(ky), it does not have enough informationreach k from|. As a result,
it has no means how to determikigs state (its status and connections) nor interact with
any code ak,. This means that the representation of the observers view, requires a new
kind of annotation, for nodes such lgs whose name is known but cannotieached
I ko
o ?

Stated otherwise, in order to give an Its semantics, we need to refine our represen-
tations of networks.

Definition 2 (Effective network representations).An effective network representa-
tion X' is a triple (N, O, H), where:

— N is a set of names, as before, divided ifdo(NV) and chan(N)

— O s alinkset, denoting the live locations and links that asbservabldy the con-
text

— H is anotherlinkset, denoting the live locations and links that dr&den(or un-
reachable) to the context.

We also assume three consistency requireméitstom(0) C loc(N), (i) dom(H) C
loc(N) and (iii) dom(O@)ndom(H)=0.

The intuition is that an observer running on a network representatiknows about
all the names iix, denoted ag'y,, and has access to all the locationglom(0). As a
result, it knows the state of every locationdom(O) and the live links between these
locations. The observer, however, does not have access to the live locatitmms(iH);
as a result, it cannot determine the live links between them nor can it distinguish them
from dead nodesX, optimises on the previous (intuitive) network representation
two ways: (1) It encodes the node and liveness using a single linkset, instead of two
distinct setsd 4 and4, (2) it does not represent unusable live links, that is links where
either end point is a dead node. Summarisihgold all the necessary information from
the observer’s point of view, that is, the known nam¥sthe known state, and the

state that can potentially become known in future, as a result of scope extrt&ibor
brevity, we omit channel names from aBy; in the remainder of the paper.

With this refined notion, we can now represent the observers view of Example 2
asN = {,k}, 0 = {l & I} andH = {k» & ko}. In the sequel, we useonfigurations
of the formX » N, whereX is a network representation, ahdsatisfies the previous
consistency constrainin(N) € 2.

We now define a labelled transition system forFD which consists of a collection

of actions over configurationg; > N L e N, whereu can be an internal action,

7, a bound input,{™: T)I : a?(V) or bound output,(": T)I : al(V), adopted from
[11,10], or the new labelsill : | andl « k, denoting external location killing and
link breaking respectively. These actions are defined by transition rules given in the full
paper, [8]. In Figure 6 we give the interesting rules. The transition rules introducing
external actions such d@shalt) and(l-disc) are subject to judgements of the fofm-ops

| : alive, requiring thatl is alive & + | : alive) andaccessible by the observér e
dom(Zp)). We employ three rules for scoping, the standgwest), the standard but
modified (-open) which filters (unusable) links connected dead nodes through the
conditionU = T ndom(Zp U 2), and the non-standagtrest-typ), which filters links
between scope extruded locations and scoped locations in bound output labels.

With these actions we can now define in the standard manner a bisimulation equiv-
alence between configurations, which can be used as the basis for contextual reasoning.
Let us write

2 E M~ N
to mean that there is a (weak) bisimulation between the configurafien$ andX > N

Example 3 (Server Implementations Revisit€nsider the network:

o
ko

O = > O

I ks
formally represented & = (N, O, H), whereN = {I,k;,ko},0 = {l & kg, | ks, ki
ko} andH = 0. If we assume that the three server implementations presented earlier in
the Introduction were running over, we are able to formally argue that

2 | server #in servD #in; servD2Rt

To see this, it is sfticient to examine the behaviour of these systems subsequent to an
. |k kill:k:

actions such as— and—s.
One can also use the Its to establish positive results. For examplgy fer({l, k}, {| &

k}, 0y, one can prove
ik E l[ping k- al{) else 0] =int k[go l.a! ()]

Nevertheless, we can argue, at least informally, that this notion of equivalence is too
discriminatingand the Its labels tomtensiona) because we distinguish between con-
figurations where the fferences in behaviour arefiii¢ult to observe. Problems arise
when there is an interplay betwebitdennodes, links and dead nodes.

Table 6.Main Operational Rules for BF

I
Assuming X' + | : alive

(I-kill) (I-brk)

Flek

e l[kill = & - 1D)»1[0] z¢umwku_Lz-aH@>umz

(I-halt) (I-disc)

Killl 2 bops | 2 alive

2eN— (2 -1)>N

P2 Fobs |k
SeNK s _(oksN
(l-open)
2+n:T>N
2> (vn:T)N

(A:T)l:al(v)
—_—

2> N

(n:U.A:T):al(V)
—_ e N

lLa#zneV, U=Tndom(Zp UZy)

(I-weak)

fi:T)l:a?
2+n:T>N MZ’>N’

:T, 7. T):a?
2 >N —>(nTnT) sl 2> N

lLazneV, (Z+:T) Fops T

(I-rest-typ)
S+k:Ts N (A:T)l:al(V)
2> (vk:T)N

(Z+n:0) +k:Us> N’

fi:0)l:al(V ~
MZ+ﬁ:U> (vk:U)N’

l,azken(T)

(I-par-ctxt)
SN -5 3 N
ZoNM 25 5N M = F
s MIN -5 7 M|N’

(I-rest)
Z+n:Te N -5 X 4n:Us N
2> (vn:T)N Ny > (vn:U)N’

M

n¢ fn(u)

Example 4 (Inaccessible Network Statledt > be the network in which there is only
one nodel, which is alive and consider the two systems

Mz & (vka:{l}) (vka:{ka}) (v Ks:{ky, ka}) I[al<ka, ks).P]
N2 & (vki:{l}) (vKka:{ka}) (vks: {ki}) I[al(kz, ks).P]
WhenM, andN; are running oix, the codd[al(ky, k3).P], present in bothHM, andN,,

is efectively running on the following respective networks, due to the newly declared
locations:

k2 k2

o (e}
| K / | ke /
T \ T \

o (o]

k3 k3

10

Using our Its, we determine thatE M, #i: No because the configurations give rise to
differentoutput actions:
ko:0, ka:{koDl:al(ky,
o M, LelCHNAD o 0 4 kst (ko) > (vka: il Ko, ka)) ILP]

o N, LAl o 10 + k10> (v, ko, ka)) I[P]

The diference lies in the type at which the locatianis exported:M, exportsks con-
nected td, whereas irN, exports a completely disconnectied

However, ifk; does not occur irP, thenk; can never be scope extruded to the
observer and thuls, andks will remain inaccessible in both systems. This means that
the presence (or absence) of the lkak- ks can never be verified by the observer and
thus there should be no observablfatience betweeM, andN, running onX.

Example 5 (Interplay between Node and Link Failu¥®® consider the following three
configurations together with the depiction of the respective networks over which the
common located proce$ga! (k).P] is running:

A
Y

Ox ex o x

M% < {l,a}, {lie11},0) > (vk:locg[{IIDI[alk).P]

M2 < ({l,a}, {ly o1}, 0) > (vk: Toca[0])I[al(K).P]

O— O0O— O0—

M2 < ({l,a}, {ly o1}, 0) > (vk: Toc,[0])I[al(k).P]

Intuitively, no observer can distinguish between these three configurations; even though
some observer might obtain the scoped n&rbg inputting on channe atl, it cannot
determine the dierence in the state of network. From ruileping), we conclude that
any attempt to pings from | will yield the negative branch. However, such an observa-
tion does not give the observer enough information about whether it was caused by a
node fault ak, a link fault betweem andk or both. As a result, we would like to equate
all three configuration. However, our Its specifies that all three configurations perform
the output with diferent scope extrusion labels, namely:
(Al 1,0y mi L0 o0y 10P]
(k:locg[0])I:al(ky

(.1 11,00> ME B, () (1 1),0) 1P
:loc,[0])]:a!
(o),0ys M3 L2 G ko ki s I[P

and as a result, these configurations affedéntiated byyiy;.

4 Reduction barbed congruence

The fundamental problem with the Its of the previous section is that when new loca-
tions are scope extruded, the associated information, coded in the types at which they
are exported, is too detailed. The current actions carry too rmiemal information

11

and hence, we need a revised form of action, which carry just the right amount of infor-
mation.

However, before we plunge into our revision, it is best to have yardstick with respect
to which we can calibrate the appropriateness of the revised labelled actions, and the
resulting bisimulation equivalence. We adapt a well-known formulation of contextual
equivalence to BF, [13, 11], calledreduction barbed congruenc@&his relies on the
notion of abarb, a collection of primitive observations which can be made on systems.
Let us writeX > N 4@ to mean that an output on chanmeht an accessible location
| can be observed. Then, we would expect all reasonable behavioural equivalences to
preserve these barbs. But the key idea in the definition is to use a notoomizixtual
relation over configurations, in which the contexts only have access mbgervable
part of the network.

Definition 3 (Contextual Relations).A relationR over configurations isontextualif;

(Parallel Systems)

, , L -2 E MORN|O
e 2> MRE >N andX+ops O, 27 +ops O implies 5 ": O||M R O||N
(Network Extensions)

e 2>MRZEZ >N andZtops T, 2 tops T, N fresh implies 2+n:TEM RN

whereX rops O andX +qps T restrict the observer O and connections of location types
to accessible locations only.

Definition 4 (Reduction barbed congruence)Let = be the largest relation between
configurations which isontextual preservedarbsand isreduction-closed

Note that, apriori, this definition allows us to compare configurations which have dif-
ferent networks. However, it turns out that wheneVerM = 2’ » N, the external parts
of 2 andX” must coincide. In the sequel, we abbreviateM = >'» N, the cases where
both networks are identical, o= M = N.

We now outline a revision of our labelled actions with the property that the result-
ing bisimulation equivalence coincides with the yardstick relatenThe idea is to
reuse the same actions but to simply change the types at which bound names appear.
Currently, these are of the forfh= ch or 1locs[C], where the latter indicates the sta-
tus of a location and its connectivity. We change these types to new types of the form
LK = {l; & ky,...,lj &k} whereL,K are linksets. these represent the new live nodes
and links, which are made accessible to observers by the extrusion of the new loca-
tion. Alternatively, this is the information which is added to the observable part of the
network representatioly, as a result of the action.

The formal definition is given in Figure 7, which is expressed in terms of a function
Ink(n : T,2), the definition of which is relegated to the Appendix. Intuitivelynifs
a channel T = ch) or a dead locationT(= locg[L]), Ink(n: T,2) returns the empty
link set@. Otherwise, when it is a live locatiofT (= loc,[C]), it constructs the linkset
denoting the nodes and links that are made accessible by the addition of the new location
n: loc,[C] to the network®.

12

Table 7.The derived lts for BF
I

(I-deriv-1) (I-deriv-2) -
SeN-5 e N) ZI>NM>2/1>N/~ .
T uelnkilllek AT L = Ink(@:T,2)
2>N—2"»>N eNb—— "> N
(I-deriv-3)
o N (A:T):a?(V) SN .
FOW) L =Ink(fi:T,2)

Z2eN—> 2" =N

These revised actions give rise to a new bisimulation equivalence over configura-
tions,~, and we use
2EM=~N

to mean that the configuratioas- M andX > N are bisimilar.

Example 6 (Derived bisimulationdecall that, in Example 4, we hadid@irent actions
for 2> My andX' » N, because > M, exportedks with a link tok, and2 > N, did not.
However,2 contains only one accessible notleand extending it with the completely
disconnected new node does not increase the set of accessible nablgsFurther-
more, increasing’ + ks : 0 with a new nodeks, linked to the inaccessiblk, (in the
case of2 » My) or completely disconnected (in the caseXdf N,), also leads to no
increase in the accessible nodes. Correspondingly, the calculationiglef. 0, 2) and
Ink(ks : {ko}, 2 + ko : 0) both lead to the empty linkset type. Formally, we get the same
derived actions

o M, MV o0 4k (ko) o (vka: (1, ko, Ka)) I[P

SNy (OIS, 5 ko0 +ke: 05 (v (I, ko, ka)) I[P]

Furthermore, ifP contains no occurrence &f, we can go on to show £ M ~ N.
On the other hand, P is al(k;), the subsequent transitions are:-

ko0 + K (Ko} > (vka I, ko, ka)) I[P] Rt
ko0 +Kg: 00 (v {1, ko, kap) I[P] Feliatw),
whereL/K = {k, < k3}. More specificallyL andK hold information directly related
to k; such ask; < | together with information related to previously inaccessible nodes
such ask; < ks, which has now become accessible as a result of expdttinthe first
derived actionk; : L)I : al<k;) thus exports the extra (previously hidden) information

k, & k3 in L and based on this discrepancy, we have M, £ N,
Revisiting Example 5, the threeftérent actions oM2, M2 andM3 now converge
. i (ko):alk) 1 2 3
to the same actioM; ———— ...»I[P], henceX | M3 =~ M3 =~ M3.
The main result of this paper can now be stated:

Theorem 1. InDxF, 2 E M~ NifandonlyifX M =N

13

Proof. (Outline) In one direction, this involves showing thais a relation over con-

figurations satisfies the defining propertieseduction barbed congruenc&he main

problem here is to show thatis contextual, and in particular that= M ~ N implies

2 E M|O ~ NJO for everyO which only has access to the external (accessible) part

of 2. The overall structure of the proof is similar to the corresponding result in [10],

Proposition 12, but the details are more complicated because of the presence of the

network. We refer to the full paper, [8], for an elaborate presentation of the proofs.
The essential part of the converse is to shHogfinability, that is for every derived

action, relative to a netwotk, there is an observer which only uses the external knowl-

edge ofX to completely characterises th&ext of that action. These observers have

already been constructed for simpler languages suahcadculus, in [11], and B, in

[10]. Here the novelty is to be able to characterise the observébld that actions have

on a network.

5 Conclusions and Related Work

We have presented a simple extension af [which there is an explicit representa-

tion of the state of the underlying network on which processes execute. Our main result
is afully-abstractbisimulation equivalence for reasoning about the behaviour of dis-
tributed processes in the presence of network configurationsdsald nodespartial
connectivityanddynamic network failuresto the best of our knowledge, this is the first
time system behaviour in the presencdinf failure (permanenpartial accessibility of
nodes) has been investigated. It is also the first time that software observation of node
and link failure has been investigated in a process calculus setting.

Application and Future Work:Our work is best viewed as a well-founded framework
from which numerous variations could be considered such as unidirectional links, ping
constructs that areventuallycorrect and transient failure. In our more immediate re-
search, we intend to use our present results to develop a thefanylisfoleranceand to

apply it to example systems from the literature such as [5]. As it currently stands, our
work lends itself well to the study of distributed software that needs to be aware of the
dynamiccomputing context in which it is executing; various examples can be drawn
from ad-hoc networks, embedded systems and generic routing software. In these set-
tings, the software typicallgiscoversiew parts of the neighbouring netwakruntime
andupdatesdts knowledge of the network state with changes caused by failure.

Related Work: There have been a number of studies on process behaviour in the pres-
ence ofpermanent node failurenly, amongst them [15], our point of departure. In this
work, they developed bisimulation techniques for a distributed variant of CCS with lo-
cation failure. Our work is also very close to the pioneering work [2, 1]; their approach
to developing reasoning tools is however quit@atent from ours. Rather than develop,
justify and use bisimulations in the source language of interest, in theirrcaselry,

they propose a translation into a version of thealculuswithout locations, and use
reasoning tools on the translations. But most importantly, they do show that for certain
my terms, it is sificient to reason on these translations. The closest work to the study of

14

link failure is [6], where distributed Linda-like programs are studied in the presence of
connect and disconnect software primitives that dynamically change the accessibility of
locations. The connect construct employed is however very powerful and can connect
anytwo disconnected sites; this obviates the need for observer restricted views, thereby
simplifying immensely the theory. Elsewhere, permanent location failure with hierar-
chical dependencies have been studied by Foutmet[7]. Berger [3] was the first to
study ar-calculus extension that modefansientlocation failure with persistent code

and communication failures, while Nestmagtral [14] employ a tailor-made process
calculus to study standard results in distributed systems, such as [5].

References

1. Roberto M. Amadio. An asynchronous model of locality, failure, and process mobility. In
Proc. COORDINATION’9/volume 1282, pages 374-391, Berlin, Germany, 1997. Springer-
Verlag.

2. Roberto M. Amadio and Sanjiva Prasad. Localities and failuF&TTCS: Foundations of
Software Technology and Theoretical Computer Sciet¥e1994.

3. Martin Berger. Basic theory of reduction congruence for two timed asynchrancaisuli.

In Proc. CONCUR’042004.

4. Luca Cardelli. Wide area computation. Pmoceedings oR6" ICALP, Lecture Notes in
Computer Science, pages 10-24. Springer-Verlag, 1999.

5. Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems.Journal of the ACM43(2):225-267, March 1996.

6. Rocco De Nicola, Daniele Gorla, and Rosario Pugliese. Basic observables for a calulus for
global computing. Technical report, Universita di Firenze, 2004.

7. Cedric Fournet, Georges Gonthier, Jean Jaques Levy, and Remy Didier. A calculus of mobile
agents.CONCUR 96LNCS 1119:406-421, August 1996.

8. Adrian Francalanza and Matthew Hennessy. Location and link failure in a distributed
calculus. Technical report, 2005:01, University of Sussex, 2005.

9. R.J.van Glabbeek and U. Goltz. Equivalence notions for concurrent systems and refinement
of actions. InProc. MFCS 89 volume 379 oincs pages 237-248. Springer-Verlag, 1989.

10. Matthew Hennessy, Massimo Merro, and Julian Rathke. Towards a behavioural theory of
access and mobility control in distributed systefiseoretical Computer Sciencg?22:615—
669, 2004.

11. Matthew Hennessy and Julian Rathke. Typed behavioural equivalences for processes in the
presence of subtypindvathematical Structures in Computer Scient4:651-684, 2004.

12. Matthew Hennessy and James Riely. Resource access control in systems of mobile agents.
Information and Computatiqri73:82—-120, 2002.

13. K. Honda and N. Yoshida. On reduction-based process semaiitiemretical Computer
Science152(2):437-486, 1995.

14. Nestmann, Fuzzati, and Merro. Modeling consensus in a process calculGONGUR:
14th International Conference on Concurrency The@NCS, Springer-Verlag, 2003.

15. James Riely and Matthew Hennessy. Distributed processes and location faiheeretical
Computer Scienc®26:693-735, 2001.

16. Davide Sangiorgi and David Walkérher-calculus Cambridge University Press, 2001.

15

