
TRINITY COLLEGE DUBLIN
COLÁISTE NA TRÍONÓIDE, BAILE ÁTHA CLIATH

Modelling MAC-layer communications in
wireless systems

Andrea Cerone, Matthew Hennessy
Trinity College Dublin, Ireland

Massimo Merro
Università degli Studi di Verona, Italy

Computer Science Department Technical Report TCD-CS-2012-17
Foundations and Methods Research Group 1st October 2012

Modelling MAC-layer communications in wireless
systems

Andrea Cerone and Matthew Hennessy∗

Trinity College Dublin, Ireland

Massimo Merro

Università degli Studi di Verona, Italy

1st October 2012

Abstract

We present a timed process calculus for modelling wireless networks in which individual
stations broadcast and receive messages; moreover the broadcasts are subject to collisions.
Based on a reduction semantics for the calculus we define a contextual equivalence to com-
pare the external behaviour of such wireless networks. Further, we construct an extensional
LTS (labelled transition system) which models the activities of stations that can be directly ob-
served by the external environment. Standard bisimulations in this LTS provide a sound proof
method for proving systems contextually equivalence. We illustrate the usefulness of the proof
methodology by a series of examples. Finally we show that this proof method is also complete,
for a large class of systems.

∗Supported by SFI project SFI 06 IN.1 1898.

1

1 Introduction
Wireless networks are becoming increasingly pervasive with applications across many domains,
[38, 1]. They are also becoming increasingly complex, with their behaviour depending on ever
more sophisticated protocols. Assuring the correctness of their behaviour has always been difficult,
and with the increase in their complexity this problem will get even more urgent. This paper
addresses this issue by proposing:

(1) a process calculus for describing wireless networks

(2) a semantic theory for comparing their extensional behaviour, based on their performance when
embedded in larger systems

(3) a sound and complete co-inductive proof methodology for guaranteeing their extensional be-
haviour.

There are many different levels of abstraction at which wireless networks might be described, [29,
24, 34, 8]; our process calculus, called the Calculus of Collision-prone Communicating Processes
(CCCP), is designed for modelling the behaviour of protocols designed at the MAC sub-layer of
the ISO/OSI Protocol Suite [45, 22]. Specifically, it is designed around the following concepts:

• Values are broadcast along channels between all wireless stations; for the sake of simplicity,
we assume a flat network topology. Broadcasts can not be delayed and happen whether or
not there are any stations ready to consume communications.

• Communication between stations take time; each value v has a designated amount of time δv

which is needed for it to be sent along a channel.

• Communications are subject to possible collisions; if more than one value ends up being
transmitted simultaneously on a channel a collision occurs and receivers are notified of an
error.

• Stations listening on a channel c automatically initiate reception as soon as a transmission is
detected. However, the successful transmission of a value between stations depends on the
transmitting station and the receiving stations being correctly synchronised.

The calculus is described in detail in Section 2. Formally (a state of) a wireless system will be
given by a configuration of the form Γ . W where W describes the code running at individual
wireless stations and Γ represents the state of the associated communication network. At any given
point of time there will be exposed communication channels, that is channels containing values in
transmission; this information will be recorded by Γ. The main object of Section 2 is to describe
how a given system evolves over time. This is defined in terms of a reduction semantics, whose
judgements take the form

Γ1 . W1 _ Γ2 . W2

2

This represents one step in the evolution of the system, and may model the passage of a discrete
time step, the broadcast of a message between stations, or some other internal activity. We will
illustrate this semantics using a series of simple examples, and also show that it satisfies some
expected properties such as time determinism and maximal progress, [35, 18, 47].

However the main aim of the paper is to develop a behavioural theory of wireless systems. To
this end we need a formal notion of when two such systems are indistinguishable from the point of
view of users. Having a reduction semantics it is now straightforward to adapt a standard notion of
contextual equivalence:

Γ1 . W1 ' Γ2 . W2

Intuitively this means that either system, Γ1 .W1 or Γ2 .W2, can be replaced by the other in a larger
system without changing the observable behaviour of the overall system. Formally we use the
approach of [19, 41], often called reduction barbed congruence, rather than that of [30];1 the only
parameter in the definition is the choice of primitive observation or barb. Our choice is natural
for wireless systems: the ability to transmit on an unexposed channel. Section 2 ends with some
examples of expected equivalences between systems.

As explained in papers such as [39, 17], contextual equivalences are determined by so-called
extensional actions, that is the set of minimal observable interactions which a system can have
with its external environment. For CCCP determining these actions is non-trivial. Although values
can be transmitted and received on channels, the presence of collisions means that these are not
necessarily observable. It turns out that the important point is not the transmission of a value, but
its successful delivery. Also, although the basic notion of observation on systems does not involve
the recording of the passage of time, to gain a proper extensional account of systems we also need
to take this into account.

This is the topic of Section 3.1 and in the standard manner [31] these actions determine an LTS
(labelled transition system) over systems, which in turn gives rise to the standard notion of (weak)
bisimulation equivalence between systems. This gives a powerful co-inductive proof technique: to
show that two systems are behaviourally equivalent it is sufficient to exhibit a witness bisimulation
which contains them. This is illustrated via a number of small examples in Section 3.2; more
substantial wireless systems are considered in Section 5.

In Section 4 we prove that our proof technique is sound with respect to the touchstone contex-
tual equivalence: if two systems are related by some bisimulation in the extensional LTS then they
are contextually equivalent. We also show completeness for a so-called well-formed systems: if
two such systems are contextually equivalent then there is some bisimulation which contains them.
The paper ends with a brief comparison with other work.

2 The calculus
As already explained a wireless system will be represented by a configuration of the form Γ . W
where W describes the code running at individual wireless stations and Γ is a channel environment

1See page 106 of [43] for a brief discussion of the difference.

3

Table 1 Wireless systems

W ::= P station code∣∣∣ c[x].P active receiver∣∣∣ W1 | W2 parallel composition∣∣∣ νc:(n, v).W channel restriction

Network: Γ : C → N∞ ×V

containing the transmission information for channels. A possible evolution of a system will then
be given by a sequence of computation steps:

Γ1 . W1 _ Γ2 . W2 _ _ Γk . Wk . . . _ . . . (1)

where intuitively each step corresponds to either the passage of time, a broadcast from a station,
or some unspecified internal computation; the code running at stations evolves as a computation
proceeds, but so also does the state of the underlying channel environment. In the following we
will use the meta-variable C to range over configurations.

2.1 Syntax
The syntax for configurations is given in Table 1, where P ranges over code for programming
individual stations, explained in Table 2. Here c ranges over some set of channel names and v
is an element from some unspecified set of values V; all we require of this set is that it contains
some error constant err, which denotes a faulty transmission, and that each value v (included err)
is associated with a strictly positive integer δv, which denotes the amount of time instants required
by a wireless station to transmit the value.

A system term W is a collection of individual threads running in parallel, with possibly some
channels restricted. Note that the definition of the restriction operator νc :(n, v).W is non-standard,
for a restricted channel has a positive integer and a closed value associated; roughly speaking, the
term νc :(n, v).W corresponds to the term W where channel c is restricted, and the transmission of
value v over channel c will take place for the next n instants of time.

Each thread may be inactive or active, of the form c[x].P, where x ranges over some unspecified
set of data-variables; this process represents a wireless station in the process of receiving a value
from the channel c. When the value is eventually received the variable x will be replaced with the
received value in the code P.

The syntax for station code is based on standard process calculus constructs. This assumes
some set of recursion variables ranged over by X, for use in the recursive definitions fix X.P. The
main constructs are time-dependent reception from a channel bc?(x).PcQ, an explicit time delay

4

Table 2 Wireless systems: station code

P,Q ::= c !〈u〉.P broadcast∣∣∣ bc?(x).PcQ receiver with timeout∣∣∣ σ.P delay∣∣∣ τ.P internal activity∣∣∣ P + Q choice∣∣∣ [b]P,Q matching∣∣∣ X process variable∣∣∣ nil termination∣∣∣ fix X.P recursion

σ.P, and broadcast along a channel c !〈u〉.P. Although in principle we could consider a sub-
language for data manipulation, for the examples consider in this paper this is unnecessary; so in
the broadcast construct u can be taken to be either a variable x or an actual data value. Of the
remaining standard constructs the most notable is matching, [b]P,Q which branches to P or Q, de-
pending on the value of the Boolean expression b. We leave the language of Boolean expressions
unspecified, other than saying that it should contain equality tests for values,u1 = u2. More impor-
tantly, it should also contain the expression exp(c) for checking if in the current configuration the
channel c is exposed, that is it is currently used for transmitting.

In the construct fix X.P occurrences of the recursion variable X in P are bound; similarly in
the terms bc?(x).PcQ and c[x].P the data-variable x is bound in P. This gives rise to the standard
notions of free and bound variables, α-conversion and capture-avoiding substitution, {Q/X}P and
{v/x}P respectively; we ignore the details. We simply assume that all occurrences of variables in
system terms are bound and we will identify systems up to α-conversion. Moreover we assume all
occurrences of recursion variables are guarded; they must occur within either a broadcast, input or
time delay prefix, or within an execution branch of a matching construct.

We use a number of notational conventions.
∏

i∈I Wi means the parallel composition of all
systems Wi, for i ∈ I. We identify

∏
i∈I Wi with nil if I = ∅. We will omit trailing occurrences of

nil, render νc : (n, v).W as νc.W when the values (n, v) are not relevant to the discussion, and use
νc̃.W as an abbreviation for a sequence c̃ of such restrictions. We write bc?(x).Pc for bc?(x).Pcnil.
Finally, we abbreviate the recursive process fix X.bc?(x).PcX with c?(x).P; as we will see this is a
persistent listener at channel c waiting for an incoming message.

A channel environment is adequately represented as a function from channel names to pairs
(n, v) where n ∈ N∞ and v is a value. Intuitively Γ(c) = (n, v) means that the network is in the
process of transmitting the value v along the channel c, and the transmission will be complete in n
more time units. We will use some suggestive notation for looking up the current state of a channel
environment in a network:

• Γ `t c : n in place of Γ(c) = (n,w) for some w

5

• Γ `v c : w in place of Γ(c) = (n,w) for some n.

Intuitively, a channel is exposed when it is currently used for transmitting (at least) a value, that is
Γ `t c : n for some n > 0. Channel exposure plays a major role in our semantics, and to emphasise
this we use the suggestive notation Γ ` c : exp; the converse, when c is ready for a transmission,
will be denoted by Γ ` c : idle. A channel environment Γ is said to be stable if Γ ` c : idle for
every channel c. We also write Γ ≤ Γ′ if Γ `t c : n implies Γ′ `t c : n′ and n ≤ n′, for every channel
c.

2.2 Intensional semantics
Our intention is to formally define one computation step of the form Γ1 . W1 _ Γ2 . W2. In this
section, we provide an intensional semantics for system terms, where judgements take the form

Γ1 . W1
λ
−−−→ W2. Here λ is an action corresponding to either the broadcast or reception of a

value, time passing or internal activity. Then we show how a computation step of the configuration
Γ1 . W1 affects the channel environment, leading to Γ2. Evolutions of channel environments and
system terms in a configuration will be combined in the next section to give computation steps for
configurations.

We define our intensional semantics on station code using the following four judgements:

(1) Γ .W
c!v
−−−−→ W ′: the system W broadcasts the value v along channel c, resulting in residual W ′

(2) Γ . W
σ
−−−→ W ′: the passage of time transforms the system W into W ′

(3) Γ . W
τ
−−→ W ′: an internal action transforms W into W ′

(4) Γ . W
c?v
−−−−→ W ′: the effect of the transmission of v along the channel c (by some unknown

entity) transforms W into W ′; this relation is used primarily to make the definition of the
judgements in (1) more understandable.

In the sequel we use λ as a meta-variable ranging over the intensional action labels τ, c!v, c?v and
σ.

Table 3 contains the rules governing transmission. Rule (Snd) models a non-blocking broadcast
of message v along channel c. A transmission can fire at any time, independently on the state of
the network; the notation σδv represents the time delay operator σ iterated δv times. So when the
process c !〈v〉.P broadcasts it has to wait δv time units before the residual P is activated. On the
other hand, reception of a message by a time-guarded listener bc?(x).PcQ depends on the state of
the channel environment. If the channel c is free then rule (Rcv) indicates that reception can start
and the listener evolves into the active receiver c[x].P.

If the channel is already exposed then by rule (RcvFail) the transmission is ignored and the
reception is doomed to fail. This rule reflects the fact that, in general, collisions can be detected
only at the end of a transmission. Although there are some protocols which allow a station to
discover prematurely if a transmission is colliding with another one, for engineering reasons this
is rarely done in wireless networks; see [45], page 186 for a discussion.

6

Table 3 Intensional semantics: transmission

(Snd)
Γ . c !〈v〉.P

c!v
−−−−→ σδv .P

(Rcv)
Γ ` c : idle

Γ . bc?(x).PcQ
c?v
−−−−→ c[x].P

(RcvFail)
Γ ` c : exp

Γ . W
c?v
−−−−→ Γ . W

(RcvIgn)
¬rcv(W, c)

Γ . W
c?v
−−−−→ W

(Sync)
Γ . W1

c!v
−−−−→ W ′

1 Γ . W2
c?v
−−−−→ W ′

2

Γ . W1 | W2
c!v
−−−−→ W ′

1 | W
′
2

(RcvPar)
Γ . W1

c?v
−−−−→ W ′

1 Γ . W2
c?v
−−−−→ W ′

2

Γ . W1 | W2
c?v
−−−−→ W ′

1 | W
′
2

The rule (RcvIgn) says that if a system can not receive on the channel c then any transmission
along it is ignored. Intuitively, the predicate rcv(W, c) means that W contains among its parallel
components at least one non-guarded receiver of the form bc?(x).PcQ which is actively awaiting a
message. Formally, the predicate rcv(W, c) is the least predicate such that

rcv(bc?(x).PcQ, c) = true
rcv(P, c) = true implies rcv(P + Q, c) = true
rcv(Q, c) = true implies rcv(P + Q, c) = true
rcv(P, c) = true implies rcv(fix X.P, c) = true

rcv(W1, c) = true implies rcv(W1 | W2, c) = true
rcv(W2, c) = true implies rcv(W1 | W2, c) = true
rcv(W, c) = true implies rcv(νd.W, c) = true provided d , c

The remaining two rules in Table 3 (Sync) and (RcvPar) serve to synchronise parallel stations on
the same transmission [16, 35, 36].

The transitions for modelling the passage of time, Γ . W
σ
−−−→ W ′, are given in Table 4. In

the rules (ActRec) and (EndRcv) we see that the active receiver c[x].P continues to wait for the
transmitted value to make its way through the network; when the allocated transmission time
elapses the value is then delivered and the receiver evolves to {w/x}P. The rule (SumTime) is
necessary to ensure time determinism. Finally (Timeout) implements the idea that bc?(x).PcQ is
a time-guarded receptor; when time passes it evolves into the alternative Q. However this only
happens if the channel c is not exposed. What happens if it is exposed is explained in Table 5.

This table is devoted to internal transitions Γ . W
τ
−−→ W ′. Let us first explain rule (RcvLate).

Intuitively the process bc?(x).PcQ is ready to start receiving a value on channel c. However if c
is exposed this means that a transmission is already taking place. Since the process has therefore
missed the start of the transmission it will receive an error value. Thus the rule (RcvLate) reflects

7

Table 4 Intensional semantics: timed transitions

(TimeNil)
Γ . nil

σ
−−−→ nil

(Sleep)
Γ . σ.P

σ
−−−→ P

(ActRcv)
Γ `t c : n, n > 1

Γ . c[x].P
σ
−−−→ c[x].P

(EndRcv)
Γ `t c : 1, Γ `v c = w

Γ . c[x].P
σ
−−−→ {w/x}P

(SumTime)
Γ . P

σ
−−−→ P′ Γ . Q

σ
−−−→ Q′

Γ . P + Q
σ
−−−→ Γ′ . P′ + Q′

(Timeout)
Γ ` c : idle

Γ . bc?(x).PcQ
σ
−−−→ Q

Table 5 Intensional semantics: - internal activity

(RcvLate)
Γ ` c : exp

Γ . bc?(x).PcQ
τ
−−→ c[x].{err/x}P

(Tau)
Γ . τ.P

τ
−−→ P

(Then)
~b�Γ = true

Γ . [b]P,Q
τ
−−→ σ.P

(Else)
~b�Γ = false

Γ . [b]P,Q
τ
−−→ σ.Q

the fact that in wireless systems a collision takes place if there is a misalignment between the
transmission and reception of a message. The remaining rules are straightforward. Note that in the
matching construct we use a channel environment dependent evaluation function for Boolean ex-
pressions ~b�Γ, because of the presence of the exposure predicate exp(c) in the Boolean language.
However checking for the exposure of a channel amounts to listening on the channel for a value.
But in wireless systems it is not possible to both listen and transmit within the same time unit, as
communication is half-duplex, [38]. As a consequence in our intensional semantics, in the rules
(Then) and (Else), the execution of both branches is delayed of one time unit.

The final set of rules, in Table 6, are structural. In particular (ResI) and (ResV) show how
restricted channels are handled. Intuitively moves from the configuration Γ . νc : (n, v).W are
inherited from the configuration Γ[c 7→ (n, v)] . W; here the channel environment Γ[c 7→ (n, v)] is
the same as Γ except that c has associated with it (temporarily) the information (n, v). However
if this move mentions the restricted channel c then the inherited move is rendered as an internal
action τ, (ResI). Moreover the information associated with the restricted channel in the residual is
updated, using a function updc!v(·) which is defined later in this section, in Definition 2.4.

Let us provide some results which illustrate the intensional semantics. The first says that trans-
missions are non-blocking actions as stations can always synchronise on a transmission at channel
c by performing the action c?v; in the terminology of [26], all systems are input-enabled.

8

Table 6 Intensional semantics: - structural rules

(TimePar)
Γ . W1

σ
−−−→ W ′

1 Γ . W2
σ
−−−→ W ′

2

Γ . W1 | W2
σ
−−−→ W ′

1 | W
′
2

(TauPar)
Γ . W1

τ
−−→ W ′

1

Γ . W1 | W2
τ
−−→ W ′

1 | W2

(Rec)
{fix X.P/X}P

λ
−−−→ W

Γ . fix X.P
λ
−−−→ W

(Sum)
Γ . P

λ
−−−→ W λ ∈ {τ, c!v}

Γ . P + Q
λ
−−−→ W

(SumRcv)
Γ . P

c?v
−−−−→ W rcv(P, c) Γ ` c : idle

Γ . P + Q
c?v
−−−−→ W

(ResI)
Γ[c 7→ (n, v)] . W

c!v
−−−−→ W ′

Γ . νc:(n, v).W
τ
−−→ νc:updc!v(Γ)(c).W

(ResV)
Γ[c 7→ (n, v)] . W

λ
−−−→ W ′, c < λ

Γ . νc:(n, v).W
λ
−−−→ νc:(n, v).W

Lemma 2.1 [Receive enabled] Let Γ . W be a configuration. Then for any channel c and value v

it holds Γ . W
c?v
−−−−→ W ′ for some W ′; further

1. ¬rcv(W, c) implies W ′ = W

2. Γ ` c : exp implies W ′ = W.

3. rcv(W, c) and Γ ` c : idle implies W ′ , W, and for every value w Γ . W
c?w
−−−−−→ W ′.

Proof By transition induction and by inspection of the rules (RcvIgn), (Rcv), (RcvFail) and
(RcvPar). �

We can also show that our model of time conforms to a well-established approach in the liter-
ature; see for example [35, 47]:

Proposition 2.2

Time determinism: Suppose C
σ
−−−→ W1 and C

σ
−−−→ W2. Then W1 = W2.

Maximal Progress: Suppose C
σ
−−−→ W1. Then C

λ
−−−9 W2, for λ = τ, c!v for any c, v,W2.

Proof Both are proved by induction on the derivation of C
σ
−−−→ W1. �

We end our discussion on the intensional semantics with a technical result on the interaction
between stations in systems; this will be useful in later developments.

Proposition 2.3 [Parallel components] Let Γ . W1 | W2 be a configuration.

1. Γ . W1 | W2
τ
−−→ W if and only if

9

• either there is W ′
1 such that Γ . W1

τ
−−→ W ′

1 with W = W ′
1 | W2

• or there is W ′
2 such that Γ . W2

τ
−−→ W ′

2 with W = W1 | W ′
2.

2. Γ . W1 | W2
c?v
−−−−→ W if and only if there are W ′

1 and W ′
2 such that Γ . W1

c?v
−−−−→ W ′

1,

Γ . W2
c?v
−−−−→ W ′

2 and W = W ′
1 | W

′
2.

3. Γ . W1 | W2
c!v
−−−−→ W if and only if there are W ′

1 and W ′
2 such that

• Γ . W1
c!v
−−−−→ W ′

1, Γ . W2
c?v
−−−−→ W ′

2 and W = W ′
1 | W

′
2

• or Γ . W1
c?v
−−−−→ W ′

1, Γ . W2
c!v
−−−−→ W ′

2 and W = W ′
1 | W

′
2.

4. Γ.W1 | W2
σ
−−−→ W if and only if there are W ′

1 and W ′
2 such that Γ.W1

σ
−−−→ W ′

1, Γ.W2
σ
−−−→ W ′

2
and W = W ′

1 | W
′
2. �

Let us now turn our attention to the evolution of channel environments in a configuration.
Here we define a predicate updλ(Γ) which describes how the channel environment Γ changes when
performing the action λ.

Definition 2.4 [Channel Environment update] Let Γ be an arbitrary channel environment and λ an
intensional action. We let updλ(Γ) be the unique channel environment determined by the following
four definitions:2

updσ(Γ) `t c = (n − 1) whenever Γ `t c = n, updσ(Γ) `v c = w whenever Γ `t c = w.

We let updc!v(Γ) be the channel environment such that

updc!v(Γ) `t c =

δv if Γ ` c : idle
j if Γ ` c : exp

updc!v(Γ) `v c =

v if Γ ` c : idle
err if Γ ` c : exp

where Γ `t c : k and j is given by max(δv, k). Finally, we let updc?v(Γ) = updc!v(Γ) and updτ(Γ) = Γ.

The definition of updσ(Γ) is straightforward; when time passes, the time of exposure of each
channel decreases by one time unit. The predicates updc!v(Γ) and updc?v(Γ) model how collisions
are handled in our calculus. When a station begins broadcasting a value v over a channel c this
channel becomes exposed for the amount of time required to transmit v, that is δv. If the channel
is not free a collision happens. As a consequence, the value that will be received by a receiving
station, when all transmissions over channel c terminate, is the error value err. Finally the definition
of updτ(Γ) reflects the intuition that internal activities do not affect the exposure state of channels.

2For convenience we assume 0 − 1 to be 0.

10

2.3 Reduction semantics
We are now in a position to formally define the individual computation steps for wireless systems,
alluded to informally in (1) above.

Definition 2.5 [Reduction] We write Γ . W _ Γ′ . W ′ if

(i) (Transmission) Γ . W
c!v
−−−−→ W ′ for some channel c and value v, where Γ′ = updc!v(Γ)

(ii) (Time) Γ . W
σ
−−−→ W ′ and Γ′ = updσ(Γ)

(iii) or (Internal) Γ . W
τ
−−→ W ′ and Γ′ = updτ(Γ). �

The intuition here should be obvious; computation proceeds either by the transmission of values
between stations, the passage of time, or internal activity; further, the exposure state of channels is
updated according to the performed transition.

Sometimes it will be useful to distinguish between instantaneous reductions and timed reductions;
instantaneous reductions, Γ1 .W1 _i Γ2 .W2, are those derived via clauses (i) or (iii) above; timed
reductions are denoted with the symbol _σ and coincide with reductions derived using clause (ii).

Example 2.6 [Time-consuming Transmission] Consider a wireless system with two stations, that
is a configuration C1 of the form Γ1 . P1 | Q1. Let us suppose

P1 is c !〈w〉.R, Q1 is bc?(x).S cT1

and Γ1 is a stable channel environment, in that Γ1 `t d : 0 for all channels d. Then, assuming δw is
2,

C1 _ C2 (2)

where C2 has the form Γ2 . P2 | Q2 and

P2 is σ2.R Q2 is c[x].S Γ2 `t c : 2 Γ2 `v c : w

The move from P1 to P2 is via an application of the rule (Snd), from Q1 to Q2 relies on (Rcv) and

they are combined together using (Sync) to obtain Γ1 . P1 | Q1
c!w
−−−−→ P2 | Q2 and then the step (2)

results from (Transmission) in Definition 2.5.
The next step C2 _ C3 is via (Time) in Definition 2.5; C3 is of the form Γ3 . σ.R | Q2 where

the only change to the channel environment is that now Γ3 `t c : 1. The inference of the transition

Γ2 . P2 | Q2
σ
−−−→ σ.R | Q2

uses the rules (Sleep), (ActRec) and (TimePar).
The final move we consider, C3 _ C4 = Γ . R | {w/x}S , is another instance of (Time). However

here the delay action is inferred using (Sleep), (EndRcv) and (TimePar). Thus in three reduction

11

steps the value w has been transmitted from the first station to the second one along the channel c,
in two units of time.

Now suppose we change P1 to P′1 = σ.P1, obtaining thus the configuration C′1 = Γ1 . P′1 | Q1.
Then the first step, C′1 _ C′2 is a (Time) step, with C′2 = Γ1 . P1 | T1. Here an instance of the rule
(Timeout) is used in the transition from Q1 to T1. In C′2 the station P1 is now ready to transmit
on channel c, but the second station has stopped listening. The next step depends on the exact
form of T1; if for example rcv(T1, c) is false then by an application of rule (RcvIgn) we can derive
C′2 _ C′3 = Γ2 . P2 | T1. Here the transmission of w along c started but nobody was listening.

Finally, suppose T1 is a delayed listener on channel c, say σ.T2 where T2 is bc?(y).S 2cU2. Then
we have the (Time) step C′3 _ C′4 = Γ3 . σ.R | T2 and now the second station, T2, is ready to
listen. However, as Γ3 ` c : exp, station T2 is joining the transmission too late. To reflect this we
can derive we can derive the (Internal) step

C′4 _ C′5 = Γ3 . σ.R | c[y].{err/y}S 2

using the rules (RcvLate) and (TauPar), amongst others. At the end of the transmission, in one
more time step, the second station will therefore end up with an error in reception.

In the revised system C′1 = Γ1 . σ.P′1 | Q1 the second station missed the delayed transmission
from P′1. However we can change the code at the second station to accommodate this delay, by
replacing Q1 with the persistent listener Q′1 = c?(x).S . We leave the reader to check that starting
from the configuration Γ1 . σ.P′1 | Q′1 the value w will be successfully transmitted between the
stations in four reduction steps. �

Example 2.7 [Collisions] Let us now consider a system with three stations,

C1 = Γ . S 1 | S 2 | R1

where

S 1 = σ.c!〈v0〉

S 2 = c!〈v1〉

R1 = bc?(x).PcT

and Γ is a stable environment; suppose further that δv0 = 1, δv1 = 3. In this configuration the
station S 2 can perform a broadcast, leading to the reduction C1 _ C2 = Γ1 . S 1 | σ

3 | c[x].P, the

derivation of which requires an instance of the rule (RcvIgn), Γ . S 1
c?v1
−−−−−→ S 1; here the channel

environment Γ1 is defined as updc!v1
(Γ), leading to Γ1(c) = (3, v1). We can now derive the reduction

C2 _ C3 = Γ2 . c!〈v0〉 | σ
2 | c[x].P, where Γ2 = updσ(Γ1) meaning that Γ2 `t c : 2.

In this configuration the first station is ready to broadcast a value v0 along channel c. Since
there is already a value being transmitted along this channel, we expect this second broadcast to
cause a collision; further, since the amount of time required for transmitting value v0 is shorter than
that needed to end the transmission of value v1, we expect that the broadcast performed by the first
station does not affect the amount of time for which the channel C is exposed.

12

Formally this is reflected in the reduction C3 _ C′3 = Γ′2 . σ | σ
2 | c[x].P. Here the reduction

of the system term uses the sub-inference Γ2 . σ
2 | c[x].P

c?v1
−−−−−→ σ2 | c[x].P, which can be derived

using either rules (RcvFail), (RcvIgn). Consequently Γ′2 = updc!v0
(Γ2), and since Γ2 ` c : exp we

obtain Γ′2(c) = (2, err); this represents the fact that a collision has occurred, and thus the special
value err will eventually be delivered on c.

At this point we can derive the reductions C′3 _σ_σ C4 = Γ . nil | nil | {err/x}P, meaning
that the transmission along channel c terminates in 2 time instants, leading the receiving station to
detect a collision each of the two transitions above can be inferred using the rules in Table 4.

Now, suppose we change the amount of time required to transmit value v0 from 1 to 3, and
consider again the configuration C3 above. In this case the transmission of value v0 will also cause
a collision; however, in this case the transmission of value v0 is long enough to continue after that
of value v1 has finished; as a consequence, we expect that the time required for channel c to be
released rises when the broadcast of v0 happens.

In fact, in this case we have the reduction C3 _ C′′3 = Γ′′2 . σ3 | σ2 | c[x].P, where
Γ′′2 = updc!v0

(Γ2) and specifically Γ′′2 (c) = (3, err). Now, three time instants are needed for the trans-
mission along channel c to end, leading to the sequence of (timed) reductions C′′3 _σ_σ_σ C4.

�

2.4 Behavioural semantics
In this section we propose a notion of timed behavioural equivalence for our wireless networks.
Our touchstone system equality is reduction barbed congruence [19, 42, 30, 21], a standard con-
textually defined process equivalence. Intuitively, two terms are reduction barbed congruent if
they have the same basic observables, in all parallel contexts, under all possible computations.
The formal definition relies on two crucial concepts, a reduction semantics to describe how sys-
tems evolve, which we have already defined, and a notion of basic observable which says what the
environment can observe directly of a system. There is some choice as to what to take as a basic
observation, or barb, of a wireless system. In standard process calculi this is usually taken to be
the ability of the environment to receive a value along a channel. But the series of examples we
have just seen demonstrates that this problematic, in the presence of possible collisions and the
passage of time. Instead we choose a more appropriate notion for wireless systems, one which is
already present in our language for station code.

Definition 2.8 [Barbs] We say the configuration Γ .W has a strong barb on c, written Γ .W ↓c, if
Γ ` c : exp. We write Γ.W ⇓c, a weak barb, if there exists a configuration C′ such that Γ.W _∗ C′

and C′ ↓c. Note that we allow the passage of time in this definition of weak barbs. �

Definition 2.9 Let R be a relation over well-formed configurations.

(1) R is said to be barb preserving if Γ1 .W1⇓c implies Γ2 .W2 ⇓c, whenever (Γ1 .W1) R (Γ2 .W2).

(2) It is reduction-closed if (Γ1 . W1) R (Γ2 . W2) and Γ1 . W1 _ Γ′1 . W ′
1 imply there is some

Γ′2 . W ′
2 such that Γ2 . W2 _∗ Γ′2 . W ′

2 and (Γ′1 . W ′
1) R (Γ′2 . W ′

2).

13

(3) It is contextual if Γ1 . W1 R Γ2 . W2, implies Γ1 . (W1 | W) R Γ2 . (W2 | W) for all processes
W. �

With these concepts we now have everything in place for a standard definition of contextual equiv-
alence between systems:

Definition 2.10 [Reduction barbed congruence], written ', is the largest symmetric relation over
configurations which is barb preserving, reduction-closed and contextual. �

In the remainder of this section we explore via examples the implications of Definition 2.10.
The notion of a fresh channel will be important; we say that c is fresh for the configuration Γ . W
if it does not occur free in W and Γ ` c : idle. Note that we can always pick a fresh channel for an
arbitrary configuration.

Example 2.11 Let us assume that Γ ` c : idle. Then it is easy to see that

Γ . c !〈vo〉.P ; Γ . c !〈v1〉.P (3)

under the assumption that vo and v1 are different values. For let T be the testing context

bc?(x).[x = vo]eureka!〈ok〉, nilc

where eureka is fresh, and ok is some arbitrary value. Then Γ . c !〈vo〉.P | T has a weak barb on
eureka which is not the case for Γ . c !〈v1〉.P | T . Since ' is contextual and barb preserving, (3)
above follows.

However such tests will not distinguish between

Q1 = c!〈vo〉 | c !〈v1〉.P and Q2 = c!〈v1〉 | c !〈v0〉.P

under the assumption that δv0 = δv1 . In both configurations Γ . Q1 and Γ . Q2 a collision will
occur at channel c and a third station, such as T , will receive the error value err at the end of the
transmission. So there is reason to hope that Γ . Q1 ' Γ . Q2. However we must wait for the next
section for proof techniques for establishing such equivalences; see Example 3.4. �

The above example suggests that transmitted values can be observed only at the end of a trans-
mission; so if a collision happens, there is no possibility of determining the value that was origi-
nally broadcast. This concept is stressed even more in the following example.

Example 2.12 [Equating values] Let Γ be a stable channel environment, W0 = c!〈v0〉,W1 = c!〈v1〉

and consider the configurations Γ.W0,Γ.W1; here we assume that v0 and v1 are two different values
with possibly different transmission times.

We already argued in Example 2.11 that these two configurations can be distinguished by the
context

bc?(x).[x = vo]eureka!〈ok〉, nilc

14

However, the two configurations above can be made indistinguishable if we add to each of
them a parallel component that causes a collision on channel c. To this end, let

Eq(v0, v1) = σh.c!〈ok〉

for some positive integer h and value ok such that h < min (δv0 , δv1) and δok ≥ max (δv0 , δv1) − h.
Now, consider the configurations C0 = Γ . W0 | Eq(v0, v1), C1 = Γ . W1 | Eq(v0, v1).

One could hope that there exists a context which is able to distinguish these two configurations.
However, before the transmission of v0 ends in C0, a second broadcast along channel c will fire,
causing a collision; the same happens before the end of transmission of value v1 in C1. Further, the
total amount of time for which channel c will be exposed is the same for both configurations, so
that one can argue that it is impossible to provide a context which is able to distinguish C0 from
C1. In order to prove this to be formally true, we have to wait until the next section. �

Collisions can also be used to merge two different transmissions on the same channel in a single
corrupted transmission.

Example 2.13 [Merging Transmissions] Let Γ be a stable channel environment,
W0 = c !〈v0〉.c!〈v1〉, W1 = c !〈v1〉.c!〈v0〉. In Γ . W0 a broadcast of value v0 along channel c can
fire; when the transmission of v0 is finished, a second broadcast of value v1 along the same channel
can fire. The behaviour of Γ . W1 is similar, though the order of the two values to be broadcast is
swapped. Note that it is possible to distinguish the two configurations Γ . W0 and Γ . W1 using the
test

bc?(x).[x = vo]eureka!〈ok〉, nilc

we have already seen in the previous example.
However suppose now that we add a parallel component to both configurations which broad-

casts another value along channel c before the transmission of value v0 (v1) has finished, and which
terminates after the broadcast of value v1 (v0) has begun. More formally, let

Mrg(v0, v1) = σh.c!〈ok〉

where h = min(δv0 , δv1) − 1 and δok = |δv0 − δv1 | + 2.
Consider the configurations Γ .W0 | Mrg(v0, v1), Γ .W1 | Mrg(v0, v1). In both configurations a

collision occurs; further, once the transmission of value v0 has begun in the former configuration,
channel c will remain exposed until the transmission of value v1 has finished. A similar behaviour
can be observed on the second configuration. This leads to the intuition that Γ .W0 | Mrg(v0, v1) '
Γ′ .W1 | Mrg(v0, v1); we prove this in Example 3.6, for a particular instance of transmission values
for v0, v1. �

A priori reductions ignore the passage of time, and therefore one might suspect that reduc-
tion barbed congruence is impervious to the precise timing of activities. But the next example
demonstrates that this is not the case.

15

Example 2.14 [Observing the passage of time] Consider the two processes Q1 = c!〈vo〉 and
Q2 = σ.Q1, and again let us assume that Γ ` c : idle. There is very little difference between
the behaviours of Γ . Q1 and Γ . Q2; both will transmit (successfully) the value vo, although the
latter is a little slower. However this slight difference can be observed. Consider the test T defined
by

[exp(c)]eureka!〈ok〉, nil

In fact, Γ . (Q1 | T) can start a transmission along channel c, after which the predicate exp(c) will
be evaluated in the system term T . The resulting configuration is given by Γ′ .σδv0 | σ.eureka!〈ok〉;
at this point, it is not difficult to note that the configuration has a weak barb on eureka.

On the other hand, the unique reduction from C2 = Γ . (Q2 | T) leads to the evaluation of the
exposure predicate exp(c); since Γ ` c : idle the only possibility for the resulting configuration is
given by C′2 = Γ.Q2 | σ. Since eureka is a fresh channel, it is now immediate to note that C′2 6⇓eureka.
For the test to work correctly it is essential that Γ ` c : idle; using the proof methodology
developed in Section 3.2 we are able to show that if Γ′ `t c : n and n > δv0 then Γ′ . Q1 ' Γ′ . Q2.

�

Behind this example is the general principle that reduction barbed congruence is actually sen-
sitive to the passage of time; this is proved formally in Proposition 4.17 of Section 4.3.

Example 2.15 As a final example we illustrate the use of channel restriction. Assume that v1 and
v2 are some kind of comparable values. Consider the configuration
Γ . νc : (0, ·).(c!〈v1〉 | Pe | R) where the station code is given by

Pe = σ.fix X.([exp(c)]X, c!〈v2〉)
R = c?(x).R1

R1 = c?(y).[x > y]d!〈x〉, d!〈y〉

Intuitively the receiver R waits indefinitely for two values along the restricted channel c and broad-
casts the largest on channel d. Intuitively the use of channel restriction here shelters c from external
interference. Assuming Γ ` d : idle we will be able to show that

Γ . νc : (0, ·).(c !〈v1〉.nil | Pe | R) ' Γ . σδv1 +δv2 +2.d !〈w〉.nil

provided w = max(v1, v2). �

We end this section with a small technical result, which will be extremely useful in the de-
velopment of our behavioural theory. Informally it says that internal reductions do not affect the
remaining delivery time of values.

Lemma 2.16 Whenever Γ . W _∗
i Γ′ . W ′ it holds that Γ ≤ Γ′.

Proof Follows from the definition of updc!v(Γ) and updτ(Γ) �

16

Table 7 Extensional actions

(Input)
Γ . W

c?v
−−−−→ W ′

Γ . W
c?v
7−→ updc?v(Γ) . W ′

(Time)
Γ . W

σ
−−−→ W ′

Γ . W
σ
7−→ updσ(Γ) . W ′

(Shh)
Γ . W

c!v
−−−−→ W ′

Γ . W
τ
7−→ updc!v(Γ) . W ′

(TauExt)
Γ . W

τ
−−→ W ′

Γ . W
τ
7−→ Γ . W ′

(Deliver)
Γ(c) = (1, v) Γ . W

σ
−−−→ W ′

Γ . W
γ(c,v)
7−→ updσ(Γ) . W ′

(Idle)
Γ ` c : idle

Γ . W
ι(c)
7−→ Γ . W

3 Extensional Semantics
The intention here is to give a co-inductive characterisation of the contextual equivalence '
between configurations, in terms of a standard bisimulation equivalence over some extensional
LTS. First, we present the extensional semantics, then we recall the standard definition of (weak)
bisimulation over configurations; finally its usefulness is illustrated by means of a number of ex-
amples.

3.1 Extensional actions
The question here is what activity of a wireless system is observable externally? Example 2.14
indicates that the passage of time is observable. From Lemma 2.1, we know that all systems
are always ready to receive transmissions, that is are input-enabled, but we will have to take into
account the effect of these inputs. In contrast the discussion in Example 2.11 indicates that, due
to the possibility of collisions, the treatment of transmissions is more subtle. It turns out that the
transmission itself is not important; instead we must take into consideration the successful delivery
of the transmitted value.

In Table 7 we give the rules defining the extensional actions, C
α
7−→ C′, which can take one of

the forms:

• Input: C
c?v
7−→ C′. This is inherited directly from the intensional semantics.

• Time: C
σ
7−→ C′, also inherited from the intensional semantics.

• Internal: C
τ
7−→ C′. This corresponds to the combination of the Internal and Transmission

rules from the reduction semantics, in Definition 2.5.

• Delivery: C
γ(c,v)
7−→ C′. This corresponds to the successful delivery of the value v which was in

transmission along the channel c.

17

• Free: C
ι(c)
7−→ C, a predicate indicating that channel c is not exposed, and therefore ready to

start a potentially successful transmission.

3.2 Bisimulation equivalence
The extensional actions of the previous section endows systems in CCCP with the structure of an

LTS. Weak extensional actions in this LTS are defined as usual, with C
α
�=⇒ C′ denoting C

τ

7−→∗

α
7−→

τ

7−→∗ C′. We will use C �=⇒ C′ to denote C
τ

7−→∗ C′, and the formulation of bisimulations is
facilitated by the notation C

α̂
�=⇒ C′, which is again standard: for α = τ this denotes C �=⇒ C′ while

for α , τ it is C
α
�=⇒ C′. We now have the standard definition of weak bisimulation equivalence in

the resulting LTS which for convenience we recall.

Definition 3.1 Let R be a binary relation over configurations. We say that R is a bisimulation if
for every extensional action α, whenever C1 R C2

(i) C1
α
7−→ C′1 implies C2

α̂
�=⇒ C′2, for some C′2, satisfying C′1 R C

′
2

(ii) conversely, C2
α
7−→ C′2 implies C1

α̂
�=⇒ C′1, for some C′1, such that C′1 R C

′
2.

We write C1 ≈ C2, if there is a bisimulation R such that C1 R C2. �

Our goal is to demonstrate that this form of bisimulation provides a sound and useful proof method
for showing behavioural equivalence between wireless systems described in CCCP; moreover for
a large class of systems it will also turn out to be complete. But our first examples show that the
introduction of the actions ι(c) and γ(c, v) are necessary for soundness.

Example 3.2 [On the rule (Idle)] Suppose we were to drop the rule (Idle) in the extensional se-
mantics; then consider the configurations

Γ1 . W1 = τ.nil
Γ2 . W2 = c!〈v〉

where Γ1(c) = (1, v), Γ2(c) = (0, ·) and δv = 1.
If we were to drop the actions ι(c) from the extensional semantics then the extensional LTS

generated by these two configurations would be isomorphic; recall that an output action in the
intensional semantics always corresponds to a τ action in its extensional counterpart. Thus they
would be related by the amended version of bisimulation equivalence.

However, we also have that Γ1.W1 ; Γ2.W2. This can be proved by exhibiting a distinguishing
context. To this end, consider the system T = [exp(c)]nil, eureka!〈ok〉. Then Γ2 .W2 | T has a weak
barb on the channel eureka, which obviously Γ2 . W1 | T can not match. �

18

Example 3.3 [On the rule (Deliver)] Consider the configuration

Γ2 . W3 = c!〈w〉

where δw = 1 and Γ2 is as in the previous example, and the testing context T ′ = c(x).[x =

v]eureka!〈ok〉, nil. Then, assuming w is different from v, Γ2 . W3 | T ′ can not produce a barb
on eureka.

However if W2 is the code c!〈v〉, as in the previous example, then obviously Γ2 . W3 | T ′ can
produce such a barb. It follows that Γ2 . W2 ; Γ2 . W3.

Now if we were to drop the rule (Deliver) in the extensional semantics, thereby eliminating the
actions γ(c, v), then it would be straightforward to exhibit a bisimulation containing this pair of
configurations. Thus again the amended version of bisimulation equivalence would be unsound.

�

The two examples above show that both rules (Idle) and (Deliver) are necessary to achieve the
soundness of our bisimulation proof method for reduction barbed congruence. In the remainder
of this section we give a further series of examples, showing that bisimulations in our extensional
LTS offers a viable proof technique for demonstrating behavioural equivalence for at least simple
wireless systems.

Example 3.4 [Transmission] Here we revisit Example 2.11. Let Γ be a stable channel environ-
ment, and consider the configurations C0 = Γ . W, C1 = Γ . V , where W = c !〈v0〉.P | c!〈v1〉,
V = c !〈v1〉.P | c!〈v0〉; note these two configurations are taken from the second part of in Example
2.11.

Our aim is to show that C0 ≈ C1, and for convenience let us we assume that δv0 = δv1 = 1. The
idea here is to describe the required bisimulation by matching up system terms. To this end we
define the following system terms:

W0 = σ.P | c!〈v1〉 V1 = σ.P | c!〈v0〉

W1 = c !〈v0〉.P | σ V0 = c !〈v1〉.P | σ
E = σ.P | σ E′ = P | nil

Then for any channel environment ∆ we have the following transitions in the extensional semantics:

∆ . W
τ
7−→ updc!v0

(∆) . W0 ∆ . V
τ
7−→ updc!v0

(∆) . V0

∆ . W
τ
7−→ updc!v1

(∆) . W1 ∆ . V
τ
7−→ updc!v1

(∆) . V1

∆ . W
d?w
7−→ updd?w(∆) . W ∆ . V

d?w
7−→ updd?w(∆) . V

∆ . W
ι(d)
7−→ ∆ . W if ∆ ` d : idle ∆ . V

ι(d)
7−→ ∆ . V if ∆ ` d : idle

∆ . W0
τ
7−→ updc!v1

(∆) . E ∆ . V0
τ
7−→ updc!v1

(∆) . E

∆ . W0
d?w
7−→ updd?w(∆) . W0 ∆ . V0

d?w
7−→ updd?w(∆) . V0

∆ . W0
ι(d)
7−→ ∆ . W0 if ∆ ` d : idle ∆ . V0

ι(d)
7−→ ∆ . V0 if ∆ ` d : idle

19

Table 8 A relation S for comparing the configurations C0,C1 of Example 3.5

∆ . W S ∆ . V
∆ . W0 S ∆ . V0

(∆[c 7→ (1, v0)]) . W0 S (∆[c 7→ (2, v1)]) . V1

(∆[c 7→ (1, err)]) . W0 S (∆[c 7→ (2, err)]) . V1

Λ . Wok S Λ . Vok

∆ . Werr S ∆ . Verr

∆ . W ′ S ∆ . V ′

∆ arbitrary channel environment,
Λ arbitrary channel environment such that Λ(c) = (k,w) for some k ≥ 2

∆ . W1
τ
7−→ updc!v0

(∆) . E ∆ . V1
τ
7−→ updc!v0

(∆) . E

∆ . W1
d?w
7−→ updd?w(∆) . W1 ∆ . V1

d?w
7−→ updd?w(∆) . V1

∆ . W1
ι(d)
7−→ ∆ . W1 if ∆ ` d : idle ∆ . V1

ι(d)
7−→ ∆ . V1 if ∆ ` d : idle

Here d ranges over arbitrary channel names, including c.
Then consider the following relation:

S = {(∆ . W,∆ . V), (∆ . W0, ∆ . V0), (∆ . W1,∆ . V1) | ∆ is a channel environment}

Using the above tabulation of actions one can now show that S is a strong bisimulation; for CSC′

each possible action of C can be matched by C′ by performing exactly the same action, and vice-
versa.

Since (C0,C1) ∈ S, it follows that C0 ≈ C1. �

Example 3.5 [Equators] Let us consider again the configurations C0,C1 of Example 2.12. Recall
that C0 = Γ . W, where W = c!〈v0〉 | σ

h.c!〈ok〉 and C1 = Γ . V , where V = c!〈v1〉 | σ
h.c!〈ok〉;

further, recall that Γ is a stable channel environment and h, ok are a positive integer and a value,
respectively, such that h < min (δv0 , δv1), δok ≥ max (δv0 , δv1) − h. Without loss of generality, for
this example we assume δv0 = 1, δv1 = 2, h = 0 and δok = 2.

For the sake of convenience we define the following system terms:

W0 = σ | c!〈ok〉 V1 = σ2 | c!〈ok〉
Wok = c!〈v0〉 | σ

2 Vok = c!〈v1〉 | σ
2

Werr = σ | σ2 Verr = σ2 | σ2

W ′ = nil | σ V ′ = σ | σ
E = nil | nil

Let us consider the relation S depicted in Table 8; note that (C0,C1) ∈ S, so that in order to
prove that C0 ≈ C1 it is sufficient to show that S is a bisimulation. Note that in the relation S the
system terms Wok,Vok are always associated with a channel environment in which the channel c is
exposed. In fact, if Λ were a channel environment such that Λ ` c : idle, it would not be difficult

20

to prove that Λ . Werr 0 Λ . Verr; this is because the values broadcast by these two configurations
are different.

Let us list the main the extensional actions from configurations using these system terms:

∆ . W
τ
7−→ (∆[c 7→ (1, v0)]) . W0 if ∆ ` c : idle

∆ . V
τ
7−→ (∆[c 7→ (2, v1)]) . V1 if ∆ ` c : idle

∆ . W
τ
7−→ (∆[c 7→ (2, ok)]) . Wok

∆ . V
τ
7−→ (∆[c 7→ (2, ok)]) . Vok

∆ . W
d?w
7−→ (updd?w(∆)) . W

∆ . V
d?w
7−→ (updd?w(∆)) . V

(∆[c 7→ (1, v0)]) . W0
τ
7−→ (∆[c 7→ (2, err)]) . Werr

(∆[c 7→ (2, v1)]) . V1
τ
7−→ (∆[c 7→ (2, err)]) . Werr

∆ . W0
c?w
7−→ (∆[c 7→ (1, err)]) . W0 if ∆ ` c : exp, δw = 1

∆ . V1
c?w
7−→ (∆[c 7→ (2, err)]) . V1 if ∆ ` c : exp, δw = 1

∆ . W0
c?w
7−→ (∆[c 7→ (δw, err)]) . W0 if ∆ ` c : exp, δw > 1

∆ . V1
c?w
7−→ (∆[c 7→ (δw, err)]) . V1 if ∆ ` c : exp, δw > 1

Λ . Wok
τ
7−→ (updc!v0

(Λ)) . Werr

Λ . Vok
τ
7−→ (updc!v1

(Λ)) . Verr

∆ . Werr
σ
7−→ (updσ(∆)) . W ′

∆ . Verr
σ
7−→ (updσ(∆)) . V ′

∆ . W ′
σ
7−→ (updσ(∆)) . E

∆ . V ′
σ
7−→ (updσ(∆)) . E

Here ∆,Λ are two arbitrary channel environments, but Λ is subject to the constraint that Λ(c) =

(k,w) for some value w and integer k ≥ 2. Note that in this case we have that (updc!v0
(Λ)) =

(updc!v1
(Λ)). With the aid of this tabulation one can now show that S is indeed a bisimulation and

therefore that C0 ≈ C1. �

Example 3.6 [Merging] The last example we provide considers the merging of two transmissions
in a single transmission. Let Γ be a stable channel environment and v0, v1 be two values such that
δv0 = 1, δv1 = 2. Also let ok be a value such that δok = 3. Consider the configurations

C0 = Γ . W C1 = Γ . V

where W = c !〈v0〉.c!〈v1〉 | c!〈ok〉 and V = c !〈v1〉.c!〈v0〉 | σ.c!〈ok〉.

21

Table 9 A relation S for comparing the configurations C0,C1 of Example 3.6

∆0 . W S ∆0 . V
∆1 . W0 S ∆2 . V1

∆3 . Wok S ∆3 . Vok

∆3 . Werr S ∆3 . Verr

∆2 . W ′ S ∆2 . V ′

∆2 . W1 S ∆2 . V ′

∆1 . E′ S ∆1 . V ′′

∆n, n ≥ 0 arbitrary channel environment such that ∆ `t c : m for some integer m ≥ n.

Then C0 ≈ C1. As in previous examples, this statement can be proved formally by exhibiting a
bisimulation that contains the pair (C0,C1); to this end, define the following system terms:

W0 = σ.c!〈v1〉 | c!〈ok〉 V1 = σ2.c!〈v0〉 | c!〈ok〉
Wok = c !〈v0〉.c!〈v1〉 | σ

3 Vok = c !〈v1〉.c!〈v0〉 | σ
3

Werr = σ.c!〈v1〉 | σ
3 Werr = σ2.c!〈v0〉 | σ

3

W ′ = c!〈v1〉 | σ
2

W1 = σ2 | σ2 V ′ = σ.c!〈v0〉 | σ
2

E′ = σ | σ V ′′ = c!〈v0〉 | σ
E = nil | nil

Consider now the relation S depicted in Table 9; note that C0 S C1. We leave the reader to check
that S is also a weak bisimulation, from which C0 ≈ C1 follows. �

4 Full abstraction
In this section, we show that the co-inductive proof method based on the bisimulation of the pre-
vious section is both sound respect to the contextual equivalence of Section 2.4; this is the subject
of Section 4.1. Moreover it is complete for a large class of systems. This class is isolated in the
following section, and the completeness result is then given in Section 4.3.

4.1 Soundness
In this section we prove that (weak) bisimulation equivalence is contained in reduction barbed
congruence. The main difficulty is in proving the contextuality the bisimulation equivalence. But
first some auxiliary results.

Lemma 4.1 [Update of Channel Environments] If Γ . W �=⇒ Γ′ . W ′ then Γ ≤ Γ′.
Proof Follows directly from Proposition 2.16 and the fact that τ-extensional actions coincide by
definition with the instantaneous reduction _i. �

22

Corollary 4.2 For any channel c, Γ . W
ι(c)
�=⇒ implies Γ . W

ι(c)
7−→. �

Corollary 4.2 is very useful when proving that the exposure state of channels is preserved by
bisimilar configurations.

Below we report a result on channel exposure for bisimilarity; a similar result for reduction
barbed congruence will also be proved, in Proposition 4.14.

Lemma 4.3 [Channel exposure wrt ≈] Whenever Γ1 .W1 ≈ Γ2 .W2 then Γ1 ` c : idle if and only
if Γ2 ` c : idle.
Proof Suppose Γ1 . W1 ≈ Γ2 . W2. If Γ1 ` c : idle then by definition of Rule (Idle) of Table 7 it

follows that Γ1 .W1
ι(c)
7−→. As Γ1 .W1 ≈ Γ2 .W2, it follows that Γ2 .W2

ι(c)
�=⇒. From Corollary 4.2 we

have that Γ2 . W2
ι(c)
7−→, and by the definition of Rule (Idle) that Γ2 ` c : idle. �

In order to prove that weak bisimulation is sound with respect to reduction barbed congruence
we need to show that ≈ is preserved by parallel composition.

Theorem 4.4 [≈ is contextual] Suppose Γ1 .W1 ≈ Γ2 .W2. Then for any system term W, Γ1 . (W1 |

W) ≈ Γ2 . (W2 | W).
Proof Let the relation S over configurations be defined as follows:

{
(
Γ1 . W1 | W , Γ2 . W2 | W) : Γ1 . W1 ≈ Γ2 . W2 }

It is sufficient to show that S is a bisimulation in the extensional semantics. To do so, by symmetry,
we need to show that an arbitrary extensional action

Γ1 . W1 | W
α
7−→ Γ̂1 . Ŵ1 (4)

can be matched by Γ1 . W2 | W via a corresponding weak extensional action.
The action (4) can be inferred by any of the six rules in Table 7. We consider only one case, the

most difficult one (Shh). So here α is τ and Γ1 .W1 | W
c!v
−−−−→ Ŵ1, for some c and v. This transition

in turn can always be inferred by an application of the rule (Sync) from Table 3. Without loss of
generality we can assume

• Γ1 . W1
c!v
−−−−→ W ′

1

• Γ1 . W
c?v
−−−−→ W ′

• Ŵ1 = W ′
1 | W

′

By an application of rule (Shh) it follows that Γ1 . W1
τ
7−→ Γ′1 . W ′

1, with Γ′1 = updc!v(Γ1). Since
Γ1 .W1 ≈ Γ2 .W2, there is Γ′2 .W ′

2 such that Γ2 .W2 �=⇒ Γ′2 .W ′
2 and Γ′1 .W ′

1 ≈ Γ′2 .W ′
2. Now, there

are two possibilities, depending on whether or not c is exposed in Γ1.

23

1. Let Γ1 ` c : exp. By Lemma 2.1(2), in the transition Γ1 .W
c?v
−−−−→ W ′ it must be that W ′ = W.

Since Γ1 .W1 ≈ Γ2 .W2 and Γ′1 .W ′
1 ≈ Γ′2 .W ′

2, by two applications of Lemma 4.3 it follows
that:

• for any channel d, Γ1 ` d : idle iff Γ2 ` d : idle
• for any channel d, Γ′1 ` d : idle iff Γ′2 ` d : idle.

We recall that Γ′1 = updc!v(Γ1), and hence Γ′1 and Γ1 may only differ for the entry at channel
c. As a consequence, also Γ2 and Γ′2 may only differ for the same entry.

Now, let us analyse the transitions which constitute the weak derivation

Γ2 . W2 �=⇒ Γ′2 . W ′
2

In particular, let

Γ2 . W2 �=⇒ Γn
2 . Wn

2
τ
7−→ Γn+1

2 . Wn+1
2 �=⇒ Γ′2 . W ′

2 .

There are two possibilities.

(a) Γn
2.Wn

2

τ
7−→ Γn+1

2 .Wn+1
2 is derived by an application of rule (TauExt) because Γn

2.Wn
2

τ
−−→

Wn+1
2 . This case is easy.

(b) Γn
2 .Wn

2

τ
7−→ Γn+1

2 .Wn+1
2 is derived by an application of rule (Shh) because Γn

2 .Wn
2

d!w
−−−−→

Wn+1
2 , for some d and w. Since Γ2 and Γ′2 may only differ for the entry at channel c,

also Γn
2 and Γn+1

2 may only differ for the same entry. This is because the derivation
Γ2 . W2 �=⇒ Γ′2 . W ′

2 is untimed, and once a channel becomes exposed it remains so
for the whole derivation. By Lemma 4.3, Γ1 ` c : exp implies Γ2 ` c : exp. By
definition of rule (Shh), Γn+1

2 ` d : exp. Since only the entry at c may change during the
derivation it follows that Γn

2 ` d : exp (also for d = c). By Lemma 2.1(2), this implies

Γn
2 . W

d?w
−−−−−→W. By an application of rule (Sync) and one application of rule (Shh) we

can derive
Γn

2 . Wn
2 | W

τ
7−→ Γn+1

2 . Wn+1
2 | W

As a consequence,
Γ2 . W2 | W �=⇒ Γ′2 . W ′

2 | W

with
(
Γ′1 . W ′

1 | W , Γ′2 . W ′
2 | W

)
∈ S.

2. Let Γ1 ` c : idle. There are two sub-cases.

(a) Let ¬rcv(W, c). This case is similar to case 1. In fact, by Lemma 2.1(1) the system W is

not affected by the transmission at c. More precisely, the transition Γ1.W1 | W
c!v
−−−−→ Ŵ1

can only be derived by an application of rule (Sync) because

• Γ1 . W1
c!v
−−−−→ W ′

1

24

• Γ1 . W
c?v
−−−−→ W

• Ŵ1 = W ′
1 | W.

(b) Let rcv(W, c). By Lemma 2.1(3) the transition Γ1 . W
c?v
−−−−→ W ′ must have W ′ , W.

Since Γ1 .W1 ≈ Γ2 .W2, by Lemma 4.3 it follows that Γ2 ` c : idle. As Γ′1 = updc!v(Γ1),
it follows that Γ′1 ` c : exp. Since Γ′1 . W ′

1 ≈ Γ′2 . W ′
2, by Lemma 4.3 it follows that

Γ′2 ` c : exp. As a consequence, the derivation Γ2 . W2 �=⇒ Γ′2 . W ′
2 must contain a

transition which changes the exposure state of channel c. More precisely, the derivation
must have the form

Γ2 . W2 �=⇒ Γn
2 . Wn

2
τ
7−→ Γn+1

2 . Wn+1
2 �=⇒ Γ′2 . W ′

2

where the transition Γn
2 . Wn

2

τ
7−→ Γn+1

2 . Wn+1
2 is due to an application of rule (Shh)

because Γn
2 . Wn

2

c!w
−−−−→ Wn+1

2 , for some w, with Γn
2 ` c : idle and Γn+1

2 ` c : exp. By

Lemma 2.1(3) it follows that Γn
2 . W

c?w
−−−−−→ W ′, for any w. By an application of rule

(Sync) and one of rule (Shh), it follows that

Γn
2 . Wn

2 | W
τ
7−→ Γn+1

2 . Wn+1
2 | W ′

For any other transition in the derivation Γ2 . W2 �=⇒ Γ′2 . W ′
2 we can apply the same

reasoning as in case 1. In particular, for those transitions which are derived by an
application of rule (Shh) because of a transition labelled d!w′, the channel d must be
exposed before and (obviously) after the transition. So, by Lemma 2.1(2) the systems
W and W ′ can perform the corresponding action d?w′ remaining unchanged. More
precisely, we have

Γ2 . W2 | W �=⇒ Γn
2 . Wn

2 | W
τ
7−→ Γn+1

2 . Wn+1
2 | W ′

τ
�=⇒ Γ′2 . W ′

2 | W
′

with
(
Γ′1 . W ′

1 | W
′ , Γ′2 . W ′

2 | W
′
)
∈ S. �

Theorem 4.5 [Soundness] C1 ≈ C2 implies C1 ' C2.
Proof It suffices to prove that bisimilarity is reduction-closed, barb preserving and contextual.
Reduction closure follows from the definition of bisimulation equivalence. The preservation of
barbs follows directly from Lemma 4.3. Contextuality follows from Theorem 4.4. �

4.2 Well-formed systems
Intuitively the extensional actions represent behaviour which can be detected by contexts. But
in CCCP the ability of contexts to detect this behaviour depends to some extent on the system
being tested behaving appropriately. Consider a simple example. We know that all configurations
are input-enabled, that is at any time can receive any value v along any channel channel c. But
suppose we wanted to check that a particular configuration Γ . W has actually performed such a

25

reception; this would be necessary, for example, if we wished to investigate the behaviour of its
residual after the action c?v.

Let Tc,v denote the system c !〈v〉.eureka!〈ok〉 + fail!〈no〉, where eureka and fail are some fresh
channels. Then intuitively we might expect that, at least informally, Γ .W will have performed the
action c?v when the combined system Γ . (W | Tc,v) no longer has a barb on fail but does have a
barb on eureka.

However the existence of the barb on eureka depends on the ability of time to pass in the
combined system: the transmission along c can commence, but the delivery of v takes time. If time
can not proceed then the potential barb on eureka will never materialise.

Example 4.6 Let W denote the system d[x].P, for some channel d different from c, and suppose
Γ ` d : idle. Then Γ . (W | Tc,v) can never produce a barb on eureka: Γ . (W | Tc,v) _∗ C′ implies
C′ ↓eureka is not true.

Note in particular that the sub-configuration Γ . W can not perform a σ action; it does not
allow time to pass. The only possible rule that might be applied is (EndRcv) from Table 4; but this
requires Γ `t d : n for some n > 1, whereas Γ ` d : idle. �

Definition 4.7 [Well-formedness] The set of well-formed configurations WNets is the least set
such that

Γ . P ∈WNets for all processes P
Γ ` c : exp implies Γ . c[x].P ∈WNets

Γ . W1,Γ . W2 ∈WNets implies Γ . W1 | W2 ∈WNets
Γ[c 7→ (n, v)] . W ∈WNets implies Γ . νc : (n, v).W ∈WNets �

Intuitively a configuration Γ . W is well-formed if it does not contain any receiving station along
an idle channel. Note that the configuration used in Example 4.6 is not well-formed.

Lemma 4.8 Suppose C is well-formed and C_ C′. Then C′ is also well-formed.

Proof Suppose Γ .W
λ
−−−→ W ′ and Γ .W. Then by rule induction on Γ .W

λ
−−−→ W ′ one can show

that updλ(Γ) . W ′ is also well-formed.
The result now follows by consideration of the three possible cases for deriving C _ C′ in

Definition 2.5. �

The main property of well-formed systems is that they allow the passage of time, so long as all
internal activity has ceased:

Proposition 4.9 Let Γ . W be a well-formed configuration such that Γ . W 6_i; then Γ . W _σ.
Proof By structural induction on the definition of the set WNets of well-formed networks; this
result relies on the fact that we only allow guarded recursion in the language. �

26

It would seem that restricting attention to well-formed configurations does not preclude the
phenomenon exhibited in Example 4.6 from occurring. Since our language for station code in-
cludes recursion the reader could argue that it is possible to write systems which can perform an
infinite sequence of instantaneous reductions; we first identify this systems formally, then we show
that these cannot be obtained in our calculus.

Example 4.10 Let W denote the code fix X.τ.X. Then we have an infinite sequence of internal
actions

Γ . W _i C1 _i . . .Ck _i

Indeed one can show that if Γ . W _∗ C′ then C′ _i. Maximal progress then ensures that C′ 6_σ.
�

Definition 4.11 [Well-timed configurations] A configuration C is well-timed, [27], if there exists
an upper bound k ∈ N such that whenever C_h

i C
′ for some h ≥ 0, then h ≤ k. �

While well-formedness is a simple syntactic constraint, well-timed means that the designer of
the network has to ensure that the code placed at the station nodes can never lead to divergent
behaviour. One simple method for ensuring this is to only use recursive definitions fix X.P where
X is weakly guarded in P; that is, every occurrence of X is within an input, output or time delay
prefix, or it is included within a branch of a matching construct. These are exactly the conditions
that we placed for recursion variables when defining our calculus. Thus, we would expect every
configuration in our calculus to be well-timed. In order to prove formally this statement, we need
the following technical result:

Proposition 4.12 An environment ρ is a partial mapping from process variables to closed terms.
Given a term W and an environment ρ, we denote with Wρ the system term obtained by substituting
each free occurrence of any process variable X with ρ(X), if defined.

For any channel environment Γ, (possibly open) term W and environment ρ such that Γ .Wρ is
well-defined then it is also well-timed.
Proof By structural induction on the term W, using the hypothesis that we only allow guarded
recursion. �

Corollary 4.13 Any well-formed configuration Γ . W is also well-timed.
Proof Note that if Γ.W is well-formed then W is closed by definition. Thus, for any environment
ρ we have that Wρ = W. Now the result follows directly from Proposition 4.12. �

27

To end this section we prove a very useful result for well-defined configurations; the proof
emphasises the roles of well-formedness and well-timedness in the configurations being tested.

Proposition 4.14 Suppose Γ1 . W1 ' Γ2 . W2, where both are well-formed. Then Γ1 ` c : idle
implies Γ2 ` c : idle.
Proof Let Γ1 . W1 ' Γ2 . W2 and suppose Γ1 ` c : idle for some channel c. Consider the testing
code:

T = [exp(c)]nil, eureka!〈ok〉

From the definition of ' we know that Γ1 . W1 | T ' Γ2 . W2 | T . Since Γ1 . W1 is well-timed,
by definition there is a configuration C such that Γ1 . W1 _∗

i C and C 6_i. Because Γ1 . W1 is
well-formed so is this C and so by Proposition 4.9 there is a configuration C′ such that C_σ C

′.
It follows, by the existence of this C′, that Γ1 . W1 | T ⇓eureka, which in turn means that

Γ2 . W2 | T ⇓eureka.
By maximal progress, this is only possible if

Γ2 . W2 | T _∗
i Γ′2 . W ′

2 | σ.eureka!〈ok〉 _∗
i _σ_∗

i Γ′′2 . W ′′
2 | σ

δok

where Γ′2 is a channel environment such that Γ′2 ` c : idle. From Lemma 2.16 we get the required
Γ2 ` c : idle. �

4.3 Completeness
In this section we prove that our notion of bisimilarity is not only sound with respect to reduction
barbed congruence but is also complete for well-formed configurations. The idea here is to prove
that ' is a bisimulation in the extensional LTS. We address the various requirements individually.
First a technical result about fresh barbs.

Lemma 4.15 Suppose Γ1 . W1 | T ' Γ2 . W2 | T where T does not contain any free occurrences
of channel names which occur free in either W1 or W2. Then Γ1 . W1 ' Γ2 . W2.
Proof [Outline] This is a variation on analogous results already in the literature for a number of
different process calculi; see for example Lemma 2.38 of [17].

Let the relation R over configurations be defined by letting

Γ1 . W1 R Γ2 . W2

whenever Γ1 . W1 | T ' Γ2 . W2 | T for some term T which only uses free channels with respect
to W1 and W2. One can check that R is reduction-closed, contextual and barb-preserving, from
which the result follows. �

28

Next we show that reduction barbed congruence is preserved by all the actions in the exten-
sional semantics. This can be accomplished by providing, for each of these extensional actions α,
a distinguishing context Tα such that which is able to test whether a configuration can perform the
(weak) extensional action α. For some particular α the distinguishing contexts will only work for
well-formed configurations. First we show the case regarding extensional τ-actions.

Proposition 4.16 [Preserving extensional τs] Suppose Γ1 .W1 ' Γ2 .W2 and Γ1 .W1
τ
7−→ Γ′1 .W ′

1.
Then Γ2 . W2 �=⇒ Γ′2 . W ′

2 such that Γ′1 . W ′
1 ' Γ′2 . W ′

2.

Proof There are two possible reasons why Γ1 . W1
τ
7−→ Γ′1 . W ′

1:

(i) Γ1 . W1
τ
−−→ W ′

1 and Γ′1 = updτ(Γ1) = Γ1, by an application of rule (TauExt)

(ii) Γ1 . W1
c!v
−−−−→ W ′

1 and Γ′1 = updc!v(Γ1), by an application of rule (Shh).

We consider the first case; the proof for the second case is virtually identical.
Let eureka be a fresh channel; that is it must satisfy eureka < fn(W) and Γ1 ` eureka : idle. Let

ok be a message which requires one time unit to be transmitted, i.e. δok = 1. By an application of
rules (TauPar) and (TauExt) we derive

Γ1 . W1 | eureka!〈ok〉
τ
7−→ Γ′1 . W ′

1 | eureka!〈ok〉

with Γ′1 . W ′
1 | eureka!〈ok〉 ⇓eureka and Γ′1 ` eureka : idle. By Definition 2.5 this transition corre-

sponds in the reduction semantics to

Γ1 . W1 | eureka!〈ok〉_ Γ′1 . W ′
1 | eureka!〈ok〉

As Γ1 . W1 ' Γ2 . W2 and ' is contextual, this step must be matched by a sequence of reductions

Γ2 . W2 | eureka!〈ok〉_∗ C (5)

such that Γ′1 . W ′
1 | eureka!〈ok〉 ' C. Depending on whether the transmission at eureka is part of

the sequence of reductions or not, the configuration C must be one of the following:

C1 = Γ′2 . W ′
2 | eureka!〈ok〉 with Γ′2 ` eureka : idle

C2 = Γ′2 . W ′
2 | σ.nil with Γ′2 ` eureka : exp

C3 = Γ′2 . W ′
2 | nil with Γ′2 ` eureka : idle

As eureka is a fresh channel and C3 6⇓eureka, it follows that C cannot be C3. Since Γ′1 . W ′
1 |

eureka!〈ok〉 ' C and Γ′1 ` eureka : idle, by Proposition 4.14 (which can be applied since we are
assuming that C is both well-formed and well-timed) it follows that C cannot be C2. So, the only
possibility is C = C1. By Lemma 4.15 it follows that Γ′1 . W ′

1 ' Γ′2 . W ′
2. It remains to show that

Γ2 . W2 �=⇒ Γ′2 . W ′
2.

To this end we can extract out from the reduction sequence (5) above a reduction sequence

Γ2 . W2 _∗ Γ′2 . W ′
2

29

We show that each step in this sequence, say Γ . W _ Γ′ . W ′, is actually also a τ step in the
extensional LTS, Γ . W

τ
7−→ Γ′ . W ′, from which the result follows.

Recall from Definition 2.5 that there are three possible ways to infer the reduction step Γ.W _
Γ′ .W ′. If it is either (Internal), i.e. Γ .W

τ
−−→ W ′, or a (Transmission), i.e. Γ .W

c!v
−−−−→ W ′, then by

definition Γ .W
τ
7−→ Γ′ .W ′ follows. Condition (ii), (Time), is not possible because in the original

sequence (5) above the testing component eureka!〈ok〉 can not make a σ move. �

Next we show that reduction barbed congruence is preserved by σ-actions.

Proposition 4.17 [Preserving extensional σs] Suppose Γ1.W1 ' Γ2.W2. Then Γ1.W1
σ
7−→ Γ′1.W ′

1

implies Γ2 . W2
σ
�=⇒ Γ′2 . W ′

2 such that Γ′1 . W ′
1 ' Γ′2 . W ′

2.
Proof We will use a testing context:

T = σ.(τ.eureka!〈ok〉 + fail!〈no〉)

where eureka and fail are fresh channels. Let Γ1 . W1 | T _∗ Γ′1 . W ′
1 | eureka!〈ok〉 (= C1). Since

Γ1 . W1 ' Γ2 . W2 we must have a series of reduction steps

Γ2 . W2 | T _∗ C2 (6)

such that C1 ' C2. Because C1 ⇓eureka and C1 6⇓fail (recall that fail is fresh) the same must be true
of C2. As Γ′1 ` eureka : idle, it follows that C2 must take the form Γ′2 . W ′

2 | eureka!〈ok〉. By
Lemma 4.15 we have that Γ′1 . W ′

1 ' Γ′2 . W ′
2. It remains to establish that Γ2 . W2

σ
�=⇒ Γ′2 . W ′

2.
We proceed as in the previous proposition, by extracting out of (6) the contributions from

Γ2 . W2; we know that because of the presence of the time delay in T , and by maximal progress
(Proposition 2.2), exactly one of the reduction steps involves the passage of time. So (6) actually
takes the form

Γ2 . W2 | T2 _∗
i Γ′ . W ′ | . . . _σ Γ′′ . W ′′ | . . . _∗

i Γ′2 . W ′
2 | eureka!〈ok〉

Each individual reduction step can now be projected on to the first component, giving the required

Γ2 . W2 �=⇒ Γ . W
σ
7−→ Γ′ . W ′ �=⇒ Γ′2 . W ′

2

�

The cases for the actions α ∈ {c?v, ι(c), γ(c, v)} are more complicated to analyse; as we will see,
the distinguishing contexts for such actions will require several instants of time to detect whether
the action has been performed by the tested configuration or not. To solve this problem, we equip
the distinguishing context Tα with a fresh channel halt, different from eureka and fail, whose role is
that of preventing time to pass when testing if a configuration has performed the (weak) extensional
α-action.

As an example we consider in detail a testing context Tγ(c,v) for the extensional action γ(c, v),

νd:(0, ·).(c[x].([x=v]d!〈ok〉, nil) + fail!〈no〉 | σ2.[exp(d)]eureka!〈ok〉, nil | σ.halt!〈ok〉)

30

where eureka, halt, fail are fresh channels and ok is a message such that δok = 1. This is designed to
detect whether a configuration Γ.W has performed a weak γ(c, v)-action. Let us discuss informally
how the testing context Tγ(c,v) operates. Each of the three fresh channels eureka, halt, fail plays a
different role: fail ensures that the reception along channel c has finished; eureka guarantees that
the received values is actually v; halt serves to stop the computation after one time unit.

We provide a possible evolution of the testing contexts Tγ(c, v) when running in a channel
environment Γ such that Γ(c) = (1, v), and then we discuss how it works.

Γ1 . Tγ(c,v)

_σ Γ′1 . T1 = Γ′1 . νd:(0, ·).(([v=v]d!〈ok〉, nil) + fail!〈no〉 |
| σ.[exp(d)]eureka!〈ok〉, nil | halt!〈ok〉)

_i Γ′1 . T2 = Γ′1 . νd:(0, ·).(σ.d!〈ok〉 | σ.[exp(d)]eureka!〈ok〉, nil | halt!〈ok〉)
_i Γ′′1 . T3 = Γ′′1 . νd:(0, ·).(σ.d!〈ok〉 | σ.[exp(d)]eureka!〈ok〉, nil | σ)
_σ Γ′′′1 . T4 = Γ′′′1 . νd:(0, ·).(d!〈ok〉 | [exp(d)]eureka!〈ok〉, nil | nil)
_i Γ′′′1 . T5 = Γ′′′1 . νd:(1, ok).(σ | [exp(d)]eureka!〈ok〉, nil | nil)
_i Γ′′′1 . T6 = Γ′′′1 . νd:(1, ok).(σ | σ.eureka!〈ok〉 | nil)
_σ Γ1

′′′′ . T7 = Γ′′′′1 . νd:(0, ·).(nil | eureka!〈ok〉 | nil)

Initially a configuration of the form Γ . W | Tγ(c,v) has a weak barb at channels halt and fail.
Further, the testing component has an active receiver over channel c; note that the configuration
Γ . W | Tγ(c,v) is well-formed only if Γ ` c : exp. When channel c is released, the testing compo-
nent checks if the received value is v, in which case the barb along channel fail disappears and a
broadcast along a restricted channel d is fired one time instant after channel c has been released,
and only in the case that the received value along channel c matches value v. Note that in the same
instant of time the barb at halt disappears.

A second parallel component waits two time instants before checking if channel d is exposed;
in this case it broadcasts over channel eureka. Note that the exposure check is passed only if a
broadcast along channel d has been fired in the third time instant of a computation of Γ . W |

Tγ(c,v); this is possible only if channel c has been released in the second instant of time of such a
computation, and the received value is v; that is, Γ(c) = (1, v).

Proposition 4.18 [Preserving γ(c, v)-actions] Let Γ1 .W1,Γ2 .W2 be two configurations such that

Γ1 .W1 ' Γ2 .W2 and Γ1 .W1
γ(c,v)
7−→ Γ′1 .W ′

1. Then Γ2 .W2
γ(c,v)
�=⇒ Γ′2 .W ′

2 such that Γ′1 .W ′
1 ' Γ′2 .W ′

2.

Proof First note that the extensional transition Γ1 . W1
γ(c,v)
7−→ Γ′1 . W ′

1 can be derived in the
extensional semantics only by using rule (Deliver); this implies that Γ1 . W1

σ
−−−→ W ′

1 and Γ1(c) =

(1, v).
Now consider the configurations C1 = Γ1 . W1 | Tγ(c,v), C2 = Γ2 . W2 | Tγ(c,v) where the testing

context Tγ(c,v) is defined above. As Γ1 .W1 ' Γ2 .W2, by definition of barbed congruence it follows
that C1 ' C2. It is easy to check that C1 has the following reductions:

C1 _σ Γ′1 . W ′
1 | T1

_i Γ′1 . W ′
1 | T2

31

Moreover, Γ′1 . W ′
1 | T2 _∗ Γ′′′′1 . W ′′′

1 | T7 ⇓eureka, as can be seen from the following reduction
sequence:

Γ′1 . W ′
1 | T2 _i Γ′′1 . W ′

1 | T3

_σ Γ′′′1 . W ′′
1 | T4

_i Γ′′′1 . W ′′
1 | T5

_i Γ′′′1 . W ′′
1 | T6

_σ Γ′′′′1 . W ′′′
1 | T7

Thus, Γ′1 .W ′
1 | T2 ⇓eureka, Γ′1 .W ′

1 | T2 ⇓halt and Γ′1 .W ′
1 | T2 6⇓fail; this last statement is true because

fail is fresh in Γ1 . W1.
Since C1 ' C2, it follows that C2 _∗ C′2 for some C′2 such that Γ′1 . W ′

1 | T2 ' C
′
2. By

definition of reduction barbed congruence it holds that C′2 ⇓eureka, C′2 ⇓halt and C′2 6⇓fail. Note that
Γ′1 ` halt : idle, hence by Proposition 4.14 it follows that C′2 = Γ′2 . W for some Γ′2,W such that
Γ′2 ` halt : idle. Note also that Γ′2 . T2 has a weak barb on both barbs eureka and halt, while
it lacks a barb on fail. The reader can convince herself that this is possible only in the case that
C′2 = Γ′2 . W ′

2 | T2 for some system term W ′
2.

The weak reduction C2 (_i)∗ C′2 can be unfolded as follows:

C2 (_i)∗ Γ′′2 . W ′′
2 | Tγ(c,v)

_σ Γ′′′2 . W ′′′
2 | T1 (7)

(_i)∗ Γiv
2 . W iv

2 | T1

_i Γiv
2 . W iv

2 | T2

(_i)∗ Γ′2 . W ′
2 | T2

Note that in the reduction sequence (7) it is crucial that in the testing component T1 both the
broadcast along channel halt and the exposure check of the restricted channel d are performed in the
same time instant. Since the testing components in the reduction sequence (7) above never contain
a sender along a non-fresh channel, nor they are waiting to receive a value, it is straightforward to
note that the sequence of reductions above induces the sequence

Γ2 . W2 _∗
i _σ_∗

i Γ′2 . W ′
2 .

By definition of our reduction semantics we have that Γ2 . W2
σ
�=⇒ Γ′2 . W ′

2.
It remains to show that Γ2(c) = (1, v). Since we assumed that Γ1(c) = (1, v) and Γ1.W1 ' Γ2.W2,

it follows from Proposition 4.14 that Γ2 ` c : exp. Further, by Lemma 4.1 it cannot be Γ2 `t c : n
for some n ≥ 2, for otherwise it would not be possible to derive the reduction (7) above. Hence
Γ2 `t c : 1. Similarly, we have that Γ2 `v c : v, for again it would not be possible to derive the
reduction (7) above.

Now since Γ2 .W2
σ
�=⇒ Γ′2 .W ′

2 and Γ′2 = (1, v) we have a required matching move Γ2 .W2
γ(c,v)
�=⇒

Γ′2 . W ′
2. This move is indeed matching because we already know that Γ′1 . W ′

1 | T2 ' Γ′2 . W ′
2 | T2,

and from a straightforward generalisation of Proposition 4.15 it follows that Γ′1 . W ′
1 ' Γ′2 . W ′

2. �

32

Proposition 4.19 [Preserving Input Actions] Suppose Γ1.W1 ' Γ2.W2, where both configurations

are well-formed. Then Γ1 .W1
c?v
7−→ Γ′1 .W ′

1 implies Γ2 .W2
c?v
�=⇒ Γ′2 .W ′

2 such that Γ′1 .W ′
1 ' Γ′2 .W ′

2.
Proof [Outline] The proof of this statement is similar in style to that of Proposition 4.18; in
this case it is necessary to exhibit a distinguishing context to detect whether a configuration has
performed a (weak) extensional input action. The system term

Tc?v
def
= (c !〈v〉.eureka!〈ok〉 + fail!〈no〉) | halt!〈ok〉

serves this purpose. Note that the assumption that Γ1 . W1 is well-formed is necessary to ensure

that, if Γ1 .W1
c?v
7−→, then Γ1 .W1 | Tc?v has a weak barb on channel eureka. At least intuitively, such

a barb is enabled in Γ1 . W1 | Tc?v only after one instant of time; therefore, we need to ensure that
Γ1 . W1 allows time to pass. �

Proposition 4.20 [Preserving ι-actions] Suppose Γ1 . W1 ' Γ2 . W2, where again both are well-

formed configurations. Then Γ1 . W1
ι(c)
7−→ Γ′1 . W ′

1 implies Γ2 . W2
ι(c)
�=⇒ Γ′2 . W ′

2 such that Γ′1 . W ′
1 '

Γ′2 . W ′
2.

Proof [Outline] We proceed again as in Proposition 4.18, this time using the system term Tι(c) =

([exp(c)]nil, eureka!〈ok〉) + fail!〈no〉 | halt!〈ok〉. Again, well-formedness of W1 is needed to ensure

that if Γ1 . W1
ι(c)
7−→ then Γ1 . W1 | Tι(c) has a weak barb on channel eureka, for the broadcast

along such a channel takes place after one time instants from the beginning of the computation of
Γ1 . W1 | Tι(c). �

We are now ready to prove the main result of this Section.

Theorem 4.21 [Completeness] On well-defined configurations, reduction barbed congruence im-
plies bisimilarity.
Proof It is sufficient to show that the relation

S
def
= {

(
Γ1 . W1 , Γ2 . W2

)
: Γ1 . W1 ' Γ2 . W2}

is a bisimulation. To do so we show that for each extensional action α, the relation S satisfies the
corresponding transfer property given in Definition 3.1. The proof of this statement is a simple
consequence of the series of propositions we have just developed.

For example suppose Γ1 . W1 ' Γ2 . W2 and Γ1 . W1
γ(c,v)
7−→ Γ′1 . W ′

1; we need to show that

Γ2 . W2
γ(c,v)
�=⇒ Γ′2 . W ′

2 for some Γ′2,W
′
2 such that (Γ′1 . W ′

1,Γ
′
2 . W ′

2) ∈ S, i.e. Γ′1 . W ′
1 ' Γ′2 . W ′

2.
However, this statement is a direct consequence of Proposition 4.18.

For each possible extensional action α we have proven similar propositions which give the
required matching move. �

33

5 Applications
In this section, we show how our calculus CCCP can be used to model different interesting be-
haviours which arise at the MAC sub-layer [22] of wireless networks. Then, we exploit our
bisimulation proof technique to provide examples of behaviourally equivalent networks. In par-
ticular we give some examples comparing the behaviour of routing protocols and Time Division
Multiplexing.

We start with some simple examples. The first show that stations which do not transmit on
unrestricted channels can not be detected. To this end we use fsn(W) to denote the set of unre-
stricted channel names in the code W which have transmission occurrences, that is occurrences of
an unrestricted channel name c the form c !〈u〉.

Example 5.1 [Unobservable systems] Consider a wireless system in which no station can broad-
cast on any free channel. Intuitively none of its behaviour should be observable. In CCCP this
means that the system should be behaviourally equivalent to the empty system nil.

Formally consider the configuration Γ . nil where Γ is an arbitrary channel environment. This
configuration has non-trivial extensional behaviour. For example it is input enabled, and so can
perform all extensional actions of the form c?v. It can also perform σ actions, indicating the
passage of time.

Now let W be arbitrary station code such that fsn(W) = 0, that is it can not broadcast on any
free channel. The configuration Γ . W has similar behaviour. Indeed let S be the relation

{(Γ . W, Γ . nil) | fsn(W) = 0}

Then it is straightforward to show that S is a strong bisimulation in the extensional LTS. Our
soundness result therefore ensures that

Γ . W ' Γ . nil

whenever fsn(W) = 0. �

Next we consider what happens when a channel becomes permanently exposed. . This situation
can be modelled by using two stations s0, s1 which repeatedly send a value along channel c; each
broadcast performed by s1 takes place before the transmission of s0 ends, and vice versa. In this
case we say that the channel c is corrupted. Clearly, if a system transmits only on corrupted
channels; then it cannot be detected. Let us see how this scenario is reflected in our behavioural
theory.

Example 5.2 [Noise obfuscates transmissions] Let v be a value such that δv = 2 and let Snd(c)
denote the code fix X.c !〈v〉.X, which continually broadcasts v along c. To model the two stations
s0 and s1 discussed informally above we use the code Noise(c) = Snd(c) | σ.Snd(c).

Then, consider a configuration Γ . W such that fsn(W) ⊆ {c}; that is does not transmit on free
channels different from c. Then

Γ . W | Noise(c) ' Γ . Noise(c)

34

To prove this, it is sufficient to exhibit bisimulation containing the pair of configurations (Γ . W |
Noise(c), Γ . Noise(c)).

We use the following abbreviations:

Noise′(c) = σ2.Snd(c) | σ.Snd(c)
Noise′′(c) = σ.Snd(c) | Snd(c)

Noise′′′(c) = σ.Snd(c) | σ2.Snd(c)

Then let S denote the following set of pairs of configurations:

{(∆ . W | Noise(c) , ∆′ . Noise(c)),
(∆ . W | Noise′(c) , ∆′ . Noise′(c)),
(∆ . W | Noise”(c) , ∆′ . Noise′′(c)),
(∆ . W | Noise”’(c) , ∆′ . Noise′′′(c)) |

∆,∆′ ` c : exp, fsn(W) ⊆ {c} }

Then it is possible to check that S is a weak bisimulation in the extensional LTS. At least in-
tuitively, this is because in the extensional LTS all outputs fired along the obfuscated channel c
corresponds to internal actions; further, in the configurations included in S channel c is never
released, so that neither ι(c)-actions nor γ(c, v)-actions can be performed by any configuration in-
cluded in S. �

The Carrier Sense Multiple Access (CSMA) scheme [20] is a widely used MAC-layer protocol
in which a device senses the channel (physical carrier sense) before transmitting. More precisely,
if the channel is sensed free the sender starts transmitting immediately, that is in the next instant of
time3; if the channel is busy, that is some other station is transmitting, the device keeps listening to
the channel until it becomes idle and then starts transmitting immediately. This strategy is called
1-persistent CSMA and can be easily expressed in our calculus in terms of the following process:

c!!〈v〉.P = fix X.[exp(c)]X, c !〈v〉.P

So, by definition CSMA transmissions are delayed whenever the channel is busy.
In the next example we prove a natural property of CSMA transmissions.

Example 5.3 [Delay in CSMA broadcast] Suppose Γ `t c : n for some n > 0. Then, for any
k ≤ n + 1

Γ . c!!〈v〉.P ' σk.c!!〈v〉.P (8)

Intuitively, since Γ `t= n, the transmission of value v in Γ . c!!〈v〉.P can take place only after at
least n instants of time. The same happens in Γ . σk.c!!〈v〉.P.

3Recall that in wireless systems channels are half-duplex.

35

Table 10 A simple topology for a network

s r

s r

e

N0 N1

.

To prove (8) formally we need to exhibit a bisimulation S relation in the extensional LTS which
contains all pairs of the form (Γ . c!!〈v〉.P, σk.c!!〈v〉.P), where Γ is such that Γ `t: n > 0 for some
n satisfying k ≤ (n + 1). One possible S takes the form R ∪ Id where Id is the identity relation
over configurations and R is given by:

R = {(∆n . c!!〈v〉.P,∆n . σ
h.c!!〈v〉.P) | | ∆n `t c : n, h ≤ n}

�

In our calculus the network topology is assumed to be flat. However, we can exploit the pres-
ence of multiple channels to model networks with a more complicated topological structure. The
idea is to associate a particular channel with a collection of stations which are in the same neigh-
bourhood.

Example 5.4 [Network Topology] Suppose that we want to model a network with two stations s,
r with the following features:

• the range of transmission of s is too short to reach external agents,

• the station r is in the range of transmission of s,

• the range of transmission of r is long enough to also reach external agents.

A graphical representation of the network we want to model is given as N0 of Table 10. We can
model this network topology by using a specific restricted channel, say d, for the local communi-
cation between stations s and r. In CCCP a wireless system running on N0 would therefore take
the form

C0 = Γ . νd : (0, ·).(S | R)

where

• S represents the code running at station s; it can therefore only broadcast and receive along
the restricted channel d (recall that we do not want station s to be able to communicate
directly with the external environment)

36

• R represents the code running at station r; it can only receive values along the restricted
channel d (since in N0 station r can receive messages broadcast by station r, but not by the
external environment), while it is free to broadcast on other channels (since station r is able
to broadcast messages to the external environment)

As a specific example we could let S denote the single broadcast d!〈v〉, and R = fix X.bd?(x).c!〈x〉cX.
Then in the configuration C0 the station s broadcasts as a value and station r acts as a forwarder;
this behaviour is reminiscent of range repeaters in wireless terminology.

Suppose now that we want to add a second station e to the above network topology, so that

• broadcasts from e can be detected by r; this can be accomplished by allowing the process
used to model station e to broadcasts along a restricted channel d.

• broadcasts from e can not reach s, nor the external environment. For this to be true, it is
sufficient to require that the process which models the behaviour of station e can broadcast
values only along the restricted channel d; further, in order for ensuring that the station e
cannot detect values broadcast by s, we require that the process used to represent station e
does not use receivers along channel d.

The network topology we wish to model is depicted as N1 in Table 10 and so a wireless system
running on this network takes the form

C1 = νd :(0, ·).(S | R | E)

where E is the code running at station e. As an example we could take E to be the faulty code
d!〈v〉 + τ.nil.

Then in C1 station r still acts as a forwarder for station s; however station e can non-
deterministically decide whether to corrupt the transmission from node s to r, causing a collision.

Let us assume that the transmission time of the value used in these networks, v, satisfies δv =

δerr. Then we can show

C0 ' Γ . σδv .c!〈v〉

C1 ' Γ . τ.σδv .c!〈v〉 + τ.σδv .c!〈err〉

Intuitively the reasons for these equivalences are obvious. The transmission along channel d is
restricted in C0, so it cannot be observed by the external environment. The only activity which can
be observed is the broadcast of value v along channel c, which takes place after δv instants of time.
For C1, a collision can happen along channel d, which is again restricted; the only activity that
can be detected by the external environment is a transmission which takes place after δv instants of
time. Such a transmission will contain either the value v or an error message of length δv.

The formal proof of these identities involves exhibiting two bisimulations, containing the rele-
vant pairs of configurations. Here we exhibit a bisimulation for showing that C1 ' Γ . τ.σδv .c!〈v〉.
For the sake of simplicity, let δerr = δv = 1 and define the system terms

W = νd : (0, ·).(S | E | R) Ws = νd : (1, v).(σ | E | c[x].c!〈x〉)
We = νd : (1, err).(S | σ | c[x].c!〈x〉) W ′ = νd : (0, ·).(S | nil | R)
W ′′ = νd : (1, err).(σ | σ | c[x].c!〈x〉) Wok = νd : (0, ·).(nil | nil | c!〈v〉)
Werr = νd : (0, ·).(nil | nil | c!〈err〉) Wc = νd : (0, ·).(nil | nil | σ)

37

Then it is easy to show that the relation

S = { (∆ . W , ∆ . τ.σ.c!〈v〉 + τ.σ.c!〈err〉) ,
(∆ . Ws , ∆ . τ.σ.c!〈v〉 + τ.σ.c!〈err〉) ,
(∆ . We , ∆ . σ.c!〈err〉) ,
(∆ . W ′ , ∆ . σ.c!〈v〉) ,
(∆ . W ′′ , ∆ . σ.c!〈err〉) ,
(∆ . Wok , ∆ . c!〈v〉) ,
(∆ . Werr , ∆ . c!〈err〉) ,
(∆ . Wc , ∆ . σ) |

| ∆ arbitrary channel environment }

is a weak bisimulation. �

As a final example let us consider how the TDMA modulation technique [45] can be described
in CCCP Time Division Multiple Access (TDMA) is a type of Time Division Multiplexing, where
instead of having one transmitter connected to one receiver, there are multiple transmitters. TDMA
is used in the digital 2G cellular systems such as Global System for Mobile Communications
(GSM). TDMA allows several users to share the same frequency channel by dividing the sig-
nal into different time slots. The users transmit in rapid succession, one after the other, each using
his own time slot. This allows multiple stations to share the same transmission medium (e.g. radio
frequency channel) while using only a part of its channel capacity.

As a simple example let us describe how two messages v0 and v1 can be delivered in TDMA
style; for simplicity, we assume δv0 = δv1 = 2. The main idea here is to split each of these values
into two packets of length one, transmit the packets individually, which will then be concatenated
together before being forwarded to the external environment. So let us assume values v0

0, v
1
0, v

0
1, v

1
1,

each of which requires one time instant to be transmitted, and a binary operator ◦ for composing
messages such that

v0
0 ◦ v1

0 = v0

v0
1 ◦ v1

1 = v1

v ◦ err = err ◦ v = err

where v is an arbitrary value; in this case we assume that δerr = 2.
More specifically, for this example we assume four different stations, s0, s1, r0, r1, running the

code Ŝ 0, Ŝ 1, R̂0, R̂1 respectively. The network we consider for modelling the TDMA transmission
is then given by

C0 = Γ . νd :(0, ·)
(
Ŝ 0 | Ŝ 1 | R̂0 | R̂1

)
where

Ŝ 0 = d !〈v0
0〉.σ.d!〈v1

0〉

Ŝ 1 = σ.d !〈v0
1〉.σ.d!〈v1

1〉

R̂0 = bd?(x).σ.bd?(y).σ.c!〈x ◦ y〉cc
R̂1 = σ.bd?(x).σ.bd?(y).σ2.c!〈x ◦ y〉cc

38

Table 11 Two transmitting stations using different time slots to broadcast values

!v0
0 σ !v1

0 σ

s0

σ !v0
1 σ !v1

1

s1

?x σ ?y σ

r0

σ ?x σ ?y

r1

d d

Table 12 Forwarding two messages to the external environment

s0

s1 r

The intuitive behaviour of this network is depicted in Table 11. Station s0 wishes to broadcast
value v0, while s1 wishes to broadcast value v1. They both use the same (restricted) channel d
to broadcast their respective values; however, both stations split the value to be broadcast in two
packets. Value v0 is split in v0

0 and v1
0, while v1 is split in v0

1 and v1
1.

The two stations run a TDMA protocol with a time frame of length two. Station s0 takes control
of the first time frame, hence transmitting its two packets v0

0 and v1
0 in the first and the third time

slot, respectively. Station s1 takes control of the second time frame; hence the two packets v0
1 and

v1
1 are broadcast in the second and fourth time slot, respectively.

Stations r0 and r1 wait to collect the values broadcast along channel d. However, the former is
interested only in packets sent in the first time frame, while the latter detects only values sent in the
second time frame. At the end of their associated time frame the stations r0 and r1 have received
two packets which are concatenated together and then broadcast to the external environment along
channel c. Note that station r1 is a little slower than r0, for we have added a delay of two time units
before broadcasting the concatenated values.

As an alternative to TDMA, the two values v0, v1 can be also be delivered to the external
environment by means of a simple routing, along the lines suggested in Example 5.4. Here we
consider the configuration

C1 = Γ . νd :(0, ·).(S 0 | S 1 | R)

39

where

S 0 = σ4.c!〈v0〉

S 1 = σ4.d!〈v1〉

R = d?(x).c!〈x〉

Intuitively, the configuration C1 models three wireless stations s0, s1, r, running the code S 0, S 1,
R, respectively, and connected as in Table 12. Station s0 waits four instants of time, then it broad-
casts value v0 directly to the external environment via the free channel c. Similarly, after four
instants of time the station s1 broadcasts value v1 to station r via the restricted channel d. Finally,
r forwards the message to the external environment via the free channel c.

From the point of view of the external environment the configuration C1 performs the following
activities:

• it remains idle for the first four instants of time

• it transmits value v0 in the fifth and sixth time instants

• it transmits value v1 in the seventh and eighth time instants.

In this manner, at least informally the observable behaviour of C1, which uses direct routing, is the
same as that of C0, which uses TDMA.

Formally, we can prove

C0 ' C1 (9)

However, instead of proving this by giving a bisimulation containing this pair of configurations,
instead we prove them individually bisimilar to a simpler specification. Let S1 denote the config-
uration Γ . S 1 where S 1 is the code

σ4.c !〈v0〉.c !〈v1〉.

Then we can show that C0 ≈ S1 and C1 ≈ S1, from which (9) follows by soundness. Below we
provide a bisimulation for showing that C1 ' S1; for the sake of simplicity, define the following
terms:

S n
0 = σn.c!〈v0〉 S n

1 = σn.d!〈v1〉

R′ = d[x].c!〈x〉 Wn = σn.c !〈v0〉.c!〈v1〉

for any n ∈ N. Then the relation

R = { (∆ . νd : (0, ·).(S n
0 | S

n
1 | R) , ∆ . Wn) ,

(∆ . νd : (0, ·).(σ2 | d!〈v1〉 | R) , ∆ . σ2.c!〈v1〉) ,
(∆ . νd : (2, v1).(c!〈v0〉 | σ

2 | R′) , ∆ . c !〈v0〉.c!〈v1〉) ,
(∆ . νd : (2, v1).(σ2 | σ2 | R′) , ∆ . σ2.c!〈v1〉) ,
(∆ . νd : (1, v1).(σ | σ | R′) , ∆ . σ.c!〈v1〉) ,
(∆ . νd : (0, ·).(nil | nil | c!〈v1〉) , ∆ . c!〈v1〉) |

| ∆ arbitrary channel environment }

40

is a relation which contains the most relevant couples needed for showing that C1 ≈ S1.

As a final example we can modify the behaviour of the two configurations C0 and C1 by adding
the possibility of getting a collision when delivering values v0, v1 to the external environment. In
the routing case, this is accomplished by requiring that both stations s0, s1 can either broadcast
their value directly to the external environment or to the forwarder node r, while in the TDMA
case it is sufficient to allow both the stations s0, s1 to non-deterministically choose the time slot to
be used to broadcast packets.

To this end, let

S c
0 = τ.σ4.c!〈v0〉 + τ.σ4.d!〈v0〉

S c
1 = τ.σ4.c!〈v1〉 + τ.σ4.d!〈v1〉

Ŝ c
0 = d !〈v0

0〉.σ.d!〈v1
0〉 + τ.σ.d !〈v0

0〉.σ.d!〈v1
0〉

Ŝ c
1 = d !〈v0

1〉.σ.d!〈v1
1〉 + τ.σ.d !〈v0

1〉.σ.d!〈v1
1〉

and consider the configurations

Cc
1 = Γ . νd :(0, ·).(S c

0 | S
c
1 | R)

Cc
0 = Γ . νd :(0, ·).(Ŝ c

0 | Ŝ
c
1 | R̂0 | R̂1)

It is not difficult to see informally that the observable behaviour of these two configurations is
the same. Specifically

• either value v0 is broadcast in the fifth and sixth time slots and v1 is broadcast in the seventh
and eighth instants of time slots, or

• value v1 is broadcast in the fifth and sixth time slots, while value v0 is broadcast in the seventh
and eighth time slots, or

• a collision occur in the fifth and sixth time slots, or

• a collision occur in the seventh and eighth time slots.

This informal behaviour can be described by the term

S 2 = τ.σ4.c !〈v0〉.c!〈v1〉 +

τ.σ4.c !〈v1〉.c!〈v0〉 +

τ.σ4.c!〈err〉 +

τ.σ6.c!〈err〉

and once more we can exhibit bisimulations to establish Γ . S 2 ≈ C
c
0 and Γ . S 2 ≈ C

c
1. Then

soundness again ensures that
Cc

0 ' C
c
1

41

6 Conclusions
In this paper we have given a behavioural theory of wireless systems at the MAC level. In our
framework individual wireless stations broadcast information to their neighbours along virtual
channels. These broadcasts take a certain amount of time to complete, and are subject to collisions.
If a broadcast is successful a recipient may choose to ignore the information it contains, or may
act on it, in turn generating further broadcasts. We believe that our reduction semantics, given in
Section 2, captures much of the subtlety of intensional MAC-level behaviour of wireless systems.

Then based on this reduction semantics we defined a natural contextual equivalence between
wireless systems which captures the intuitive idea that one system can be replaced by another
in a larger network without affecting the observable behaviour of the original network. In the
main result of the paper, we then gave a sound and complete characterisation of this behavioural
equivalence in terms of extensional actions. This characterisation is important for two reasons.
Firstly it gives an understanding of which aspects of the intensional behaviour is important from
the point of view of external users of these wireless systems. Secondly it gives a powerful sound
and complete co-inductive proof method for demonstrating that two systems are behaviourally
equivalent. We have also demonstrated the viability of this proof methodology by a series of
examples.

Let us now examine some relevant related work. We start with the literature on process calculi
for wireless systems. Nanz and Hankin [33] have introduced an untimed calculus for Mobile
Wireless Networks (CBS]), relying on a graph representation of node localities. The main goal
of that paper is to present a framework for specification and security analysis of communication
protocols for mobile wireless networks. Merro [28] has proposed an untimed process calculus
for mobile ad-hoc networks with a labelled characterisation of reduction barbed congruence, while
[13] contains a calculus called CMAN, also with mobile ad-hoc networks in mind. This latter paper
also gives a characterisation of reduction barbed congruence, this time in terms of a contextual
bisimulation. It also contains a formalisation of an attack on the cryptographic routing protocol
ARAN.

Singh, Ramakrishnan and Smolka [44] have proposed the ω-calculus, a conservative extension
of the π-calculus. A key feature of the ω-calculus is the separation of a node’s communication
and computational behaviour from the description of its physical transmission range. The authors
provide a labelled transition semantics and a bisimulation in open style. The ω-calculus is then
used for modelling the AODV routing protocol. Another extension of the π-calculus for modelling,
called LUNAR, may be found in [7] which is used to model ad-hoc routing protocols.

In [8] a calculus is proposed for describing the probabilistic behaviour of wireless networks.
There is an explicit representation of the underlying network, in terms of a connectivity graph.
However this connectivity graph is static. In contrast Ghassemi et al. [11] have proposed a process
algebra called RBPT where topological changes to the connectivity graph are implicitly modelled
in the operational semantics rather than in the syntax. They propose a notion of bisimulation
for networks parametrised on a set of topological invariants that must be respected by equivalent
networks. This work in then refined in [12] where the authors propose an equational theory for an
extension of RBPT. Godskesen and Nanz [14] have proposed a simple timed calculus for wireless
systems to express a wide range of mobility models. Kouzapas and Philippou [23] have developed

42

a theory of confluence for a calculus of dynamic networks and they use their machinery to verify a
leader-election algorithm for mobile ad hoc networks.

All the calculi mentioned up to now abstract away from the from the possibility of interference
between broadcasts. Lanese and Sangiorgi [24] have instead proposed the CWS calculus, a lower
level untimed calculus to describe interferences in wireless systems. In their operational semantics
there is a separation between the beginning and ending of a broadcast, so there is some implicit
representation of the passage of time. A more explicit timed generalisation of CWS is given [29] to
express MAC-layer protocols such as CSMA/CA, where the authors propose a bisimilarity which
is proved to be sound but not complete with respect to a notion of reduction barbed congruence.
We view the current paper as a simplification and generalisation of [29].

The research we have mentioned so far has been focused on formalising various aspects of
ad-hoc networks. However other than [14, 29], these various calculi abstract away from time.
Nevertheless there is an extensive literature on timed process algebras, which we now briefly re-
view. From a purely syntactic point of view, the earliest proposals are extensions of the three main
process algebras, ACP, CSP and CCS. For example, [2] presents a real-time extension of ACP,
[40] contains a denotational model for a timed extension of CSP, while CCS is the starting point
for [32]. In [2] and [40] time is real-valued, and at least semantically, associated directly with ac-
tions. The other major approach to representing time is to introduce a special action to model the
passage of time, and to assume that all other actions are instantaneous. This approach is advocated
in [15, 5, 32, 35] and [46, 47], although the basis for this approach may be found in [6]. The current
paper shares many of the assumptions of the languages presented in these papers; in particular we
have been influenced by [18] which contains a timed version of CCS enjoying time determinism,
maximal progress and patience. All the just mentioned papers assume that actions are instanta-
neous and only the extension of ACP presented in [15] does not incorporate time determinism;
however maximal progress is less popular and patience is even rarer.

From this early work on timed process calculi a flourishing literature has emerged. Here we
briefly mention some highlights of this research. Prasad [37] has proposed a timed variant of
his CBS [36], called TCBS. In TCBS a timeout can force a process wishing to speak to remain
idle for a specific interval of time; this corresponds to have a priority. TCBS also assumes time
determinism and maximal progress. Corradini et al. [9] deal with durational actions proposing a
framework relying on the notions of reduction and observability to naturally incorporate timing
information in terms of process interaction. Our definition of timed reduction barbed congruence
takes inspiration from theirs. Corradini and Pistore [10] have studied durational actions to describe
and reason about the performance of systems. Actions have lower and upper time bounds, specify-
ing their possible different durations. Their time equivalence refines the untimed one. Baeten and
Middelburg [3] consider a range timed process algebras within a common framework, related by
embeddings and conservative extensions relations. These process algebras, ACPsat, ACPsrt, ACPdat

and ACPdrt, allow the execution of two or more actions consecutively at the same point in time,
separate the execution of actions from the passage of time, and consider actions to have no du-
ration. The process algebra ACPsat is a real-time process algebra with absolute time, ACPsrt is a
real-time process algebra with relative time. Similarly, ACPdat and ACPdrt are discrete-time process
algebras with absolute time and relative time, respectively. In these process algebra the focus is on

43

unsuccessful termination or deadlock. In [4] Baeten and Reniers extend the framework of [3] to
model successful termination for the relative-time case. Laneve and Zavattaro [25] have proposed
a timed extension of π-calculus where time proceeds asynchronously at the network level, while it
is constrained by the local urgency at the process level. They propose a timed bisimilarity whose
discriminating is weaker when local urgency is dropped.

References
[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor networks: a

survey. Computer Networks (Amsterdam, Netherlands: 1999), 38(4):393–422, March 2002.

[2] J. Baeten and J. Bergstra. Real Time Process Algebra. Formal Aspects of Computing,
3(2):142–188, 1991.

[3] J. Baeten and C. Middelburg. Process Algebra with Timing. EATCS Series. Springer-Verlag,
2002.

[4] J. C. M. Baeten and M. A. Reniers. Timed Process Algebra (With a Focus on Explicit Termi-
nation and Relative-Timing). In SFM, volume 3185 of Lecture Notes in Computer Science,
pages 59–97. Springer-Verlag, 2004.

[5] J.C.M. Baeten and J.A. Bergstra. Discrete time process algebra. Formal Aspects of Comput-
ing, 8(2):188–208, 1996.

[6] G. Berry and L. Cosserat. The ESTEREL Synchronous Programming Language and its Math-
ematical Semantics. Technical Report 842, INRIA, Sophia-Antipolis, 1988.

[7] Johannes Borgström, Shuqin Huang, Magnus Johansson, Palle Raabjerg, Björn Victor, Jo-
hannes Åman Pohjola, and Joachim Parrow. Broadcast psi-calculi with an application to
wireless protocols. In SEFM, volume 7041 of Lecture Notes in Computer Science, pages
74–89. Springer, 2011.

[8] Andrea Cerone and Matthew Hennessy. Modelling probabilistic wireless networks (extended
abstract). In Holger Giese and Grigore Rosu, editors, Proceedings of the 14th Annual Interna-
tional Conference on Formal Methods for Open Object-Based Distributed System FMOODS
2012, and the 32th Annual International Conference on Formal Techniques for Networked
and Distributed Systems FORTE 2012, Stockholm, Sweden, June 13-16 2012. Springer, 2012.

[9] F. Corradini, G. Ferrari, and M. Pistore. On the semantics of durational actions. Theoretical
Computer Science, 269(1-2):47–82, 2001.

[10] F. Corradini and M. Pistore. Closed interval process algebra versus interval process algebra.
Acta Informatica, 37(7):467–509, 2001.

[11] F. Ghassemi, W. Fokkink, and A. Movaghar. Restricted Broadcast Process Theory. In SEFM,
pages 345–354. IEEE Computer Society, 2008.

44

[12] F. Ghassemi, W. Fokkink, and A. Movaghar. Equational Reasoning on Ad Hoc networks. In
FSEN, volume 5961 of Lecture Notes in Computer Science, pages 113–128. Springer, 2009.

[13] J.C. Godskesen. A Calculus for Mobile Ad Hoc Networks. In COORDINATION, volume
4467 of Lecture Notes in Computer Science, pages 132–150. Springer Verlag, 2007.

[14] Jens Chr. Godskesen and Sebastian Nanz. Mobility Models and Behavioural Equivalence
for Wireless Networks. In COORDINATION, volume 5521 of Lecture Notes in Computer
Science, pages 106–122. Springer, 2009.

[15] J.F. Groote. Specification and Verification of Real Time Systems in acp. In PSTV, pages
261–274. North-Holland, 1990.

[16] Hennessy and Rathke. Bisimulations for a calculus of broadcasting systems. TCS: Theoreti-
cal Computer Science, 200(1–2):225–260, 1998.

[17] Matthew Hennessy. A distributed Pi-calculus. Cambridge University Press, 2007.

[18] Matthew Hennessy and Tim Regan. A process algebra for timed systems. Information and
Computation, 117(2):221–239, March 1995.

[19] K. Honda and N. Yoshida. On reduction-based process semantics. Theoretical Computer
Science, 152(2):437–486, 1995.

[20] IEEE 802.11 WG. ANSI/IEEE standard 802.11: Wireless LAN medium access control
(MAC) and physical layer (PHY) specifications. IEEE Computer Society, 2007.

[21] A. Jeffrey and J. Rathke. Contextual equivalence for higher-order pi-calculus revisited. Log-
ical Methods in Computer Science, 1(1:4), 2005.

[22] Raja Jurdak, Cristina Videira Lopes, and Pierre Baldi. A survey, classification and compara-
tive analysis of medium access control protocols for ad hoc networks. IEEE Communications
Surveys and Tutorials, 6(1-4):2–16, 2004.

[23] Dimitrios Kouzapas and Anna Philippou. A process calculus for dynamic networks. In
FMOODS/FORTE, volume 6722 of Lecture Notes in Computer Science, pages 213–227.
Springer, 2011.

[24] Ivan Lanese and Davide Sangiorgi. An operational semantics for a calculus for wireless
systems. Theor. Comput. Sci, 411(19):1928–1948, 2010.

[25] C. Laneve and G. Zavattaro. Foundations of web transactions. In FoSSaCS, volume 3441 of
Lecture Notes in Computer Science, pages 282–298. Springer, 2005.

[26] Nancy A. Lynch. Input/output automata: Basic, timed, hybrid, probabilistic, dynamic, .. In
Roberto M. Amadio and Denis Lugiez, editors, CONCUR, volume 2761 of Lecture Notes in
Computer Science, pages 187–188. Springer, 2003.

45

[27] Damiano Macedonio and Massimo Merro. A semantic analysis of wireless network security
protocols. In Alwyn Goodloe and Suzette Person, editors, NASA Formal Methods, volume
7226 of Lecture Notes in Computer Science, pages 403–417. Springer, 2012.

[28] M. Merro. An Observational Theory for Mobile Ad Hoc Networks (full paper). Information
and Computation, 207(2):194–208, 2009.

[29] Massimo Merro, Francesco Ballardin, and Eleonora Sibilio. A timed calculus for wireless
systems. Theor. Comput. Sci., 412(47):6585–6611, 2011.

[30] Milner and Sangiorgi. Barbed bisimulation. In ICALP: Annual International Colloquium on
Automata, Languages and Programming, 1992.

[31] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[32] F. Moller and C. Tofts. A Temporal Calculus of Communicating Systems. In CONCUR,
volume 458 of Lecture Notes in Computer Science, pages 401–415. Springer Verlag, 1990.

[33] S. Nanz and C. Hankin. A Framework for Security Analysis of Mobile Wireless Networks.
Theoretical Computer Science, 367(1-2):203–227, 2006.

[34] Sebastian Nanz and Chris Hankin. Static analysis of routing protocols for ad-hoc networks,
March 25 2004.

[35] Xavier Nicollin and Joseph Sifakis. The algebra of timed processes, atp: Theory and appli-
cation. Inf. Comput., 114(1):131–178, 1994.

[36] K. V. S. Prasad. A calculus of broadcasting systems. Science of Computer Programming,
25(2–3):285–327, December 1995. ESOP ’94 (Edinburgh, 1994).

[37] K.V.S. Prasad. Broadcasting in Time. In COORDINATION, volume 1061 of Lecture Notes
in Computer Science, pages 321–338. Springer Verlag, 1996.

[38] Theodore S. Rappaport. Wireless communications - principles and practice. Prentice Hall,
1996.

[39] Julian Rathke and Pawel Sobocinski. Deconstructing behavioural theories of mobility. In
Proc. Fifth IFIP International Conference On Theoretical Computer Science (TCS), volume
273 of IFIP, pages 507–520. Springer, 2008.

[40] G.M. Reed. A Hierarchy of Domains for Real-Time Distributed Computing. Technical
Report, Oxford, 1988.

[41] D. Sangiorgi, N. Kobayashi, and E. Sumii. Environmental bisimulations for higher-order
languages. In Proceedings of the 22nd IEEE Symposium on Logic in Computer Science,
pages 293–302. IEEE Computer Society, 2007.

46

[42] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cambridge
University Press, 2001.

[43] Davide Sangiorgi and David Walker. The Pi-Calculus — A Theory of Mobile Processes.
Cambridge University Press, 2001.

[44] A. Singh, C.R. Ramakrishnan, and S.A. Smolka. A Process Calculus for Mobile Ad Hoc
Networks. In COORDINATION, volume 5052 of Lecture Notes in Computer Science, pages
296–314, 2008.

[45] Andrew S. Tanenbaum. Computer Networks, 4th ed. Prentice-Hall International, Inc., 2003.

[46] W. Yi. Real-Time Behaviour of Asynchronous Agents. In CONCUR, volume 458 of Lecture
Notes in Computer Science, pages 502–520. Springer Verlag, 1990.

[47] W. Yi. A Calculus of Real Time Systems. Ph.D Thesis, Chalmers University, 1991.

47

