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Abstract. We propose a process calculus to model high level wireless systems, where the topology
of a network is described by a graph. The calculus enjoys features which are proper of wireless
networks, namely broadcast communication and probabilistic behaviour.

We first focus on the problem of composing wireless networks, then we present a compositional
theory based on a generalisation of the well known may-testing preorder. Also, we define an exten-
sional semantics for our calculus, and the respective simulation preorder induced. We prove that our
simulation preorder is sound with respect to the may testing preorder, thus providing a proof method
for establishing whether two networks cannot be distinguished by any test.
However, we also provide a counterexample showing that completeness of the simulation preorder,
with respect to the may testing one, does not hold. We conclude the paper with an application of our
theory to routing protocols.
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1. Introduction

Wireless networks have widespread worldwide in the last decades; nowadays they are used in
many areas, from domestic use to mobile phone networks, to the more new sensor networks. Further,
in the last few years there has been a growing interest in the development of formal methods for the
analysis of wireless systems [7, 8, 10].

While di↵erent process calculi have been developed to describe wireless systems, each of them
uses local broadcast as the only way of communication; roughly speaking, locations (or nodes) are
introduced to model the topology of a network. Processes are assigned to locations, and rules are
defined to establish which locations are a↵ected when one message is sent from another one. The
way such rules are defined is di↵erent according to the nature of the calculus. Di↵erent approaches
have been developed, for example by using metric spaces [8], using allocation environments [10]
or semantic tags for locations [7].

In this report we propose a di↵erent process calculus for modeling wireless systems; in our
framework, the topology of a network is described by an undirected graph. Intuitively, vertices of
the graph represent nodes, while edges establish the capability of their endpoints to communicate
each other. A probabilistic process calculus is then introduced to assign code to locations. The need
for probabilistic behaviour arise for there has been a growing interest in the research of probabilistic
protocols, especially in the field of wireless networks; see for example [17, 1, 13].

We remark that the mapping that associates processes to locations is partial, meaning that some
location could have no code assigned. Nodes with no running code (or external nodes) will play an
important role to develop a compositional theory of wireless systems; intuitively, in our framework
networks can be composed each other by merging the graphs that describe their topology, while the
code that is assigned to nodes of the merged graph is preserved by that of the original networks. As
we will point out throughout the paper, the composition of two networks will not always be defined,
as conflict situations can arise (for example one in which both networks have code running at the
same location).

In our compositional framework, external nodes can be seen as nodes where code can be placed
to test the behaviour of a network. This approach leads to the definition of a probabilistic gener-
alisation of the Hennessy-De Nicola’s may testing preorder, whose theory has been developed in
[2] for a probabilistic version of CSP. Here the authors show that, in the probabilistic setting, the
may-testing preorder coincides with the simulation preorder.

In the same style, we develop a compositional theory for the may-testing preorder for proba-
bilistic networks. However, the presence of local broadcast in our calculus creates some di�culties
when providing a proof methodology for the may-testing preorder by using simulation preorder.

The main problem arise, roughly speaking, because the broadcast of a message to a set of
nodes can be simulated by a multicast of more copies of the same message, which will be detected
by exactly the same set of nodes. To solve this problem, much of the theory has to be redefined;
specifically, in our framework we will use a non-standard concept of weak actions to define the
simulation preorder. This preorder is shown to be sound with respect to the may-testing. However
it fails to be complete, rather surprisingly, in view of the completeness result in [2].

The rest of the paper is organised as follows: in Section 2 we will give a brief introduction to
the mathematical tools needed for the development and the analysis of systems which present both
probabilistic and non-deterministic behaviour. In Section 3 we present our calculus for wireless
systems, and we provide some simple examples of networks which it can model.
In Section 4 we develop the testing preorder for our calculus. This is done by addressing several
topics; first, we discuss the concept of network composition in Section 4.1. The compositional
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theory developed is then used in Section 4.2 to define our testing framework, while the behavioural
preorder it induces is defined in Section 4.3.
In Section 5 we present another behavioural preorder for comparing networks, based on simulations
over actions which can be detected by external nodes. To this end, we first define an extensional
semantics for wireless networks in Section 5.1, then we introduce the formal definition of simulation
preorder at the end of the same Section.

Finally, in section 5.2 we prove that the simulation preorder is included in the may testing
one. However, this inclusion turns out to be strict; in Section 5.4 we provide an example of two
networks which can be related via the may testing preorder, but for which no simulation relation
can be exhibited.

Despite our proof methodology fails to be complete, it is powerful enough to analyse real world
situations; we provide an application of our results by performing an analysis of routing models in
Section 6.
Finally we review some related work and discuss future directions of research in Section 7.

2. Background

In this Section we will summarise the mathematical concepts, taken from [2], that will be
needed throughout the paper. First we will introduce some basic concepts from probability the-
ory; then we will show how these can be used to model concurrent systems which exhibit both
probabilistic and non-deterministic behaviour.

Let S be a set; a function � : S ! [0, 1] is called a (probability) sub-distribution over S
if
P

s2S �(s)  1. This quantity,
P

s2S �(s), is called the mass of the sub-distribution, denoted
as |�|. If |�| = 1, then we say that � is a (full) distribution. The support of a distribution �,
denoted d�e, is the subset of S consisting of all those elements which contribute to its mass, namely
d�e = {s 2 S | �(s) > 0}.

For each s 2 S , the point distribution s is defined to be the distribution which takes value 1 at s,
and 0 elsewhere. The set of sub-distributions and distributions over a set S are denoted by Dsub(S )
andD(S ), respectively.

Given a family of sub-distributions {�k | k 2 K}, Pk2K �k is the partial real-valued function in
S ! defined by (

P
k2K �k)(s) :=

P
k2K �k(s). This is a partial operation because for a given s 2 S

this sum might not exist; it is also a partial operation on sub-distributions because even if the sum
does exist it may be greater than 1.

Similarly, if p  1 and � is a sub-distribution , then p ·� is the sub-distribution over S such that

(p · �)(s) = p · �(s).

It is not di�cult to show that if {pk}k2K is a sequence of positive real numbers such that
P

k2K pk  1,
and {�k}k2K is a family of sub-distributions over a set S , then

Pn
i=1 pi · �i always defines a sub-

distribution over S .
Finally, if f : X ! Y and � is a sub-distribution over X then we use f (�) to be the sub-

distribution over Y defined by:

f (�)(y) =
X

x2X
{�(x) | f (x) = y }. (2.1)

This definition can be generalised to two arguments functions; if f : X1 ⇥ X2 ! Y is a function, and
�,⇥ are two sub-distributions respectively over X1 and X2, then f (�,⇥) denotes the sub-distribution
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over Y defined as

f (�,⇥)(y) =
X

x12X1,x22X2

{�(x1) · ⇥(x2) | f (x1, x2) = y }. (2.2)

Now we turn our attention to probabilistic concurrent systems. The formal model we use to
represent them is a generalisation to a probabilistic setting of Labelled Transition Systems (LTSs)
[9].

Definition 2.1. A probabilistic labelled transition system (pLTS) is a 4-tuple hS ,Act⌧,!,!i, where
(i) S is a set of states,

(ii) Act⌧ is a set of transition labels with a distinguished label ⌧,
(iii) the relation! is a subset of S ⇥ Act⌧ ⇥D(S ),
(iv) ! : S 7! { true , false } is a (success) predicate over the states S .

As usual, we will write s
µ�! � in lieu of (s,↵,�) 2 �!.

Before discussing pLTSs, some definitions first: a pLTS whose state space is finite is said to be
finite state; further, we say that a pLTS hS ,Act⌧,!,!i is finite branching if, for every s 2 S , the set
{� | s

µ�! � for some µ 2 Act⌧ } is finite. Finally, a finitary pLTS is one which is both finite state
and finite branching.

We have included in the definition of a pLTS a success predicate ! over states, which will be
used when testing processes. Apart from this, the only di↵erence between LTSs and pLTSs is given
by the definition of the transition relation; in the latter this is defined to be a relation (parametric in
some action µ) between states and distribution of states, thus capturing the concept of probabilistic
behaviour.

However, this modification introduces some di�culties when sequences of transitions per-
formed by a given pLTS have to be considered, as the domain and the image of the transition
relation do not coincide. To avoid this problem, we will focus only on distributions of states by
defining transitions between distributions of states. The following Definition serves to this purpose:

Definition 2.2 (Lifted Relations). Let R ✓ S ⇥Dsub(S ) be a relation from states to subdistributions.
Then R ✓ Dsub(S ) ⇥Dsub(S ) is the smallest relation which satisfies

• sR� implies s R �
• If I is a finite index set and �i R ⇥i for each i 2 I then (

P
i2I pi ·�i) R (

P
i2I pi ·⇥i) wheneverP

i2I pi  1.

Lifting of relations can also be defined for probability distributions, by simply requiring
P

i2I pi = 1
in the last constraint of the definition above.

In a pLTS hS ,Act⌧,!,!i, each transition relation
µ�! ✓ S ⇥ D(S ) can be lifted to (

µ�!) ✓
D(S ) ⇥D(S ). With an abuse of notation, the latter will still be denoted as

µ�!.
Lifted transition relations allow us to reason about the behaviour of pLTSs in terms of sequences

of transitions; here we are mainly interested in the behaviour of a pLTS in the long run; that is, given
a pLTS hS ,Act⌧,!,!i and a distribution � ✓ D(S ), we are interested in distributions ⇥ ✓ D(S )
which can be reached by � after an indefinite number of transitions.

For the moment we will focus only on internal actions of a pLTS, in which case the behaviour
of a pLTS in the long run is captured by the concept of hyper-derivation:



A SIMPLE PROBABILISTIC BROADCAST LANGUAGE 5

Definition 2.3. [Hyper-derivations] In a pLTS a hyper-derivation consists of a collection of sub-
distributions �,�!k ,�

⇥
k , for k � 0, with the following properties:

� = �!0 + �⇥0
�!0

⌧�! �!1 + �⇥1
...

�!k
⌧�! �!k+1 + �⇥k+1
...

If !(s) = false for each s 2 d�!k e and k � 0 we call �0 =
P1

k=0 �
⇥
k a hyper-derivative of �, and

write � =) �0.
Hyper-derivations can be viewed as the probabilistic counterpart of the weak

⌧
=) action in

LTSs; see [2] for a detailed discussion. Intuitively speaking, they represent fragments of computa-
tions obtained by performing only internal actions. The last constraint in Definition 2.3 is needed
since we introduced a success predicate in our model; we require that a computation cannot proceed
in the case that a state s such that !(s) = true has been reached; this is for we are only interested in
detecting if such states can be reached in a computation. States in which the predicate !(·) is true
are called !-successful.

Further, we are mainly interested in maximal computations of distributions. That is, we require
a computation to proceed as long as some internal activity can be performed. To this end, we say
that � =)� �0 if

• � =) �0,
• for every s 2 d�⇥k e, s

⌧�! implies !(s) = true.

This is a mild generalisation of the notion of extreme derivative from [2]. Note that the last constraint
models exactly the requirement of performing some internal activity whenever it is possible; In other
words extreme derivatives correspond to a probabilistic version of maximal computations.

Theorem 2.4. In an arbitrary pLTS
(1) =) is reflexive and transitive
(2) if � =) �0 and �0 =)� �00, then � =)� �00; this is a direct consequence of the previous

statement, and the definition of extreme derivatives
(3) suppose � =

P
i2I pi · �i, where I is an index set and

P
i2I pi  1. If for any i 2 I,�i =) ⇥i for

some ⇥i, then � =) ⇥, where ⇥ =
P

i2I pi · ⇥i.
(4) for all distributions �, there exists a sub-distribution ⇥ such that � =)� ⇥
Proof. See [2] for detailed proofs.

3. Networks and their computations

The calculus we present is designed to model broadcast systems, particularly wireless networks,
at a high level. We do not deal with low level issues, such as collisions of broadcast messages or
multiplexing mechanisms [19]; instead, we assume that network nodes use protocols at the MAC
level [6] to achieve both perfect and dedicated communication between nodes.

Basically, the language will contain both primitives for sending and receiving messages and
will enjoy the following features:
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M, N ::= Systems
n~s� Nodes
M | N Composition
0 Identity

p, q ::= (probabilistic) Processes
s
p p� q probabilistic choice

s, t ::= States
c!hei .p broadcast
c?(x) .p receive
!. 0 test
s + t choice
if b then s else t branch
⌧.p preemption
A(x̃) definitions
0 terminate

Figure 1: Syntax

(i) communication can be obtained through the use of di↵erent channels; although the physical
medium for messages exchange in wireless networks is unique, it is reasonable to assume that
network nodes use some multiple access technique, such as TDMA or FDMA [19], to setup
and communicate through virtual channels,

(ii) communication is broadcast; whenever a node of a given network sends a message, it will be
detected by all nodes in its range,

(iii) communication is perfect: whenever a node broadcasts a message and a neighbouring node
(that is, a node in the sender’s range) is waiting to receive a message on the same channel,
then the message will be delivered to the receiver. This is not ensured if low level issues are
considered, as problems such as message collisions [6] and nodes synchronisation [15] arise .

The language for system terms, ranged over by M, N is given in Figure 1. Basically a system
consists of a collection of named nodes at each of which there is some running code. The syntax
for this code a fairly straightforward instance of a standard process calculus, augmented by a prob-
abilistic choice; code descriptions have the usual constructs for channel based comunication, with
input c?(x) .p being the unique binder.

We only consider the sub-language of well-formed system terms in which all node names have
at most one occurrence. We use sSys to range over all closed well-formed terms. A (well formed)
system term can be viewed as a mapping that assigns to node names the code they are executing. A
subterm n~s� appearing in a system term M represents node n running code s.

Additional information such as the connectivity between nodes of a network is needed to for-
malise communications between nodes, as well as the probabilistic behaviour of systems. Net-
work connectivity is represented by a graph � = h�V , �E i; here �V is a finite set of nodes and
�E ✓ (�V ⇥ �V ) satisfying

(i) (symmetry) (n,m) 2 �E implies (m, n) 2 �E ,
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m

n

i

e

o1

o2

m

n

i

e

k

o1

o2

M = �M B n~An� | i~Ai� | m~Am� N = �N B n~An� | i~Ai� | m~Ak� | k~Am�

Figure 2: Example networks

(ii) (irreflexive) (n,m) 2 �E implies n , m.
Symmetry is needed to model the fact that all nodes have the same transmission range; that is, if
a broadcast from node m can be detected by another node n, then the opposite will also hold. We
use the more graphic notation � ` m to mean v 2 �V and � ` n $ m for (m, n) 2 �E . Intuitively
� ` n$ m means that messages broadcast from node n can be received by node m, and vice-versa.

A network consists of a pair (�BM), representing the system M, from sSys, executing relative
to the connectivity graph �. All nodes occurring in M, nodes(M), will appear in � and the e↵ect of
running the code at n 2 nodes(M) will depend on the connectivity of n in �. But in general there
will be nodes in � which do not occur in M; let Int(� B M) = �V \ nodes(M); we call this set the
interface of the network � B M, and its elements are called external nodes. Intuitively these are
nodes which may be used to compose the network � B M with other networks, or to place code for
testing the behaviour of M.

However, there can be situations where a network � B M contains unnecessary information
to model the behaviour of a network, or the network connectivity and the system term are related
in a way which is inconsistent with our concept of wireless networks. Therefore, we place some
requirements on the structure of a network.

Definition 3.1. The network � B M is well-formed if:
(i) nodes(M) ✓ �V

(ii) M 2 sSys

(iii) whenever k 2 Int(� B M), there exists some m 2 nodes(M) such that � ` k $ m
(iv) whenever k1, k2 2 Int(� B M), � ` k1 = k2. ⇤

Condition (iii) is a natural sanity requirement, as there is no point in having an unconnected node
in the interface of a network. As we will see, in Example 5.8, requirement (iv) is needed to ensure
the soundness of our proof technique. We use Nets to denote the set of well-formed networks,
and in the sequel we will assume that a network is well formed, unless otherwise stated. We will
sometimes use M, N etc. to range over arbitrary (well-formed) networks, and apply operations
such as nodes(M) in the obvious manner.

Example 3.2. ConsiderM described in Figure 2. There are six nodes, three occupied by code n, i
and m, and three in the interface Int(M) , e, o1 and o2. Here, and in future example, we di↵erentiate
between the interface and the occupied nodes using shading. Suppose the code at nodes are given
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by

An ( c?(x) .d!hxi . 0 Ai ( d?(x) .d!h f (x)i . 0 Am ( d?(x) .(d!hxi . 0 0.8� 0)

ThenM can receive input from node e at its interface along the channel c; this is passed on to the
internal node i using channel d, where it is transformed in some way, described by the function f ,
and then forwarded to node m, where 80% of the time it is broadcast to the external nodes o1 and
o2. The remainder of the time the message is lost.

The network N has the same interface asM, but has an extra internal node k connected to o2,
and m is only connected to one interface node o1 and the internal node k. The nodes i and n have
the same code running as inM, while nodes m and k will run the code

Ak ( d?(x) .(d!hxi . 0 0.9� 0)

Intuitively, the behaviour of N is more complex than that ofM; indeed, there is the possibility
for a computation of N to deliver a value only to one between the external nodes o1 and o2, while
this is not possible in N . However, 81% of the times this message will be delivered to both these
nodes, and thus it is more reliable thanM. Suppose now that we change the code at the intermediate
code m inM,

M1 = �M B . . . | m~Bm� where Bm ( d?(x) .(⌧.(d!hxi . 0 0.5� 0) + ⌧.d!hxi . 0)

InM1 the behaviour at the node m is non-deterministic; it may act like a perfect forwarder, or one
which is only 50% reliable. Optimistically it could be more reliable thanM, or pessimistically it
could be less reliable than the latter. Further, there is no possibility for the networkM1 to forward
the message to only one of the external nodes o1, o2, so that its behaviour is somewhat less complex
than that of N .

As a further variation letM2 be the result of replacing the code at m with

Cm ( d?(x) .D
D( ⌧.(d!hxi . 0 0.5� ⌧.D)

Here the behaviour is once more deterministic, with the probability that the message will be even-
tually transmitted successfully through node k approaching 1 in the limit. Thus, this network is as
reliable asM1, when the latter is viewed optimistically. ⇤

We now turn our attention on the operational semantics of networks. Following [3, 2], processes
will be interpreted as probability distributions of states; such an interpretation is encoded by the
function ~·� defined below:

~s� = s
~p1 p� p2� = p · ~p1� + (1 � p · ~p2�).

Judgements in the intensional semantics of networks take the form

� B M
µ�! �

where � is a network connectivity, M is a (well formed) system from sSys, and � is a distribution
over sSys; intuitively this means that relative to the connectivity � the system M can perform the
action µ, and with probability �(N) be transformed into the system N, for every N 2 d�e. The action
labels can take the form

(i) receive, c.n?v, where n 2 �V : meaning that the value v is detected on channel c by all nodes in
nodes(M) which are reachable from n in �
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(b-broad)

s
c!v�! p

� B n~s�
c.n!v�! n~��

~p� = �

(b-rec)

s
c?v�! p

� B n~s�
c.m?v�! n~��

~p� = �,� ` n$ m

(b-deaf)

s 6 c?v��!
� B n~s�

c.m?v�! n~s�
� ` m$ n

(b-disc)

� B n~s�
c.m?v�! n~s�

� ` n= m

(b- 0)

0
c.m?v�!0

(b-⌧)

s
⌧�! p

� B n~s�
n.⌧�! n~��

~p� = �

(b-⌧.prop)

� B M
n.⌧�! �

� B M | N n.⌧�! � | N
(b-prop)

� B M
c.m?v�! �, � B N

c.m?v�! ⇥
� B M | N c.m?v�! � | ⇥

(b-sync)

� B M
c.m!v�! �, � B N

c.m?v�! ⇥
� B M | N c.m!v�! � | ⇥

Figure 3: Intensional semantics of networks

(ii) broadcast, c.n!v: meaning the node n (occurring in nodes(M), and therefore in �) broadcasts
the value v on channel c to all nodes directly connected to n in �

(iii) internal activity, n.⌧, meaning either some internal (housekeeping) or preempting activity per-
formed by node n.

The rules for inferring judgements are given in Figure 3; they rely on the pre-semantics for the code,
which is discussed presently. Thus Rule (b-broad) models the capability for a node to broadcast
a value v through channel c, assuming the code running there is capable of broadcasting along c.
Here the term n~�� represents a distribution over sSys, obtained by a direct application of Equation
(2.1) to the function n~·� which maps states into system terms. The distribution � is in turn obtained
from the residual of the state s after the broadcast action.

Example 3.3. Consider the simple network �Bn~s� where the code s has the form c!hvi .(s1 1
4
� s2).

As we will see the pre-semantics of states determines that s
c!v�! (s1 1

4
� s2); also ~(s1 1

4
� s2)� is

the distribution 1
4 · s1 +

3
4 · s2. Thus according to the rule (b-broad) we have the judgement

� B n~s�
c.n!v�! 1

4
· n~s1� +

3
4
· n~s2�

⇤

Rules (b-rec), (b-deaf) and (b-disc) express how a node reacts when a message is broadcast;
the first essentially models the capability of a node which is listening to a channel c, and which
appears in the sender’s range of transmission, to receive the message correctly. The other two rules
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(s-Snd)

c!hei .p c!~e��! p

(s-!)

!. 0
!�! 0

(s-Rcv)

c?(x) .p
c?v�! p{v/x}

(s-⌧)

⌧.p
⌧�! p

(s-Suml)

s
↵�! p

s + t
↵�! p

(s-SumR)

t
↵�! p

s + t
↵�! p

(s-then)

s
↵�! p

if b then s else t
↵�! p

~b� = true

(s-else)

t
↵�! p

if b then s else t
↵�! p

~b� = false

(s-Unfold)

A(x̃)( p

Aheei ⌧�! p{ee/ex}

Figure 4: Pre-semantics of states

model situations in which a node is not listening to the channel used to broadcast a message, or it is
not in the range of the sender; In both these cases this node cannot detect the transmission at all.

The rules (b-⌧) and (b-⌧.prop) model internal activities performed by some node of a sys-
tem term; the latter expresses the inability for a node which performs an internal activity to a↵ect
other nodes in a system term. Here again, � | ⇥ is a distribution over sSys, this time obtained by
instantiating Equation (2.2) to the function (· | ·) : sSys ⇥ sSys! sSys.

Finally, rules (b-sync) and (b-prop) describe how communication between nodes of a net-
work is handled; notice that if a system term M performs a broadcast action of the form c.n!v, while
a second system term N receives such a value by performing a c.n?v action, the action performed
by the composed system M | N will still be c.n!v. Informally speaking, this means that the output
action performed by node m will be available to other nodes, thus implementing the behaviour of
broadcast communication.

We should emphasise that we do not require a network to be well formed in order to infer
judgements for it; in practice it is always the case that, when inferring a judgement of the form
�B(M |N)

µ�!�, the former being a well formed network, it will be required first to infer judgements
for the networks � B M and � B N, which in general are not well formed.

The pre-semantics for states takes the form

s
µ�! p

where s is a closed state, that is containing no free occurrence of a variable, p is a process and
µ can take one of the forms c!v, c?v or ⌧. The deductive rules for inferring these judgements are
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given in Figure 4 and should be self-explanatory. It assumes some mechanism for evaluating closed
data-expressions e to values val(e).

State c!hei .p performs the c!v action, where v = val(e), before evolving in process p. Note that
the latter is not necessarily a state, as it can contain the probabilistic choice operator.

The state c?(x) .p can receive an arbitrary value v, then evolving in the process obtained by
substituting all the free occurrences of variable x in p with v.

A state of the form ⌧.p will perform some internal activity and then will proceed as p. Stan-
dard rules for nondeterministic choice, matching and guarded recursion are also given. Finally the
language includes code of the form !. 0 where ! is a special action, used to indicate the success of
tests.

We conclude this Section by performing some sanity checks for the operational semantics of
networks:
(1) A distribution� over sSys is called (node)-stable if�(N) > 0 and�(M) > 0 implies nodes(N) =

nodes(M).
If � B M

µ�! � can be deduced from the rules in Figure 3 then � is a stable distribution.
Intuitively this means that probabilistic choices are only ever made at the level of processes, not
systems.

(2) � B M
c.m?v�! � implies

(a) m < nodes(M),
(b) for every value w there exists some �0 such that � B M

c.m?w�! �0,
(c) if � 0 m, then � is M.

(3) � B M
µ�! �, with µ being equal either to c.m!v or m.⌧, implies m 2 nodes(M) and therefore

� ` m.

4. Testing networks

Here we develop a preorder

(�M B M) @⇠behav (�N B N)

Intuitively this means that the network (�M B M) can be replaced by (�N B N), as a part of a larger
overall network, without any loss of behaviour. Note that we will be able to compare networks with
di↵erent nodes and di↵erent connectivity graphs.

To formalise this concept we need to say how networks are composed to form larger networks,
the topic of Section 4.1, and then say how behaviour is determined, explained in Section 4.2. The
formal definition of the preorder is given in Section 4.3, together with examples.

4.1. Composing networks. Here we discuss how networks are to be combined to form a composite
network. The general form of the definition is as follows:

Definition 4.1. [Composing networks] Let iscons be a partial binary predicate on networks in Nets,
intuitively saying that they can be safely combined to obtain a well-formed net. Then we define the
associated partial composition relation by:

(�M B M) 9iscons (�N B N) =

8>><
>>:

(�M [ �N) B M | N, if (�M B M) iscons (�N B N)
undefined, otherwise
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l

o k o

l

M = �M B M N = �N B N

Figure 5: A problem with composition

The connectivity graph �M [ �N is defined by letting (�M [ �N)V = (�M)V [ (�N)V , (�M [ �N)E =
(�M)E [ (�N)E . ⇤

So the form of the composite network is determined completely by that of the components, and
the only requirement on the consistency predicate iscons is that whenever it is defined we get a
well-formed network. This amounts to requiring that

(�M B M) iscons (�N B N) implies nodes(M) \ nodes(N) = ; (4.1)

Example 4.2. Let m be the partial binary predicate defined by letting (�MBM) m (�NBN) whenever
• nodes(M) \ nodes(N) = ;
• �M ` m$ n if and only if �N ` m$ n, for every m 2 nodes(M) and n 2 nodes(N)

By definition this satisfies the requirement (4.1) above, and intuitively it only allows the composition
whenever the two individual networks agree on the interconnections between internal and external
nodes.

It is easy to check that the resulting operator 9m is both associative and commutative. ⇤

One use of composition operators is to enable compositional reasoning. For example the task
of establishing

N1 @⇠behav N2 (4.2)

can be simplified if we can discover a common component, that is someN such thatN1 =M1 9N
and N2 =M2 9N . Then (4.2) can be reduced to establishing

M1 @⇠behav M2,

assuming that the behavioural preorder in question, @⇠behav, is preserved by the composition operator
9.

However another use of a composition operator is in the definition of the behavioural preorder
@⇠behav itself. Intuitively we can define

N1 @⇠behav N2 (4.3)

to be true if for every component T which can be composed with both N1 and N1 the external
observable behaviour of the composite networksN1 9T andN2 9T are related in some appropriate
way; we will shortly see precisely what this might mean.

Unfortunately with this use in mind the composition operator 9m defined via Example 4.2 is
not appropriate.
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Example 4.3. Consider the networks in Figure 5, where the code running at node l in M is very
di↵erent than that running at k in N; say c!h0i and c!h1i respectively. Then intuitively M and N
should have di↵erent observable behaviour, observable by placing a test at the node o. However if
the operator 9m is used to combine the test with the network being observed they are indistinguish-
able.

This is because if there is a network T such thatM 9m T and N 9m T are well-defined then
o can not be in nodes(T ). For if o were in nodes(T ), then since �M ` l $ o the definition of the
operator implies that �T ` l$ o. This in turn implies that �N ` l$ o, which is not true.

Now since no testing network which can be applied to bothM and N can place any code at o,
no di↵erence can be discovered between them. ⇤

We want to be able to compare networks with di↵erent connectivity graphs, and possibly dif-
ferent nodes, such asM and N in Figure 5. We also should not be able to change the connectivity
of a network when we test it; we wish to implement black-box testing, where the nodes containing
running code cannot be accessed directly.

Rather than presenting another arbitrary composition operator for composing a testing network
with a network to be tested, let us place natural requirements on such operators. The first says that
the composed network is completely determined by the components:

(I) Merge: the operator 9 should be determined by some partial predicate iscons using Defi-
nition 4.1.

Intuitively the interface of a network is how their external behaviour is to be observed. Since our
aim is to enable compositional reasoning over networks, we would expect composition to preserve
interfaces:

(II) Interface preservation: If Int(M) = Int(N) and T can be composed with both, that is
bothM 9 T and N 9 T are well-defined, then Int(M 9 T ) = Int(N 9 T ).

The final requirement captures the intuitive idea that reorganising the internal structure of a
network should not a↵ect the ability to perform a test; in fact the reorganisation is simply a renaming
of nodes. Let � be a permutation of node names. We use (� B M)� to denote the result of applying
� to the node names in M and in the connectivity graph �.

(III) Renaming: SupposeM 9 T is defined. ThenM� 9 T is also defined, provided � is a
node permutation which satisfies
• �(o) = o for every o 2 Int(M)
• no n 2 nodes(T ) appears in the range of �; that is n 2 nodes(T ) implies �(n) = n.

Example 4.4. The operator 9m does not satisfy (III), as can be seen using the simple networks in
Figure 6;M 9m T is obviously well-defined. However, consider the renaming � which swaps node
names l to k, which is valid with respect to T ; the networkM� 9m T is not defined, as �T 0 k $ o.

A slight modification will demonstrate that interfaces are also not preserved by this operator.
⇤

Proposition 4.5. Suppose 9 satisfies the conditions (I) - (III) above. Then nodes(M) \ Int(N) = ;
wheneverM 9N is defined.

Proof. By contradiction; letM = �M B M and N = �N B N. Assume that m is a node included in
nodes(M) \ Int(�N B N), and thatM 9N is defined. By condition (I),M 9N = (�1 [ �2) B M|N.

Since m 2 Int(N), it has to be �2 ` m.
Since m 2 nodes(M), it holds m 2 nodes(M|N). By definition of interface, we obtain m < Int(M 9
N).
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l o k o o l

M = �M B l~p� N = �N B k~q� T = �T B o~t�

Figure 6: A problem with the composition operator

Now let l be a node which is not contained in �M, nor in �N . Consider the permutation � which
swaps nodes m and n; that is �(m) = l,�(l) = m and �(k) = k for all k , m, l. Condition (i) of
Definition 3.1 ensures that l < nodes(M), so that m < nodes(M�). Further, the permutation � is
consistent with condition (III), renaming, when applied to networksM and N ; thereforeM� 9N
is defined. Also, we have Int(M) = Int(M�).

Far by now, we established the following:
(1) m < Int(M 9N),
(2) m < nodes(M�),
(3) m < nodes(N),
(4) �N ` m,
(5) Int(M) = Int(M�).

By (2) and (3) above, it holds that m < nodes(M� 9 N); By (4), we obtain that (�1)� [ �2 ` n.
These two statements ensure that m 2 Int(M� 9N).
As a direct consequence of (5) and condition (II), type preservation, it also holds m 2 Int(M 9N),
but this contradicts (1).

Corollary 4.6. Let 9 be any symmetric composition operator which satisfies the conditions (I) -
(III). Suppose M1 9M2 is well-defined, and of the form � B M. Then � ` m1 = m2 whenever
mi 2 nodes(Mi).

Proof. A simple consequence of the previous result.

What this means is if we use such a symmetric operator when applying a test to a network, as in
Definition 4.9 below, then the resulting testing preorder will be degenerate; it will not distinguish
between any pair of nets. In some sense this result is unsurprising. For T to testM inM 9 T it
must have code running at the interface ofM. But, as we have seen, condition (III) more or less
forbids T to have code running at the interface ofM.

We would like our composition operator to satisfy these three conditions, and since there are
no further obvious requirements we choose the largest such operator.

Definition 4.7. Let k> be the partial composition operator obtained by using in Definition 4.1 the
predicate (�M B M) iscons (�N B N) whenever nodes(M) \ (�N)V = ;. ⇤

It is straightforward to show that k> satisfies the minimum requirement (4.1) above, and the condi-
tions (I) - (III). Proposition 4.5 then gives that it is the largest such operator.
Informally speaking, the operator k> can be viewed as an extension operator; basically, the network
M k> N is defined by integrating the information of networkM with that of N , provided that the
latter does not interfere with the connectivities ofM.
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Despite not being symmetric the operator k> has interesting properties, the most important of
which concerns decomposition. Let G be the collection of networks which contain exactly one
occupied node, that is of the form �Bn~s�. It turns out that, modulo a simple structural equivalence,
all networks can be generated from G using the composition operator k>. This structural equivalence
is generated by the commutativity and associativity of the parallel operator | and the axiom M | 0 =
M.

Proposition 4.8.
(i) k> is associative; that is,M1 k> (M2 k>M3) ⌘ (M1 k>M2) k>M3, where ⌘ is Kleene equality.

(ii) SupposeM is a network such that n 2 nodes(M). Then, modulo the structural equivalence,
M = N k> G for some G 2 G.

Proof. Part (i) follows by simple calculation. To prove part (ii) let the connectivity graph �n be
defined by

• (�n)V = {n} [ I where I = { k 2 Int(M) | M ` n$ k }.
• The only connections are between n and the nodes in I.

The network (�n B n~p�) is obviously well-formed and in G.
Even if n is the only node in the network we can assume, using the structural equivalence, that

M has the form � B M | n~p�, and so the other component N will be of the form (�M B M) where
• (�M)V = �V \ I
• The connectivity is determined by �M ` k1 $ k2 if and only if at least one ki is in nodes(M)

and � ` k1 $ k2.
Again it is easy to check that (�M B M) is well-formed. Moreover nodes(M) \ (�n)V = ; and so
(�M B M) k> � B M | n~p� is defined, and it is equal toM.

4.2. Testing structures. The introduction of the composition operator k> allows to introduce a be-
havioural theory based on a probabilistic generalisation of the Hennessy and De Nicola testing pre-
orders [12]. In order to develop such a framework, we will exploit the mathematical tools introduced
in Section 2; our aim is to be able to relate networks with di↵erent connectivities.

In our framework, testing can be summarised as follows; a network is composed with another
one, which takes the name of testing network. The composition of these two networks is then
isolated from the external environment, in the sense that no external agent (in our case nodes in the
interface of the composed network) can interfere with its behaviour; we will shortly present how
such a task can be accomplished. The composition of the two networks, isolated from the external
environment, takes the name of experiment.

Once these two operations (composition with a test and isolation from the external environ-
ment) have been performed, the behaviour of the resulting eperiment is analysed to check whether
there exists a computation that yields to a state which is successful. This task can be accomplished
by relying on testing structures, which will be presented shortly.

At an informal level, successful states in our languages coincide with those associated with
networks where at least the code running in one node can perform the action !. For network
have probabilistic behaviour, each computation will be associated with the probability of reaching
a successful state; thus, every experiment will be associated with a set of success probabilities, one
for each of its computation.

Let us now look at how the procedure explained above can be formalised; the topic of compos-
ing networks has already been addressed in detail in Section 4.1, in which we defined the operator
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k> and proved basilar properties for it. To model experiments and their behaviour, we rely on the
following mathematical structure.

Definition 4.9. A Testing structure (TS) is a triple hS ,!,!i where
(i) S is a set of states,

(ii) the relation! is a subset of S ⇥D(S ),
(iii) ! is a success predicate over S , that is ! : S ! {true, false}.
Testing structures can be seen as (degenerate) pLTSs where the only possible action corresponds
to the internal activity ⌧, and the transition

⌧�! is defined to coincide with the reduction relation.
Conversely every pLTS automatically determines a testing structure, by concentrating on the relation
⌧�!.

Our goal is to turn a network in a testing structure. This amounts to defining, for networks,
a reduction relation and the success predicate !. As we have mentioned in the beginning of this
Section, when converting a network in a testing structure, we want to make it isolated from the
external environment.

When considering simpler process languages, like CCS or CSP (and, more generally, their
probabilistic counterparts), processes are converted into testing structures by isolating them from
the external environment through the use of some restriction operator.

Networks, however, have a more complicated structure; here the external environment consists
of their interface. The only possibility for the behaviour of a network to be corrupted by an external
agent coincides with a node in its interface sending messages to it; this is the same as inferring

that such a network can perform an action of the form
m.c?v�! . All other actions (outputs and internal

actions) are allowed, as they do not originate from any external agent.
Thus, isolation can be achieved by defining the reduction relation, for the testing structure

associated with networks, to coincide with the union of all internal and output actions.
Finally, the success predicate ! is defined to be true for all, and only all, those networks in

which a node can perform the success action
!�!.

Example 4.10. The main example of a TS is given by

hNets, 7�!,⌦i
where

(i) (� B M) 7�! (� B �), with � B M being a state based network, whenever
(a) � B M

m.⌧�! � for some m 2 nodes(M)
(b) or, � B M

c.m!v�! � for some value v, node name m and channel c
(ii)

!(M) =

8>><
>>:

true, M = M0 | n~s�, s
!�! for some n

false, otherwise

If !(M) = true for some system term M, we say that a network � B M, where � is an arbitrary
conncectivity graph, is !-successful. Note that when recording an !-success we do not take into
account the node involved. ⇤

As TSs can be seen as pLTSs, we can use in an arbitrary TS the various constructions introduced in
Section 2. Thus the reduction relation 7�! can be lifted to D(sSys) ⇥D(sSys) and we can make
use of the concepts of hyper-derivatives and extreme-derivatives, introduced in Section 2, to model
fragments of executions and maximal executions of a testing structure, respectively. Below we
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provide two simple examples that show how to reason about the behaviour of the testing structures
presented in Example 4.10.

Example 4.11. Consider the testing structure associated with the networkN in the center of Figure
6, where the code q is given by the definition q( q 0.5� c!hvi . 0. We can show that, in the long run,
this network will broadcast message v to the external location o by exhibiting a hyper derivation for it
which terminates in the pointed distribution �N B k~c!hvi . 0�. If we letN1 denote the configuration
�N B �N B k~c!hvi . 0�, we have the following hyper-derivation:

N = 1
2 · N + 1

2 · N1
1
2 · N 7�! 1

22 · N + 1
22 · N1

...
1
2n · N 7�! 1

2n+1 · N + 1
2n+1 · N1

...

�0 =
P1

n=1
1
2n · N1

Now it is straightforward to check that �0 = N1 and therefore we have the hyper-derivation N =)
N1. ⇤

An arbitrary network N can be tested by another (testing) network T provided N k> T is well-
defined. Executions of the resulting testing structure will then be checked to establish whether the
networkM satisfies a property the test was designed for; in such a case, the testing component of
an experiment will reach a !-successful state.

Executions, or maximal computations, correspond to extreme derivatives ofN k> T , as defined
in Section 2. Since the framework is probabilistic, each execution (that is extreme derivative) will be
associated with a probability value, representing the probability that it will lead to an !-successful
state. Since the framework is also nondeterministic the possible results of this test application is
given by a non-empty set of probability values.

Definition 4.12. [Tabulating results] The value of a subdistribution in a TS is given by the function
V : Dsub(S ) ! [0, 1], defined byV(�) =

P{�(s) | !(s) = true }. Then the set of possible results
from a sub-distribution � is defined by O(�) = {V(�0) | � =)� �0 }.
Example 4.13. Consider the testing network T given in Figure 6, where the code is determined by
t ( c?(x) .!. 0. It is easy to check that N k> T is well-defined, and is equal � B k~q� | o~t�. So
consider the testing structure associated with it; recall that we have the definition q( q 0.5� c!hvi . 0.
For convenience let N1 = �N B k~c!hvi . 0� as in the previous example, N2 = �N B k~0� and
T! = �T B o~!. 0�. Then we have the following hyper-derivation for N k> T :

N k> T 7�! ( 1
2 · N k> T + 1

2 · N1 k> T ) + "
1
2 · N k> T + 1

2 · N1 k> T 7�! ( 1
22 · N k> T + 1

22 · N1 k> T ) + 1
2 · N2 k> T!

...
...

...
1
2n · N k> T + 1

2n · N1 k> T 7�! ( 1
2n+1 · N k> T + 1

2n+1 · N1 k> T ) + 1
2n · N2 k> T!

...
...

...

were " denotes the empty sub-distribution, that is the one with d"e = ;. We have therefore the
hyper-derivative

N k> T =) " +
1X

n=1

1
2nN2 k> T! = N2 k> T!.
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o1

o2e

o

Figure 7: A test

Further, the above hyper-derivation satisfies the constraints required by =)�, defined in Section 2,
and therefore we have the extreme derivativeN k> T =)� N2 k> T!. SinceV(N2 k> T!) = 1 we can
therefore deduce that 1 2 O(N k> T ). ⇤

4.3. The behavioural preorder. We now combine the concepts of the previous two sections to
obtain our behavioural preorder. We have seen how to associate a non-empty set of probabilities,
tabulating the possible outcomes from applying the test T to the network N . As explained in [3]
there are two natural ways to compare such sets, optimistically or pessimistically.

Here, for the sake of simplicity, we consider only the opimistic version. In this case, two sets
of outcomes O1 and O2 can be related by looking if every outcome o1 which appears in O1 is less
than at least an outcome o2 in the set O2; in this case we write O1 vmay O2. This notion coincides
with the Hoare preorder defined for sets of values contained in the interval [0, 1].

Definition 4.14. [Testing networks] ForM1, M2 2 Nets we writeM1 vmay M2 if
(i) Int(M1) = Int(M2),

(ii) for every (testing) network T 2 Nets such that both M1 k> T and M2 k> T are defined,
O(cl(M1 k> T )) vmay O(cl(M2 k> T )) .

We useM1 =may M2 as an abbreviation forM1 vmay M2 andM2 vmay M1.

The first requirement in Definition 4.14 has been introduced to ensure that, wheneverM1 vmay
M2, if m is a node which can be used to test the behaviour ofM1, then it also has to be available
to test the behaviour ofM2 as well. In other words, we have no interest in relating two networks
M1 andM2 if there exists a node which can be used to observe only the behaviour of the former
network.

Example 4.15. Consider the testing network

T = �T B e~c!h0i� | o1~d?(x) .c!hxi� | o2~d?(x) .c!hxi� | o~c?(x) .c?(y) .!�

where the connectivity is described in Figure 7. This can be used to test the networks from Figure 2
in the testing structure of Example 4.10. Intuitively the test send the value 0 along the channel c at
the node e, awaits for results along the channel d at the nodes o1 and o2. These results are processed
at node o, where success might be announced.

The combined network (M k> T ) is deterministic in this TS, although probabilistic, and so has
only one extreme derivative; O(M k> T ) = {0.8}. A similar calculation shows that O(N k> T ) =
{0.81}; it therefore follows that N 6vmay M.

However (M1 k> T ) is both probabilistic and nondeterministic, and O(M1 k> T ) = { p | 0.5 
p  1 }. Moreover because of the optimistic manner in which results sets are compared we have
O(M k> T ) vmay O(M1 k> T ) .
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M = �M B m~c!hvi . 0� | n~c!hvi . 0� N = �N B m~c!hvi�

Figure 8: Broadcast vs Multicast

Finally the combined network (M2 k> T ) is also deterministic, although it has limiting be-
haviour; O(M2 k> T ) = {1}. Thus, in this case we have both O(M k> T ) vmay O(M2 k> T ) and
O(M1 k> T ) vmay O(M2 k> T ). ⇤

Example 4.16. [Broadcast vs Multicast] Consider the networksM andN in Figure 8. Intuitively in
N the value v is (simultaneously) broadcast to both nodes o1 and o2 while inM there is a multicast.
More specifically o1 receives v from mode m while in an independent broadcast o2 receives it from
n.

This di↵erence in behaviour can be detected by testing network

T = �T B o1~c?(x) .c!h0i . 0� | o2~c?(x) .c?(y) .if y = 0 then 0 else !�

assuming v is di↵erent than 0; here we assume �T is the simple network which connects o1 with o2.
BothM k> T and N k> T are well-formed and note that they are both non-probabilistic.

BecauseN simultaneously broadcasts to o1 and o2 the second value received by o2 is always 0
and therefore the test never succeeds;V(N k> T ) = {0}. On the other-hand there is a possibility for
the test succeeding when applied toM, 1 2 V(M k> T ). This is because inM node m might first
transmit v to o1 after which n transmits 0 to o2; now node n might transmit the value v to o2 and
asuming it is di↵erent than 0 we reach a success state. It follows thatM 6vmay N .

One might also think it possible to use the di↵erence between broadcast and multicast to design
a test which N passes andM does not. For example N passes the test

T 0 = �T B o1~c?(x) .c!h0i . 0� | o2~c?(x) .c?(y) .if y = 0 then ! else 0�

because in N k> T 0 the second value received by o2 is always 0. However M also passes this
test, since the simultaneous broadcast in N can be simulated by a multicast inM, by node m first
broadcasting to o1 followed by n broadcasting to o2. As this line of reasoning is independent from
the test T 0, it also applies to all those networks that can be used to test the behaviour ofM and N ;
this leads to the intuition that N vmay M, which will be proved formally later as a consequence of
Example 5.5 and Theorem 5.6. ⇤

One pleasing property of the behavioural preorder vmay is that it allows compositional reason-
ing over networks.

Proposition 4.17 (Compositionality). LetM1,M2 be two networks such thatM1 vmay M2, and
let N be another network such that bothM1 k> N andM2 k> N are defined. ThenM1 k> N vmay
M2 k> N .

Proof. A direct consequence of k> being both associative and interface preserving.
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M = �M B m~Am� | n~An� | k~Ak� N = �N B m~Bm� | k~Ak�

Figure 9: Two networks with a common sub-network
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M1 = �1 B m~Am� | n~An� N1 = �2 B m~Bm� K = �K B k~Bk�

Figure 10: Decomposition of the networksM and N

An application of this Compositionality result is given by the following Example:

Example 4.18. Consider the networksM and N in Figure 9, where the codes at the various nodes
are given by

Am ( c!hvi . 0
An ( c?(x) .d!hwi . 0
Ak ( c?(x) .d?(y) .e!hui . 0
Bn ( c!hvi .d!hwi . 0

It is possible to write both of them respectively as M1 k> K and N1 k> K , where the networks
M1,N1 and K are depicted in Figure 10. In order to prove thatM vmay N , it is therefore su�cient
to focus on their respective subnetworksM1 and N1, and proveM1 vmay N1. The equivalence of
the two originary networks will then follow from a direct application of Proposition 4.17. ⇤

5. Simulations

The aim is to exhibit a sound proof method to check whether two networks can be related
via the may-testing preorder. In [3] it was shown that the may-testing preorder over the process
calculus pCSP can be characterised in terms of certain kinds of simulations over a probabilistic
labelled transition system.

Here we consider the simulation preorder which is induced by a non-standard definition of
weak extensional actions, which are defined in order to deal with the local broadcast features which
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characterize our calculus. We show that our simulation preorder provides a sound proof methodol-
ogy for checking whether two networks can be compared with respect to the vmay preorder; however
our simulations fail to be complete.

In the first section we concentrate on the activities of a network which can be observed by
nodes in their interface, thus defining both strong and weak extensional actions for a network. This
leads to a definition of (weak probabilistic) simulation between networks. The next two sections are
devoted to the proof of soundness. Then we explain, in Section 5.4, why the proof methodolgy is
not complete.

5.1. Extensional semantics. Here the idea is to design a pLTS over the collection of networks
Nets such that whenever two networks are simulation related as defined in [3, 18], then they will
also be testing related,M vmay N . The intensional semantics in Section 3 already provides a pLTS
and it is instructive to see why this is not appropriate.

Consider M and N from Figure 6, and suppose further that the code p and q, running at l
and k respectively, is identical, c!hvi . 0. Then we would expect M and N to be behaviourally
indistinguishable. However M will have an output action, labelled c.l!v, which is not possible for
N . So output actions cannot record their source node. What turns out to be important is the target
nodes. For example if inM we added a new node m to the interface, with a connection to l then
we would be able to distinguishM from N ; the required test would simply place some appropriate
testing code at the new node m.

We now present an extensional semantics for networks; here the visible actions consist of ac-
tivities which can be detected (hence tested) by placing code at the interface of a network. In this
semantics we have internal, input and output actions.

Definition 5.1. [Extensional actions] The actions of the extensional semantics are defined as fol-
lows:
(1) internal, (� B M)

⌧�! (� B �); some internal activity reduces the system M, relative to the
connectivity �, to some system N, where N 2 d�e. Here the internal activity of a network
coincides either with some node performing a silent move m.⌧ or broadcasting a value which
cannot be detected by any node in the interface of the network itself.

Formally, (� B M)
⌧�! (� B �) whenever

(a) � B M
m.⌧�! �

(b) or � B M
c.n!v�! � for some value v, channel c and node name n satisfying � ` n$ m implies

m 2 nodes(M)
Note that we are using the notation given in Section 3 for defining distributions. Here � is a
distribution over sSys and so (� B �) is a distribution over networks; however all networks in
its support use the same network connectivity �.

(2) input, (�BM)
c.n?v�! (�B�); an observer placed at node n can send the value v along the channel

c to the network (� B M). For the observer to be able to place the code at node n we must have
n 2 Int(� B M).

Formally (� B M)
c.n?v�! (� B �) whenever

(a) � B M
c.n?v�! �

(b) n 2 Int(� B M)

(3) output, (� B M)
c!vB⌘�! (� B �), where ⌘ is a non-empty set of nodes; an observer placed at any

node n 2 ⌘ can receive the value v along the channel c. For this to happen each node n 2 ⌘ must
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be in Int(� B M), and there must be some code running at some node in M which can broadcast
along channel c to each such n.

Formally, (� B M)
c!vB⌘�! (� B �) whenever

(i) (� B M)
c.m!v�! � for some node m

(ii) ⌘ = { n 2 Int(� B M) | � ` m$ n } , ;. ⇤

These extensional actions endow the set of networks with the structure of a pLTS. Thus the
terminology used for pLTSs is extended to networks, so that in the following we will use terms
such as finitary networks or finite branching networks. Also, there is a close relationship between
extensional ⌧-actions and the reduction relation of testing structures.

Remark 5.2 (Testing structures formally unnecessary). We could have defined experiments in our
testing framework by relying on the extensional semantics introduced above. For this to be possible,
it is necessary to introduce an operator cl(·) : Nets! Nets that isolates networks from the external
environment. This operator, when applied to a networkM, simply deletes the nodes in its interface,
together with the associated connectivities. Given a network �BM, the network cl(�BM) = �MBM
is defined as

(�M)V = �V \ Int(� B M)
�M ` m,�M ` n,� ` m$ n implies �M ` m$ n

It is straightforward to show that the operator cl(·) preserves well formedness, and that the
reduction relation of a TS associated with an arbitrary (well formed) networkM coincides with the
extensional action

⌧�! in cl(M).
While defining experiments by using the above operator and the extensional semantics is rela-

tively simpler than introducing testing structures, we preferred to avoid this approach, as it leads to
the introduction of complications in the proof of Theorem 5.6, below.

In the following we will need weak versions of extensional actions, which abstract from internal
activity, provided by the relation

⌧�!. Internal activity can be modeled by the hyper-derivation
relation =), which is a probabilistic generalisation of the more standard weak internal relation
⌧�!⇤.

Definition 5.3. [Weak extensional actions]

(1) LetM ⌧
=) � whenever we have the hyper-derivationM =) �

(2) M c.n?v
=) � wheneverM =) c.n?v�! =) �

(3) LetM c!vB⌘
=) N be the least relation satisfying:

(a) M =) c!vB⌘�! =) � impliesM c!vB⌘
=) N

(b) M c!vB⌘1
=) �0, �0 c!vB⌘2

=) �, where ⌘1 \ ⌘2 = ;, impliesM c!vB(⌘1[⌘2)
=) � ⇤

These weak actions endow the set of networks Nets with the structure of another pLTS, called the
extensional pLTS and denoted by pLTS

Nets

. We can therefore use such weak actions to define a
simulation preorder between networks, as in [3].

Definition 5.4. [Simulation preorder] In pLTS

Nets

we let Csim denote the largest relation in Nets ⇥
D(Nets) such that if s Csim ⇥ then:

• if !(s) = true, then ⇥
⌧
=) ⇥0 such that for every t 2 d⇥0e,!(t) = true
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� B M T = �T B T

Figure 11: Ensuring soundness

• otherwise, whenever s
µ
=) �0, for µ 2 Act⌧, then there is a ⇥0 2 D(S ) with ⇥

µ
=) ⇥0 and

�0 Csim ⇥
0.

We often use s1 Csim s2 in place of s1 Csim s2.

This is a mild generalisation of the corresponding definition in [3] where we factor in the presence
of the success predicate !( ).

Some explanation is necessary for the non-standard definition of output actions in Definition
5.3(3). Informally speaking, the definition of weak extensional output actions expresses the capa-
bility of simulating broadcast through multicast; that is, a single broadcast action detected by a set
of nodes ⌘ can be matched by a sequence of broadcast actions (possibly interrupted by internal ac-
tions), detected respectively by ⌘1, · · · , ⌘i ✓ ⌘, provided that the collection {⌘1, · · · , ⌘i} is a partition
of ⌘. This constraint is needed to ensure that

(i) every node in ⌘ will detect the transmitted value and
(ii) no node in ⌘ will detect the value more than once.

Example 5.5. Consider the networksM and N in Figure 8, discussed already in Example 4.16. It

is easy to show that both of them can perform the weak extensional action
c!vB{o1,o2}
=) . However, the

inference of the action is di↵erent for the individual networks; while in network N it is implied by
the execution of a single broadcast action, detected by both nodes o1 and o2 simultaneously, inM
this is implied by a sequence of weak extensional actionsM c!vB{o1}

=) c!vB{o2}
=) .

It is therefore possible to exhibit a simulation betweenN andM, thus showing thatN Csim M;
Theorem 5.6, coming up, will show that this will implies N vmay M.

However, in Example 4.16 we have already seen that M 6vmay N . And indeed M 6Csim N
because the weak actionMc!vB{o1}

=) cannot be matched by N . ⇤

We can now state the main result of the paper:

Theorem 5.6. [Soundness] Suppose N1, N2 are finitary networks. Then N1 Csim N2 in pLTS

Nets

implies N1 vmay N2.

Section 5.2 is devoted to the proof of this theorem. Also in Section 5.4 we explain why, rather
surprisingly, the converse, completeness, does not hold.

We end this section with two examples which re-inforce the delicacy of the issues involved in
achieving soundness.

Example 5.7. Soundness requires that the extensional output actions records the set of target nodes,
rather than single nodes. ConsiderM = �B k1~0� | k2~c!h1i� andN = �B k1~c!h1i� | k2~0�, where
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N1 = �1 B m~c!h1i� N2 = �2 B m~c!h1i� T = �T B T

Figure 12: Ensuring soundness

the connectivity is given in Figure 11. N 6vmay M because of the test T = �T B T , where T is the
code l1~c?.c!� | l2~c?.c!� |o~c?.c?.!�.MoreoverN 6Csim M becauseN can perform the output action
labelled c!h1i B {l1, l2}, which can not be matched byM.

However suppose we were to restrict ⌘ in the definition of extensional output actions, part (3)
of Definition 5.1, to be singleton sets of node names. Then in the resulting pLTS it is easy to check
thatM can simulate N . In other words with this simplification the resulting simulations would not
be sound; that is, Theorem 5.6 would no longer hold. ⇤

Recall from Definition 3.1 we required that for � B M to be well-formed, it is necessary that
� ` k1 = k2 whenever k1 and k2 are in the interface of � B M. The next example shows why this is
also necessary to achieve soundness.

Example 5.8. ConsiderN1 andN2 in Figure 12, and note that the latter is not actually well-formed;
it violates condition (3) in Definition 3.1. Nevertheless it is immediate that N2 Csim N1.

However N2 6vmay N1 because of the test T = �T B T where T is the code l~c?(x) .c!� |
k~c?(x) .c?(x) .c!(!)�. In the composite network N2 k> T two inputs can be received at k, from m
and l; but this is not possible if N2 is replaced by N1. ⇤

5.2. Soundness. The proof of Soundness relies on an alternative characterisations of the simulation
preorder in pLTS

Nets

, which is essentially a simplification of what it means to be a simulation. With
simulations in pLTS

Nets

weak actions are matched against weak actions; an alternative would be
simply to require that strong actions are matched by weak actions.

Definition 5.9. [Simple simulations] In pLTS

Nets

we let Cs denote the largest relation in Nets ⇥
D(Nets) such that ifM Cs ⇥ then:

• if !(M) = tt for any ! 2 ⌦ then ⇥
⌧
=) ⇥0 such that !(⇥0) = tt

• otherwise,
(i) wheneverM µ�! �0 there is a ⇥0 2 D(Nets) with ⇥

µ
=) ⇥0 and �0 Cs ⇥0.

Theorem 5.10. [Alternative characterisation] In pLTS

Nets

, M Csim ⇥ if and only if M Cs ⇥,
provided that M is a finitary network, and ⇥ is a finitary distribution of networks (that is, every
network in its support is finitary),

Proof. (Outline) Practically identical to the corresponding proof in [2]. The di�culty is to check
that if s Csim ⇥ and s =)� �0 then ⇥ =)� ⇥0 such that �0 Cs ⇥0; see Theorem 7.20 of [2].
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Theorem 5.11. Suppose Int(M) = Int(N) and bothM k> (�Bn~p�) andN k> (�Bn~p�) are defined.
ThenM Cs N impliesM k> (� B n~p�) Cs N k> (� B n~p�).

The proof of this result is quite long and technical, and is therefore relegated to an independent
subsection, Section 5.3 below.

Corollary 5.12. [Compositionality] Suppose Int(M1) = Int(M2). ThenM1 Cs M2 implies (M1 k>
N) Csim (M1 k> N) whenever both these networks are defined.

Proof. By induction on the number of nodes in N , using the previous theorem, Theorem 5.10 and
Proposition 4.8.

We also need to relate the simulation preorder Csim to the valuation of distributions, as given in
Definition 4.12. First an auxiliary result.

Lemma 5.13. Let �,⇥ be distributions in pLTS

Nets

such that � Csim ⇥; then ⇥ =)� ⇥0 such that
V(�)  V(⇥0).

Proof. There are two cases.
(i) First suppose � is a point distribution s. If the predicate !(s) is equal to false,V(s) = 0. In this

case, we recall that Theorem 2.4 (4) ensures that there exists at least one extreme derivative ⇥0
of ⇥, for which 0  V(⇥0) trivially holds.

Otherwise the predicate !(s) is satisfied and V(s) has to be 1. Since s Csim ⇥ we know
⇥ =) ⇥0 such that for all s0 2 ⇥0,!(s0) = true . This means that V(⇥0) = 1; moreover, as
every state in d⇥0e is a successful state, we also have that ⇥ =)� ⇥0

(ii) Otherwise ⇥ can be written as
P

s2d�e �(s) · ⇥s where s Csim ⇥s for each s in the support of
�. By part (i) each ⇥s =)� ⇥0s such that V(s)  V(⇥0s). As an extreme derivative is also a
hyper-derivative, we can combine these to obtain a hyper derivation for ⇥, using Theorem 2.4
(3). This leads to

⇥ =
X

s2d�e
�(s) · ⇥s =)

X

s2d�e
⇥0s = ⇥0

As for every s 2 d�e, t 2 d⇥0se we have that t
⌧�! implies !t = true , this condition is re-

spected also by all states in d⇥0e. Thus, the hyper derivation⇥=)⇥0 is also an extreme deriva-
tion. Finally, the quantity V(�) =

P{�(s) | !(s) = true } can be rewritten as
P

s2d�eV(s),
leading to

V(�) =
X

s2d�e
V(s) 

X

s2d�e
V(⇥0s) = V(⇥0) .

Theorem 5.14. In pLTS

Nets

, � Csim ⇥ implies O(�) vmay O(⇥).

Proof. Suppose � =)� �0. We have to find a derivation ⇥ =)� ⇥0 such that V(�0)  V(⇥0). We
can use the definition of Csim to find a derivation ⇥ =) ⇥00 such that �0 Csim ⇥

00. Applying the
previous lemma we obtain ⇥00 =)� ⇥0 such thatV(�0)  V(⇥0). The result follows since Theorem
2.4 gives ⇥ =)� ⇥0.
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Proof of Theorem 5.6:
This is now a straightforward application of Compositionality and Theorem 5.14.
Let us assume that N1 Csim N2. To prove the conclusion, N1 vmay N2, we must show that

O(N1 k> T ) vmay O(N2 k> T ) for an arbitrary testing network T such that bothN1 k> T andN2 k> T
are defined. For such a T Compositionality entails (N1 k> T ) Csim (N2 k> T ), and now we can apply
Theorem 5.14.

5.3. Single node compositionality. The aim of this section is to outline the proof of Theorem 5.11;
it may be safely skipped by the reader uninterested in the detail. The standard approach to composi-
tionality [16, 5] for a behavioural preorder involves proving decomposition and composition results
for the actions on which the pre-order depends. As an example decomposition would involve show-
ing that an action P1 9 P2

µ�! �1 9 �2 can be decomposed into two components

P1
µ1�! �1 P2

µ1�! �2

where µi are such that any other pairs of actions Q1
µ1�! ⇥1, Q2

µ1�! ⇥2 can be recomposed into
Q1 9 Q2

µ�! ⇥1 9 ⇥2.
Unfortunately such decomposition results do not hold in pLTS

Nets

for our operator k>.

Example 5.15. LetM, N be defined by (�M B m~c!h0i�), (�N B n~c?.!�), where �N is the trivial
graph containing only one node, and �M is determined by �M ` m$ n.

Then in pLTS

Nets

M k> N ⌧�!(�MBm~0�) k> (�NBn~!�). But this move can not be decomposed
into individual actions in pLTS

Nets

fromM and N respectively, as N cannot perform the transition

N c?v�! �N B n~!�. ⇤

Luckily, because we are only considering composition on the right hand side by single node
networks, we can work with the symmetric operator 9m introduced in Example 4.2; as we will see
this operator will support the decomposition and recomposition of actions in pLTS

Nets

.

Proposition 5.16. Suppose M k> (�n B n~p�) is well-defined. Then there exists a � such that
(� B n~p�) is well defined, andM k> (�n B n~p�) coincides withM 9m (� B n~p�).

Proof. � can be constructed by adding to �n all nodes in M which are connected to n; also, we
require all those nodes to be connected to n in �.

Proposition 5.17. [Strong decomposition in pLTS

Nets

]

(1) If (�M B M) 9m (�n B n~s�)
⌧�! �

then
• either (�M B M)

⌧�! (�M B �M) and � = (�M B �M) 9m �n B n~s�

• or (�n B n~s�)
⌧�! (�n B n~�n�) and � = (�M B M) 9m (�n B �n)

• or (�M B M)
c!vB{n}�! (�M B �M), (�n B n~s�)

c.m?v�! (�n B n~�n�), with �n ` m $ n and
� = (�M B �M) 9m �n B n~�n�,

• or (�M B M)
c.n?v�! (�M B �M), (�n B n~s�)

c!vB⌘�! (�n B n~�n�), with ⌘ ✓ nodes(M) and
� = (�M B �M) 9m �n B n~�n�,

(2) If (�M B M) 9m (�n B n~s�)
c.m?v�! � then

• either (�M B M)
c.m?v�! (�M B �M), and � = (�M B �M) 9m �n B n~s�,
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• or (�n B n~s�)
c.m?v�! (�n B n~�n�) and � = �M B M 9m (�n B n~�n�),

• or (�MBM)
c.m?v�! (�MB�M), (�nBn~s�)

c.m?v�! (�nBn~�M�) and� = (�MB�M) 9m (�nBn~�n�),

(3) If (�M B M) 9m (�n B n~s�)
c!vB⌘�! � then

• either � = (� B �M) 9m (�n B n~�n�) where (�n B n~s�)
c.m?v�! (�n B n~�n�) for some

m 2 Int(�n B n~p�), and (�M B M)
c!vB⌘[{n}�! (�M B �M)

• or � = (�M B �M) 9m (�n B n~s�) where (�M B M)
c!vB⌘�! (�M B �M) and n < ⌘.

• or � = (�M B�M) 9m (�n B n~�n�), where (�M BM)
c.n?v�! (�M B�M) and (�n B n~s�)

c!vB⌘0�!
(� B n~�n�), and ⌘ = ⌘0 \ nodes(M).

Proof. See the appendix.

Next we consider how the weak actions performed by a node-stable distribution of the form
�M B� 9m �n B n~⇥� can be inferred from those performed by �M B� and �n B n~⇥� respectively.

Proposition 5.18. [Weak composition in pLTS

Nets

] Suppose (�M B �) 9m (�n B n~⇥�) is well-
defined.

(i) (�M B �)
⌧
=) (�M B �M),�n B n~⇥�

⌧
=) �n B n~⇥n� implies (�M B �) 9m (�n B n~⇥�)

⌧
=)

(�M B �M) 9m (�n B n~⇥n�),

(ii) (�MB�)
c!vB⌘
=) �MB�M, n < ⌘ implies (�MB�) 9m (�nBn~⇥�)

c!vB⌘
=) (�MB�M) 9m (�nBn~⇥�),

(iii) (�M B�)
c!vB⌘
=) (�M B�M), n 2 ⌘ and (�n Bn~⇥�)

c.m?v
=) (�n Bn~⇥n�) for some m 2 Int(�n Bn~s�)

implies (�M B �) 9m (�n B n~⇥�)
c!vB⌘\{n}
=) (�M B �M) 9m (�n B n~⇥n�),

(iv) (�MB�)
c.n?v
=)�MB�M and (�nBn~⇥�)

c!vB⌘
=) implies (�MB�) 9m (�nBn~⇥�)

c!vB⌘0
=) (�MB�M) 9m

(�n B n~⇥n�), where ⌘0 = ⌘ \ nodes(�).

(v) (�M B �)
c.m?v
=) (�M B �M) and (�N B n~s�)

c.m?v
=) (�n B p~�n�) implies (�M B M) 9m (�n B

n~s�)
c.m?v
=) (�M B �M) 9m (�n B n~�n�).

Proof. See the appendix.

Before proving Theorem 5.11 we need another result that allows us to relate the actions per-
formed by two single node networks with di↵erent connectivities; this is because the fact that the
operator k> being asymmetric is reflected in the fact that the application of Proposition 5.16 to a
network of the form (�M B M) k> (�n B p~n�) leads to a change in the connectivity graph of the
network appearing in the right hand side of the composition.

Formally, let (�M B M), (�N B N) and (�n B n~s�) be three state based networks, and suppose
both (�M B M) k> (�n B n~s�) and (�N B N) k> (�n B n~s�) are defined. Then

(�M B M) k> (�n B n~s�) = (�M B M) 9m (�1 B n~s�)
(�N B N) k> (�n B n~s�) = (�N B N) 9m (�2 B n~s�)

Since the definitions of the connectivity graphs �1 and �2 depend on those of �M and �N ,
respectively, it is possible to obtain �1 , �2. Thus, when proving Theorem 5.11, we will need
to deal with situations in which the two networks �M B M and �N B N are composed (via the 9m
operator) with networks having di↵erent connectivities. The following result, however, allows us to
relate such networks:
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Proposition 5.19 (Single node inputs). Let n~s� 2 sSys, and let �1,�2 be two connectivity graphs

such that both �1 B n~s� and �2 B n~s� are well formed. If (�1 B n~s�)
c.m?v�! (�1 B n~�n�) with

m 2 Int(�1 B n~s�) then (�2 B n~s�)
c.l?v�! �2 B n~�n� for every l 2 Int(�2 B n~s�).

Proof. Straightforward from the definitions of both extensional and intensional input actions.

Corollary 5.20 (Single node simulations). Let �1 B n~s� be a single node network with Int(�1 B
n~s�) , ;, and suppose �1 B n~s� Csim �1 B n~⇥�; then, for any �2 such that �2 B n~s� is well
formed, �2 B n~s� Csim �2 B n~⇥�.

Proof. Follows directly from the definition of extensional and intensional actions and from Propo-
sition 5.19. The constraint that Int(�1 B n~s�) be non-empty is needed when considering the case

(�2 B n~s�)
c.m?v�! �2 B n~⇥�.

With an abuse of notation, we write s Csim ⇥ whenever (� B n~s�) Csim (� B ⇥~s�) for any �
such that Int(� B n~s�) , ;.
We are now ready to prove the main result of this section.

Proof of Theorem 5.11: We actually prove a more general result. Recall that a distribution � over
sSys is called node-stable if nodes(N) = nodes(M) whenever �(N) > 0 and �(M) > 0. For such a
distribution it makes sense to define Int(�B�) to be Int(�BM) for any M such that �(M) > 0. Now
let

Let R ✓ Nets ⇥D(Nets) be given by

(�M B M) k> (�n B n~s�) R (� B �1) k> (�n B n~⇥1�)

whenever
(a) ⇥1, a distribution over sSys, is node stable
(b) Int(�M B M) = Int(� B �1)
(c) (�M B M) Csim (� B �1)
(d) s Csim ⇥1; here ⇥1 is a distribution over states, from the syntax in Figure 1.
Theorem 5.11 will follow if we can show thatR is a simple simulation, in the sense of Definition 5.9.

The proof proceeds by considering a strong extensional action

(�M B M) k> (�n B n~s�)
µ�! � (5.1)

We must find a corresponding weak extensional action

(� B �1) k> (�n B n~⇥1�)
µ
=) ⇥

such that � R ⇥.
The first step is to employ Proposition 5.16 so as to write (�M B M) k> (�n B n~s�) in the form

(�M B M) 9m (�1 B n~s�) for some network connectivity �n. After this translation has been carried
out, we may apply Decomposition , Proposition 5.17, to the action (5.1) above. There are three
cases, depending on µ. We only consider the case µ = c!v B ⌘.

Suppose then (�M BM) 9m (�1 B n~s�)
c!vB⌘�! (�M B�M) 9m (�1 B n~⇥n�). According to Proposition

5.17 we have three di↵erent sub-cases to consider; again, we will consider only the most interesting
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one, namely

(�M B M)
c!vB⌘0�! (�M B �M)

(�1 B n~s�)
c.m?v�! �1 B n~⇥n�

⌘0 = ⌘ [ {n} m 2 Int(�1 B n~⇥n�)

We have that (�M B M) Csim (� B �1) by hypothesis, so that (� B �1)
c!vB⌘0
=) (� B �2) with

(�M B�M) Csim (�B�2). We can now rewrite (�B�1) k> (�n B n~⇥1�) as (�B�1) 9m (�2 B n~⇥1�).
Notice also that, since n 2 ⌘0, there exists a node m in nodes(M) such that �M ` n $ m. By the
definition of 9m, we obtain therefore that m 2 Int(�1 B n~s�). Thus, we can apply both Proposition

5.19 and Corollary 5.20 to infer (�2 B n~⇥1�)
c.l?v
=) (�2 B n~⇥2�) for some l 2 Int(�2 B n~⇥n�), and

⇥n Csim ⇥2.
Thus we have proved

� B �1
c!vB⌘0
=) � B �2,

�2 B n~⇥1�
c.l?v
=) �2 B n~⇥2�, l 2 Int(�2 B n~⇥2�),

�M B �M Csim � B �2,

⇥n Csim ⇥2.

The first two results can be used together with Decomposition to prove � B �1 9m �2 B

n~⇥n�
c!vB⌘
=) � B �2 9m �2 B n~⇥2�, while the last two allow us to infer �M B �M 9m �1 B n~⇥n� R

�M B �2 9m �2 B n~⇥2�.

5.4. Simulation preorder fails to be complete. Although the simulation preorder Csim provides a
proof methodology for establishing that two networks are be related via the testing preorder vmay,
it is not complete. That is, it is possible to find two networksM,N such thatM vmay N holds,
butM cannot be simulated by N . This is quite surprising, as simulation preorder has been already
proved to provide a characterisation of the may-testing preorder for more standard process calculi,
such as pCSP [2].

However, in our setting a problem arises; the mathematical basis of simulation preorders rely on
(full) probability distributions, which are a suitable tool in a framework where a weak action from
a process term has to be matched with the same action performed by a distribution of processes.

This is not true in our calculus; we have already shown that, due to the presence of local
broadcast communication, it is possible to match a weak broadcast action with a sequence of outputs
whose sets of target nodes are pairwise disjoint. This behaviour has been formalised by giving a
non-standard definition of weak extensional actions in Definition 5.3.

Such a definition captures the possibility of simulating a broadcast through a multicast only
when the former action is performed with probability 1. However, when comparing distributions of
networks we have to also match actions which are performed with probabilities less than 1, at least
informally; here the simulation of broadcast using multicast runs into problems, as the following
example shows.

Example 5.21. Consider the two network distributions �M B �, �N B ⇥ depicted in Figure 13; let

� = 0.81 · m~c!hvi . 0� + 0.19 · m~0�
⇥ = 0.9 · m~c!hvi . 0� | n~P� + 0.1 · m~0� | n~P�
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m

o1

o2

m

n

o1

o2

� = �M B (0.81 · m~c!hvi . 0� ⇥ = �N B (0.9 · m~c!hvi . 0� | n~P�
+ 0.19 · m~0�) + 0.1 · m~0� | n~P�)

Figure 13: Two testing related networks

where P is the process c?(x) .(c!hxi . 0 0.9� 0) + c?(x) .P. In �M B � a message is broadcast to nodes
o1, o2 with probability 0.81, while in �N B ⇥ two di↵erent broadcasts happen in sequence (first
to node o1, then to o2). Each of this broadcast happens with probability 0.9, so that the overall
probability of message v to be detected by both nodes o1, o2 is again 0.81.

We first show that �M B � vmay �N B ⇥, then we prove that �M B � 6Csim �N B ⇥.
For the first statement, we only supply informal details, as a complete proof would be rather long
and technical. Consider a test distribution �TB⇤, such that both �MB� k> �TB⇤ and �NB⇥ k> �TB⇤
are defined. Without loss of generality, suppose that both o1, o2 2 nodes(�T B⇤), thus every T 2 d⇤e
can be written in o1~t1� |o2~t2� |T . Also, we provide details only for the most interesting case, that is
when the testing component reaches (with some probability p) an !-successful configuration after
networkM broadcasts the message v. In this case, a computation fragment of �M B� k> �T B⇤ can
be summarised as follows:

(1) The testing component �T B ⇤ performs some internal activity, thus leading to �T B ⇤
⌧
=)

�T B o1~⇤1� | o2~⇤2� | ⇤T
(2) At this point, the distribution � will broadcast the message with probability 0.81, causing

the testing component to evolve in �T B o1~⇤01� | o2~⇤02� | ⇤T
1. The tested component, at

this point, will be in a deadlocked configuration, that is it cannot perform any action.
Consider now the distribution �N B ⇥ k> �T B ⇤. For such a network, a matching computation

will proceed as follows:
(1) The testing component �T B ⇤ performs the same sequence of internal activities as before,

thus it will end up in the distribution �T B o1~⇤1� | o2~⇤2� | ⇤T .
(2) At this point, message v will be broadcast by ⇥ to node o1. This happens with probability

0.9, and it causes the testing network to evolve in �T B o1~⇤01� | o2~⇤2� | ⇥T . Here note
that, since the broadcast can not be heard by node o2, the probability distribution for such a
node in the testing component has not been a↵ected.

(3) Before allowing the testing component to perform any activity, we require the tested net-
work to perform the second broadcast, which will be heard by node o2; again, this will
happen with probability 0.9 and it will not a↵ect the probability distribution of processes
running at node o1. Thus, after the second message has been broadcast by the tested net-
work, the testing component will have the form �T B o1~⇤01� | o2~⇤02� |⇤T , which is exactly
the same configuration obtained in the first experiment, after �M B � has broadcast the

1Note that only nodes o1 and o2 are a↵ected by the broadcast performed by node m
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message to both locations. Further, note that the overall probability of ⇥ delivering both
messages is again 0.81, and that the tested network is now in a deadlocked configuration.

Thus we have shown that, whenever the broadcast of message v by �M B � a↵ects the testing
network �T B⇤ in some way, then �N B⇥ is able to multicast the message to both o1 and o2, causing
�T B⇤ to behave in the same way. Note also that in �NB⇥we introduced a non-deterministic choice
in process P; this choice has been introduced because it is possible for node n to receive messages
from the external node o2. Since in �M B � messages received from external nodes do not a↵ect
the behaviour of the network, we require �N B⇥ to have at least an extreme derivative in which this
policy is respected. In fact, when �N B⇥ receives a message from o2, code P running at node n can
decide to ignore the message by evolving to the process P itself. At this point, the reader should be
convinced that �M B � vmay �N B ⇥.

Now we show that it is the case that �M B � cannot be simulated by �N B ⇥. The proof is
obtained by contradiction. Suppose then that �M B � Csim �N B ⇥. Let M1 be the system term

m~c!hvi�. As �M B M1
c!vB{o1,o2}�! , and � = 0.81 · �M B M1 + 0.19 · �M B m~0�, we can rewrite ⇥ as

⇥ = 0.81 · ⇥1 + 0.19 · ⇥2

such that ⇥1
c!vB{o1,o2}
=) . Let now N1 and N2 be the state based terms m~c!hvi� |n~P�, and m~0� |n~P�,

respectively. These terms have been defined so that d�N B ⇥e = {�N BN1,�N BN2}. Since �N BN2 is
a deadlocked network (hence it cannot perform any output action), the only network in the support
of ⇥1 has to be �N B N1, for a distribution can perform an action only if all the networks in its
support can perform the same action.

It is easy to show that the only possible action for �N B N1 is �N B N1
c!vB{o1}
=) �N B ⇥00, where

⇥00 = m~0� | ⇥N and ⇥N = 0.9 · n~c!hvi� + 0.1 · n~0�. Since the latter is a deadlock state, we

can conclude that the action �N B ⇥00
c!vB{o2}
=) is not possible, so neither is �N B N1

c!vB{o1,o2}
=) . It

follows that the broadcast action performed by �M B M1 cannot be matched by �N B N1, and hence
�M B � 6Csim �N B ⇥. ⇤

The example above has more serious consequences than just showing that simulation preorder
is not complete with respect to the may testing preorder. In fact, distributions �M B �, �N B⇥ from
Example 5.21 can be used to prove that the relation vmay does not enjoy the decomposition property
of Definition 2.2, a property inherent to lifted relations. In other words, it is not possible to obtain
vmay as the lifting of any relation between networks and distribution of networks.

Theorem 5.22. There exists no relation R ✓ Nets ⇥D(Nets) such that the testing preorder vmay

coincides with R.

Proof. The proof is carried out by contradiction. Suppose R ✓ Nets ⇥D(Nets) is a relation which
coincides with the vmay testing preorder, and consider the distributions �MB�,�NB⇥ from Example
5.21. We have already proved that �M B� vmay �N B⇥ and so by the hypothesis we have �M B� R
�N B ⇥. Let M1 = m~c!hvi . 0�, M2 = m~0�; we can rewrite � as 0.81M1 + 0.19 · M2.

By the Definition of lifting 2.2, we can rewrite ⇥ as 0.81 ·⇥1 + 0.19 ·⇥2, for some distributions
⇥1 and ⇥2 such that �M B Mi R �N B ⇥i, i = 1, 2. In particular this leads to �M B M1 R �N B ⇥1,
or equivalently �M B M1 vmay �N B ⇥1. The contradiction is provided by showing that this is not
possible for any possible ⇥1.

Consider the test T = �T BT , where �T is the connectivity graph depicted in Figure 14 and T =
o1~c?(x) .d!h·i� | o2~c?(x) .d?(x) .!�. It is easy to show that 1 2 O(�M B M1 k> T ); as �M BM1 vmay

�NB⇥1, we also have 1 2 O(�N B ⇥1 k> T ). For this to happen, each network in d�N B ⇥1e has to be
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o1

o2

Figure 14: A connectivity graph for testing distributions �M B � and �N B ⇥

able to broadcast a value to node o1. Since ⇥ = 0.81 ·⇥1 + 0.19 ·⇥2, we also have that d⇥1e ✓ d⇥e.
As the only network in d⇥e which is able to broadcast a value to node o1 is N = m~c!v. 0� | n~P�,
we have ⇥1 = N.

Now note that the only transition from �N B N k> T is given by �N B N k> T ⌧�! �N B⇥01 k> T 0,
where ⇥01 = 0.9 ·m~0� | n~c!hvi� + 0.1 ·m~0� | n~0� and T 0 = �T B o1~d!h·i� | o2~d?(x) .c?(x) .!�.
Since 1 2 O(�N B N k> T ) and this is the unique transition from �N B N k> T it follows that 1 2
O(�N B ⇥01 k> T 0). Again, this would require each network in d�N B ⇥01e to be able to broadcast a
value to node o2. However, this is not possible, as the deadlocked network �N B m~0� | n~0� is
included in d�N B ⇥01e.

Thus we have provided the contradiction, by showing �M B M1 vmay �N B ⇥1 is not possible.

6. Application: probabilistic routing

In this Section we provide an application of our theory; we decided to focus on a simple routing
model to show how networks can be related via the may testing preorder by providing a simulation
between them. We first define a specification (or model) for routing in terms of a networkM; then
we consider a more complicated networkN and we show that it is may testing related to our model
by exhibiting a simple simulation betweenM and N ; by Theorem 5.6, it follows thatM vmay N .
Finally, we generalize our result by focusing on a network L which is only partially defined; again,
we prove thatM and L are testing related by showing thatM Cs L.

6.1. The specification. Routing is the central task that has to be accomplished in the network layer
of (wireless) network protocols [19]. The goal of a routing protocol is that of guaranteeing that a
message, generated by a node of the network and intended for a second, flows through the nodes
of the network to eventually reach the desired destination. The design of routing protocols relies
on the assumption that the communication between two nodes is perfect; in practice, this task is
accomplished by the Datalink and MAC layers, while in our calculus this is guaranteed by the
intensional semantics that define network transitions.

Here we propose a basic network to model routing; as we will see, the way it is defined ensures
it enjoys the following features:

• Two extenal nodes o1, o2, are used as the endpoints of a communication; a message gen-
erated by node o1 has to be forwarded to o2, and vice-versa. The constraint that o1, o2 are
external nodes guarantees that messages are generated non-deterministically,
• The network detects the messages generated by the external nodes only along a single chan-

nel; all the messages generated via other channels are ignored,
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• Routing is sequential; that is, only one packet at time can be routed.

M ⌘ m~P�

mo1 o2

Figure 15: A model for routing

Our model consists in the networkM = � B M depicted in Figure 15. We define P to be the
process c?(x) .c!hxi .P. The role of the internal node is that of repeatedly listening for incoming
messages (either from o1 or o2); once a message has been received, it will forward it to the destina-
tion by performing a broadcast. In this case the message is heard by both the external nodes o1 and
o2, thus we ensure that it will reach the destination node. This is needed because it is impossible for
node m, upon receiving a message, to detect if it was originally sent by o1 or o2. Further, it is easy
to check that the networkM satisfies the constraints above. Finally, in order to ensure that the pLTS
generated by networkM is finitary, we assume that the sets of both channels and values are finite.

The pLTS induced by networkM is depicted in Figure 16. Below we summarise the actions
that networkM can perform:

(1) M d.oi?v�! M, provided channel d is di↵erent from c, i = 1, 2,

(2) M c.oi?v�! M0v, i = 1, 2, whereM0v = � B m~c!hvi .P�.
We also list the possible actions that can be performed by the derivative ofM,M0v.

(1) M0v
d.oi?v�! M0, where d is an arbitrary channel (including c),

(2) M0v
c!vB⌘�! M, where ⌘ = {o1, o2}.

6.2. A simple implementation. Now that we have provided a specification for routing, let us look
at a possible implementation. In our framework, for implementation of M we mean a network
N = �N B N such thatM vmay N . The main idea here is to build N by replacing node m inM
with a rather simple network, consisting of di↵erent nodes. The main goal we want to achieve for
N consists in routing a message generated from o1 to o2, and vice versa. To this end, we design
N to have at least one computation in which the constraints imposed forM are satisfied, thereby
ensuring thatM vmay N will be true.

M M0vd.oi?v

c.oi?v
c.oi?w

d.oi?w

c!v B {o1, o2}

Figure 16: the pLTS induced by our routing model. Here d is an arbitrary channel di↵erent from c,
v and w are arbitrary messages and i ranges over 1, 2.
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�N B N

o1 m1 n1

n3

n4

n2 m2 o2

Figure 17: A simple implementation ofM

The network N we consider is depicted in Figure 17. Here N is defined to be

m1~Pm� | m2~Pm� |
4Y

i=1

ni~Pi�

where

Pm = c?(x) .c!hxi .Pm + c?(x) .Pm

Pi = c?(x) .[(c3!hxi .Pi 1
2
� c4!hxi .Pi)] + c?(x) .Pi

+ ci?(x) .[(c3!hxi .Pi 1
2
� c4!hxi .Pi)] + ci?(x) .c!hxi .Pi, i = 1, 2 (6.1)

Pi = ci?(x) .(c1!hxi 1
2
� c2!hxi) i = 3, 4

Let us discuss the intuitive behaviour of each node in network N . The idea is that of imple-
menting probabilistic routing; once a message is received by a node in the network, it will perform a
probabilistic choice to select a node, among its neighbours, to which the message will be forwarded.
For this purpose, each internal node ni, i = 1, · · · , 4, has a channel ci associated to it; the code of
network N is designed so that each of these internal nodes ni waits for a message to be received
along its associated channel ci. Further, it is the only node in the network which can receive mes-
sages along this channel; this ensures that whenever a message is broadcast along channel ci only
node ni is able to actually receive it.

The behaviour of an internal nodes n3 or n4 is straightforward; if it receives a message, which
may come from either of its neighbours, it selects according to a fair probabilistic choice one of
these neighbours to whom the message is forwarded.

The behaviour of n1, n2 is more complicated. We describe that of n1; the behaviour of n2 is
symmetric. If it receives a message along channel c1, its associated channel, we know that it must
come from one of its internal neighbours n3 or n4. Non-deterministically, the message is either

• forwarded to the externally connected node m1 using the channel c
• or using a fair probabilistic choice it is rebroadcast back to one of its internal neighbours,

along their associated channels c j.
But n1 can also listen to messages broadcast along channel c; this allows it to receive messages

from the node m1, which in turn is connected to the interface. When such a message is received
nondeterministically it is either

• ignored
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• or forwarded to one if the internal nodes n3, n4, using their associated channels c j; the
destination node is selcted randamly, using a fair probabilistic choice.

The nodes m1, m2, being connected to the interface, are responsible for routing messages be-
tween the external nodes o1, o2 and the internal ones n1, n2 respectively. This is achieved by mi
forwarding every message it receives along channel c; we have already seen that its neighbour ni is
both broadcasting and listening on c. However, node m1 can also decide non-deterministically to
discard any of these messages.

Note that the behaviour of network N is decidedly more complicated of the routing modelM.
For example, it is possible in N that the task of routing a message fails before being completed;
as nodes mi, ni, i = 1, 2 can non-deterministically ignore messages received along channel c, a
message can be lost at one of these nodes before the routing activity is completed.

Despite having a more complicated behaviour, network N simulates the routing model M.
However this simulation is far from being trivial. For example inM when a message is received
from o1 it is broadast simultaneously to both nodes in the interface o1 and o2. But in N there is no
node directly connected to both o1 and o2 and so this behaviour can not be replicated. Moreover
all communication between the individual nodes in N is probabilistic, so that the multi-cast which
simulates this broadcast is only achieved in the probabilistic limit.

We show thatM Cs N . From Theorem 5.10 it will follow that thatM Csim N , and therefore
by Soundness, Theorem 5.6 we will haveM vmay N .

In order to show thatM Cs N , we have to exhibit a simulation between them; this is facilitated
by introducing some suitable notation. We define the system term Nm1 = m2~Pm� |Q4

i=1 ni~Pi�.
That is, Nm1 is the term obtained by removing from N the code from node m1. Similar definitions
apply for each node in nodes(N). For any message v, let N1

v = �N B m1~c!hvi .Pm� | Nm1 , N2
v =

�N B m2~c!hvi .Pm� | Nm2 .
Now we show that the relation

S = {(M,N)} [ {(M0v,N1
v ), (M0v,N2

v ) | v 2 V}
satisfies the requirements of Definition 5.9.

Let us first look at the pair (M,N). Recall that networkM has only four possible actions (up
to the choice of a message v):

• M d.o1?v�! M, where d , c. We need to match this action with a derivation of the form
N d.o1?v
=) ⇥ for some ⇥ such that (M,⇥) 2S. It is not di�cult to note that N d.o1?v�! N , as

none of the nodes m1 and m2 (which are the only one which can detect messages broadcast
from external nodes) is waiting to receive a value on channel d. By Definition 2.2 we have
(M,N) 2S.

• M d.o2?v�! M, where d , c. This case is analogous to the one above

• M c.o1?v�! M0v. In this case it is easy to show that N c.o1?v�! N1
v , and (M0v,N1

v ) 2S.

• M c.o2?v�! M0v. As above, one can check that N c.o1?v�! N2
v , and (M0v,N2

v ) 2 S.

It remains to check the pairs of the form (M0v,N1
v ) and (M0v,N2

v ). We only supply the details
for the former case, as the latter one is analogous.

• M0v
d.o1?v�! M0v, where d is an arbitrary channel, including c. Note that in N1

v the node m1

is not waiting to receive a message along any channel. That is, we have N1
v

d.o1?v�! N1
v , and

(M1
v ,N1

v ) 2S
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• M0v
d.o2?v�! M0v, where d is an arbitrary channel, included c. If d , c, then this case is similar

to the above one. If d = c, note that node m2 is waiting to receive a message along channel
c. However, we already remarked that node m2 can non-deterministically choose to ignore

messages broadcast along channel c, so that it is easy to deriveN1
v

c.o2?v�! N1
v . Now it su�ces

to note that (M1
v ,N1

v ) 2 S.

• M0v
c!vB{o1,o2}�! M. This is the most interesting case. In fact, it is not possible to match the

strong extensional output performed byM0v directly. Rather, we exhibit a weak derivation

of the form N1
v

c!vB{o1,o2}
=) N . This is obtained by exploiting the non-standard definition of

weak extensional outputs, given in Definition 5.3(3). Specifically, we show that that there
exist �1 and �2 such that

N1
v

c!vB{o1}�! �1
⌧
=) �2

⌧�!N2
v

c!vB{o2}�! N . (6.2)

At this point, since (M,N) 2S the proof is finished.
In order to provide the sequence of derivations (6.2) above, we use

�1 =
1
2
·�N B n1~c3!hvi .P1� | Nn1 +

1
2
·�N B n1~c4!hvi .P1� | Nn1 ,

�2 = �N B n2~c!hvi .P2� | Nn2

The transitionsN1
v

c!vB{o1}�! �1, �2
⌧�!N2

v andN2
v

c!vB{o2}�! N are easy to derive. In the latter,
to obtain the pointed distributionN as the result of the transition, we exploited the ability of
node n2 to ignore messages received along channel c. The only di�culty lies in exhibiting
the hyper-derivation �1

⌧
=) �2.

First, note that each network in the support of �1 can perform a ⌧-action. Specifically,
we have �N B n1~c3!hvi .P1� | Nn1

⌧�! �N B �3, where

�3 =
1
2
·�N B n3~c1!hvi .P3� | Nn3 +

1
2
·�N B n1~c2!hvi .P3� | Nn3

and �N B n1~c4!hvi .P1� | Nn1

⌧�! �N B �4, where

�4 =
1
2
�N B n4~c1!hvi .P4� | Nn4 +

1
2
�N B n4~c2!hvi .P4� | Nn4 .

The last two derivations ensure that �1
⌧�! 1

2 · �3 +
1
2 · �4. In a similar way, we can derive

the following ⌧ transitions for �3 and �4:
(1) �3

⌧�! 1
2 · �1 +

1
2 · �2,

(2) �4
⌧�! 1

2 · �1 +
1
2 · �2.
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L0 ⌘ m1~Pm� | m2~Pm�

m1o1 n1 n2 m2 o2

Figure 18: The network L0 = �0L B L0

Putting together these derivations, we obtain the hyper-derivation

�1
⌧�! 1

2 · �3 +
1
2 · �4 + "

1
2 · �3 +

1
2 · �4

⌧�! 1
2 · �1 + 1

2 · �2
1
2 · �1

⌧�! 1
4 · �3 +

1
4 · �4 + "

1
4 · �3 +

1
4 · �4

⌧�! 1
4 · �1 + 1

4 · �2
...

...
...

1
2n · �1

⌧�! 1
2n+1 · �3 +

1
2n+1 · �4 + "

1
2n+1 · �3 +

1
2n+1 · �4

⌧�! 1
2n+1 · �1 + 1

2n+1 · �2

where we recall that " is the empty sub-distribution. Thus we have �1
⌧
=)P1i=1

1
2i ·�2, which

is exactly �2. This concludes the proof that N1
v

c!vB{o1,o2}
=) N .

6.3. Implementation using paramaterised networks. In this Section we provide another example
of network L which implements the routing modelM. In this case rather than a single instance of
an implementation, we outline a set of properties of networks, and show that any network satisfying
these properties implements the routing modelM. The code for the various nodes will be fixed and
so the properties all concern the connectivity allowed between them.

Formally, we split L in two sub-networks, L0 and C, such that L = L0 k> C. Network L0 is
completely defined, and its representation is given in Figure 18. Here the process Pm is the same
used for nodes m1, m2 in networkN , defined in Section 6.2. In contrast, network C is specified only
in terms of a list properties which we assume it satisfies. These are as follows.

(1) n1, n2 2 nodes(�C B C). For the sake of simplicity, we also assume that nodes(�C B C) =
(�C)V = {n1, · · · , nk} for some k > 2.

(2) The connectivity graph �C contains a single connected component.
(3) Every node ni, i = 1, · · · , k is associated with a channel ci and a probability distribution
⇤i : {1, · · · , k} ! [0, 1]. The latter are defined so that d⇤ie = { j | �C ` ni $ n j}, for any
i = 1, · · · , k.
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(4) C =
Q

i2I ni~Pi�, where

Pi = c?(x) .

2
66666664

kM

j=1

⇤i( j) · c j!hxi .Pi

3
77777775 + c?(x) .Pi

+ ci?(x) .

2
66666664

kM

j=1

⇤i( j) · c j!hxi .Pi

3
77777775 + ci?(x) .c!hxi .Pn, i = 1, 2

Pi = ci?(x) .(
kM

j=1

⇤i( j) · c j!hxi .Pi), i > 2

Here the construct
L

i2I pi · Pi is interpreted as the probability distribution ~
L

i2I pi · Pi� =P
i2I pi · ~Pi�, and is defined only whenever

P
i2I pi = 1.

Let us comment on these requirements. Requirement (2) is needed to ensure that, in L0 k> C,
inputs received by node m1 from node o1 can be routed to the external node o2, and vice-versa. For
requirement (3), note that only node ni can listen to a message broadcast along channel ci. As we
already explained in Section 6.2, this allows a node ni to select one of its neighbour n j, j = 1, · · · , k,
as the next hop in a routing path by simply forwarding a message along channel ci. This choice,
by node ni uses the probability distribution �i. Intuitively, the value ⇤i( j) corresponds to the
probability for node ni to select n j as the next hop in a routing path.

Finally, requirement (4) simply defines the structure of the system term C. Note that, with these
requirements, the network C is determined completely by the connectivity graph �C and by the set
of probability distributions {⇤i : 1  i  k}.

�0C BC0

n1 n3 n2

Figure 19: A network C0

Remark 6.1. We require that d⇤ie = { j : �C ` ni $ n j}, that is every neighbour of node ni has
some non-zero probability of being selected as the next hop. This is needed to ensure that inputs
received from node o1 in L0 k> C can be routed until they eventually reach node the external node
o2, and vice-versa.

In fact, suppose we drop the requirement above from those defined for network C; consider
the network C0 of Figure 19. Here we assume that the system term C0 is defined according to
Requirement (4) above and by letting ⇤1 = 3, ⇤3 = 1 and ⇤2(c) = 3. It is easy to note that network
C0 satisfies the constraints listed above. However, notice that in network L0 k> C0, when an input is
fired from node o1, it cannot flow to the external node o2. This is because the message will never
reach node n2, as node n3 always selects n1 as the next hop in a routing path.

Thus L0 k> C0 can not be an implementation of the routing modelM.
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�0N B N0

n1

n3

n4

n2

Figure 20: A network N 0

Remark 6.2. The networkN , defined in Section 6.2, can be obtained as the network L0k>N 0, where
N 0 is defined in Figure 20, by letting

⇤i =
1
2
· 3 + 1

2
· 4, i = 1, 2

⇤i =
1
2
· 1 + 1

2
· 2, i = 3, 4.

It is easy to note that N 0 satisfies the constraints required by the network C, so that it is actually an
instantiation of the paramaterised network L we are considering. Indeed many similar instances
can be generated by changing the probabilities used in the code in (6.1) of Section 6.2 to arbitrary
non-zero values.

Now we show that the specification for routing M and any network L satisfying the above
constraints are simulation related. For the sake of clarity let Lm1 = m2~Pm�|Qk

i=1 ni~Pi�. That is,
Lm1 is the system term obtained by deleting node m1 from L. Similar definitions apply for every
node in nodes(L).

Let L1
v = �L B m2~c!hvi .Pm�|Lm1 , L2

v = �L B m2~c!hvi .Pm�|Lm2 . We show that the relation

S = {(M,L)} [ {(M0v,L1
v) | v 2 Val} [ {(M0v,L2

v) | v 2 Val}
is a simple simulation.

Let us first look at the pair (M,L); recall that networkM has only four possible actions, for a
given message v.

• M d.o1?v�! M, where d , c. We need to match this action with a derivation of the form
L d.o1?v
=) ⇥ for some ⇥ such that (M,⇥) 2S. It is not di�cult to note that L d.o1?v�! L, as none

of the nodes m1 and m2 (which are the only one which can detect messages broadcast from
external nodes) is waiting to receive a value on channel d. Thus we have (M,L) 2S
• M d.o2?v�! M, where d , c. This case is analogous to the one above

• M c.o1?v�! M0v. In this case it is easy to show that L c.o1?v�! L1
v , and (M0v,L1

v) 2S
• M c.o1?v�! M0v. Again this is straightforward.

It remains to check the pairs of the form {(M0v,L1
v)} and {(M0v,L2

v)}. We only supply the details
for the former case, as the latter is analogous.
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• M0v
d.o1?v�! M0v, where d is an arbitrary channel, including c. Note that, in L1

v , node m1 is

not waiting to receive a message along any channel. That is, we have L1
v

d.o1?v�! L1
v , and

(M1
v ,L1

v) 2 S

• M0v
d.o2?v�! M0v, where d is an arbitrary channel, including c. If d , c, then this case is similar

to the above one. However, if d = c, note that node m2 is waiting to receive a message along
channel c. We already remarked that node m2 can non-deterministically choose to ignore

messages broadcast along channel c, so that it is easy to derive L1
v

c.o2?v�! L1
v . Now it su�ces

to note that (M1
v ,L1

v) 2 S
• M0v

c!vB{o1,o2}�! M. This is the most interesting case. Here we exhibit a weak derivation of

the form L1
v

c!vB{o1,o2}
=) L. This is obtained by exploiting the non-standard definition of weak

extensional outputs, given in Definition 5.3(3). Specifically, we show that that there exists
a distribution �1 such that

L1
v

c!vB{o1}�! �1
⌧
=)L2

v
c!vB{o2}�! L. (6.3)

here we have that

�1 =

kX

j=1

⇤i( j) · �L B ni~c j!hvi .Pi� | Lni

The result will follow because (M,L) 2S.

The only di�cult derivation to prove in Equation 6.3 is the hyper-derivation �1
⌧
=)L2

v . All the other
cases, in fact, are analogous to those analysed in Section 6.2.

Here the main idea is that to reduce the state-based network L and its derivatives, in which the
code at nodes ni,mi ( i = 1, 2 ) is non-deterministic, to a deterministic one in which the computation
stops when the value v being routed is delivered at node m2. For deterministic systems, in fact, we
can rely on the useful result stated below.

Lemma 6.3. Let hS ,Act, ⌧,!i be a deterministic pLTS, that is �0 = �00 whenever �
⌧�! �0 and

�
⌧�! �00. Then, whenever �

⌧�! �0 and � =)� ⇥ it follows that �0 =)� ⇥. ⇤

The resolution of our network to a deterministic one is very easy to define. Let
P02 = c2?(x) .c!hvi . 0, P0m = c?(x) . 0; the network (Lv

2)0 is defined by replacing, in any of the states
of the pLTS generated by L, the code at nodes ni, i = 1, 2 with P02 and the code at nodes mi, i = 1, 2
with P0m. That is, we establish that once that a message is received at node n2, it will broadcast to
node m2, after which the computation of the network stops. This transformation can be applied to
the network distribution �1 defined above, leading to another network distribution �01.

It is trivial to note that if we prove that �01 =) (L2
v)0, then we also have that �1 =) L2

v . This
is because �01, (L2

v)0 have been defined by removing the non-deterministic choices from �1,L2
v re-

spectively, and by imposing that the computation stops once a message is received at the node m2.
In practice, we show that �01 =)� (L2

v)0, which by definition gives the required �01 =) (L2
v)0.

In the following, given a node m 2 nodes(L) we use L0m for the system term obtained from Lm by
resolving the non-deterministic choices as described above, and by requiring that nodes n2 and m2



A SIMPLE PROBABILISTIC BROADCAST LANGUAGE 41

do not perform any activity after n2 has broadcast a value along channel c. Further, we let

�0i =
kX

j=1

⇤i( j) · �L B ni~c j!hvi .Pi� | L0ni , if i > 2

�02 = �L B n2~c!hvi . 0� | L0n2

be probability distributions. We prove that, for any i = 1, · · · , k, we have the exterme derivative
�0i =)� (L2

v)0; to this end, we show that

(i) �02 =)� (L2
v)0 and

(ii) For any two indexes i, j such that �L ` ni $ n j, if �0i =)� (L2
v)0 then �0j =)� (L2

v)0.
Then it remains to note that the connectivity graph �L has a single connected component to infer
that �0i =)� (L2

v)0 for any i ranging over 1, · · · , k.
The proof of the first point is straigthforward. We have that �02 = �L B n2~c!hvi . 0� | L0n2

⌧�!
(L2

v)0’, and since no node can perform a transition in (L2
v)0 (recall that we changed the code at

nodes m2 so that, once it has received the value broadcast from node n2 the network deadlocks), this
transition can be easily transformed in the extreme derivation �02 =)� (L2

v)0.
For the second statement, consider now a distribution �0i , where i = 1, · · · , k. This distribution

in deterministic, and therefore it has a unique ⌧-transition. It is not di�cult to show that, for i , 2,
then �0i

⌧�!Pk
i=1⇤i( j) · �0j, where ⇤i( j) > 0 if and only if �L ` ni $ n j. This is because, any state

(L j
i )0 = �L B ni~c j!hvi .Pi� | L0ni

has the unique transition (L j
i )0

⌧�! �0j.
Now consider any j , 2, and suppose that �L ` ni $ n j for some index i (possibly equal to 2).

Also, suppose that �0i =)� (L2
v)0. We have already proved that �0i

⌧�! p · �0j + (1 � p) · ⇥ for some
distribution ⇥ and p 2 [0, 1] such that p > 0. By Lemma 6.3 it follows that (p ·�0j+ (1� p) ·⇥) =)�
(L2

v)0; since p > 0 this leads to the required �0j =)� (L2
v)0.

As we already observed the graph �L has a single connected component. Thus (i) and (ii)
allows us to infer that �0i =)� (L2

v)0 for any i = 1, · · · , k; in particular, �01 =)� (L2
v)0.

7. Conclusions

In this paper we developed a calculus for wireless systems, which enjoys both probabilistic
behaviour and local broadcast communication. We developed a theory based on the probabilistic
may-testing, and provided a proof method for finitary networks to prove that they can be related via
our behavioural preorder.

We believe that this is the first work that consider testing theories for wireless systems. Also, it
is the first one in which the problem of composing wireless networks is addressed in detail.

However, in the past the development of formal tools for wireless networks has focused either
on other forms of behavioural theories (such as variants of weak bisimulation) and the analysis of
protocols. Here we give a brief review of the main works which have inspired our calculus.

To the best of our knowledge, the first process calculus that takes into account broadcast trans-
mission is CBS from Prasad [14]. Here a communication between a sender and a receiver is modeled
so that an observer will detect it as a message being sent; this principle enables multiple receivers to
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detect a message sent by a single process. CBS has deeply influenced the style of other calculi (in-
cluded ours) focusing on broadcasting systems, and behavioural theories for it have been analysed
[4].

In [10] local broadcast communication and the concept of locations (or node names) have been
introduced; in the same style of our calculus, a node name is associated with a process, representing
the code it runs. However, here the topology of a network is modeled to be probabilistic, in the sense
that whenever a broadcast is issued by a node, other nodes have the capability of detecting such a
message with a given probability. Tools for developing the static analysis of routing protocols are
then developed for this calculus, which the author refers to as Extended CBS.

The same authors have proposed a second variant of CBS, referred to as CBS# [11], in which
the communication topology is defined by a connectivity graph, and the transition relation is para-
metric in a connectivity graph G; this is very similar to the style we have developed the intensional
semantics in our language. For this language, a notion of T-bisimilarity is developed; intuitively, T-
bisimilarity is defined by considering standard bisimilarity for two networks defined over a specific
network connectivity graph, and then quantifying over all network connectivities.

In [8] a di↵erent attempt to formalize wireless networks is made; the authors develop a calculus
CWS, where the concepts of node names and location are di↵erentiated; thus, a process is associated
both with a node name and a location. Also, every process has a positive real value associated
to it, denoting the radius of transmission. A metric distance between locations is assumed; this
function, together with the mapping from processes and radius of transmissions, define the network
connectivity. The authors propose both a reduction semantics and a labelled transmission semantics,
proving the corresponding Harmony Theorem to relate them. It is worth mentioning that in this
calculus the communication between nodes consists of two phases, one to start it and one to end it.
The authors also model the possibility of a message whose transmission has started to be corrupted
by another transmission, thus modeling collisions.

In [7], a timed calculus for wireless systems (TCWS) is presented; in this case, the authors
address the problem of representing collisions in wireless networks, suggesting that formal tools for
dealing with interferences in wireless networks can aid in the development of MAC level protocols.
Here time is assumed to be discrete, in particular an action � is defined to represent the passage of
time. The topology of the wireless networks here is described by associating every node a semantic
tag representing its set of neighbours. The authors propose a compositional theory for wireless
networks based on the notion of reduction barbed congruence; further, they develop a sound proof
methodology based on bisimulations over an extensional lts. It is worth enough to notice that
the set of extensional actions they propose (and the activities that can be detected by the external
environment) is exactly the same we use in this paper.

In the future our research will concentrate on the development of a characterisation of the must
testing preorder for our broadcast language; at the current state of the art, we believe that much
of the theory defined here can be used to provide a characterisation of the must-testing preorder in
terms of a non-standard version of the failure simulation preorder [2], defined along the same lines
of the simulation preorder contained in this paper.

Further, we are currently developing simpler calculi which will enjoy the same features of our
simple broadcast language, namely probabilistic behaviour and local broadcast. Testing theory will
be defined and analysed for those calculi, in order to provide an evidence that the need of a non-
standard theory of simulations depends on these features, rather than on our calculus itself. We are
in fact confident that the same theory we developed can be applied to a wide range of calculi for
wireless systems.
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Appendix A. Decomposition and composition results

To prove propositions 5.17 and 5.18, we first need to prove the following statements for actions
which can be derived in the intensional semantics:

Proposition A.1 (Weakening). Let �1 BM be a network, and let �2 such that whenever �2 ` m$ n
with m 2 nodes(M) and n < nodes(M), then �1 ` m$ n. Then

�1 B M
↵�! � implies (�1 [ �2) B M

↵�! �
where ↵ ranges over the actions m.⌧, c.m!v, c.m?v.

Proof. The two implications are proved separately; the only if case is proved by structural induction
on the proof of the derivation �1BM

↵�!�, while the if implication is proved by structural induction
on the proof of the derivation (�1[�2)

↵�!�; in both cases, the conditions required for the structure
of �2 are vital.

Proposition A.2 (Strengthening). Let �1 B M be a network, and let �2 such that whenever �2 `
m$ n with m 2 nodes(M) and n < nodes(M), then �1 ` m$ n. Then

(�1 [ �2) B M
↵�! � implies �1 B M

↵�! �
where ↵ ranges over the actions m.⌧, c.m!v, c.m?v.

Proposition A.3 (Node identification). Let �M B M be a network such that

(1) �M B M
m.⌧�! �; then

• M = m~s� | M0,
• s

⌧�! P, for some P,
• � = m~�0� | M0, with �0 = ~P�.

(2) �M B M
c.m!v�! �, then

• M = m~s� | M0,
• s

c!v�! P for some P,

• �M B M0
c.m?v�! ⇥ for some ⇥,

• � = m~�0� | ⇥, with �0 = ~P�.
All the equivalences above are defined modulo structural equivalence.

Proof. Both cases are proved by structural induction on the proof of the derivation �M B M
↵�! �,

using Proposition A.1 and with ↵ ranging over m.⌧, c.m!v.

Proof of Proposition 5.17. We only prove the first statements; details for the other statements are
similar.

Suppose (�M B M) 9m (�n B n~s�)
⌧�! �; First we rewrite the network in the left hand side of

the transition as (�M [ �n) B M | n~s�. By definition of extensional actions, there are two possible
cases:

(1) (�M[�n)BM |n~s� m.⌧�!�; in this case we can apply Proposition A.3 (1) to derive M |n~s� =
m~s0� | M0. Here again we have two possible cases:
• m = n; then, by Proposition A.3 (1) M = M0, s = s0, s

n.⌧�! Pn, with ~Pn� = �n and
� = n~�n� | M. Now we can derive �n B n~s�

n.⌧�! n~�n�, and therefore �n B n~s�
⌧�!

�n B n~�n�.
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• m , n; in this case m 2 nodes(M). For M = m~s0� | M0, by Proposition A.3 (1) it
holds s0

⌧�! P0 and � = m~�m� | M0, where �m = ~P�. Let now �M = m~�m� | M0.
It is straightforward to show that �M [ �n B M

m.⌧�! �M. Note also that, whenever
�n ` l $ k for some l 2 nodes(M), then k = n, and n < nodes(M), Since �M B M 9m
�nBn~s� is defined, it follows that �M ` l$ k. Therefore, we can apply Strengthening,
Proposition A.2, to the derivation (�M [�n)BM

m.⌧�!�M to infer �M BM
m.⌧�!�M, from

which we obtain the extensional action �M B M
⌧�! �M.

(2) �M [ �n B M | n~s� c.m!v�! �, with {l | (�M [ �n) ` m $ l} ✓ nodes(M | n~s�). Denote the
set in the left hand side of the inclusion above as ⌘m. Here, by Proposition A.3 (2) there are
two di↵erent possible cases
• m = n. First, note that, as ⌘n ✓ nodes(M), whenever �n ` m $ n then m 2 nodes(M).

Now we apply Proposition A.3 (2) to obtain s
c.n!v�! Pn and (�M [ �n) BM

c.n?v�! �M, with
� = �M | n~�n� for �n = ~Pn�. By Strengthening, Proposition A.2, it follows that

�nBn~s�
c.n!v�!�nB�n~s�; by definition of extentional actions, we obtain �nBn~s�

c!vB⌘n�!
�n B �n~s�. However, we have already noticed that every node in the set ⌘n is a node

in nodes(M), that is ⌘n ✓ nodes(M). It remains to prove �M B M
c.n?v�! �M B �M. We

have already shown that (�1 [ �2) B M
c.n?v�! �M, and by Proposition A.2 we obtain that

�M B M
c.n?v�! �M. By definition of weak extensional action, it remains to show that

n 2 Int(�M B M). However, this is ensured, since Int(�n B n~s�) = ⌘ ✓ nodes(M)
n 2 Int(�M B M). Since ⌘ is non-empty, there exists at least a node m 2 nodes(M) such
that �n ` m$ n, and by the definition of 9m we obtain �M ` mm$ n.
• n , m; this case is similar to the one above, noting that in this case we have ⌘ = {n}.

Proof of Proposition 5.18. We prove only (i) and (ii); the other cases ore similar. For (i), suppose
that (�M B �)

⌧
=) (�M B �M),�n B n~⇥�

⌧
=) �n B n~⇥n�, and (�M B �) 9m (�n B n~⇥�) is well

defined
Note that Proposition A.1, which has been proved for state-based networks, also holds for

node-stable network distributions. The proof of this statement is trivial, and it can be performed by
looking and the individual transitions of the state-based networks in the support of a distribution.
Thus, whenever for a distribution �0 such that nodes(�0) ✓ nodes(�) we can derive a (strong)
action �M B �0

⌧�! �M B �1, we can apply Propositions A.1 and A.3 to obtain (�M [ �n)�0 |
s~⇥�

⌧�! (�M [ �n) B �1 | n~⇥�. It is now easy to show that we can infer the hyper-derivation
(�M [ �n)B�

⌧
=) (�M [ �n)B�M | n~⇥�. A similar argument can be used to show that (�M [ �n)B

�M | n~⇥� ⌧
=) (�M [�n)B�M | n~⇥n�; the result follows now from the transitivity of =), Theorem

2.4 (1).

For (ii), suppose that (�MB�)
c!vB⌘
=) (�MB�M), with n < ⌘. We prove that (�M[�N)B�|n~⇥�c!vB⌘

=)
(�M [ �N)B�M | n~⇥� by performing an induction on the derivation (�M B�)

c!vB⌘
=) (�M B�M). FOr

the moment, suppose that ⇥ = s.
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The base case is given by (�M B�)
⌧
=) (�M B�1)

c!vB⌘�! (�M B�2)
⌧
=) (�M B�M). By (i) we have

that (�M[�n)B� |n~⇥� ⌧=)(�M[�n)B�1 |n~⇥�, and (�M[�n)B�2 |n~⇥� ⌧=)(�M[�n)B�M |n~⇥�,
so that it remains to show that (�M [ �n) B �1 | n~⇥�

c!vB⌘�! (�M [ �n) B �2 | n~⇥�.
In this case we can rewrite �1 as

�1 =
X

i2I
pi · Mi

Since �MB�1
c!vB⌘�! �MB�2, it follows that, for all i 2 I, �MBMi

c!vB⌘�! �MB�0i and �2 =
P

i2I pi ·�0i .
It is su�cient to show that, for every i 2 I, �M BMi 9m �n B n~⇥�

c!vB⌘�! �M B�0i 9m �n B n~⇥�, thus
proving

(�M [ �n) B (�1 | n~⇥�)
c!vB⌘�! (�M [ �n) B (�2 | n~⇥�)

The proof of this statement is straigthforward. Let i 2 I; By (i) and by propositions A.1 and
A.32, it is easy to derive the transition above. Hence we have shown that

(�M [ �n) B (� | n~⇥�) ⌧
=) (�1 [ �n) B (�1 | n~⇥�)
c!vB⌘�! (�2 [ �n) B (�2 | n~⇥�)
⌧
=) (�M [ �n) B (�M | n~⇥�)

from which it follows that (�M [ �n) B (� | n~⇥�) c!vB⌘
=) (�M [ �n) B (�M | n~⇥�).

For the inductive case, we have that �M B�
c!vB⌘1
=) �M B�0

c!vB⌘2
=) �M B�M, with ⌘ = ⌘1 [ ⌘2, and

⌘1 \ ⌘2 = ;; in this case it is su�cient to note that n < ⌘1, n < ⌘2 to apply the inductive hypothesis

to the individual transitions �M B �0
c!vB⌘2
=) �M B �M and �M B �1

c!vB⌘1
=) �M B �0, to obtain that

(�M [ �n) B (� | n~⇥�) c!vB⌘1
=) (�M [ �n) B (�0 | n~⇥�)

(�M [ �n) B (�0 | n~⇥�) c!vB⌘1
=) (�M [ �n) B (�M | n~⇥�)

The non-standard definition of extensional output actions, Definition 5.3, and the condition
⌘1 \ ⌘2 = ; ensure that

(�M [ �n) B (� | n~⇥�) c!vB⌘
=) (�M [ �n) B (�m | n~⇥�)

where we recall that ⌘ = ⌘1 [ ⌘2.
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