
Mutually testing processes

?

(Extended abstract)

Giovanni Bernardi and Matthew Hennessy

bernargi@tcd.ie, matthew.hennessy@cs.tcd.ie
School of Computer Science and Statistics,

Trinity College Dublin,
Dublin 2, Ireland

Abstract. In the standard testing theory of DeNicola-Hennessy one
process is considered to be a refinement of another if every test guar-
anteed by the former is also guaranteed by the latter. In the domain of
web services this has been recast, with processes viewed as servers and
tests as clients. In this way the standard refinement preorder between
servers is determined by their ability to satisfy clients.
But in this setting there is also a natural refinement preorder between
clients, determined by their ability to be satisfied by servers. In more
general settings where there is no distinction between clients and servers,
but all processes are peers, there is a further refinement preorder based
on the mutual satisfaction of peers.
We give a uniform account of these three preorders. In particular we
give two characterisations. The first is behavioural, in terms of traces
and ready sets. The second, for finite processes, is equational.

1 Introduction

The DeNicola-Hennessy theory of testing [NH84,DH87,Hen88] considers a pro-
cess p to be a refinement of process q if every test passed by p is also passed
by q. Recently, in papers such as [LP07,Bd10,CGP09,Pad10], this refinement
preorder has been recast with a view to providing theoretical foundations for
web services. Here processes are viewed as servers and tests viewed as clients. In
this terminology the standard (must) testing preorder is a refinement preorder
between servers, which we denote by p

@⇠svr
q; this is determined by the ability

of the servers p, q to satisfy clients. However in this framework there are many
other natural behavioural preorders between processes. In this paper we investi-
gate two; the first, p

@⇠clt
q, is determined by the ability of the clients p, q to be

satisfied by servers. For the second we drop the distinction between clients and
servers. Instead all processes are viewed as peers of each other and the purpose
of interaction between two peers is the mutual satisfaction of both. The resulting
refinement preorder is denoted by p

@⇠p2p
q. We give a uniform behavioural char-

acterisation of all three refinement preorders in terms of traces and acceptances

? Research supported by SFI project SFI 06 IN.1 1898.

sets [NH84,Hen88]. We also give equational characterisations for a finite process
calculus for servers/clients/peers.

We use an infinitary version of CCS [Mil89] augmented by a success constant
1, to describe processes, be they servers, clients or peers. Thus p = ⌧.a.(b. 0 +
c. 0) + ⌧.a.c. 0 is a server which o↵ers the action a followed by either b and c

depending on how choices are made, and then terminates, denoted by 0. On the
other hand r = a.c. 1 is a test or a client which seeks a synchronisation on a

followed by one on c; as usual [Mil89] communication or cooperation consists of
the simultaneous occurrence of an action a and its complement a. Thus when
the server p is executed in parallel with the client r, the latter will always be
satisfied, in that it is guaranteed to reach the successful state 1 regardless of how
the various choices are made. But if the client is executed with the alternative
server q = ⌧.a.b. 0 + ⌧.a.c. 0 there is a possibility of the client remaining unhappy;
for this reason p 6 @⇠svr

q. However it turns out that q

@⇠svr
p because every client

satisfied by q will also be satisfied by p.
The client preorder p

@⇠clt
q compares the processes as clients, and their ability

to be satisfied by servers. This refinement preorder turns out to be incomparable
with the server preorder. For example a. 1 + b. 0 6 @⇠svr

a. 1 because of the client
b. 1. But a. 1 + b. 0 @⇠clt

a. 1 because every server satisfying the former also
satisfies a. 1; intuitively the extra component of the client b. 0 puts no further
demands on servers, because the execution of b will never lead to satisfaction.
Conversely a. 1 @⇠svr

a. 0 because 1 plays no role for processes acting a servers,
while a. 1 6 @⇠clt

a. 0; a. 1 as a client is satisfied by the server a. 0 while a. 0 can
never be satisfied as a client by any server. Behaviour relative to the client
preorder @⇠clt

is very sensitive to the presence of 1 and 0; for example 0 is a least
element, that is 0 @⇠clt

r for any process r.1 However in general the precise role
these constants play is di�cult to discern; for example, rather surprisingly we
have a.(b. 0 + c. 1) + a.(b. 1 + c. 0) @⇠clt

0.
If we ignore the distinction between servers and clients then every process

plays an independent role as a peer to all other processes in its environment.
This point of view leads to another behavioural preorder. Intuitively, we say
that the process p satisfies its peer q if whenever they are executed in parallel
both are guaranteed to be satisfied; in some sense both peers test their partner.
Then p1 @⇠p2p

p2 means that every peer satisfied by p1 is also satisfied by p2.
This third refinement preorder is di↵erent from the server and client pre-

orders. In fact we will show that p1 @⇠p2p
p2 implies p1 @⇠clt

p2; but the converse
is not true in general. For example 1 + b. 0 @⇠clt

1 but 1 + b. 0 6 @⇠p2p
1 because

of the peer b. 1. In our formulation 1 + b. 0 and b. 1 mutually satisfy each other,
whereas the peers 1 and b. 1 do not.

The aim of the paper is to show that the theory of the standard (must) testing
preorder [NH84,Hen88], here formulated as the server refinement preorder @⇠svr

,
can be extended to both the client and the peer refinement preorders.

1 Note in passing that this is not the case for the server preorder; 0 as a server guar-
antees the client b. 0 + ⌧. 1 but the server b. 0 does not.

It is well-known that the behaviour of processes relative to @⇠svr
can be char-

acterised in terms of the traces they can perform followed by ready or acceptance

sets; intuitively each ready set A after a trace s captures a possibility for the
process to deadlock when interacting with a client. For example the process
q = ⌧.a.b. 0 + ⌧.a.c. 0 has the ready set { b } after the (weak) sequence of actions
a; this represents the possibility of q deadlocking if servicing a client which re-
quests an action a but then is not subsequently interested in the action b. The
process p = a.(b. 0 + c. 0) + a.c. 0, also discussed above, has no comparable
ready set and for this reason p 6@⇠svr

q.
The first main result of the paper is a similar behavioural characterisation

of both the client and the peer refinement preorders, in terms of certain kinds
of traces and ready sets. However the details are intricate. It turns out that
unsuccessful traces, those which can be performed without reaching a successful
state, play an essential role. We also need to parametrise these concepts, relative
to usable actions and usable processes; the exact meaning of usable will depend
on the particular refinement preorder being considered.

It is also well-known that the standard testing preorders over finite processes
can be characterised by a collection of (in-)equations over the process operators,
[NH84,Hen88]. The second main result of the paper is a similar characterisation
of the new refinement preorders. In fact there is a complication here, as these
preorders are not in general preserved by the external operator +. A similar
complication occurred in Section 7.2 of [Mil89] in the axiomatisation of weak

bisimulation equivalence, and in the axiomatisations of the must testing pre-
order in [NH84], and we adopt the same solution. We give sound and complete
(in-)equational theories for the largest pre-congruences @⇠

c
clt,

@⇠
c
p2p

contained in
the refinement preorders @⇠clt

,

@⇠p2p
respectively, over a finite version of CCS. The

presence of the success constant 1 in this language complicates the axiomati-
sations considerably, as the behaviour of clients and peers is very dependent
on their ability to immediately report success. For this reason we reformulate
the axiomatisation of must testing preorder from [NH84], which in this paper
coincides with the server preorder @⇠

c
svr

, as a two-sorted equational theory. The
characterisation of the client and server preorders, @⇠

c
clt,

@⇠
c
svr

respectively, requires
extra equations to capture the behaviour of the special processes 1 and 0. For
example one of the inequations required by the client preorder is x 1, while
those for the peer preorder include µ.(1 +x) 1 + µ.x.

The remainder of this extended abstract is organised as follows. Section 2
is devoted to definitions and notation. We introduce a language for describing
processes, an infinitary version of the CCS used in [Mil89], and give the standard
intensional interpretation of it as a labelled transition system, LTS. For the
remainder of the paper, processes will then be considered to be states in the
resulting LTS. We also formally define the three di↵erent refinement preorders
discussed informally in the Introduction, by generalising the standard notion
from [NH84] of applying tests to processes. We begin Section 3 by recalling
the well-known characterisation of the must preorder (Theorem 1) for finite
branching LTSs from [NH84] in terms of traces and ready sets. To adapt this for

the client preorder we need some extra technical notation. This is motivated by
a series of examples, until we finally obtain a statement of the characterisation
(Theorem 2).

The notation used in this characterisation of the client preorder can be mod-
ified in a uniform manner to give an analogous characterisation of the server pre-
order, (Theorem 3), which applies even in LTSs which are not finite-branching.
Finally by combining these we get an analogous characterisation (Theorem 5)
for the peer preorder.

In Section 4 we restrict our attention to a finite sub-language CCSf and ad-
dress the question of equational characterisations. We first show why the client
and peer refinement preorders are not preserved by the external choice oper-
ator +, and give a simple behavioural characterisation of the associated pre-
congruences @⇠

c
svr

,

@⇠
c
clt and @⇠

c
p2p

; this simply involves taking into account the
initial behaviour of processes. We then explain the equations which need to be
added to the standard set in order to obtain completeness (Theorem 9 and The-
orem 8). The paper ends with Section 5, where we present a summary of our
results, a comparison with the existing work, and a series of open questions.

In this extended abstract all proofs are omitted. The proofs of the various
behavioural characterisations from Section 3 will appear in [Ber13].

2 Testing processes

Let Act be a set of actions, ranged over by a, b, c, . . . and let ⌧, X be two distinct
actions not in Act; the first will denote internal unobservable activity while the
second will be used to report the success of an experiment. To emphasise their
distinctness we use Act⌧ to denote the set Act [{ ⌧ }, and similarly for Act⌧ X;
we use µ to range over the former and � to range over the latter. We assume
Act has an idempotent complementation function, with a being the complement
to a. A labelled transition system, LTS, consists of a triple hP, Act⌧ X, �!i,
where P is a set of processes and �!✓ P ⇥ Act⌧ X ⇥ P is a transition relation
between processes decorated with labels drawn from the set Act⌧ X. We use the
infix notation p

��! q in place of (p, �, q) 2�!. An LTS is finite-branching if
for all p 2 P and for all � 2 Act⌧ X, the set { q | p

��! q } is finite. Single
transitions p

��! q are extended to sequences of transitions p

t�! q, where
t 2 (Act⌧ X)?, in the standard manner. For s 2 (ActX)? we also have the standard
weak transitions, p

s=) q, defined by ignoring the occurrences of ⌧s. Somewhat
nonstandard is the use of infinite weak transitions, p

u=), for u 2 (Act)1.
It will be convenient to have a notation for describing LTSs; we use an infini-

tary version of CCS, [Mil89], augmented with a success operator, 1. The syntax
of the language is depicted in Figure 1. We use 0 to denote the empty external
sum

P
i2; pi and p1 + p2 for the binary sum

P
i2{ 1,2 } pi. If I is a non-empty set,

we use
L

i2I pi to denote the sum
P

i2I ⌧.pi. For the remainder of the paper we

use the LTS whose states are the terms in CCS and where the relations p

��! q

are the least ones determined by the (standard) rules in Figure 2. We use finite

p, q, r ::= 1 | A | µ.p |
X

i2I

pi | p || q

where I is a countable index set, and A ranges over a set of definitional constants each

of which has an associated definition A

def
= pA.

Fig. 1. Syntax of infinitary CCS.

1
X�! 0

(a-Ok)
µ.p

µ�! p

(a-Pre)

p

��! p

0

p + q

��! p

0
(r-Ext-l)

q

��! q

0

p + q

��! q

0
(r-Ext-r)

q

��! q

0

q || p

��! q

0 || p

(p-Left)
p

��! p

0

q || p

��! q || p

0
(p-Right)

q

a�! q

0
p

a�! p

0

q || p

⌧�! q

0 || p

0
(p-Synch)

p

��! p

0

A

��! p

0
A

def
= p; (r-Const)

Fig. 2. The operational semantics of CCS

branching CCS to refer to the LTS which consists only of terms from CCS which
generate finite branching structures.

A computation consists of series of ⌧ actions of the form

p || r = p0 || r0
⌧�! p1 || r1

⌧�! . . .

⌧�! pk || rk
⌧�! . . . (1)

It is maximal if it is infinite, or whenever pn || rn is the last state then pn ||
rn

⌧
6�!. A computation may be viewed as two processes p, r, one a server and

the other a client, co-operating to achieve individual goals, which may or may
not be independent. We say (1) is client-successful if there exists some k � 0
such that rk

X�!. It is successful if it is client-successful and there exists an l � 0
such that pl

X�!. In a client-successful computation the client can report success

while in a successful one both the client and the server can report success; note
however that they are not required to do so at the same time.

Definition 1 (Passing tests). We write p must r if every maximal com-

putation from p || r is client-successful. We write p mustp2p
r if every such

computation is successful. ut

Intuitively, p must r means that the client r is satisfied by the server p, as r

always reaches a state where it can report success. On the other hand, p mustp2p
r

means that p passes r and r also passes p; so p and r have to collaborate in order
to pass each other. Thus, when using the testing relation mustp2p we think of p

and r as two peers rather than a server and a client.

Definition 2 (Testing preorders). In an arbitrary LTS we write

(1) p1 @⇠svr
p2 if for every r, p1 must r implies p2 must r

(2) r1 @⇠clt
r2 if for every p, p must r1 implies p must r2

(3) p

@⇠p2p
q if for every r, p mustp2p

r implies q mustp2p
r.

We use the obvious notation for the kernel of these preorders; for instance p1 hp2p

p2 means that p1 @⇠p2p
p2 and p2 @⇠p2p

p1. ut

The preorder @⇠svr
is meant to compare servers, as p1 @⇠svr

p2 ensures that all the
clients passed (wrt must) by p1 are passed also by p2. The preorder @⇠clt

relates
processes seen as clients, because r1 @⇠clt

r2 means that all the servers that satisfy
r1 satisfy also r2. The third preorder, @⇠p2p

, relates processes seen as peers; this
follows from the fact that p mustp2p

r is true only if p and r mutually satisfy each
other.

3 Semantic characterisations

The standard (must) testing preorder from [NH84,Hen88] has been characterised
for finite-branching LTSs using two behavioural predicates. The first, p +s, says
that p can never come across a divergent residual while executing the sequence of
actions s 2 Act?. We use the notation p +, p converges, to mean that there is no
infinite sequence p

⌧�! p1
⌧�! . . .

⌧�! pk
⌧�! Then the general convergence

predicate is defined inductively as follows:

(a) p +" whenever p +
(b) p +a.s whenever p + and p

a=) implies
L

(p after a) +s

where (p after s) denotes the set { p

0 | p

s=) p

0 }. Note that p

a=) ensures that
(p after a) is non-empty; thus

L
(p after a) represents a (well-formed) process

consisting of the choice between the elements of the non-empty set (p after a),
which may in general be infinite. The second predicate codifies the possible
deadlocks which may occur when a process p attempts to execute the trace of
actions s 2 Act?:

Acc(p, s) = {S(q) | p

s=) q

⌧
6�! } (2)

where S(q) = { a 2 Act | q

a�! }. The sets S(q) are called ready sets, while
we say that Acc(p, s) is the acceptance set of p after a trace s. Ready sets are
essentially the complements of the refusal sets used in [Hoa85]. The sets in
Acc(p, s) describe the interactions that can lead p out of a possible deadlock,
reached by executing the trace s of external actions.

Theorem 1 [DH87,Hen88] In finite branching CCS, p

@⇠svr
q if and only if, for

every s 2 Act?, if p +s then (i) q +s, (ii) for every B 2 Acc(q, s) there exists
some A 2 Acc(p, s) such that A ✓ B, and (iii) if q

s=) then p

s=). ut

As might be expected, this behavioural characterisation does not work for @⇠clt
:

Example 1. One can prove that b.a. 1 @⇠clt
q, where q denotes b.(c. 0 + 1). How-

ever their acceptance sets are not related as required by Theorem 1. Calculations
show that Acc(b.a. 1, b) = { { a } }. But { c } 2 Acc(q, b) and so there is no set B

in Acc(b.a. 1, b) satisfying B ✓ { c }. ut

In Example 1 we should not require the ready set { c } 2 Acc(q, b) to be matched
by one in Acc(b.a. 1, b) because q can report success immediately after performing
b. We formalise this intuition. For every s 2 Act? let p

s=)6Xq be the least relation
satisfying

(1) p

X
6�! implies p

"=)6Xp

(2) if p

0 s=)6Xq and p

X
6�! then

– p

a�! p

0 implies p

as=)6Xq

– p

⌧�! p

0 implies p

s=)6Xq

Intuitively, p

s=)6Xq means that p can perform the sequence of external actions s

ending up in state q without passing through any state which can report success;
in particular neither p nor q can report success. This notation is extended to
infinite traces, u 2 Act1, by letting p

u=)6X whenever there exists a t 2 (Act⌧)1

such that t = µ1µ2 . . ., (a) p = p0
µ1�! p1

µ2�! p2
µ3�! . . . implies that pi

X
6�!

for every pi, and (b) for every n 2 N and some k 2 N, un = htki\⌧ ; where hti\⌧

removes the ⌧s from the string t.

Definition 3. For every process p and trace s 2 Act?, let

Acc 6X(p, s) = {S(q) | p

s=)6Xq

⌧
6�! }

We call the set Acc 6X(p, s) the unsuccessful acceptance set of p after s. ut

We can now try to adapt the characterisation for servers in Theorem 1 to
clients as follows:

Definition 4. Let r1 4bad r2 if for every s 2 Act?, if r1 + s then (i) r2 + s,

and (ii) for every B 2 Acc 6X(r2, s), there exists some A 2 Acc 6X(r1, s) such that

A ✓ B. ut

Example 2. One can show that r

@⇠clt
c.a. 1 where r denotes the client c.(a. 1 +b. 0).

However they are not related by the proposed 4bad in Definition 4. Obviously
r + c and { a } 2 Acc 6X(c.a. 1, c). But there is no B 2 Acc 6X(r, c) such that
B ✓ { a }; this is because Acc 6X(r, c) = { { a, b } }. The problem is the presence
of b in the ready set of a. 1 + b. 0. ut

Intuitively, the action b is unusable for r after having performed the unsuccessful
trace c; this is because performing b leads to a client, 0, which is unusable, in the
sense that it can never be satisfied by any server. When comparing ready sets
after unsuccessful traces in Definition 4 we should ignore occurrences of unusable

actions.
Let Uclt = { r | p must r, for some server p }. The set Uclt contains the

usable clients, those satisfied by at least one server. We also need to consider
the residuals of a client r only after unsuccessful traces: for any process r and
s 2 Act? let

(r after 6X s) = { q | r

s=)6Xq }
Now the set of usable actions for a client after s can be defined as

uaclt(r, s) = { a 2 Act |
M

(r after 6X sa) 2 Uclt } (3)

Thus if a 2 uaclt(r, s) we know that the set of clients (r after 6X sa) is non-empty,
and the client given by the choice among those clients is usable; that is, there is
some server which satisfies it.
Example 3. We revisit Example 2. Although r can perform the sequence cb, b is
not in uaclt(r, c) because (r after 6X cb) is the singleton set containing 0, which is
not in Uclt. Instead we have uaclt(r, c) = { a }.

If we amend Definition 4 by replacing the set inclusion A ✓ B with the
more relaxed condition A\ uaclt(r1, s) ✓ B, it follows that r 4bad c.a. 1; thereby
correctly reflecting the fact that r

@⇠clt
c.a. 1. ut

Example 4. In (3) above we must consider only the unsuccessful traces rather
than all the traces. Consider the client r = b.(⌧.(1 + a. 0) + ⌧.a.⌧. 1). First note
that b.a. 0 must r while b.a. 0 6must b. 0 and therefore r 6@⇠clt

b. 0.
Now consider the consequences of using after rather than after 6X in the defini-

tion (3) above. The amendment to the definition of 4bad suggested in Example 3
would no longer be sound, as r 4bad b. 0 would be true.

This is because (r after ba) is the set { 0, 1 } and so
L

(r after ba) is the
client ⌧. 0 + ⌧. 1 , which is not in Uclt. This leads to uaclt(r, b) being ;, from
which r 4bad b. 0 would follow. The incorrect reasoning involves the unsuccessful
acceptance set after the trace b. Acc 6X(b. 0, b) = { ; } and the unique ready set it
contains, ;, can be matched by A\; for some A 2 Acc 6X(r, b), namely A = { a }.

However with the correct definition (3) this reasoning no longer works as
uaclt(r, b) = { a }. ut
Unfortunately the amendment to Definition 4 suggested in Example 3 is still not
su�cient to obtain a complete characterisation of the client preorder.
Example 5. Consider the clients r1 = a.(b.d. 0 +b. 1) and r2 = a.c.d. 1. As r1

is not usable r1 @⇠clt
r2, although r1 64bad r2, even when 4bad is amended as

suggested in Example 3. To see this first note { d } 2 Acc 6X(r2, ac), and r1 +ac,
although r1 can not actually perform the sequence of actions ac; r1 +ac merely
says that if r1 can perform any prefix of the sequence ac to reach r

0 then r

0 must
converge. Consequently Acc 6X(r1, ac) is empty and thus no ready set B can be
found to match the ready set { d }. ut

To fix this problem we need to reconsider when ready sets are to be matched.
In Definition 4 this matching is moderated by the predicate + s; for example
a.(⌧1 + b. 1) 4bad a.c.d. 1, where ⌧

1 denotes some process which does not
converge. This is because a.(⌧1 + b. 1) +a is false and therefore the ready set
{ c } 2 Acc 6X(a.c.d. 1, a) does not have to be matched by a.(⌧1 + b. 1). However
the client preorder is largely impervious to convergence/divergence. For example
1 hclt (1 +⌧

1).
It turns out that we have to moderate the matching of ready sets, not via

the convergence predicate, but instead via usability.
For every s 2 Act?, the client usability after an unsuccessful trace s, denoted

usbl6X s, is defined by induction on s:

– r usbl6X " if r 2 Uclt

– r usbl6X a.s if r 2 Uclt, and if r

a=)6X then
L

(r after 6X a) usbl6X s

It is extended to infinite traces u 2 Act1 in the obvious manner. Intuitively
r usbl6X s means that any state reachable from r by performing any subsequence
of s is usable. Note that only unsuccessful traces have to be taken into the
account.

One can show that if r1 @⇠clt
r2 and r1 usbl6X s then r2 usbl6X s. In fact

this predicate describes precisely when we expect ready sets of clients to be
compared.

Definition 5 (Semantic client-preorder). In any LTS, let r1 -clt r2 if

(1) for every s 2 Act? such that r1 usbl6X s, (a) r2 usbl6X s, and (b) for every

B 2 Acc 6X(r2, s) there exists some A 2 Acc 6X(r1, s) such that

A \ uaclt(r1, s) ✓ B

(2) for w 2 Act? [Act1 such that r1 usbl6X w, r2
w=)6X implies r1

w=)6X. ut

Example 6. Let us revisit the clients r1, r2, in Example 5. The client b.d. 0 +b. 1
is not usable; that is b.d. 0 +b. 1 62 Uclt because it cannot be satisfied by any
server. Consequently r1 usbl6X ac does not hold, and therefore when checking
whether r1 -clt r2 holds the ready set { d } 2 Acc 6X(r2, ac) does not have to be
matched by r1.

Indeed it is now straightforward to check that r1 -clt r2; the only s 2 Act?

for which Acc 6X(r2, s) is non-empty and r1 usbl6X s is the empty sequence ". ut

In general, and in particular in LTSs which are not finite branching, the
condition on the existence of infinite computations in (2) does not follow from
the condition on finite computations.

Example 7. Consider the process q from Figure 3, where qk denotes a process
which performs a sequence of k a actions followed by 1. Let p be a similar process,
but without the self loop. Then p usbl6X s and q usbl6X s for every s, and the
pair (p, q) satisfies condition (1) of -clt, and condition (2) on finite ws. However

q

q2q1q0 q3 . . .

a

a

a

a

a

a

Fig. 3. Infinite traces

condition (2) on infinite ws is not satisfied: if u denotes the infinite sequence of

as then q

u=)6X but p

u
6=)6X.

In fact p 6@⇠clt
q. For consider the process A

def= a.A. When p is run as a
test on A, or as a client using the server A, every computation is finite and
successful; A must p. However when q is run as a test, there is the possibility
of an infinite computation, the indefinite synchronisation on a, which is not
successful; A 6must q. ut

Theorem 2 In CCS, r1 @⇠clt
r2 if and only if r1 -clt r2. ut

The server-preorder @⇠svr
can be characterised behaviourally in manner dual

to that of Definition 5, using the set of usable servers Usvr = { p | p must
r, for some client r }, the usable actions uasvr(p, s) = { a 2 Act |

L
(p after

sa) 2 Usvr }, and the server convergence predicate p +svr s, defined as the
conjunction of p +s and a server usability predicate p usbl s. This latter predicate
is defined inductively in a manner similar to usbl6X s, but over all traces s, rather
than simply the unsuccessful ones.

Definition 6 (Semantic server-preorder). In any LTS, let p -svr q if (1)

for every s 2 Act? such that p +svr s, (a) q +svr s, and (b) for every B 2 Acc(q, s)
there exists some A 2 Acc(p, s) such that

A \ uasvr(p, s) ✓ B

(2) for every w 2 Act? [Act1 such that p +svr w, q

w=) implies p

u=). ut

Theorem 3 In CCS, p

@⇠svr
q if and only if p -svr q. ut

This can be seen to be a generalisation of Theorem 1, as the server usability
predicate Usvr is degenerate; it holds for every process, since any process used
as a server trivially satisfies the degenerate client 1.

Let us now consider the peer preorder. The following result is hopeful:

Proposition 4 In CCS, p

@⇠p2p
q implies p

@⇠clt
q. ut

(S1a) µ.x6X + µ.y = µ.(⌧.x6X + ⌧.y)
(S1b) ⌧.x ⌧.⌧.x

(S2) x6X + ⌧.y = ⌧.(x6X + y) + ⌧.y

(S3) µ.x + ⌧.(µ.y + z) = ⌧.(µ.x + µ.y + z)
(S4) ⌧.x + ⌧.y x

(S5) ⌦ x

Fig. 4. Standard inequations

Unfortunately, the peer preorder is not contained in the server preorder:

Example 8. It is easy to see that a. 0 @⇠p2p
b. 0. This is true because a. 0 can never

be satisfied, for it o↵ers no X at all. However, a. 0 6@⇠svr
b. 0, as the client a. 1 is

satisfied by a. 0, whereas b. 0 6must a. 1. ut

Intuitively, the reason why @⇠p2p
6✓ @⇠svr

is that the server preorder does not take
into account the requirement that servers should now act as peers; they should
also be satisfied by their interactions with clients. To take this into account we
introduce the usability of peers and amend the definition of -svr accordingly.
In principle we should introduce the set of usable peers, Up2p = { p | p mustp2p

r for some peer r }. However, since Up2p turns out to coincide with Uclt, instead
we define the peer convergence predicate by using the usability predicate of
clients. For every w 2 Act? [Act1, let p +p2p w whenever p +w and p usbl6X w.

Definition 7. Let p -usvr q whenever (1) for every s 2 Act?, if p +p2p s then

(a) q +p2p s, and (b) for every B 2 Acc(q, s) there exists some A 2 Acc(p, s)
such that

A \ uaclt(p, s) ✓ B

(2) for every w 2 Act? [Act1, if p +p2p w, and q

w=), then p

w=). ut

Definition 8 (Semantic peer-preorder). Let p -p2p q if p -clt q and

p -usvr q.

Note that the definition of p -p2p q is not simply the conjunction of the client
and server preorders from Definition 5 and Definition 6. It is essential that the
usable set of peers Up2p be employed.

Theorem 5 In CCS, p

@⇠p2p
q if and only if p -p2p q. ut

4 Equational characterisation

We use CCSf to denote the finite sub-language of CCS; this consists of all finite
words constructed from the operators 0, 1,+, µ.� for each µ 2 Act⌧ , together
with the special operator ⌦; this last denotes the term ⌧

1 from CCS and its
inclusion enables us to consider the algebraic properties of divergent processes.
Our intention is to use equations, or more generally inequations, to characterise
the three behavioural preorders p

@⇠?
q over this finite algebra, where ? ranges

(Za) ⌧. 0 ⌦

(CLT1a) x 1
(CLT1b) 1 x + 1
(CLT1c) 0 µ. 1

(Zb) µ. 0 0

(P2P1) 0 1
(P2P2) µ.(1 +x) 1 + µ.x

(P2P3) µ.(1 +x) + µ.(1 +y) µ.(1 +⌧.x + ⌧.y)

Fig. 5. Client and peer inequations

over svr, clt and p2p. Minor variations on standard equations, [Mil89], can be
used for the other operators, such as parallel and hiding. For a given set of
inequations E we will use p vE q to denote the fact that the inequation p q

can be derived from E using standard equational reasoning, while p =E q means
that both p vE q and q vE p can be derived.

There are two immediate obstacles. The first is that these preorders are not
pre-congruences for the language CCSf; specifically they are not preserved by the
choice operator +.

Example 9. Using the behavioural characterisation in Definition 8 it is easy to
check that 0 @⇠p2p

b. 0; in fact this is trivial because 0 62 Up2p. However a. 1 +
0 6@⇠p2p

a. 1 +b. 1 because a. 1 + b. 0 mustp2p
a. 1 + 0 while a. 1 + b. 0 6mustp2p

a. 1 + b. 0; the latter follows because of the possible communication on b.
The same counter-example also shows that the other preorders are also not

preserved. ut

So in order to discuss equational reasoning we focus on the largest CCSf pre-
congruence contained in @⇠?

which we denote by @⇠
c
?
; by definition this is preserved

by all the operators. But it is convenient to have alternative more amenable
characterisations. To this end we let p

@⇠
+
?

q to mean that a. 1 + p

@⇠?
a. 1 + q

for some fresh action name a.

Proposition 6 In CCS, p

@⇠
c
?

q if and only if p

@⇠
+
?

q. ut

Note that this is similar to the characterisation of observation-congruence in
Section 7.2 of [Mil89]; the same technique is also used in [NH84].

The second obstacle is that the behavioural preorders are very sensitive to
the ability of processes to immediately report success, with the result that many
of the expected equations are not in general valid. For example the innocuous

a.⌧.x = a.x,

valid in the theories of [Mil89,NH84], is not in general satisfied by two of our
behavioural theories. For example a. 1 6@⇠

+
p2p

a.⌧. 1 because of the peer a.(1 + ⌦).
In order to have a more elegant presentation of the axioms we will use two

sorts of variables, the standard x, y, . . . which may be instantiated with any pro-
cess from CCSf, and x6X, y6X, . . . which may only be instantiated by a process p

satisfying p 6 X�!; in CCSf such processes p in fact have a simple syntactic charac-
terisation. With this convention in mind consider the five standard inequations
given in Figure 4, which are satisfied by all three behavioural preorders @⇠

+
?
.

We also assume the standard equations for (CCSf
,+, 0) being a commutative

monoid. Let SVR denote the set of inequations obtained by adding

(SVR1) 1 = 0

Intuitively 1 has no significance for server behaviour; this extra equation captures
this intuition and is su�cient to characterise the server preorder:

Theorem 7 [Soundness and completeness for server-testing] In CCSf, p

@⇠
c
svr

q if
and only p vSVR q. ut

In order to characterise the client and peer preorders we need to replace the
equation SVR1 with inequations which capture the significance of the operators
1 and 0 for clients and peers respectively. A su�cient set of inequations for clients
is also given in Figure 4. Thus the client preorder has both a least element ⌦

from (S5), which by (Za) is also equivalent to ⌧. 0, and a greatest element 1
from (CLT1a). Let CLT denote the resulting set of inequations.

Theorem 8 [Soundness and Completeness for client-testing] In CCSf, p

@⇠
c
clt q

if and only p vCLT q. ut

Both the inequations (Za) and (Zb) remain valid for the peer preorder, but
none of the unit inequations (CLT1a) - (CLT1c) are. They need to be replaced
by unit inequations appropriate to peers. Let P2P denote the set obtained by
replacing them with (P2P1) - (P2P3).

Theorem 9 [Soundness and Completeness for peer-testing] In CCSf
w⌧ , p

@⇠
c
p2p

q

if and only p vP2P q. ut

5 Conclusions

Much of the recent work on behavioural preorders for processes has been carried
out using formalisms for contracts for web-services, proposed first in [CCLP06].
Spurred on by the recasting of the standard must preorder from [NH84] as a
server-preorder between contracts, these ideas have been developed further in
[LP07,CGP09,Bd10,Pad10].

In these publications the standard refinements are referred to as subcontracts

or sub-server relations and [LP07,CGP09,Pad10,Bd10] contain a range of alter-
native characterisations. For example in [LP07,CGP09] the characterisations are
coinductive and essentially rely on traces and ready sets; in [Bd10] the charac-
terisation is coinductive and syntax-oriented.

To the best of our knowledge, the first paper to use a preorder for clients
is [Bd10]. But their setting is much more restricted; they use so-called session

behaviours which correspond to a much smaller class of processes than our lan-
guage CCS. As there are fewer contexts, their sub-server preorder di↵ers from
our server preorder: a1. 1 �s a1. 1 + a2. 1, whereas a1. 1 6@⇠svr

a1. 1 + a2. 1.
The refinements in the papers mentioned above depend on a compliance re-

lation, rather than must testing; this is also why in [Bd10] the peer preorder �:
coincides with the intersection of the client and the server preorders; this is not
the case for the must preorders (Example 8 can be tailored to the setting of ses-
sion behaviours). Moreover, in a general infinite branching and non-deterministic
LTS the refinements in the above papers di↵er from the preorder @⇠svr

. The sub-
contract relation of [LP07] turns out to be not comparable with @⇠svr

, whereas the
strong subcontract v of [Pad10] is strictly contained in @⇠svr

, as the LTS there
is convergent and finite branching. The comparison of @⇠svr

with the refinement
preorder of [CGP09] is complicated by their use of a non-standard LTS.

In [BMPR09] a symmetric refinement due to the compliance, vds, is studied;
it di↵ers from our peer preorder (@⇠p2p

6✓ vds), and its characterisation does not
mention usability. This is because of the restrictions of the LTS in [BMPR09]. In
more general settings the usability of contracts/services is crucial; [Pad11] talks
of viability, while [MSV10] talks of controllability.

Also subcontracts/subtyping for peers inspired by the should/fair-testing of
[RV07] have been proposed in [BZ09,BMPR09,Pad11]. In [BZ09] the fair-testing
preorder is used as proof method for relating contracts, but no characterisation
of their refinement preorder is given. A sound but incomplete characterisation is
given in [BMPR09]. The focus of [Pad11] is on multi-party session types which,
roughly speaking, cannot express all the behaviours of our language CCS. In
view of the restricted form of session types, they can give a syntax-oriented
characterisation of their subtyping relation, 6; this is in general incomparable
with our @⇠p2p

.

Future work: The most obvious open question about our two new refinement
preorders @⇠clt

and @⇠p2p
is the development of algorithms for finite-state systems.

The ability to check e�ciently whether a process is usable will play an important
role.

Another interesting question would be to characterise in some equational
manner the refinement preorders @⇠clt

,

@⇠p2p
themselves rather than their associ-

ated pre-congruences @⇠
+
clt and @⇠

+
p2p

. In the resulting equational theory we would
have to restrict in some way the form of reasoning allowed under the external
choice operator � + �, but the extra inequations needed in such a proof system
might be simpler.

We have confined our attention to refinement preorders based on must test-
ing. But one can also define client and peer preorders based on the standard
may testing of [NH84]. We believe that these refinement preorders can be com-
pletely characterised using a modified notion of trace, which takes into account
the usability of residuals. Other variations on client and peer preorders are worth
investigating: a “synchronous” formulation of @⇠p2p

where a computation is suc-
cessful only if the peers report success at the same time; the client preorders for
fair settings [Pad11,BZ09], or the ones based on the compliance [Pad10].

Acknowledgements The first author would like to acknowledge Vasileios Koutavas,
for his help in unravelling the client preorder.

References

Bd10. Franco Barbanera and Ugo de’Liguoro. Two notions of sub-behaviour for
session-based client/server systems. In Temur Kutsia, Wolfgang Schreiner,
and Maribel Fernández, editors, PPDP, pages 155–164. ACM, 2010.

Ber13. Giovanni Bernardi. Behavioural Equivalences for Web Ser-
vices. PhD thesis, Trinity College Dublin, 2013. Available from
https://www.scss.tcd.ie/⇠bernargi.

BMPR09. Michele Bugliesi, Damiano Macedonio, Luca Pino, and Sabina Rossi. Com-
pliance preorders for web services. In Cosimo Laneve and Jianwen Su,
editors, WS-FM, volume 6194 of Lecture Notes in Computer Science, pages
76–91. Springer, 2009.

BZ09. Mario Bravetti and Gianluigi Zavattaro. Contract-based discovery and com-
position of web services. In Marco Bernardo, Luca Padovani, and Gianluigi
Zavattaro, editors, SFM, volume 5569 of Lecture Notes in Computer Sci-
ence, pages 261–295. Springer, 2009.

CCLP06. Samuele Carpineti, Giuseppe Castagna, Cosimo Laneve, and Luca
Padovani. A formal account of contracts for web services. In Mario Bravetti,
Manuel Núñez, and Gianluigi Zavattaro, editors, WS-FM, volume 4184 of
Lecture Notes in Computer Science, pages 148–162. Springer, 2006.

CGP09. Giuseppe Castagna, Nils Gesbert, and Luca Padovani. A theory of contracts
for web services. ACM Trans. Program. Lang. Syst., 31(5):1–61, 2009. Su-
persedes the article in POPL ’08.

DH87. Rocco De Nicola and Matthew Hennessy. Ccs without tau’s. In Hart-
mut Ehrig, Robert A. Kowalski, Giorgio Levi, and Ugo Montanari, editors,
TAPSOFT, Vol.1, volume 249 of Lecture Notes in Computer Science, pages
138–152. Springer, 1987.

Hen88. Matthew Hennessy. Algebraic Theory of Processes. The MIT Press, Cam-
bridge, Mass., 1988.

Hoa85. C. A. R. Hoare. Communicating sequential processes. Prentice-Hall, 1985.
LP07. Cosimo Laneve and Luca Padovani. The must preorder revisited. In Pro-

ceedings of the 18th international conference on Concurrency Theory, pages
212–225, Berlin, Heidelberg, 2007. Springer-Verlag.

Mil89. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
MSV10. Arjan J. Mooij, Christian Stahl, and Marc Voorhoeve. Relating fair testing

and accordance for service replaceability. J. Log. Algebr. Program., 79(3-
5):233–244, 2010.

NH84. R. De Nicola and M. C. B. Hennessy. Testing equivalences for processes.
Theoretical Computer Science, 34(1–2):83–133, November 1984.

Pad10. Luca Padovani. Contract-based discovery of web services modulo simple
orchestrators. Theor. Comput. Sci., 411(37):3328–3347, 2010.

Pad11. Luca Padovani. Fair Subtyping for Multi-Party Session Types. In Proceed-
ings of the 13th Conference on Coordination Models and Languages, volume
LNCS 6721, pages 127–141. Springer, 2011.

RV07. A. Rensink and W. Vogler. Fair testing. Information and Computation,
205(2):125–198, 2007.

