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Session types and contracts are two formalisms used to study client–server protocols. In this

paper, we study the relationship between them. The main result is the existence of a fully

abstract model of session types; this model is based on a natural interpretation of these

types into a subset of contracts.

1. Introduction

Communication between processes in a distributed system often consists of a structured

dialogue, following a protocol which specifies the format of the messages interchanged

and, at least for binary communication, the direction of the messages. Session types, ST ,

have been introduced as an approach to the static analysis of the participants of such

dialogues. They allow structured sequences of non-uniform messages to be interchanged

between the participants. For example, using the notation of Gay and Hole (2005), the

type ![Int]; ?[Real]; end specifies the output of a value of type Int followed by the input

of a value of type Real, after which the dialogue is terminated. Flexibility in the permitted

sequencing of messages by a process is accommodated by two choice operators; the

branching type &⟨T1, T2 ⟩ offers a choice to the partner in the dialogue between following

either the protocol specified by the type T1 or that specified by T2. On the other hand, the

choice type ⊕⟨T1, T2 ⟩ allows the process itself to follow either of the protocols specified

by T1 or T2.

Sub-typing (Gay and Hole 2005), also increases the flexibility of the type system;

intuitively T1 !st T2 means that any participant designed with the protocol specified

by T1 in mind may also be used in a situation where the protocol specified by T2 will

be followed. Intuitively this pre-order between session types is generated by allowing

more possibilities in branching types and restricting them in choice types. The reader is

referred to Caires and Pfenning (2010), Gay and Hole (2005) and Honda et al. (1998) for

more details on session types, including how they are associated with processes and what

behaviour they guarantee.

Web services (Alonso et al. 2004; Bernardo et al. 2009) are distributed components which

can be combined using standard communication protocols and machine-independent

message formats to provide services to clients. To encourage reusability, descriptions of

their behaviour are typically made available in searchable repositories (oasis Standard

† This research was supported by SFI project 06 IN.1 1898.
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2011). In papers such as Barbanera and de’Liguoro (2010), Carpineti et al. (2006),

Castagna et al. (2009) and Laneve and Padovani (2007), a language of contracts has

been proposed for describing behaviours; despite a very different surface syntax, the

language of contracts is very similar in style to session types. In particular there is the

sequencing of messages α1.α2, an external choice between behaviours σ1 + σ2 reminiscent

of the branching type &⟨T1, T2 ⟩, and an internal choice between allowed behaviours

σ1 ⊕ σ2, reminiscent of the choice type ⊕⟨T1, T2 ⟩.
The object of this paper is to study the precise relationship between these two

formalisms. In particular for first-order session types, which do not allow the use of

communication channels in messages, we show that the theory of session types, ⟨ST ,!st ⟩,
can be captured precisely using a natural pre-order over a subclass of contracts.

Contracts for web services serve two roles. A contract σ may describe the behaviour of

a server offering some specific service. Dually a contract ρ may describe the behaviour

expected of a client who wishes to avail of a particular service. Central to the theory of

contracts for web services is the idea of compliance between such contracts, formalized as

an asymmetric relation ρ ⊣ σ; it has been defined in a variety of ways in papers such as

Castagna et al. (2009) and Laneve and Padovani (2007, 2008). This leads to two natural

pre-orders on contracts, defined set theoretically:

— the server pre-order: σ1 ⊑srv σ2 if for every (client) contract ρ, ρ ⊣ σ1 implies ρ ⊣ σ2

— the client pre-order: ρ1 ⊑clt ρ2 if for every (server) contract σ, ρ1 ⊣ σ implies ρ2 ⊣ σ.

As we have already stated session types are more or less a syntactic variant of contracts;

formally there is a straightforward translation M(T ) of session types into contracts.

Unfortunately neither of the relations ⊑srv ,⊑clt are sound with respect to sub-typing;

specifically there are session types T1, T2 such that T1 !st T2 but M(T1) and M(T2) are

unrelated as contracts.

The problem lies in the fact that, viewed as constraints on behaviour, session types are

much more constraining than contracts. We therefore isolate a subset of contracts, which

we call session contracts, SC, that are the range of the translation function M. This enables

us to define a sub-server relation and a sub-client relation, ⊑SC
srv and ⊑SC

clt respectively, on

these contracts. Even though these relations are respectively coarser than ⊑srv and ⊑clt,

it turns out that these relations are still unsound with respect to session sub-typing. But

in the main result of the paper we show that by combining these pre-orders we obtain

full abstraction, that is a sound and complete model for session types.

Throughout the paper we follow the approach of Castagna et al. (2009) and Padovani

(2010), and think of ‘contracts’ only as terms of (some dialect of) ccs without τ’s (Nicola

and Hennessy 1987); in particular, our notion of contract is completely independent of

that discussed in McNeile (2010) and Meyer (1997).

1.1. Contributions

The contributions of this paper are the following: Theorem 5.7 provides what, to the

best of our knowledge, is the first fully abstract model of session types in terms of

contracts. Theorems 4.14 and 4.24 are the first alternative characterizations of the server
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S, T ::= Session types

end satisfaction

?[t];S input

![t];S output

&⟨ l1 : S1, . . . , ln : Sn ⟩, n ≥ 1 branch

⊕⟨ l1 : S1, . . . , ln : Sn ⟩, n ≥ 1 choice

X type variable

µX. S recursion

We impose the additional proviso that in a term the li’s are pair-wise different.

Fig. 1. Session types (first-order).

and the client pre-orders on session contracts. Corollary 3.51 is the first published proof

showing the equality between a first-order compliance-based refinement and a testing

based must pre-order; moreover, the corollary means that the equality holds regardless of

the co-action relation used to let contracts interact.

1.2. Structure of the paper

The paper is organized as follows. In the next section we give the definition of session

types and the sub-typing between them; this material is taken directly from Gay and

Hole (2005), although our definition is based on first-order types; however, we allow a

primitive sub-typing relation between the basic types.

In the subsequent section we study contracts. We use the language for contracts of

Padovani (2010), and we provide a formulation of the notion of compliance which differs

from the one of Padovani (2010) in that (a) it is co-inductively defined, and (b) it is

parametrized over the co-action relations ◃▹. Then, disregarding the parameter ◃▹, we

provide a co-inductive characterization of the server pre-order on contracts, and we prove

that it equals the must pre-order over contracts. As we reason up to ◃▹, the result that we

obtain is more general than a similar result presented in Laneve and Padovani (2007). In

Section 4 we focus on a subset of contracts called session contracts SC, this time giving co-

inductive characterizations to both the restricted server pre-order ⊑SC
srv and the restricted

client pre-order ⊑SC
clt over them. Due to the very restricted nature of these contracts,

these co-inductive characterizations are purely in terms of their syntax. In Section 5,

we tackle the central question of the paper. Having defined the (obvious) translation

of session types into session contracts, we explain why the two natural pre-orders ⊑SC
srv

and ⊑SC
clt are unsound relative to the sub-typing on session types. Finally, we prove that

when combined they provide a sound and complete model; the proof is greatly facilitated

by their co-inductive characterizations. The paper concludes with a brief look at related

work.

2. Session types

The syntax of terms for session types is given by the language LST in Figure 1. It

presupposes a denumerable set of labels L, ranged over by l, and a set of basic or ground
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T
T ̸= µZ. S

T
{

µY. T /Y
}

µY. T

Fig. 2. Inference rules for ↓dpt on closed terms.

types BT types ranged over by t. We also use a denumerable set of variables Vars , ranged

over by X, in order to express recursive types.

The use of variables leads to the usual notion of free and bound occurrences of

variables in terms in the standard manner; we say that a term is closed if it contains

no free variables. We also have the standard notion of capture avoidance substitution of

terms for free variables. For the sake of clarity let us recall this definition: a substitution

s is a mapping from the set Vars to the set of terms in LST . Let

s − X =

{
s \ {(X, s(X))} if X ∈ dom(s)

s otherwise.

Then the result of applying a substitution s to the term S is defined as follows:

Ss =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

end if S = end

s(X) if S = X, and X ∈ dom(S)

X if S = X, and X ̸∈ dom(S)

![t]; (S ′s) if S = ![t]; S ′

?[t]; (S ′s) if S = ?[t]; S ′

&⟨ l1 : (S1s), . . . , ln : (Sns) ⟩ if S = &⟨ l1 : S1, . . . , ln : Sn ⟩
⊕⟨ l1 : (S1s), . . . , ln : (Sns) ⟩ if S = ⊕⟨ l1 : S1, . . . , ln : Sn ⟩
µX. (S ′(s − X)) if S = µX. S ′.

In the final clause, the application of s − X embodies the idea that in µX. S ′ occurrences

of X in the sub-term S ′ are bound and therefore substitutions have no effect on them.

It is easy to check that the effect of a substitution depends only on free variables; that

is, Ss1 = Ss2 whenever s1(X) = s2(X) for every free variable X occurring in S . We use the

symbol
{

T/X
}

to denote the singleton substitution {(X,T )}.
We will only use guarded recursion, which we now explain formally. Let ↓dpt be the least

fixed point of the functional on closed terms defined by the inference rules in Figure 2.

Intuitively, T ↓dpt means that the free variables in T occur after a type constructor,

which differs from µ. Now we say that a term T is guarded if every sub-term of T that

has the form µX. S satisfies S↓dpt. Finally, we use ST to denote the set of closed guarded

terms, and we refer to the elements in ST as session types.

Example 2.1. The property ↓dpt and the property of being guarded are different. Consider

the term T = &⟨ l : µX.X ⟩; it is not a variable and the top-most constructor in it is

not a recursion, therefore T ↓dpt. A sub-term of T is µX.X and clearly µX.X↓dpt is false;

therefore T is not guarded.
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The advantage of only using guarded terms is that we can unfold types so as to obtain

their top-most type constructor. To explain this formally first let us consider the function

depth from terms to N∞ (the set of natural numbers augmented by ∞). This is defined as

the least such function which satisfies:

depth(S) =

{
1 + depth(S ′ { S/X

}
) if S = µX. S ′,

0 otherwise.

Note that depth(µX.X) = ∞, but one can show that when applied to terms that satisfy

the predicate ↓dpt, one always obtains a natural number.

Lemma 2.2. If S↓dpt then depth(S) ∈ N .

Proof. The proof is by rule induction on the derivation of S ↓dpt. If the axiom was

used then thanks to the side condition S ̸= µX. S ′, and so depth(S) = 0 because of the

definition of depth . If the other rule was used then S = µX. S ′, and the hypothesis of the

rule implies S
{

S ′
/X

}
↓dpt. Then, by definition of depth , depth(S) = 1 + depth(S

{
S ′
/X

}
),

and by the inductive hypothesis depth(S
{

S ′
/X

}
) ∈ N; hence depth(S) ∈ N .

Proposition 2.3. The depth of any session type is finite.

Proof. Follows from the definition of ST and Lemma 2.2.

This function depth will therefore provide a measure of session types over which we can

perform induction.

Definition 2.4 (unfolding Gay and Hole (2005)).

For all T ∈ ST , define unfold(T ) as follows:

unfold(T ) =

{
unfold(T ′ { µX.T /X

}
) if T = µX.T ′

T otherwise.

Lemma 2.5. For every T ∈ ST , unfold(T ) is a well-defined session type.

Proof. We have to show that unfold(T ) is closed and guarded. The proof is by

induction on depth(P ). It relies on the fact that each step of unfolding replaces one

variable with a closed and guarded term; hence the overall unfolding is closed.

Intuitively, unfold(T ) unfolds top-level recursive definitions until a type constructor

appears, which is not µ. This will be extremely useful in manipulating session types.

We conclude this sub-section by showing some typical examples of session types, which

we recall from the literature.

Example 2.6 (math server, Gay and Hole (2005)).

Consider the session type

S1 = µX.&⟨ plus : ?[Int]; ?[Int]; ![Int];X,

eq : ?[Int]; ?[Int]; ![Bool]; end ⟩
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BoundedBool

Int Real Num Random

Fig. 3. A sub-type relation on a set of basic types BT; the arrow represents the relation !g (see

Example 2.7).

This specifies the protocol of a server which offers two services at the labels plus and eq.
The first expects the input of two integers, after which an integer is returned, and then

the service is once more available. The second also expects two integers, then returns a

boolean, after which the session terminates.

An extension to the service is specified by the type

S2 = µX.&⟨ plus : ?[Int]; ?[Int]; ![Int];X,

eq : ?[Int]; ?[Int]; ![Bool]; end,

neg : ?[Bool]; ![Bool]; end ⟩

This provides in addition queries for negation.

2.1. Sub-typing

There are three sources for the sub-typing relation over types. The first is some predefined

pre-order over the basic types, t1 !g t2, which intuitively says that all data-values that

have type t1 may be safely used where data-values of type t2 are expected.

Example 2.7. An example of sub-typing on base types is given in Figure 3, for the ensuing

set of types, BT = {Bounded, Bool, Int, Real, Num, Random}. In the figure, the pre-order !g

is depicted by the arrows; for instance, the arrow from type Int to type Real means that

Int !g Real.

More generally, if !t" denotes the set of values of the basic type t then we can define

!g by letting t1 !g t2 whenever !t1" ⊆ !t2". The other sources are two constructs of the

language: the branch construct allows sub-typing by extending the set of labels involved,

while in the choice construct the set of labels may be restricted (see Examples 2.8 and 2.9

below). Moreover, we will have the standard co-variance/contra-variance of input/output

types (Pierce and Sangiorgi 1996), extended to both the branch and choice constructs.

Example 2.8 (sub-typing on branch types). In this example, we explain how the sub-typing

relates the branch types. Consider the type

BarTender = &⟨ espresso : T1 ⟩
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Intuitively, the BarTender offers only the label espresso, thus all the customers satisfied

by BarTender, are satisfied by any other type that offers at least the label espresso. Let

ItalianBarTender =&⟨ espresso : T ′
1,

deka : T ′
2,

doubleespresso : T ′
3 ⟩

Following the intuition, The ItalianBarTender will satisfy all the customers satisfied

by the BarTender; this is formalized by the sub-typing, which relates the two types as

follows

BarTender !st ItalianBarTender

as long as also the continuations T1 and T ′
1 are related as well (i.e. T1 !st T

′
1).

We have shown that, intuitively, it is safe to replace a branch type with a branch type

that offers more labels.

Example 2.9 (sub-typing on choice types). In this example, we show how the sub-typing

relate the choice types. Let ItalianCustomer describe the different coffees that a process

may want to order when interacting with a bar tender.

ItalianCustomer = ⊕ ⟨ espresso : T ′
1,

deka : T ′
2,

doubleespresso : T ′
3 ⟩

All the bar tenders that are able to satisfy this range of choices, have to offer at least the

four labels that appear in ItalianCustomer. Now consider the type

Customer = ⊕⟨ espresso : T ′
1 ⟩

Since Customer chooses among fewer options than ItalianCustomer, it is safe to use

a channel at type Customer in place of a channel at type ItalianCustomer. This is

formalized by the sub-typing relation as follows,

ItalianCustomer !st Customer

In this example we have shown that, intuitively, it is safe to replace a choice type, with

a choice type that chooses among fewer labels.

However, because of the recursive nature of our collection of types, the formal definition

of the sub-typing relation is given co-inductively.

Definition 2.10 (type simulation). Let P(X) denote the powerset of a set X and let

F!st : P(ST 2) −→ P(ST 2) be the function defined so that (T ,U) ∈ F!st (R) whenever

one of the following holds:

i. if unfold(T ) = end then unfold(U) = end

ii. if unfold(T ) = ?[t1]; S1 then unfold(U) = ?[t2]; S2 and (S1, S2) ∈R and t1 !g t2
iii. if unfold(T ) = ![t1]; S1 then unfold(U) = ![t2]; S2 and (S1, S2) ∈R and t2 !g t1
iv. if unfold(T ) = &⟨ l1 : S1, . . . lm : Sm ⟩ then unfold(U) = &⟨ l1 : S ′

1, . . . , ln : S ′
n ⟩ where

m " n and (Si, S ′
i ) ∈R for all i ∈ [1, . . . , m]
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v. if unfold(T ) = ⊕⟨ l1 : S1, . . . lm : Sm ⟩ then unfold(U) = ⊕⟨ l1 : S ′
1, . . . , ln : S ′

n ⟩ where

n " m and (Si, S ′
i ) ∈R for all i ∈ [1, . . . , n].

If R ⊆ F!st .(R) then we say that R is a co-inductive type simulation. Let !st denote the

greatest solution of the equation X = F!st .(X); formally,

!st = νF!st .

We call !st the type simulation. Standard arguments ensure that the relation !st exists,

that it is a typing relation, and indeed the greatest type simulation.

Example 2.11. Let T , S denote the types µX. ?[Int];X, µX. ?[Real];X respectively. We

can prove that T !st S , because the relation R= {(T , S ), (?[Int];T , ?[Real]; S)} is a type

simulation, since Int !g Real.
Referring to Example 2.6, one can also show that S1 !st S2 by providing an appropriate

type simulation.

The requirement that session types be guarded is crucial for the sub-typing relation to

be well defined. We explain this fact in the next example.

Example 2.12 (sub-typing and guardedness). Consider again the term T = &⟨ l : µX.X ⟩
of Example 2.1. Suppose we wanted to check whether T !st &⟨ l : S ⟩ for some session

type S . The definition of !st requires us to check whether

unfold(µX.X) !st unfold(S).

This check, though, cannot be done because unfold(µX.X) is not defined at all (and the

unfolding of S may not be defined either).

Proposition 2.13. The relation !st is a pre-order on ST .

Proof. See Gay and Hole (2005).

In Gay and Hole (2005), the set of types ST are used to give a typing system for the pi

calculus, and appropriate Type Safety and Type Preservation theorems are proved. Here

instead our aim is to give a model to the set of types ⟨ST ,!st ⟩ using contracts.

3. Contracts

We first define our language for contracts and give some examples. In the following

sub-section, we define a natural server based pre-order on contracts, for which we give a

behavioural co-inductive characterization. In the final sub-section, we investigate a closely

related pre-order based on must testing.

3.1. The contract language

This sub-section is roughly divided in three parts. In the first one we define the language LC ,

and we are concerned with syntactical properties of its terms σ’s; similarly to what we

have done for session types, we introduce the unfolding of closed terms of Lc and a

predicate ↓dpt to guarantee that each contract can be unfolded (Lemma 3.1). Afterwards,
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σ ::= Contracts

nil termination

1 success

α.σ action

σ + σ external choice

σ ⊕ σ internal choice

x contract variable

µx.σ recursion

Fig. 4. Contract grammar.

we give an operational semantics (Figure 5), and we discuss important semantic properties

that we want contracts to enjoy; this will lead to the introduction of a predicate ↓, and

two lemmas (Lemma 3.10 and 3.11) which ensure that (a) contracts do not diverge, and

(b) silent moves lead to a finite number of derivatives. In the last part of the subsection,

we describe how client–server interactions are modelled by contracts (Figure 7).

A language for contracts LC is given in Figure 4. As with session types it uses a

denumerable set of recursion variables Vars , here lower case, but also presupposes a

set Act of actions, ranged over by α, which contracts can perform; as we will see the

special action #, which we assume is not in Act , will be used to indicate the fulfilment of

a contract. Intuitively the contract α.σ performs the action α and then behaves like σ; the

sum σ′ +σ′′ is ready to behave either as σ′ or as σ′′ and the choice depends on the external

environment. For this reason the operation + is called external sum. The internal sum

σ′ ⊕ σ′′ represents a contract that can behave as σ′ or as σ′′, and the choice is taken by

the contract independently from the environment. Such a decision can be due for instance

to an if statement in the process implementing the contracts. The symbol nil denotes an

empty contract, which intuitively can never be fulfilled, while 1 denotes the contract that

is always satisfied.

Recursive definitions are handled in much the same way as session types and so we

do not spell out the details; we assume a definition of capture-avoiding substitution s.

Now we define the predicate ↓dpt, the function depth , and the function unfold as in the

previous section.

The function depth is the least one that satisfies

depth(σ) =

{
1 + depth(σ′ { σ/x }) if σ = µx. σ′,

0 otherwise

and the unfold is the least function that satisfies:

unfold(σ) =

{
unfold(σ′ { σ/x }) if σ = µx. σ′,

σ otherwise.

These definitions are not arbitrary. As it happens, they let us prove Lemma 5.2, which, to

our aim, is paramount (see Section 5).

Let ↓dpt be the least fixed point of the rule functional defined on closed terms of LC by

the rules in Figure 2.

Similarly to what done in the previous section one can prove the following lemma.
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1
!−→ nil

[a-Ok]

α.σ
α−→ σ

[a-Pre]
µx.σ

τ−→ σ { µx.σ/x }
[a-Unf]

σ ⊕ ρ
τ−→ σ

[a-In-l]
σ ⊕ ρ

τ−→ ρ
[a-In-r]

σ
λ−→ σ′

σ + ρ
λ−→ σ′

[r-Ext-l]
ρ

λ−→ ρ′

σ + ρ
λ−→ ρ′

[r-Ext-r]

σ
τ−→ σ′

σ + ρ
τ−→ σ′ + ρ

[r-Int-l]
ρ

τ−→ ρ′

σ + ρ
τ−→ σ + ρ′

[r-Int-r]

Fig. 5. Inference rules for the semantics of closed terms of LC , where λ ∈ Act #.

Lemma 3.1. Let σ↓dpt. Then

i. the depth of σ is finite: depth(σ) ∈ N
ii. the term unfold(σ) is defined and if σ is closed then unfold(σ) is closed.

Proof. The proof of part ii relies on (i) and is similar to the proof of Lemma 2.2.

An operational semantics for the closed terms of the language LC is given in Figure 5.

The judgements are of the form

σ
µ−→ σ′, µ ∈ Act τ#

where we use Act τ# as a shorthand for the set Act ∪ {τ, #}, and Act # as shorthand for

Act ∪ { #}. The judgement σ
α−→ σ, where α ∈ Act has the obvious meaning; σ

τ−→ σ′,

means that the contract σ is resolved to the contract σ′ by some internal computation,

while σ
#−→ σ′ represents the reporting of the successful completion of a computation.

Let
τ−→∗ denote the reflexive transitive closure of

τ−→.

We are now ready to show two properties of unfold. We will use them in the rest of

the paper.

Lemma 3.2. Let σ be a contract.

i. If σ
τ

−̸→ then unfold(σ) = σ.

ii. σ
τ−→∗ unfold(σ).

Proof. Part i is proved by structural induction on σ. We prove part ii; the argument is

by induction on depth(σ). If depth(σ) = 0 then from the definition of depth it follows that

σ ̸= µx. σ′; by definition of unfold then unfold(σ) = σ. The reflexivity of
τ−→∗ implies

σ
τ−→∗ unfold(σ).

If depth(σ) > 1 then, due to the definition of depth , σ = µx. σ′. The definition

of unfold implies that unfold(σ) = unfold(σ′ { σ/x }), while the definition of depth

implies depth(σ) = 1 + depth(σ′ { σ/x }), and therefore depth(σ′ { σ/x }) is smaller than
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depth(σ). We are now allowed to use the inductive hypothesis on σ′ { σ/x }:

σ′ { σ/x } τ−→∗ unfold(σ′ { σ/x }).

We use rule [a-Unf] (see Figure 5) to infer σ
τ−→ σ′ { σ/x }, and then the transitivity of

the relation
τ−→∗ to obtain

σ
τ−→∗ unfold(σ′ { σ/x }).

We already know that unfold(σ) = unfold(σ′ { σ/x }), and, by applying this equality to

the reduction sequence above, we get

σ
τ−→∗ unfold(σ).

This concludes the proof.

Let

S(σ) = {σ′ | σ
µ−→ σ′ for some µ ∈ Act τ# }

F(σ) = {σ′ | σ
τ−→∗ σ′ }.

One might think that F(σ) is finite if and only if σ does not diverge. This is not the

case.

Example 3.3 (divergence and finite derivatives). Consider the terms µx. x and µx. ( nil ⊕ x ).

Both terms diverge, in the sense that they perform an infinite sequence of τ’s:

µx. x
τ−→ µx. x, µx. ( nil ⊕ x )

τ−→ nil ⊕ µx. ( nil ⊕ x )
τ−→ µx. ( nil ⊕ x ).

On the other hand we have

F(µx. x) = S(µx. x) = { µx. x }

and

F(µx. ( nil ⊕ x )) = { µx. ( nil ⊕ x ),nil ⊕ µx. ( nil ⊕ x ) }
S(µx. ( nil ⊕ x )) = { nil ⊕ µx. ( nil ⊕ x ) }.

The set F(σ) is not finite for every σ.

Example 3.4 (infinite derivatives).

We show two terms σ, σ′ such that F(σ) and F(σ′) are infinite. Let σ = µx. ( α.x + x ) and

σ′ = µx. ( α.nil + (x ⊕ x) ). According to the rules in Figure 5 one can infer:

σ
τ−→ (α.σ + σ)

τ−→ (α.σ + (α.σ + σ))
τ−→ . . .

and

σ′ τ−→ α.nil + (σ′ ⊕ σ′)
τ−→ α.nil + σ′ τ−→ α.nil + (α.nil + (σ′ ⊕ σ′))

τ−→ . . .

The root of the problem is that the inference rules [r-Int-L] and [r-Int-R] do not resolve

the external sum.

On the other hand the finiteness of S(σ) is easy to prove.
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1 nil α.σ

ρ σ

(σ ⊕ ρ)

ρ σ

(ρ + σ)
σ { µx.σ/x }

µx.σ

Fig. 6. Inference rules for ↓ over closed terms of LC .

Lemma 3.5 (finite branches). The set S(σ) is finite for every σ.

Proof. The proof is by structural induction. If σ = nil then plainly S(σ) = !. Otherwise

we proceed as follows,

— if σ = α.σ′ then the only applicable rule (see Figure 5) is [a-Pre], and so S(σ) = {σ′};
— if σ = µx. σ′ then only rule [A-Unf] can be applied, so S(σ) = {σ′ { σ/x }};
— if σ = σ′ + σ′′ then σ′ and σ′′ are both smaller than σ. The inductive hypothesis tells

us that S(σ′) and S(σ′′) are finite. Rules [r-Ext-l], [r-Ext-r], [r-Int-l] and [r-Int-r]

in Figure 5 ensure that S(σ) = S(σ′) ∪ S(σ′′). This implies that the cardinality of S(σ)

is finite;

— if σ = σ′ ⊕ σ′′ the argument is alike the previous one.

Example 3.6 (divergence and ↓dpt). Consider the term

σ = µx. ( x ⊕ x ).

Using the rules in Figure 2 one can prove that σ↓dpt; consequently depth(σ) is finite and

unfold(σ) is well defined; in particular depth(σ) = 1 and unfold(σ) = σ ⊕ σ. Note now

that the term σ engages in an infinite sequence of internal moves

σ
τ−→ σ ⊕ σ

τ−→ σ
τ−→ σ ⊕ σ

τ−→ . . .

In other words the term σ diverges. Similarly, one can reason that terms as µx. ( nil ⊕ x )

and µx. ( α ⊕ x ) suffer the same issue.

Throughout the paper, we want to deal only with terms that do not diverge and with

finite F(σ). To isolate the σ’s that converge we use the predicate ↓. Formally, we define

it as the least fixed point of the functional given by the inference rules in Figure 6. The

predicate ↓ is essentially a strengthened version of ↓dpt.

Proposition 3.7. For every σ ∈ LC , σ↓ implies σ↓dpt.

Proof. Straightforward from the definitions of the predicates.

The predicate ↓ is preserved by silent moves.

Lemma 3.8. Let σ↓. If σ
τ−→ σ′ then σ′↓.

Proof. The proof proceeds by rule induction on the derivation of σ
τ−→ σ′.

The only interesting case is when the silent move σ
τ−→ σ′ is inferred by using rule [r-

Int-L] or rule [r-Int-R] (see Figure 5). Suppose rule [r-Int-L] was used. Then σ = σ1 + σ2,

σ′ = σ′
1 + σ2, and the derivation is
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σ1
τ−→ σ′

1

σ1 + σ2
τ−→ σ′

1 + σ2 .

We have to prove that σ′
1 + σ2↓; the definition of ↓ ensures that, to this aim, it is

enough to show that (a) σ′
1↓ and that (b) σ2↓ (see Figure 6). Point (b) follows from the

hypothesis: since σ↓, the equality σ = σ1 + σ2 implies that σ1↓ and that σ2↓. The last fact

is exactly point (b).

Now, by using the fact that σ1↓, we prove point (a). The derivation shown above let us

use rule induction; the lemma holds for σ1: if σ1↓ and σ1
τ−→ σ̂1 then σ̂′

1↓. We know that

σ1↓ and that σ1
τ−→ σ′

1, thus it must be σ′
1↓.

If rule [r-Int-R] was used the argument is similar.

We have also the converse.

Lemma 3.9. Let σ be a closed term of LC . Then σ↓ if and only if σ
τ−→ σ′ implies σ′↓.

Proof. The only if side of the lemma is Lemma 3.8, so we are required to prove only

that if σ
τ−→ σ′ implies σ′↓, then σ↓.

Let σ be a closed term of LC such that σ
τ−→ σ′ implies σ′↓. We have to show that σ↓.

The proof is by structural induction on the form of σ; the only interesting case is when

the term σ is an external sum. In that case, σ = σ1 + σ2, so to prove that σ1↓ it is enough

to show that σ1↓ and that σ2↓.

We prove σ1↓. The term σ1 is a sub-term of σ, hence structural induction guarantees

that the lemma holds for σ1: if σ1
τ−→ σ′

1 implies σ′
1↓, then σ1↓. Assume that σ1

τ−→ σ′
1;

thanks to the structure of σ we can derive

σ1
τ−→ σ′

1

σ1 + σ2
τ−→ σ′

1 + σ2

[r-Int-L]
.

Now the hypothesis of the lemma implies that σ′
1 + σ2↓, so from the definition of ↓ it

follows that σ′
1↓ and that σ2↓.

We have shown that σ1
τ−→ σ′

1 implies σ′
1↓, so from the inductive hypothesis it follows

that σ1↓. Moreover, we have also shown that σ2↓; we have proven that σ↓.

The argument for rule [r-Int-L] is analogous, and left to the reader.

The predicate ↓ let us give an inductive characterization of the convergent terms.

Lemma 3.10 (convergence). Let σ be a closed term of the set LC; σ↓ if and only if there

exists a natural number k such that σ
τ−→

n
σ′ implies n " k.

Proof. The only if side is by rule induction on why σ↓. We prove the if side, which

states that if there exists a k ∈ N such that σ
τ−→

n
σ′ implies n " k, then σ↓.

The argument is an induction on k. If k = 0 then σ cannot perform τ, and so it is either

1, nil or a prefix α.σ′. In all these cases we can easily infer σ↓.

If k > 0 then σ performs a τ, so suppose σ
τ−→ σ′; it follows that σ′ τ−→

m
σ′′ implies

m " k − 1. This means that there exists a k′ such that σ′ τ−→
m
σ′′ implies m " k′. Since
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k − 1 < k, we can apply the inductive hypothesis to σ′; from this application it follows

that σ′↓.

As yet, we have proven that σ
τ−→ σ′ implies σ′↓; this allows us to apply Lemma 3.9,

which ensures that σ↓.

It is easy to see that a converging term σ has finite F(σ).

Lemma 3.11. For every σ ∈ LC if σ↓ then F(σ) is finite.

Proof. We can prove it by rule induction on the derivation of σ↓.

We are ready to define the set of contracts.

Definition 3.12 (contracts). Let C denote the set of all terms σ of LC which are closed and

such that if σ
s−→∗ σ′ for some s ∈ Act⋆, then σ↓. We refer to these terms as contracts.

Proposition 3.13. Let σ be a contract, then unfold(σ) is a well-defined contract.

Proof. We have to show that unfold(σ) is closed, and that it satisfies ↓. The first fact

is part ii of Lemma 3.1. The second fact follows from part (ii) of Lemmas 3.2 and 3.8.

Example 3.14 (e-vote, (Barbanera and de’Liguoro 2010; Laneve and Padovani 2008)).

Ballot = µx. ?Login.( !Wrong.x⊕ !Ok.( ?VoteA.x+ ?VoteB.x ) )

Voter = µx. !Login.( ?Wrong.x+ ?Ok.( !VoteA.1 ⊕ !VoteB.1 ) )

A process offering contract Ballot implements a service for e-voting. Such a service lets

a client log in. If the log in fails the services starts anew, while if the log in succeeds the

two actions are offered to the environment, namely VoteA and VoteB.
The contract Voter is a recursive client for the protocol described by the contract Ballot.

Example 3.15 (e-commerce, Bernardi et al. (2008)).

Customer = !Request.( !PayDebit.ρ′ ⊕
!PayCredit.ρ′ ⊕
!PayCash.1 )

ρ′ = !Long.?Bool.1

Bank = µx. ?Request.( ?PayCredit.?Long.!Bool.x+

?PayDebit.?Long.!Bool.x+

?PayCash.x )

The contracts above describe the conversation that should take place between a client

(which offers the contract Customer) and a bank (which has contract Bank) involved in

an on-line payment. The conversation unfolds as follows: the Customer sends a request

to the bank and afterwards it chooses the payment method; the choice is taken by an

internal sum and this means that the decision of the Customer is independent from the

environment (i.e., the Bank contract). If the Customer decides to pay by cash then no other
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action has to be taken; while if the payment is done by debit or credit card the Customer

has to send the card number, this is represented by the output !Long. After the card

number has been received the Bank answers with a boolean. Intuitively, this represents

the fact that the bank can approve or reject the payment. The Customer protocol finishes

after such boolean has been received, while the Bank starts anew.

3.1.1. Client–Server interactions and the compliance relation. Contracts are expressive

enough to encode XML based languages such as WS-BPEL activities and WSCL

diagrams (Castagna et al. 2009); moreover in Carpineti et al. (2006) it is shown how

to assign contracts to a subset of ccs processes. Intuitively, if a process, such as a server,

is assigned a contract σ then it guarantees to support the behaviour described in σ. The

interaction between servers and clients can be described at the level of their contracts, by

defining a binary operation ρ ∥ σ between their contracts and describing the evolution of

the contracts as they interact. This interacting semantics is given in Figure 7, where the

judgements are of the form ρ ∥ σ
τ−→ ρ′ ∥ σ′. It presupposes a binary relation ◃▹ on Act ,

where α ◃▹ β means that the action α can synchronize with the action β. This relation can

be instantiated in various ways depending on the particular set of actions Act .

Example 3.16. Suppose we take Act to be { a?, a! | a ∈ A }, where A is a set of

communicating channels. Then define

α ◃▹i β whenever α = a?, β = a! or α = a!, β = a? for some a ∈ A.

The relation ◃▹i represents synchronization on channels.

We will use a more elaborate set of actions when interpreting session types as contracts.

Recall from Section 2 the set of basic types BT, the set of labels L used in session types,

and Example 2.7. We can define Act to be the set

{ ?b, !b | b ∈ BT } ∪ { l?, l! | l ∈ L }

with ◃▹c determined by

α ◃▹c β whenever

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α =?b, β =!b′ b′ !g b

α =!b, β =?b′ b !g b′

α =?l, β =!l

α =!l, β =?l .

Using the basic sub-typing relation depicted in Figure 3 the following examples should

be clear:

i. ?Num ◃▹c!Int: a contract that can read a datum of type Num can read a datum of type

Int because Int !g Num.
ii. ?Int ̸◃▹c!Num: conversely a contract ready to read a datum of type Int cannot read a

datum of type Num because Num !̸g Int.
iii. ?Random ◃▹c!Bool: as in point (i), Bool !g Random hence an interaction between the

actions ?Random and !Bool is safe.
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ρ
τ−→ ρ′

ρ ∥ σ
τ−→ ρ′ ∥ σ

[p-Sil-l] σ
τ−→ σ′

ρ ∥ σ
τ−→ ρ ∥ σ′

[p-Sil-r]

ρ
α−→ ρ′ σ

β−→ σ′

ρ ∥ σ
τ−→ ρ′ ∥ σ′

α ◃▹ β [p-Synch]

Fig. 7. Inference rules for contract interaction.

Having described how interactions between clients and servers affect their contracts, let

us describe, by means of a relation, when a client (guaranteeing a) contract ρ can safely

interact with a server (guaranteeing a) contract σ. Indeed, we shall formalize the meaning

of ‘safely’.

The central notion is that of compliance between contracts. This is defined co-inductively

and uses the predicate on contracts ρ
#−→ which intuitively means that the contract ρ has

already been satisfied. Our definition is a variation on that of compliance in Laneve and

Padovani (2007, 2008) and Padovani (2010).

Definition 3.17 (compliance relation).

Let F⊣ : P(C2) −→ P(C2) be the function defined so that (ρ, σ) ∈ F⊣(R) whenever both

the following hold:

i. if ρ ∥ σ
τ

−̸→ then ρ
#−→

ii. if ρ ∥ σ
τ−→ ρ′ ∥ σ′ then (ρ′, σ′) ∈R.

If R ⊆ F⊣(R) then we say that R is a co-inductive compliance relation. Let ⊣ denote the

greatest solution of the equation X = F⊣(X); formally,

⊣ = νF⊣

We call ⊣ the compliance relation. If ρ ⊣ σ we say that the contract ρ complies with the

contract σ.

Notice that there is an asymmetry in the relation ρ ⊣ σ; the intention is that any client

running contract ρ when interacting with a server running contract σ will be satisfied, in

the sense that either the interaction between client and server will go on indefinitely, or, if

the interaction gets stuck, the client will end on its own in a state in which it is satisfied,

ρ
#−→.

Example 3.18 (compliance and divergent terms).

In order that the relation ⊣ captures the intuition described above, it is crucial that C
contains no divergent terms. Had we admitted them, then for every ρ the relation

{ (ρ′, µx. x) | ρ
τ−→∗ ρ′ }

would have been a perfectly fine co-inductive compliance. Note, though, that the client

contract ρ is by no means satisfied by the server.
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Example 3.19 (compliance and #). According to our definition of compliance, the client

need not ever perform #. For example, suppose α ◃▹ β and consider the ensuing set

{( µx. α.x, µy. β.y )}.

This set is a co-inductive compliance relation, and the client contract, µx. α.x, does not

perform # at all.

Example 3.20. The fact that nil cannot be satisfied is formally expressed by the fact that

nil ⊣̸ σ

for every contract σ. On the other hand 1 is always satisfied because we can prove that

for every contract σ we have the following,

1 ⊣ σ.

Suppose σ is a contract which cannot interact with the action α; by this we mean that

σ
τ−→∗ β−→ implies β ̸◃▹ α. Then

1 + α.ρ ⊣ σ

for every ρ, because ρ is guarded by an action that can never take place.

Referring to Example 3.14, it is routine work to check that the following relation is a

co-inductive compliance.

R = {(Voter,Ballot),

(?Wrong.Voter + ?Ok.( !VoteA.1 ⊕ !VoteB.1 ),

!Wrong.Ballot ⊕ !Ok.(?VoteA.Ballot + ?VoteB.Ballot)),

(?Ok.( !VoteA.1 ⊕ !VoteB.1 ), !Ok.(?VoteA.Ballot + ?VoteB.Ballot),

(!VoteA.1 ⊕ !VoteB.1, ?VoteA.Ballot + ?VoteB.Ballot),

(!VoteA.1, ?VoteA.Ballot + ?VoteB.Ballot),

(!VoteB.1, ?VoteA.Ballot + ?VoteB.Ballot),

(1,Ballot)}

The previous example shows that on the client-side, the contracts 1 and nil have opposite

meanings, as the former is always satisfied, while the latter is never satisfied; thus a

client whose contract is 1 is not equivalent to a client whose contract is nil. On the

server-side the situation is different; a server with contract 1 is equivalent to a server with

contract nil. We prove this fact.

Proposition 3.21. For every contract ρ, ρ ⊣ 1 if and only if ρ ⊣ nil.

Proof. Suppose ρ ⊣ 1; this means that there exists a co-inductive compliance R that

contains (ρ, 1). Since 1 offers no interaction, the contract ρ enjoys the two properties

which follow,

i. if ρ
τ

−̸→ then ρ
#−→

ii. if ρ
τ−→ ρ′ then (ρ′, 1) ∈R.
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Knowing i, it is straightforward to show that

R′= { (ρ′,nil) | ρ
τ−→∗ ρ′, ρ ⊣ 1 }

is a co-inductive compliance. A symmetrical argument can be used to show also that

R′= { (ρ′, 1) | ρ
τ−→∗ ρ′, ρ ⊣ nil }

is a co-inductive compliance.

The following properties of the compliance relation will be useful later in the paper.

Lemma 3.22. Let ρ, σ1, and σ2 be contracts. The following hold:

i. if ρ ⊣ σ1, ρ ⊣ σ2 then ρ ⊣ σ1 ⊕ σ2

ii. if ρ1 ⊣ σ, ρ2 ⊣ σ then ρ1 ⊕ ρ2 ⊣ σ.

Proof. As an example we outline the proof of (i). Let R be the relation defined by

R = { (ρ, σ) | ρ ⊣ σ or σ = σ1 ⊕ σ2 where ρ ⊣ σ1 and ρ ⊣ σ2 }.

It is straightforward to show that R is a compliance relation, from which the result

follows.

Proposition 3.23. For all contracts ρ, σ, we have the following

a. if ρ ⊣ σ then ρ ⊣ unfold(σ)

b. if ρ ⊣ σ then unfold(ρ) ⊣ σ.

Proof. Both follow in a straightforward manner from part (ii) of Lemma 3.2 and part

ii of Definition 3.17.

The converse is also true:

Proposition 3.24. For all contracts ρ, σ, we have the following

a. if ρ ⊣ unfold(σ) then ρ ⊣ σ

b. if unfold(ρ) ⊣ σ then ρ ⊣ σ.

Proof. Let us look at the proof of (a). Let

R = { (ρ, σ) | ρ ⊣ σ or ρ ⊣ unfold(σ) }.

The result will follow if we can prove that R is a co-inductive compliance relation, as

given in Definition 3.17.

a. Suppose ρ ∥ σ
τ

−̸→. If ρ ⊣ σ then by definition ρ
#−→. Otherwise

ρ ⊣ unfold(σ).

Note that σ
τ

−̸→ and therefore by part (i) of Lemma 3.2 it follows that unfold(σ) = σ,

which means, since now ρ ⊣ σ, ρ
#−→.

b. Suppose ρ ∥ σ
τ−→ ρ′ ∥ σ′. We have to show (ρ′, σ′) ∈R, which is obvious if ρ ⊣ σ.

On the other hand if ρ ⊣ unfold(σ) there are three cases, depending on the inference

of the action ρ ∥ σ
τ−→ ρ′ ∥ σ′. If the action is due to a silent move of ρ, the result
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follows from part ii of Definition 3.17. In the other cases the result will follow by an

application of part i and part ii of Lemma 3.2; and of part ii of Definition 3.17.

3.2. The server pre-order

In this sub-section we show how to compare servers in terms of their ability to satisfy

clients; once more this is done in terms of their respective contracts.

Definition 3.25 (server pre-order). We write σ1 ⊑srv σ2 whenever for every contract ρ,

ρ ⊣ σ1 implies ρ ⊣ σ2.

This provides us with a natural subsumption-like pre-order between server-side contracts.

For if σ ⊑srv σ
′ then we are assured every client satisfied by a server running the contract σ

is by definition also satisfied by a server running the contract σ′.

One consequence of Prepositions 3.23 and 3.24 is that

!unfold(σ)"srv = !σ"srv

and therefore when reasoning about the server pre-order we can work up to unfolding.

Notation A. In the rest of the paper we will at times use the symbols
∑

and
⊕

to write

contracts, for instance
∑

i∈[1;m] σi in place of σ1 + σ2 + · · · + σm⊕
i∈[1;n] σi in place of σ1 ⊕ σ2 ⊕ · · · ⊕ σn

This is justified by the fact that

σ ⊕ ρ =srv ρ ⊕ σ σ ⊕ (σ′ ⊕ σ′′) =srv (σ ⊕ σ′) ⊕ σ′′

σ + ρ =srv ρ + σ σ + (σ′ + σ′′) =srv (σ + σ′) + σ′′

where =srv is the equivalence relation given in the obvious way by ⊑srv .

3.2.1. Co-inductive characterization. Here we give a co-inductive characterization of the

server pre-order ⊑srv ; this is based on a number of semantic properties of contracts,

which we outline in the following lemmas.

Lemma 3.26. If σ1 ⊑srv σ2 and σ2
τ−→ σ′

2 then σ1 ⊑srv σ′
2.

Proof. Suppose ρ ⊣ σ1, where σ1 ⊑srv σ2 and σ2
τ−→ σ′

2; we have to show ρ ⊣ σ′
2.

We know ⊣ is a co-inductive compliance relation, and also that ρ ∥ σ2
τ−→ ρ ∥ σ′

2. So

by part (ii) of Definition 3.17 the required ρ ⊣ σ′
2 follows.

The next property involves the acceptance sets of contracts. For any r ⊆ Act , let us

write σ ↓ r whenever σ
τ

−̸→ and r = { α ∈ Act | σ
α−→ }. These sets r, r′, . . . are called

initials (Eshuis and Fokkinga 2002) or ready sets (Laneve and Padovani 2007, 2008). If

σ ↓ r we say that σ converges to r; indeed, in our presentation only stuck states have

ready sets.
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σ

α.σ1

τ

β.σ2 ⊕ γ.σ3

β.σ2

τ

γ.σ3

τ

τ

σ′

β.σ′
1 ⊕ γ.σ′

2

α.σ′
1

τ

β.σ′
2

τ

τ

γ.σ′
3

τ

Acc(σ) = { {α}, {β}, {γ} } Acc(σ′) = { {α}, {β}, {γ} }

Fig. 8. An example of acceptance sets (see Example 3.28).

Definition 3.27 (acceptance set). For every contract σ let

Acc(σ) = { r | σ
τ−→∗ σ′, σ′ ↓ r }.

We say that Acc(σ) is the acceptance sets of σ.

One sees easily that nil ↓ ! and 1 ↓ ! (as # ̸∈ Acts), so

Acc(nil) = Acc(1) = {!}.

Example 3.28. In Figure 8, we depict the LTS’s and the acceptance sets of the ensuing

contracts

σ = α.σ1 ⊕ (β.σ2 ⊕ γ.σ3) σ′ = (α.σ′
1 ⊕ β.σ′

2) ⊕ γ.σ′
3.

Proposition 3.29. Let σ ∈ C. The ensuing statements are true,

a. if σ ↓ r then r is finite

b. the set Acc(σ) is finite

c. the set Acc(σ) is non-empty.

Proof. Part a follows from the fact that external sums contain a finite amount of

summands. Part b follows form Lemma 3.11. Part c follows from the fact that if σ↓ then

σ has stuck derivatives.

Example 3.30 (divergent terms and acceptance sets). Here we show the acceptance set of

a divergent term. Let σ = µx. ( α.x + x ). For every ready set r we have σ ̸↓ r because

σ
τ−→, and the same is true for the derivative α.σ + σ, because it also performs a τ:

σ
τ−→ α.σ + σ

τ−→ . . .

We thus conclude that Acc(σ) = !. Indeed, in the proof of part c of Proposition 3.29

the crucial hypothesis is σ↓.

Individual acceptance sets are compared by their ability to offer interactions. We will write

r ⊑ s whenever for every αr ∈ r and every β such that β ◃▹ αr there exists some action

αs ∈ s such that β ◃▹ αs also. The precise meaning of this pre-order actually depends on

the instantiation of the interaction relation ◃▹.
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Example 3.31. Suppose that Act be the set { a?, a! | a ∈ A } and ◃▹i is defined as in

Example 3.16. One can check that r ⊑ s if and only if r ⊆ s.

Suppose that

Act = { ?b, !b | b ∈ BT } ∪ { l?, l! | l ∈ L }
and ◃▹c as in Example 3.16. It turns out that r ⊑ s whenever the following conditions are

true,

— !l ∈ r implies !l ∈ s for every l ∈ L.
— ?l ∈ r implies ?l ∈ s for every l ∈ L.
— ?br ∈ r implies ?bs ∈ s for some type bs such that bs !g br.

— !br ∈ r implies !bs ∈ s for some type bs such that br !g bs.

Lemma 3.32. Suppose σ1 ⊑srv σ2 and σ2 ↓ r, then there is some r′ ∈ Acc(σ1) such that

r′ ⊑ r.

Proof. This proof proceeds by contradiction. To establish the contradiction we construct

a contract ρ such that

a. ρ ⊣ σ1.

b. ρ ⊣̸ σ2.

Suppose there is no r′ ∈ Acc(σ1) such that r′ ⊑ r; thanks to part c of Proposition 3.29

this fact cannot be true because Acc(σ1) is empty. Again by Proposition 3.29 we know

Acc(σ1) to be finite, so let r1, . . . , rn be all the elements in Acc(σ1). From the hypothesis

there are αi ∈ ri and βi ◃▹ αi such that βi ̸◃▹ α whenever α ∈ r′. Let the contract ρ be

defined as β1.1 + · · · + βn.1.

First notice that b above is true: since σ2 ↓ r, ρ ∥ σ2
τ−→∗ ρ ∥ σ′

2 such that ρ ∥ σ′
2

τ

−̸→

and ρ
#

−̸→. This means that (ρ, σ2) cannot be contained in any co-inductive compliance

relation.

To establish a above it is sufficient to prove that

R = { (ρ, σ′
1) | σ1

τ−→∗ σ′
1 }

is a co-inductive compliance relation, which is relatively straightforward.

Yet another property of ⊑srv will be necessary to give its co-inductive characterization;

to prove this property, one more notion is in order.

Definition 3.33 (after).

For any action α ∈ Act and contract σ, let (σ after α) be the set

{σ′ | σ
τ−→∗ β−→ τ−→∗ σ′,where α ◃▹ β }.

The proof of the following property is immediate.

Proposition 3.34. Let σ be a contract, then for every α ∈ Act , the set (σ after α) is finite.

Proof. This follows because for every contract S(σ) and F(σ) are finite; see Lemmas

3.5 and 3.11.
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Note that in general the set (σ after α) may be empty. When it is non-empty, we

use
⊕

(σ after α) to denote the internal sum of all its elements.

Lemma 3.35. Suppose σ1 ⊑srv σ2 and σ2
β−→ σ′

2. Then whenever α ◃▹ β,

a. the set (σ1 after α) is non-empty

b. the contract
⊕

(σ1 after α) is smaller than σ′
2. Formally,

⊕
(σ1 after α) ⊑srv σ′

2.

Proof. To prove of part a, consider the contract ρ = 1 + α.nil. Since,

ρ ∥ σ2
τ−→ nil ∥ σ′

2

it follows that (ρ, σ′
2) cannot be in any co-inductive compliance relation, hence ρ ⊣̸ σ2.

Therefore, from σ1 ⊑srv σ2, we have that ρ ⊣̸ σ1.

But because of the construction of ρ this can only be the case if (σ1 after α) is

non-empty. More specifically, if it was empty we could construct a simple co-inductive

compliance relation containing the pair (ρ, σ1).

Now consider part b. Suppose ρ ⊣
⊕

(σ after α); we have to show ρ ⊣ σ′
2. To do so

consider the contract ρ′ = 1 + α.ρ. Suppose we could establish

ρ′ ⊣ σ1. (1)

Because σ1 ⊑srv σ2 this would mean that ρ′ ⊣ σ2, from which the required ρ ⊣ σ′
2

follows, by part (ii) of Definition 3.17.

It remains to prove (1) above. Let

R = { (ρ, σ′) | ρ ⊣ σ′, σ′ ∈ C } ∪ { (ρ′, σ′
1) | σ1

τ−→∗ σ′
1 }.

Then, because ρ ⊣
⊕

(σafterα), it is easy to establish that R is a co-inductive compliance

relation.

We have now assembled all the required properties for our co-inductive characterization

of the server pre-order.

Definition 3.36 (semantic sub-server relation). Let F!srv : P(C2) −→ P(C2) be the function

defined so that (σ1, σ2) ∈ F!srv (R) if and only if the following conditions hold:

i. if σ2
τ−→ σ′

2 then (σ1, σ
′
2) ∈R

ii. for every r ∈ Acc(σ2), σ2 ↓ r implies r′ ⊑ r for some r′ ∈ Acc(σ1)

iii. if σ2
β−→ σ′

2 and α ◃▹ β then (σ1 after α) ̸= ! and
⊕

(σ1 after α) R σ′
2.

If R ⊆ F!srv .(R) then we say that R is a co-inductive semantic sub-server relation. Let

!srv denote the greatest solution of the equation X = F!srv .(X); formally,

!srv = νF!srv .

We call !srv the semantic sub-server relation.

Proposition 3.37. If σ1 ⊑srv σ2 then σ1 !srv σ2.
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Proof. It is sufficient to prove that the relation ⊑srv is a semantic sub-server relation;

this is straightforward in view of the last three lemmas.

We also have the converse.

Theorem 3.38 (co-inductive characterization). The server pre-order is the greatest semantic

sub-server relation.

Proof. We are required to prove that for all contracts σ1 and σ2, the following is true,

σ1 ⊑srv σ2 if and only if σ1 !srv σ2.

Because of the previous proposition, it is sufficient to prove that σ1 !srv σ2 and ρ ⊣ σ1

implies ρ ⊣ σ2. This will follow if we can show that the relation

R = { (ρ, σ) | ρ ⊣ σ1 for some σ1 such that σ1 !srv σ }

is a co-inductive compliance relation.

Suppose ρ R σ. By Definition 3.17, we are required to show two things; namely that

a. if ρ ∥ σ
τ

−̸→ then ρ
#−→

b. if ρ ∥ σ
τ−→ ρ′ ∥ σ′ then (ρ′, σ′) ∈R .

By the definition of R, we know that there is some contract σ1 such that σ1 !srv σ and

ρ ⊣ σ1.

We prove the point a. If ρ ∥ σ
τ

−̸→ then ρ
τ

−̸→, σ
τ

−̸→; in addition, the two contracts

cannot interact, that is ρ
α−→ and σ

β−→ implies α ̸◃▹ β. Since ρ and σ are stable both

Acc(ρ) and Acc(σ) contain exactly one set each, say r and s respectively. Then rephrasing

the above remark we know

α ∈ r, β ∈ s implies α ̸◃▹ β. (2)

Since σ1 !srv σ, by part (ii) of Definition 3.36 σ1
τ−→∗ σ′

1 for some σ′
1 such that σ′

1 ↓ s′ and

s′ ⊑ s. One can use (2) above to show that this means

α ∈ r, β ∈ s′ implies α ̸◃▹ β.

Also, since ρ ⊣ σ1 and σ1
τ−→∗ σ′

1, part ii of Definition 3.17 implies ρ ⊣ σ′
1. But ρ ∥ σ′

1

τ

−̸→
and therefore we have the required ρ

#−→.

To prove point b above, we have to show that if ρ ∥ σ
τ−→ ρ′ ∥ σ′ there exists a σ̂ such

that

ρ′ ⊣ σ̂, σ̂ !srv σ′.

We proceed by case analysis on the rule used to infer ρ ∥ σ
τ−→ ρ′ ∥ σ′. There are three

possibilities: first suppose the inference rule [p-Sil-L] from Figure 7 is used; the premises

of the rule imply that ρ
τ−→ ρ′, and so σ′ = σ. In this case the required σ̂ is σ1; the

definition of R gives σ1 !srv σ and part ii of Definition 3.17 gives ρ′ ⊣ σ1.

The case when the rule [p-Sil-R] is used is similar; choosing the required σ̂ to be σ1

again is justified by point (i) of Definition 3.36.
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Finally suppose [p-Synch] is employed. Now we know that

ρ
δ−→ ρ′, σ

β−→ σ′, δ ◃▹ β.

In this case, we show that the required σ̂ is
⊕

(σ1 after δ). Part (iii) of Definition 3.36

implies that
⊕

(σ1 after δ) !srv σ′ and thus it suffices to show that ρ′ ⊣
⊕

(σ1 after δ).

The set σ1 after δ is finite and therefore by Lemma 3.22, it is sufficient to prove ρ′ ⊣ σ′′

for every σ′′ ∈ (σ1 after δ).

For such a σ′′ we can derive the transition

ρ ∥ σ1
τ−→∗ ρ′ ∥ σ′′,

where one of the reductions is due to the interaction through δ. From part ii of

Definition 3.17 it follows that ρ ⊣ σ′′.

3.3. Must testing

The compliance relation between contracts, Definition 3.17, has much in common with

the idea of testing from Nicola and Hennessy (1984). Here we explain the relationship.

We recall the definition of must testing, and explain how it differs from the compliance

relation. Despite this difference we then go on to show that the testing pre-order, it induces

on contracts coincides with the server pre-order.

For every contract ρ and σ a sequence of reductions

ρ ∥ σ
τ−→ ρ1 ∥ σ1

τ−→ ρ2 ∥ σ2 −→ . . .

is called a computation of ρ ∥ σ and each derivative ρi ∥ σi is a state of the computation.

Intuitively, viewing ρ as a test we say that the state ρi ∥ σi is successful if ρi
#−→; and a

computation is successful if it contains a successful state.

Example 3.39. For every σ all the computations of

1+ ?l1.nil ∥ σ

are successful, because in the first state we have 1+ ?l1.nil
#−→. On the other hand,

suppose that a contract ρ does not perform # and neither do its derivatives. Then no

computation of ρ ∥ σ is successful.

A computation is maximal if either

i. it is infinite, or

ii. it is finite and the last state is stuck, that is has the form ρk ∥ σk where ρk ∥ σk
τ

−̸→ .

Definition 3.40 (must testing).

For all contracts ρ, σ we write σ must ρ if all the maximal computations of ρ ∥ σ are

successful.

The notion of a client contract complying with a server contract differs in two ways

from that of a server contract passing a client contract viewed as a test.
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Example 3.41. One difference between must and ⊣ is what happens after a contract has

passed a test, that is the test has reached a successful state; the subsequent computation

is disregarded by must, whereas the compliance relation has to hold for all the states in

a computation.

As an example consider σ = ?Real.nil and ρ = 1+!Int.nil. Clearly ρ
#−→, and

therefore σ must ρ, because each maximal computation of ρ ∥ σ begins in a successful

state. However, ρ ̸⊣ σ because ρ ∥ σ
τ−→ nil ∥ nil.

Example 3.42. The second difference is that the compliance relation does not require the

testing contract to ever report success, provided that the communication between the

contracts can continue indefinitely. As an example consider the following contracts

σ = µx. !Bool.x, ρ = ( µy. ?Rnd.y ) + !Int.1

Plainly, one sees that ρ
#

−̸→, and, therefore, ρ ∥ σ is not a successful state. The only

computation of ρ ∥ σ is the infinite loop ρ ∥ σ
τ−→ ρ ∥ σ, and therefore ρ ⊣ σ holds; on

the other hand σ must ρ is false. Example 3.19 contains an even simpler instance of the

difference between the relation ⊣ and the relation must.

The must relation can be used to define a well-known pre-order:

Definition 3.43 (must pre-order Nicola and Hennessy (1984)).

Let σ1, σ2 be contracts; we write σ1 ⊑must σ2 if and only if for every ρ, σ1 must ρ implies

σ2 must ρ.

Notation B. As we discussed in paragraph Notation A of Section 3.2, we use
⊕

and∑
also when reasoning on the must pre-order. Formally, this is justified by the ensuing

equalities,

σ ⊕ ρ = mustρ ⊕ σ σ ⊕ (σ′ ⊕ σ′′) = must(σ ⊕ σ′) ⊕ σ′′

σ + ρ = mustρ + σ σ + (σ′ + σ′′) = must(σ + σ′) + σ′′

where =must is the equivalence relation given in the obvious manner by ⊑must.

Notwithstanding the differences between must testing and compliance exposed in

Examples 3.41 and 3.42, it turns out that the server pre-order ⊑srv and the must

pre-order ⊑must coincide (Corollary 3.51).

First, in a series of lemmas, we show that ⊑must satisfies the three defining properties

of the semantic sub-server relation (Definition 3.36).

Lemma 3.44. Let σ1 ⊑must σ2. If σ2
τ−→ σ′

2 then σ1 ⊑must σ
′
2.

Proof. Take a contract ρ such that σ1 mustρ and a maximal computation C performed

by σ′
2 ∥ ρ. It is easy to see that a maximal computation from σ2 ∥ ρ can be obtained by

prefixing C with the move σ2 ∥ ρ
τ−→ σ′

2 ∥ ρ.

Since σ1 ⊑must σ2 ,it follows that this extended computation must be successful. However,

this implies that C itself is successful since ρ does not change during the initial extending

move.
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Lemma 3.45. Let σ1 ⊑must σ2 and σ2 ↓ r. There exists a r′ ∈ Acc(σ1) such that r′ ⊑ r.

Proof. The proof is similar to that of Lemma 3.32, and proceeds by contradiction. For

some n $ 1, let

Acc(σ1) = { r1, . . . , rn }
and suppose that ri ̸⊑ r. This means that for every ri there is αi ∈ ri and a βi such that

βi ◃▹ αi and βi ̸◃▹ α whenever α ∈ r.

Let ρ be the contract β1.1+ · · · + βn.1. The contradiction is established by showing that

a. σ1 must ρ while

b. σ2 must ρ is false.

Both of which we leave to the reader. Intuitively b follows because σ2 ↓ r, while a is a

consequence of the fact that if σ1
τ−→∗ σ′

τ

−̸→ then σ′ ↓ ri for some 1 " i " n.

Lemma 3.46. Let σ1 ⊑must σ2 and σ2
β−→ σ′

2. Whenever α ◃▹ β

a. the set (σ1 after α) is not empty

b. the contract
⊕

(σ1 after α) is smaller than σ′
2. Formally,

⊕
(σ1 after α) ⊑must σ

′
2

Proof. The proof of part a is analogous to that of part a in Lemma 3.35, but the

contract to be used in this case is ρ = (1 ⊕ 1) + α.nil.

We prove point part b by contradiction. Suppose there is a contract ρ′ such that we

have
⊕

(σ1 afterα) must ρ′, while σ′
2 must ρ′ is false. Consider the contract ρ = α.ρ′ ⊕ 1.

Clearly σ2 must ρ is false while σ1 must ρ is true. This contradicts the hypothesis that

σ1 ⊑must σ2.

Proposition 3.47. If σ1 ⊑must σ2 then σ1 !srv σ2.

Proof. The previous three lemmas show that ⊑must is a semantic sub-server relation,

from which the result follows.

To establish the converse of this result we need to develop some additional notation.

The first is a generalization of the relation σ after α to σ after u where u is a non-empty

sequence of actions from Act⋆. This is defined by induction on the length of u, with the

inductive case being

(σ after wα) =
⋃

σ′∈(σ after w)

(σ′ after α).

Example 3.48. Let σ =!t1.(?t2.σ1+?t3.σ2)+!t1.nil and ?t3 ◃▹!t2; we have the following

equalities,

(σafter ?t1!t2) =
⋃

σ′∈(σ after ?t1)
(σ′ after !t2)

=
⋃

σ′∈{nil,?t2 .σ1+?t3 .σ2}(σ
′ after !t2)

= {σ1, σ2}.
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Next we generalize the interaction relation α ◃▹ β to non-empty sequences, u ◃▹ w in

the obvious manner; note that this implies that u and w have the same length. Finally we

need the notion of contracts performing sequence of actions. For u ∈ Act⋆ let σ
u

=⇒ σ′

be the least relation which satisfies

a. σ
ε

=⇒ σ for every contract σ

b. σ
u

=⇒ σ1, σ1
a−→ σ′, where a ∈ Act , implies σ

ua
=⇒ σ′

c. σ
u

=⇒ σ1, σ1
τ−→ σ′ implies σ

u
=⇒ σ′.

We have the obvious generalization of condition (iii) in Definition 3.36:

Lemma 3.49. Suppose σ1 R σ2 for some semantic sub-server relation R, and σ2
u

=⇒ σ′
2

for some non-empty u ∈ Act⋆. Then v ◃▹ u implies that

a. the set (σ1 after v) is not empty

b. the contract
⊕

(σ1 after v) is related by R to σ′
2. Formally,

⊕
(σ1 after v) R σ′

2.

Proof. By induction on the non-empty size of u; the base case follows from part (iii) of

Definition 3.36.

Theorem 3.50 (co-inductive characterization). The must pre-order is the greatest semantic

sub-server relation.

Proof. We have to prove that for all contracts σ1, σ2

σ1 !srv σ2 if and only if σ1 ⊑must σ2.

Because of Proposition 3.47 it is sufficient to prove σ1 !srv σ2 implies σ1 ⊑must σ2. So,

suppose σ1 !srv σ2 and σ1 must ρ; we must prove σ2 must ρ.

Consider a maximal computation of σ2 ∥ ρ

σ2 ∥ ρ
τ−→ σ1

2 ∥ ρ1
τ−→ . . . (3)

We first examine the case when this is finite, with terminal state σk
2 ∥ ρk . Intuitively

this finite computation can be unzipped to give the contributions from the individual

components σ2 and ρ:

σ2
u

=⇒ σk
2 ρ

v
=⇒ ρk. where v ◃▹ u

We are required to show that one of the derivatives of ρ in ρ
v

=⇒ ρk is successful. To

this aim we will exhibit a suitable computation of σ1 ∥ ρ; in particular we will show that

there exists a σ′
1 such that

a. the composition σ′
1 ∥ ρk is stuck

b. the computation σ1 ∥ ρ
τ−→∗ σ′

1 ∥ ρk exists

c. the derivatives of ρ in the computation of point (a) are contained in the computation

σ2 ∥ ρ
τ−→∗ σk

2 ∥ ρk.

These three points are enough to prove that in ρ
v

=⇒ there exists a successful derivative:

thanks to (a), the computation in (b) is a maximal computation of σ1 ∥ ρ; the assumption
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that σ1 must ρ implies that the computation in (b) contains a successful ρ̂, and point (c)

ensures that ρ̂ is contained in ρ
v

=⇒.

We prove one by one the points above.

a. Here we show that, for a suitable σ′
1, the composition σ′

1 ∥ ρk is stuck.

By assumption the state σk
2 ∥ ρk is terminal; this implies that (1) both σk

2 and ρk are

stuck. A consequence is that their acceptance sets are singleton; say Acc(σk
2) = {r}

and Acc(ρk) = {s}; and (2) the contracts σk
2 and ρk cannot interact. Formally

α ∈ r implies β ̸◃▹ α for every β ∈ s.

Consider now the contract
⊕

(σ1 after v); part a of Lemma 3.49 implies that the set

(σ1 afterv) is not empty and part b of the same lemma implies that
⊕

(σ1 afterv) !srv

σk
2 .

Part (ii) of Definition 3.36 and (2) above imply that there exists a set

r′ ∈ Acc(
⊕

(σ1 after v))

such that

α ∈ r′ implies β ̸◃▹ α for every β ∈ s′. (4)

From Definition 3.27, it follows that there exists a contract σ′
1 such that σ′

1 ↓ r′ and

⊕
(σ1 after v)

τ−→∗ σ′
1.

The latter fact means that σ′
1

τ

−̸→ and (4) above means that σ′
1 and ρk cannot interact;

Since (1) above proves that ρk is stuck we have shown that σ′
1 ∥ ρk is stuck.

b. We are required to exhibit the computation σ1 ∥ ρ
τ−→∗ σ′

1 ∥ ρk .

Since
⊕

(σ1 after v)
τ−→∗ σ′

1, there exists a σ′′
1 ∈ (σ1 after v) such that σ′′

1

τ−→∗ σ′
1. From

the definition of (σ1 after v), it follows that σ1
w

=⇒ σ′′
1 for some w ∈ Act⋆ such that

w ◃▹ v, and this implies that σ1
w

=⇒ σ′
1. Zipping this action sequence together with

ρ
v

=⇒ ρk we obtain the computation

σ1 ∥ ρ
τ−→∗ σ′

1 ∥ ρk
τ

−̸→ .

We remark that the computation above is finite and cannot be extended, hence it is

maximal.

c. The derivatives of ρ in the computation

σ1 ∥ ρ
τ−→∗ σ′

1 ∥ ρk

are contained in the computation σ2 ∥ ρ
τ−→∗ σk

2 ∥ ρk because the former computation

has been obtained by zipping ρ
v

=⇒ ρk with a computation made by σ1.

Now suppose that the maximal computation (3) above is infinite. Then the result of

unzipping gives infinite traces u, v such that

σ2
u

=⇒ ρ
v

=⇒ .
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Let us denote the finite prefixes of these traces of length k by u(k), v(k) respectively. By

Lemma 3.49, we know that σ1 after v(k) is non-empty, for every k $ 0. This means that

the LTS generated by σ1 is infinite.

Now consider the sub-LTS consisting of all nodes σ which can be reached from σ1 using

a weak move σ1
w(k)
=⇒ σ′, where w(k) is some trace satisfying w(k) ◃▹ v(k). This sub-LTS is

therefore infinite. It is also finite-branching and so by Kőnig’s lemma it has an infinite

path. By following this path from the root we get σ1
w

=⇒ such that w(k) ◃▹ v(k), for every

k $ 0.

This infinite computation can now be zipped with ρ
v

=⇒ to obtain an infinite

computation from σ1 ∥ ρ. Since σ1 must ρ it follows that there is some σk
2 ∥ ρk in

the maximal computation (3) above which is successful, and therefore σ2 must ρ.

Corollary 3.51. The server pre-order equals the must pre-order. Formally

⊑srv = ⊑must .

Proof. It is a consequence of Theorems 3.38 and 3.50.

Thus far, we have never written explicitly the parameter ◃▹ used to infer the reductions

of parallel compositions of contracts. Now we make the parameter ◃▹ explicit; this let us

emphasize the true import of Corollary 3.51. For every ◃▹ ⊆ Act2, we denote with
τ−→◃▹ the

relation inferred by using the rule in Figure 7 and the ◃▹ in the subscript. By replacing
τ−→◃▹

in Definition 3.17 and 3.40, we define two relations ⊣◃▹ and must◃▹; in turns this lets us

generalize the pre-orders we have studied,

— for every ◃▹ ⊆ Act2, we write σ1 ⊑◃▹
srv σ2 if and only if ρ ⊣◃▹ σ1 implies that ρ ⊣◃▹ σ2;

— for every ◃▹ ⊆ Act2, we write σ1 ⊑◃▹
must σ2 if and only if σ1 must◃▹ ρ implies that

σ2 must◃▹ ρ.

Since in proving Corollary 3.51 we have used no hypothesis on ◃▹, we can rephrase it as

follows,

for every ◃▹ ⊆ Act2. ⊑◃▹
srv = ⊑◃▹

must .

This means that the equality between the server pre-order and the must pre-order does

not depend on the ◃▹ at hand. That is, the equality holds regardless of the co-action

relation used in rule [p-Synch].

4. Session contracts

Here we specialize the contract language, to a sub-language which will be the target of our

interpretation of the session types from Section 2. This is the topic of the first sub-section.

We then go on to re-examine the server pre-order as it applies to this sub-language; in

particular we show that it can also be characterized co-inductively, this time using purely

syntactical criteria. In the final section, we give a similar co-inductive characterization to

a related sub-client pre-order.
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σ, ρ ::= Session Contracts

1 success∑
i∈I ?li.σ external choice, I finite, non-empty⊕
i∈I !li.σ internal choice, I finite, non-empty

?t.σ input

!t.σ output

x contract variable

µx.σ recursion

We impose the additional proviso that in a term the li’s are pair-wise different.

Fig. 9. Session contract grammar.

4.1. Session contracts

The syntax for the language LSC is given in Figure 9.

Definition 4.1 (session contracts). We use SC to denote the set of closed terms σ of LSC
such that if for some s ∈ Act⋆, σ

s−→∗ σ′, then σ′↓. We refer to these terms as session

contracts.

Note that SC is a subset of the more general language of contracts C, but

— external choices are restricted to inputs on labels

— internal choices are restricted to outputs on labels.

Note also that nil is not a session contract. Instead we have chosen 1 to be the base

contract, for reasons which will become apparent. Moreover, we already reasoned that a

server contract 1 has the same behaviour as nil (Proposition 3.21).

Session contracts, due to their restrictive syntax, enjoy some properties which we will

use in the next sub-sections, and which we prove now.

Lemma 4.2. Let σ be a session contract. Then

i. σ
#−→ if and only if σ = 1.

ii. σ
τ−→∗ #−→ if and only if unfold(σ) = 1.

iii. σ
α−→ if and only if σ ̸= 1.

Proof. Part (i) follows from the restrictive syntax of session contract. The proof of part

(ii) requires two arguments. The if side, unfold(σ) = 1 implies σ
τ−→∗ #−→, is justified

by part (ii) of Lemma 3.2. The only if side, σ
τ−→∗ #−→ implies unfold(σ) = 1, can be

proven by induction on the length of the sequence
τ−→∗; the base case being part (i) of

this lemma. Part (iii) can be proven by structural induction.

4.2. The restricted server pre-order

Definition 3.25 applies equally well to session contracts, but it is inappropriate as it

compares session contracts from the point of view of satisfying clients who may use the

more general contracts from Section 3. Instead let us restrict attention to clients who also

only run the more restricted session contracts.
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Definition 4.3 (restricted server pre-order).

For σ1, σ2 ∈ SC let σ1 ⊑SC
srv σ2 whenever ρ ⊣ σ1 implies ρ ⊣ σ2 for every ρ in SC.

This relation is more generous than ⊑srv , in that it allows implementation refinement

(Padovani 2010) to happen, as the following example shows.

Example 4.4.

?latte.1 ⊑SC
srv ?moka.1+?latte.1

If a session contract ρ can interact with ?latte.1 then, modulo unfolding, it has to be

defined by an internal sum. Moreover this sum can only contain one summand, and

therefore ρ complies also with ?moka.1+?latte.1.

Consider now the more general contract ρ′ = !latte.1+ !moka.nil. One can check that

ρ′ ⊣ ?latte.1

whereas ρ′ ⊣̸ ?moka.1+?latte.1. It therefore follows that

?latte.1 ̸⊑srv ?moka.1+?latte.1

Example 4.5 (e-vote, ballot refinement).

We give a more concrete instance of the previous example. Recall Example 3.14 and

consider the session contract

BallotB =µx. ?Login.( !Wrong.1 ⊕
!Ok.( ?VoteA.1+ ?VoteB.1+ ?VoteC.1+ ?VoteD.1 ) )

BallotB offers to a voter more options than Ballot, and intuitively it should be possible to

use a server that guarantees BallotB in place of a server that guarantees Ballot. This is not

the case if the contracts are compared with ⊑srv , because Ballot ̸⊑srv BallotB. On the

other hand, if we restrict our attention to session contracts, and thus to the pre-order ⊑SC
srv ,

we have Ballot ⊑SC
srv BallotB.

When comparing session contracts relative to this pre-order it will be convenient to work

modulo unfolding, which is possible because of the following result:

Proposition 4.6. Let σ1, σ2 be session contracts; σ1 ⊑SC
srv σ2 if and only if unfold(σ2) ⊑SC

srv

unfold(σ2).

Proof. Follows from Propositions 3.23 and 3.24.

Proposition 4.7 (bottom element).

The pre-order ⊑SC
srv enjoys the following properties,

i. it has a bottom element

ii. if σ⊥ is a bottom element of ⊑SC
srv then unfold(σ⊥) = 1.

Proof. To prove part i we show that 1 is a bottom element of ⊑SC
srv , that is 1 ⊑SC

srv σ for

every session contract σ. Let ρ be a session contract such that ρ ⊣ 1. The session contract

1 offers no interaction. Therefore, because of the restricted syntax of session contracts,
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ρ must also be, modulo unfolding, the simple contract 1. Now fix a session contract σ.

Clearly 1 ⊣ σ, therefore from an application of Proposition 3.24 it follows that ρ ⊣ σ.

To prove part ii let σ⊥ be an arbitrary bottom element of ⊑SC
srv . We are required to

show that unfold(σ⊥) = 1. From the definition of bottom element follows σ⊥ ⊑SC
srv 1. An

application of the previous proposition gives unfold(σ⊥) ⊑SC
srv 1. But now an analysis of

the possible syntactic structure of unfold(σ⊥) quickly yields that it must be 1 itself.

Part ii is relevant because 1 is not the only bottom element; for example it is also true

that µx. 1 ⊑SC
srv σ for every σ.

We now proceed, as in Section 3.2.1, to give a co-inductive characterization of the

restricted server pre-order, this time taking advantage of their restricted syntactic structure.

Definition 4.8 (syntactic sub-server relation).

Let F!syn
srv

: P(SC2) −→ P(SC2) be defined by letting (σ1, σ2) ∈ F!syn
srv

(R) whenever one of

the following holds:

i. unfold(σ1) = 1.

ii. unfold(σ2) = ?t2.σ
′
2 and unfold(σ1) = ?t1.σ

′
1 with t1 !g t2 and σ′

1 R σ′
2.

iii. unfold(σ2) = !t2.σ
′
2 and unfold(σ1) = !t1.σ

′
1 with t2 !g t1 and σ′

1 R σ′
2.

iv. unfold(σ2) =
∑

j∈J?lj .σ
2
j and unfold(σ1) =

∑
i∈I?li.σ

1
i with I ⊆ J and σ1

i R σ2
i.

v. unfold(σ2) =
⊕

j∈J!lj .σ
2
j and unfold(σ1) =

⊕
i∈I!li.σ

1
i with J ⊆ I and σ1

j R σ2
j .

If R ⊆ F!syn
srv

(R) then we say that R is a co-inductive syntactic sub-server relation. Let

!syn
srv denote the greatest solution of the equation X = F!syn

srv
(X); formally,

!syn

srv = νF!syn
srv

We call !syn
srv the syntactic sub-server relation.

We first show that the set based relation ⊑SC
srv is contained in !syn

srv ; this will follow if

we can show that the former satisfies the properties defining the latter.

Lemma 4.9. Let σ1, σ2 ∈ SC, σ1 = unfold(σ1), σ2 = unfold(σ2) and σ1 ⊑SC
srv σ2. One of

the following is true,

a. if σ1 = !t1.σ′
1 then σ2 = !t2.σ′

2, t2 !g t1 and σ′
1 ⊑SC

srv σ′
2

b. if σ1 = ?t1.σ′
1 then σ2 = ?t2.σ′

2, t1 !g t2 and σ′
1 ⊑SC

srv σ′
2

c. if σ1 =
∑

i∈I?li.σ
1
i then σ2 =

∑
j∈J?lj.σ

2
j , I ⊆ J and σ1

i ⊑SC
srv σ2

i

d. if σ1 =
⊕

i∈I!li.σ
1
i then σ2 =

⊕
j∈J!lj.σ

2
j with J ⊆ I and σ1

j ⊑SC
srv σ2

j .

Proof. The proof is by case analysis on the structure of σ1, and the argument depends

greatly on the restricted syntax of session contracts. We prove part a and leave the proof

of the other parts to the reader.

Suppose σ1 = !t1.σ′
1. Then ?t1.1 ⊣ σ1 and because σ1 ⊑SC

srv σ2 it follows that ?t1.1 ⊣ σ2.

Since ?t1.1 is stuck, σ2 has to engage in an action !t2 such that ?t1 ◃▹c!t2; this lets us

prove that t2 !g t1. In reason of the syntax and the hypothesis σ2 = unfold(σ2), the

equality σ2 = !t2.σ′
2 must hold.
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We also have to prove that σ′
1 ⊑SC

srv σ′
2. Pick a session contract ρ such that ρ ⊣ σ′

1.

Clearly ?t1.ρ ⊣ σ1, and thus ?t1.ρ ⊣ σ2. Since ?t1 ◃▹c!t2, we apply rule [p-Synch] to infer

?t1.ρ ∥ σ2
τ−→ ρ ∥ σ′

2. From the definition of compliance it follows that ρ ⊣ σ′
2.

Proposition 4.10. For session contracts, σ1 ⊑SC
srv σ2 implies σ1 !syn

srv σ2.

Proof. We prove that ⊑SC
srv is a pre-fixed point of the function F!syn

srv
of Definition 4.8,

that is σ1 ⊑SC
srv σ2 implies (σ1, σ2) ∈ F!syn

srv
( ⊑SC

srv ).

Suppose σ1 ⊑SC
srv σ2. Then by Proposition 4.6 it follows that unfold(σ1) ⊑SC

srv unfold(σ2).

Now, if unfold(σ1) = 1 by definition (σ1, σ2) ∈ F!syn
srv

( ⊑SC
srv ). Otherwise we can apply

Lemma 4.9 to the pair unfold(σ1), unfold(σ2). This provides the required information

to satisfy the requirements ii to v in Definition 4.8, thereby ensuring that (σ1, σ2) ∈
F!syn

srv
( ⊑SC

srv ).

Lemma 4.11. Let R be a co-inductive syntactic sub-server relation and let σ1 R σ2.

If σ2
τ−→ σ′

2 then σ1 R σ′
2.

Proof. First note that from Definition 4.8 it follows that

unfold(σ1) R unfold(σ2). (5)

There are two different cases to be discussed, depending on the unfolding of σ2 being σ2

itself or not.

a. If unfold(σ2) ̸= σ2 then unfold(σ2) = unfold(σ′
2). The equality and (5) above imply

unfold(σ1) R unfold(σ′
2); the latter fact means that σ1 R σ′

2.

b. If unfold(σ2) = σ2 then σ2 must be an internal sum, say σ2 =
⊕

i∈I!li.σ
2
i , because

the contract σ2 can perform a silent move and cannot unfold. This implies that σ′
2 is

the internal sum
⊕

k∈K!lk.σ2
k for some K ⊆ I . From Definition 4.8 it follows that

unfold(σ1) =
⊕

j∈J
!lj.σ

2
j

with I ⊆ J . Since, unfold(σ′
2) = σ′

2 and K ⊆ I ⊆ J one sees easily that

unfold(σ1) R unfold(σ′
2)

thus σ1 R σ2.

Lemma 4.12. Let R be a co-inductive syntactic sub-server relation, σ1 R σ2 and σ2 ↓ r.

There exists a r′ ∈ Acc(σ1) such that r′ ⊑ r.

Proof. Using Lemma 3.2 we know unfold(σ2) = σ2, since σ2 ̸ τ−→. From Definition 4.8

it follows that unfold(σ1) R σ2. Now, according to the cases in Definition 4.8 and a

case analysis on the form of σ2, one can show that unfold(σ1)
τ−→∗ σ′

1 for some σ′
1

which satisfies the required properties. We leave the details of the case analysis to the

reader.
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Finally, the proof that σ1
τ−→∗ σ′

1 amounts in two steps. We apply Lemma 3.2, which

ensures that σ1
τ−→∗ unfold(σ1). Now we know that

σ1
τ−→∗ unfold(σ1)

τ−→∗ σ′
1

so the transitivity of
τ−→∗ gives the result.

Lemmas 4.11 and 4.12 proves that the pre-order !syn
srv enjoys two of the properties of

the pre-order !srv. The third property of !srv, though, is not afforded by !syn
srv .

Example 4.13. Let σ1 = ?latte.1 and σ2 = ?latte.1+ ?moka.1; in Example 4.4 we have

shown that σ1 !syn
srv σ2. On the one hand, we can prove the following things, σ2

?moka−→ 1 and

!moka ◃▹c?moka; on the other hand

( σ1 after !moka ) = !.

As in Example 4.4, the crucial fact is that the pre-order !syn
srv allows implementation

refinement (Padovani 2010).

Theorem 4.14 (co-inductive characterization). For session contracts σ1, σ2, σ1 ⊑SC
srv σ2 if

and only if σ1 !syn
srv σ2.

Proof. The only if part of the theorem is Proposition 4.10 while the if part, that is the

set inclusion !syn
srv ⊆ ⊑SC

srv , follows from the fact that the relation

R = { (ρ, σ2) | σ1 !syn

srv σ2 , ρ ⊣ σ1 for some σ1 ∈ SC }

contains (ρ, σ2) and is a compliance. We prove the latter.

We have to show that R satisfies the two properties in Definition 3.17. Let (ρ, σ) ∈R;

by definition there exists a σ1 such that ρ ⊣ σ1 and σ1 !syn
srv σ.

To prove point (i) of Definition 3.17 assume ρ ∥ σ
τ

−̸→. This implies that σ and ρ are

both stuck, so Acc(ρ) = {s} and Acc(σ) = {r}, and that

α ∈ r implies β ̸◃▹c α whenever β ∈ s.

An application of Lemma 4.12 and of the definition of acceptance set gives a σ′
1 such that

σ1
τ−→∗ σ′

1 ↓ r′ and r′ ⊑ r. The last inequality implies that

α ∈ r′ implies β ̸◃▹c α whenever β ∈ s

therefore, ρ ∥ σ′
1

τ

−̸→. Part (ii) of Definition 3.17 and the assumption ρ ⊣ σ1 imply that

the session contract ρ complies with σ′
1 so ρ

#−→.

What we have left to do now is to show that if ρ ∥ σ
τ−→ ρ′ ∥ σ′ then (ρ′, σ′) ∈R, that

is there exists a σ̂ ∈ SC such that

ρ′ ⊣ σ̂, σ̂ !syn

srv σ′.

Assume ρ ∥ σ
τ−→ ρ′ ∥ σ′. The argument depends on the rule used to infer this silent

move (see Figure 7). If rule [p-Sil-L] was used then σ′ = σ and ρ
τ−→ ρ′; let σ̂ = σ1.
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Then we already know that σ̂ !syn
srv σ′, and part ii of Definition 3.17 implies ρ′ ⊣ σ̂. If rule

[p-Sil-R] was applied then ρ′ = ρ and σ
τ−→ σ′. In this case an application of Lemma 4.11

implies σ1 !syn
srv σ′. We know by assumption that ρ ⊣ σ1, so the σ̂ we are looking for is σ1.

If rule [p-Synch] was applied then

ρ
α−→ ρ′, σ

β−→ σ′, α ◃▹c β.

Since, ρ performs an observable action part (iii) of Lemma 4.2 implies ρ
#

−̸→.

Let us turn our attention to unfold(σ1). The assumption ρ ⊣ σ1 together with

Proposition 3.23 implies that (a) ρ ⊣ unfold(σ1). The assumption σ1 !syn
srv σ and

Definition 4.8 imply that (b) unfold(σ1) !syn
srv σ.

We know that ρ ⊣ unfold(σ1) ((a) above), and that ρ
#

−̸→; together with part i, these

facts force unfold(σ1) to offer an action δ such that δ ◃▹c α. Thus, for some σ′
1,

unfold(σ1)
δ−→ σ′

1.

An application of rule [p-Synch] ensures that

ρ ∥ unfold(σ1)
τ−→ ρ′ ∥ σ′

1.

Now (a) and part ii of Definition 3.17 imply that ρ′ ⊣ σ′
1. We choose σ′

1 as candidate σ̂.

To finish the proof we have to show that σ′
1 !syn

srv σ′. The argument is a case analysis on

the action β. Four cases are to be discussed, but, as they are all similar, we give a detailed

account only of two of them.

If β = ?t2 then (b) above and case (ii) of Definition 4.8 ensure that σ′ is unique, and so

is σ′
1 as well. The same definition implies also that σ′

1 !syn
srv σ′.

If, for some label l, β = ?l then the definition of ◃▹c implies that α = !l, and the

assumption δ ◃▹c α implies δ = ?l. We have proven that δ = β. Now (b) above and case

(iv) of Definition 4.8 imply that σ′
1 !syn

srv σ′.

We conclude this sub-section with a summary of our knowledge on the pre-orders

which compare contracts on the server side of the compliance relation.

Corollary 4.15. The following equalities and inequalities hold

⊑must = ⊑srv .

⊑SC
srv ̸⊆ ⊑srv .

⊑srv ̸⊆ ⊑SC
srv .

⊑SC
srv = !syn

srv .

Proof. The (in)equalities are consequence respectively of Corollary 3.51, Example 4.4,

the fact that SC ⊂ C, and Theorem 4.14.

4.3. The restricted client pre-order

We introduce a new pre-order which compares the capacity of clients to be satisfied by

servers. The structure of this sub-section is similar to that of the previous one on the

restricted server pre-order.
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Definition 4.16 (restricted client pre-order).

For ρ1, ρ2 ∈ SC let ρ1 ⊑SC
clt ρ2 whenever ρ1 ⊣ σ implies ρ2 ⊣ σ for every σ in SC.

Also on the restricted client pre-order we can reason modulo unfolding.

Proposition 4.17. For every session contract ρ1 and ρ2, ρ1 ⊑SC
clt ρ2 if and only if

unfold(ρ2) ⊑SC
clt unfold(ρ2).

Proof. Follows from Propositions 3.23 and 3.24.

Example 4.18. We have shown in Example 4.4 that ?latte.1 ⊑SC
srv ?moka.1+?latte.1. A

similar argument, this time applied to client-side session contracts, can be used to show

that

?latte.1 ⊑SC
clt ?moka.?moka.1+?latte.1

Similarly to what happens for server contracts, if we turn our attention to general

contracts then the session contracts above are no longer related. Let us see why. The

client ?latte.1 complies with the server !latte.1+ !moka.1, because the action !moka will

never be performed by the server. On the other hand

?moka.?moka.1+ ?latte.1 ∥!latte.1+ !moka.1
τ−→?moka.1 ∥ 1

τ

−̸→

and ?moka.1
#

−̸→; this proves that

?moka.?moka.1+?latte.1 ̸⊣!latte.1+ !moka.1

Had we defined in the obvious way the pre-order ⊑clt on contracts, then the argument

above would have proven that

!latte.1 ̸⊑clt?moka.?moka.1+?latte.1 (6)

We have therefore shown that

⊑SC
clt ̸⊆ ⊑clt .

We have seen in Proposition 4.7 that the session contract 1 is a bottom element in the

restricted server pre-order. The client pre-order enjoys the dual property.

Proposition 4.19 (top element). The pre-order ⊑SC
clt enjoys the following two properties,

i. it has a top element

ii. if σ⊤ is a top element of ⊑SC
clt then unfold(σ⊤) = 1.

Proof. Since 1 ⊣ σ for every contract σ, the session contract 1 it is a top element in the

restricted client pre-order. Moreover, reasoning as in Proposition 4.7 we can show that if

σ⊤ is an arbitrary top element then unfold(σ⊤) = 1.

Definition 4.20 (syntactic sub-client relation).

Let F!syn
clt

: P(SC2) −→ P(SC2) be defined so that (ρ1, ρ2) ∈ F!syn
clt

(R) whenever one of

the following is true:

i. unfold(ρ2) = 1.
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ii. unfold(ρ2) = ?t2.ρ
′
2 and unfold(ρ1) = ?t1.ρ

′
1 with t1 !g t2 and ρ′

1 R ρ′
2.

iii. unfold(ρ2) = !t2.ρ
′
2 and unfold(ρ1) = !t1.ρ

′
1 with t2 !g t1 and ρ′

1 R ρ′
2.

iv. unfold(ρ2) =
∑

j∈J lj .ρ
2
j and unfold(ρ1) =

∑
i∈I li.ρ

1
i with I ⊆ J and ρ1

i R ρ2
i .

v. unfold(ρ2) =
⊕

j∈J lj .σ
2
j and unfold(ρ1) =

⊕
i∈I li.σ

1
i with J ⊆ I and σ1

j R σ2
j .

If R ⊆ F!syn
clt
.(R) then we say that R is a co-inductive syntactic sub-client relation. Let

!syn
clt denote the greatest solution of the equation X = F!syn

clt
.(X); formally,

!syn

clt = νF!syn
clt
.

We call !syn
clt the sub-client relation.

Lemma 4.21. Let ρ1, ρ2 ∈ SC, ρ1 = unfold(ρ1), ρ2 = unfold(ρ2) and ρ1 ⊑SC
clt ρ2. Then

a. if ρ2 = !t2.ρ′
2 then ρ1 = !t1.ρ′

1, t2 !g t1 and ρ′
1 ⊑SC

clt ρ′
2

b. if ρ2 = ?t2.ρ′
2 then ρ1 = ?t1.ρ′

1, t1 !g t2 and ρ′
1 ⊑SC

clt ρ′
2

c. if ρ2 =
∑

j∈J?lj.ρ
2
j then ρ1 =

∑
i∈I?li.ρ

1
i with I ⊆ J and ρ1

i ⊑SC
clt ρ2

i

d. if ρ2 =
⊕

j∈J!lj.ρ
2
j then ρ1 =

⊕
i∈I!li.ρ

1
i with J ⊆ I and ρ1

j ⊑SC
clt ρ2

j .

Proof. The proof is almost the same as Lemma 4.9, the difference being that here we

look at left-hand side of the compliance relation, and that we need a result of the fact

that for each session contract ρ there exists a session contract σ such that ρ ⊣ σ. This is

proven in Barbanera and de’Liguoro (2010, Section 2.1).

Proposition 4.22. For every session contract ρ1 and ρ2, if ρ1 ⊑SC
clt ρ2 then ρ1 !syn

clt ρ2.

Proof. The argument is similar to the one of Proposition 4.10, but here we use the

function F!syn
clt

and Lemma 4.21.

Lemma 4.23. Let R be a co-inductive sub-client relation and let ρ1 !syn
clt ρ2. If ρ2

τ−→ ρ′
2

then ρ1 !syn
clt ρ′

2.

Proof. The proof is similar to the proof of Lemma 4.11.

Theorem 4.24 (co-inductive characterization). Let ρ, σ ∈ SC. Then ρ !syn
clt σ if and only if

ρ ⊑SC
clt σ.

Proof. In view of Proposition 4.22 we have to prove only the inclusion !syn
clt ⊆ ⊑SC

clt .

It is enough to show that

R = { (ρ2, σ) | ρ1 !syn

clt ρ2, ρ1 ⊣ σ for some ρ1 ∈ SC }

is a co-inductive compliance. Let ρ R σ; by definition of R there exists a session

contract ρ1 such that ρ1 !syn
clt ρ and ρ1 ⊣ σ.

We prove part i of Definition 3.17. Assume ρ ∥ σ
τ

−̸→; we have to show that ρ
#−→.

To this aim it is sufficient to show

unfold(ρ1) = 1. (7)

We explain why this fact suffices. Assume (7). Since unfold(ρ1) !syn
clt ρ we know that

(ρ1, ρ) ∈ F!syn
clt

( !syn

clt ).
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This is possible only thanks to case (i) of Definition 4.20, and therefore unfold(ρ) = 1.

Since ρ
τ

−̸→, part (i) of Lemma 3.2 implies ρ = unfold(ρ), and so, now, an application of

part (ii) of Lemma 4.2 ensures ρ
#−→.

We prove (7). The argument revolves around the unfolding of ρ1. To begin with, note

two facts: one, the assumption ρ1 !syn
clt ρ and Definition 4.20 imply unfold(ρ1) !syn

clt ρ;

and the other, the assumption ρ1 ⊣ σ and Proposition 3.23 imply unfold(ρ1) ⊣ σ.

The fact that ρ ∥ σ
τ

−̸→ can be used to prove

α ∈ r implies α ̸◃▹c β for every β ∈ s. (8)

From the definition of acceptance set and ρ1
τ−→∗ unfold(ρ1) (part ii of Lemma 3.2) it

follows

Acc(unfold(ρ1)) ⊆ Acc(ρ1). (9)

Now we prove that unfold(ρ1) = 1. Fix a stuck derivative ρ′
1 of unfold(ρ1):

unfold(ρ1)
τ−→∗ ρ′

1

τ

−̸→ .

Such a stuck state exists because of the restricted syntax of session contracts. Further,

since ρ1

τ

−̸→, by definition we have ρ1 ↓ r for some r. Point (9) implies that r ∈ Acc(ρ1),

and so point (8), together with ρ1

τ

−̸→ and σ
τ

−̸→, implies that ρ′
1 ∥ σ

τ

−̸→. We have

already seen that unfold(ρ1) ⊣ σ, so part ii of Definition 3.17 now imply that ρ′
1

#−→. We

can now apply part (ii) of Lemma 4.2 to obtain unfold(ρ1) = 1.

As yet we have proven that (ρ, σ) respects part i of Definition 3.17. The argument to

show that also part ii of Definition 3.17 holds is similar to the one used in Theorem 4.14.

The difference amounts in the use of Definition 4.20 in place of Definition 4.8. We leave

the details to the reader.

5. Modelling session types

The interpretation of session types as contracts is expressed as a function from the

language LST in Section 2 to the language LSC in Section 4. The function is little more

than a syntactic transformation.

Let M : LST −→ LSC be defined by:

M(S) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if S = end

!t.M(S) if S =![t]; S

?t.M(S) if S =?[t]; S
∑

i∈[1;n]?li.M(Si) if S = &⟨ l1 : S1, . . . , ln : Sn ⟩
⊕

i∈[1;n]!li.M(Si) if S = ⊕⟨ l1 : S1, . . . , ln : Sn ⟩
µx.M(S ′) if S = µX. S ′

x if S = X

It is easy to see that M maps session types, ST , to session contracts, SC; indeed it defines

a bijection between these sets:
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— for every σ ∈ SC there exists some session type T such that M(T ) = σ

— if M(T1) = M(T2) then T1 = T2

where T1 = T2 denotes syntactic identity. Further, substitution is preserved by M.

Lemma 5.1. Let S, T ∈ ST . Then M(S
{

T/X
}
) = (M(S))

{M(T )/M(X)

}
.

Proof. The proof is by structural induction on S.

The interpretation also commutes with the two functions depth(−) and unfold(−):

Lemma 5.2. For every T ∈ ST and σ ∈ SC the ensuing properties are true,

i. dpt(T ) = dpt(M(T )).

ii. unfold(M(T )) = M(unfold(T )).

iii. unfold(M−1(σ)) = T if and only if unfold(σ) = M(T ).

Proof. The proofs of the first two points are by induction on dpt(T ), the proof of (ii)

using (i) and the previous lemma. The third point follows immediately from (ii).

As we have shown, the difficulty is to find a natural pre-order on session contracts

which accurately reflects the sub-typing relation on session contracts. There are two

obvious candidates, the restricted server pre-order and the restricted client pre-order on

session contracts. The difficulty lies in the interpretation of end.

Example 5.3. Recall that M(end) = 1. In the restricted server pre-order the session

contract 1 is a least element, being smaller or equal to every other session contract. On the

other hand, for session types end !st T if and only if unfold(T ) = end. Consequently

the relation ⊑SC
srv is an unsound model for sub-typing between session types. For example:

1 ⊑SC
srv !t.1, end ̸!st ![t]; end.

The restricted client pre-order presents the dual issue as it relates every session contract

to 1; it is one of the top element. Once again a model based on ⊑SC
clt would be unsound:

!t.1 ⊑SC
clt 1, ![t]; end ̸!st end.

The main result of the paper is that the bijection M gives a fully abstract interpretation

of sub-typing between session types in terms of session contracts, provided we combine

these two set-based pre-orders.

Definition 5.4 (session contract pre-order). For σ1, σ2 ∈ SC let σ1 ⊑SC σ2 whenever

σ1 ⊑SC
srv σ2 and σ1 ⊑SC

clt σ2.

Example 5.5. It is instructive to see the behaviour of 1, the image of end under M,

relative to this combined pre-order. First suppose σ ⊑SC 1 for some session contract σ.

This implies σ ⊑SC
srv 1 and therefore, as we have shown in Proposition 4.7, σ must be a

bottom element relative to ⊑SC
srv and unfold(σ) must be 1. A similar argument, using the

pre-order ⊑SC
clt ensures that if 1 ⊑SC σ then unfold(σ) must also be 1.

In other words, modulo unfolding the only session contract related to 1 via ⊑SC is 1

itself.
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Proposition 5.6 (completeness). For session contracts, σ1 ⊑SC σ2 implies M−1(σ1) !st

M−1(σ2).

Proof. Let R be the relation over session types defined by

R= {(M−1(σ1),M−1(σ2)) | σ1 !syn

srv σ2, σ1 !syn

clt σ2}.

If we prove that R is a type simulation, that is it satisfies the properties given in

Definition 2.10, then the result will follow because of Theorems 4.14 and 4.24.

The proof proceeds by a case analysis on the structure of unfold(σ1); we give the

details of two cases.

— Suppose unfold(M−1(σ1)) = end. According to Definition 2.10 we have to show that

unfold(M−1(σ)) = end.

Because of part (iii) of Lemma 5.2 we know that unfold(σ1) = 1; moreover in

Example 5.5 above we have already reasoned that unfold(σ2) must be 1.

— Suppose unfold(M−1(σ1)) = ![t1]; S1. We are required to prove that

unfold(M−1(σ2)) = ![t2]; S2, (10)

for some t2 and S2 such that t2 !g t1 and (M(S1),M(S2)) ∈ !syn
srv ∩ !syn

clt .

Again by Lemma 5.2 (iii) we know that unfold(σ1) = !t1.M(S1). As σ1 !syn
srv σ2,

Definition 4.8 implies that unfold(σ2) = !t2.σ′
2 for some t2 such that t2 !g t1 and

some σ′
2 such that M(S1) !syn

srv σ′
2. Now letting S2 denote M−1(σ′

2), another application

of Lemma 5.2 (iii) ensures that (10) above is satisfied. By the definition of S2 we also

have the requirement M(S1) !syn
srv M(S2).

It remains to show M(S1) !syn
clt M(S2). But this follows from σ1 !syn

clt σ2, by part (iii)

of Definition 4.20.

The proof for the remaining cases is similar to the argument already shown, and left to

the reader.

Theorem 5.7 (full abstraction).

For all session types, T1 !st T2 if and only if M(T1) ⊑SC M(T2).

Proof. Thanks to the completeness theorem, Theorem 5.6, it is sufficient to prove that

T1 !st T2 implies M(T1) ⊑SC
srv M(T2) and M(T1) ⊑SC

clt M(T2). As an example we outline

the proof of the former. Because of Theorem 4.14 it is sufficient to show that the relation

R given by

R = { (σ1, σ2) | M−1(σ1) !st M−1(σ2) }

is a syntactic sub-server relation, that is R⊆ F!syn
srv

(R), where F!syn
srv

is given in

Definition 4.8.

Suppose σ1 R σ2. The proof is a case analysis.

— If unfold(σ1) = 1 we have nothing to prove because condition (i) of Definition 4.8

does not require anything.
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— If unfold(σ1) = ?t1.σ′
1 we have to show that

unfold(σ2) = ?t2.σ
′
2

with t1 !g t2 and σ′
1 R σ′

2. An application of part (iii) of Lemma 5.2 shows that

unfold(M−1(σ1)) = ?[t1];M−1(σ′
1). The fact that M−1(σ1) !st M−1(σ2) let us use

Definition 2.10 to deduce that M−1(σ2) = ?[t2];M−1(σ′
2) for some t2 such that

t1 !g t2, and some M−1(σ′
2) such that M−1(σ′

1) !st M−1(σ′
2). From the last inequality

and the definition of R it follows that σ′
1 R σ′

2. Since we have proven the conditions on

the input actions t1, t2 and on the continuations σ′
1, σ

′
2 we have left only to show that

the structure of unfold(σ2) is the required one; this follows from another application

of part (iii) of Lemma 5.2.

The other cases are analogous and left to the reader.

Corollary 5.8. The relation ⊑SC is decidable.

Proof. To begin with, note that M is defined by structural induction, so it is decidable.

The corollary then follows from Corollary 2 of Gay and Hole (2005), which ensures that

the relation !st is decidable, and our Theorem 5.7, whereby we can prove the isomorphism

!st
∼= ⊑SC .

5.1. Examples and applications

In this sub-section we give a series of examples in order to discuss the results we obtained.

The first two example are of theoretical nature, whereas the last one shows an application.

Example 5.9 (type simulations and the weak simulation relation). At this stage, a natural

question arises, which concerns the relationship between type simulations and weak

simulations (Milner 1999). Assume the standard definition of the weak simulation (Milner

1999); we use the symbol % to denote the greatest weak simulation relation.

We begin by showing that, even though two session types are in a co-inductive types

simulation, their images through M need not be in a weak simulation. Consider the

relation

R = {(⊕⟨ l1 : end, l2 : end ⟩, (⊕⟨ l1 : end ⟩), (end, end)}.
The standard co-inductive proof technique let one prove that the relation R is a type

simulation. On the other hand, the definition of M implies that

M(⊕⟨ l1 : end, l2 : end ⟩) =!l1.1 ⊕ !l2.1

M(⊕⟨ l1 : end ⟩) =!l1.1

Then M(⊕⟨ l1 : end, l2 : end ⟩) ̸% M(⊕⟨ l1 : end ⟩) because !l1.1 ⊕ !l2.1
τ−→ l2−→, while

!l1.1 ̸ l2−→∗. We have proven that S1 !st S2 does not imply M(S1) % M(S2).

Looking at the foregoing argument, one might be tempted to reason that if S1 !st S2

then M(S2) % M(S1). We prove that this is not the case. We can prove that

?l1.1 ⊑SC ?l2.1+?l1.1
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An application of M−1 gives us:

M−1(?l1.1) = &⟨ l1 : end ⟩
M−1(?l2.1+?l1.1) = &⟨ l1 : end, l2 : end ⟩.

A look at the definition of !st, Definition 2.10, lets one prove that for every type

simulation R
(&⟨ l1 : end, l2 : end ⟩, &⟨ l1 : end ⟩) ̸∈ R

and, therefore,

&⟨ l1 : end, l2 : end ⟩ ̸!st &⟨ l1 : end ⟩.

Example 5.10 (e-vote, revisited).

In this example we use Theorem 5.7 in conjunction with Theorem 2 of Gay and Hole

(2005), in order to show how the set based pre-order ⊑SC can be used to guarantee that

a process Pa can be safely replaced by a suitable process Pb.

Consider two contracts BallotA and BallotB such that BallotA ⊑SC BallotB. Let

BallotA = M−1(BallotA) and BallotB = M−1(BallotB). From Theorem 5.7 it follows

that

BallotA !st BallotB. (11)

Let ⊥c denote the coinductive duality relation defined as in Definition 9 of Gay and

Hole (2005). Suppose now that BltSrvA(x+), BltSrvB(x+) and Voter(x−) are pi calculus

processes (as in Gay and Hole (2005)) such that

{x+ : BallotA} ⊢ BltSrvA(x+),

{x+ : BallotB} ⊢ BltSrvB(x+),

{x− : Voter} ⊢ Voter(x−)

for some session type Voter such that Voter ⊥c BallotA. By means of the typing rules of

Gay and Hole (2005), it is possible to derive

...
{x+ : BallotA} ⊢ BltSrvA(x+)

...
{x− : Voter} ⊢ Voter(x−)

{x+ : BallotA}, x− : Voter ⊢ BltSrvA(x+) | Voter(x−)
[T-Par]

⊢ (νx : BallotA) BltSrvA(x+) | Voter(x−)
[T-NewS]

Then (11) above and Theorem 2 of Gay and Hole (2005) can be used to guarantee that

if process BltSrvB(x+) is used in place of process BltSrvA(x+), then no communication

error will happen along the channel x.

One can use non-recursive versions of the contracts seen in Examples 3.14 and 4.5 to

obtain contracts that satisfy the assumptions above:

BallotA = ?Login.( !Wrong.1 ⊕ !Ok.( ?VoteA.1+ ?VoteB.1 ) )

BallotB = ?Login.( !Wrong.1 ⊕
!Ok.( ?VoteA.1+ ?VoteB.1+ ?VoteC.1+ ?VoteD.1 ) )

Voter = M−1(!Login.( ?Wrong.1+ ?Ok.( !VoteA.1 ⊕ !VoteB.1 ) ))
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Example 5.11 (protocol conformance). As already remarked, the language for contracts is

a sub-language of ccs without τ’s (Nicola and Hennessy 1987), and consequently contracts

are suitable for specifying communication protocols.

Assume a protocol Pr to be specified by a contract σ, and let Q be a process (in the

sense of Gay and Hole (2005)), which is well typed under the environment Γ. Assume

also that Γ(x) = S for some channel x.

We want to answer the following question:

(Q) ‘Does the session type S conform to the protocol specification σ?’

Clearly, as long as the notion of conformance is not mathematically defined, it is not

possible to give an answer (at least not a meaningful one).

In light of Theorem 5.7, we propose the following definition of conformance. Assume

the standard definition of weak bisimilarity equivalence (Milner 1999); we denote this

relation ≈. We say that a session type S conforms to a protocol specification σ if and

only if M(S) ≈ σ.

To answer the question (Q) now one has only to prove that M(S) ≈ σ or to show a

counter example to this statement.

For example, if we had given a specification of the protocol POP3 (Rose 1988) with a

contract σ, then we would have been able to check whether the session type pop3 of Gay

et al. (2003) conforms to σ.

In order for the notion of conformance we have given to be of any practical consequence,

one last thing has to be ascertained. We have to prove that weak bisimilarity equivalence,

when restricted to session contracts, is decidable. We leave this as an open problem worth

further investigation.

6. Conclusions

6.1. Summary

In this paper, we have used contracts (Padovani 2010) to give a fully abstract model for

first-order session types ordered by their sub-typing relation (Gay and Hole 2005).

In view of the interpretation M, we have shown that the ‘natural’ server refinement on

contract (Definition 3.25) is not a complete model for the sub-typing, as it does not allow

the refinement a ⊑ a + b. Example 4.18 shows that also the ‘natural’ client pre-order on

contracts has the same issue. This has lead us to the identification of a subset of contracts

which we call session contracts. We have then shown that the ‘natural’ server and client

refinements on session contracts are unsound models of the sub-typing (Example 5.3).

This result explains why to obtain a fully-abstract model, it is necessary to introduce yet

another pre-order, that is the intersection of the server and the client pre-orders on session

contracts (Definition 5.4).

We believe that our work

— provides the first fully-abstract model of session types in terms of contracts;

— shows the first alternative characterization of the server and the client pre-orders on

session contracts;
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Behavioural Co-inductive

⊑srv = !srv

⊑SC
srv = !syn

srv

⊑SC
clt = !syn

clt

⊑SC ∼= !st

Fig. 10. Our behavioural pre-orders for contracts, the relations characterizing them, and the

isomorphism with sub-typing.

— contains the first published proof that shows the equality between the must pre-order

and a refinement for servers based on the compliance relation; moreover, it shows that

the equality holds regardless of the ◃▹ relation used to let contracts interact.

The table in Figure 10 sketches our knowledge on the refinements that we have

investigated. By means of examples we have shown that the relations in different rows are

different.

If we bear in mind the debate on the ‘right’ notion of compliance for contracts,

Section 3.3 and Corollary 3.51 are worthy of comment. The result states that as long

as we are concerned with refinements for the servers, it does not matter whether we

pick as definition of compliance Definition 3.17 or Definition 3.40, because the resulting

refinements are the same. This means also that the must pre-order on contracts does not

provide a complete model for the sub-typing.

6.2. Related work

Roughly speaking, the refinements for contracts that have been proposed thus far in the

literature can be related either to the must testing (Nicola and Hennessy 1984), or to the

fair testing (Rensink and Vogler 2007). According to this criterion, we divide this section

in two parts; first we compare the refinements we have investigated with the pre-orders

used in the papers that have influenced us most, namely Barbanera and de’Liguoro

(2010) Laneve and Padovani (2007, 2008) and Padovani (2010). The theories presented in

these papers are related the must pre-order; thus we will refer to them as must-theories.

Afterwards, we compare our work with two theories inspired by the fair testing, which are

given in Bravetti and Zavattaro (2009) and Padovani (2011). We refer to those theories

as fair-theories. As we will see, the must-theories bear some similarities with our results;

whereas the fair-theories turns out to provide refinements that are different from the ones

we have studied.

From now on we reason under the assumption that in our definition of compliance the

synchronization relation ◃▹i is used.

6.2.1. Must-theories. The comparison with Laneve and Padovani (2007, 2008) is complic-

ated by the fact that in these papers compliance judgements take the form i1[ρ] ⊣ i2[σ]

where i1, i2 are finite sets of actions representing in some sense the interfaces of the

processes guaranteeing the contracts; moreover, for a contract i[σ] to be valid its interface i
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has to contain all the action names (including #) that appear in the behaviour σ. Let us

refer to the pairs i[σ] as constrained contracts.

In Laneve and Padovani (2007), a theorem is proven, which resembles our

Corollary 3.51:

Theorem 2. Let i = names(τ). i[σ] ≼lp07 i[τ] if and only if σ ⊑must τ.

This theorem is weaker than Corollary 3.51. First of all, as constrained contracts are pairs

(i.e. a set of actions and a behaviour), the server refinement ≼lp07 (Laneve and Padovani

2007, see Definition 2) cannot be directly compared with the must pre-order; formally

≼lp07 ̸⊆ ⊑must, ⊑must ̸⊆ ≼lp07 . (12)

One may argue that this has no significance, as it is still easy to prove that

if σ1 ⊑must σ2 then names(σ2)[σ1] ≼lp07 names(σ2)[σ2].

The converse implication, though, relies heavily on the interfaces of the constrained

contracts at hand, and in general is not true:

i[σ] ≼07 i’[σ′] does not imply that σ ⊑must σ
′. (13)

For instance, we can prove the following

![nil] ≼lp07 { !a }[!a.nil]

nil ̸⊑must !a.nil

It follows that in the sense shown above the pre-order ≼lp07 is coarser than the must

pre-order.

Since the relation ≼lp07 cannot be compared directly with ⊑must (12), and is somehow

coarser than ⊑must (13), to the best of our knowledge, our Corollary 3.51 is the first

published proof of the equality between a first-order compliance-based refinement and a

testing based must pre-order.

Also there is a difference between our compliance relation and the compliance of

Laneve and Padovani (2007). The compliance used in Laneve and Padovani (2007), which

we denote ⊣lp07 is related to our compliance in the sense that

Proposition. If i[ρ] ⊣lp07 j[σ] for some i, j then ρ ⊣ σ.

The converse of the proposition is not true; we explain why. We have ?a.#.nil ⊣!a.#.nil,

while # ∈ names(!a.#.nil) thus ?a.#.nil ̸⊣lp07!a.#.nil, because Definition 1 of Laneve

and Padovani (2007) requires that # be not among the names of the contract on the right

hand side of the compliance.

Now we compare our work with Laneve and Padovani (2008); we denote ⊣lp08 the

compliance relation given by Laneve and Padovani (2008, Definition 1), and ≼lp08 the

pre-order given there in Definition 2.

Our compliance relation and ⊣lp08 are related in a way analogous to what we have seen

for ⊣07.

Proposition. If i[ρ] ⊣lp08 j[σ] for some i, j then ρ ⊣ σ.
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The converse is not true, ?a.#.nil+?b.#.nil ⊣!a.#.nil, and from {a, b} ̸⊆ {a} it follows

{a, b, #}[?a.#.nil+?b.#.nil] ⊣̸ lp08{a, #}[!a.#.nil].

We can prove that the relation ≼lp08 extends ≼07 to the terms that contain #; for

instance we can prove that

{ #}[ #.nil] ≼lp08 ![nil]

{ #}[ #.nil] ≼lp08 {ℓ, #}[ℓ.#.nil].

Laneve and Padovani (2008) presents the first comparison between session types and

contracts; in particular, it is shown that the subcontract relation ≼lp08 together with two

interpretations similar to M provide two sound models for the sub-typing on a subset of

our session types. These interpretations are denoted !−"1 and !−"nil. Their proposed full

abstraction result, (Laneve and Padovani 2008, see Theorem 2), though, appears not to

be true. According to that definition and the interpretation !−"nil

![nil] ≼lp08 {ℓ}[ℓ.nil].

Their Theorem 2 therefore implies &⟨ ℓ : end ⟩ !st end, which is not true. On the

other hand if !−"1 is used then there are two issues. According to Theorem 2 the pair

(end,&⟨ ℓ : end ⟩) is interpreted as (![ #.nil], {ℓ}[ℓ.#.nil]). Then

a. neither ![ #.nil] nor {ℓ}[ℓ.#.nil] are constrained contracts, because their interfaces do

not contain all the action names which appear in the respective behaviours; moreover

b. even if the interpretation was correct, Theorem 2 would be false because

{ #}[ #.nil] ≼lp08 {ℓ, #}[ℓ.#.nil]

while, as stated above, &⟨ ℓ : end ⟩ !st end is not true.

Our study of the restricted pre-orders on session contracts (Definitions 4.3 and 4.16)

is clearly inspired by Barbanera and de’Liguoro (2010). In Barbanera and de’Liguoro

(2010), the language for session types is the same one as we used, whereas the subset of

contracts in which session types are embedded is the set of session behaviours. The set

of session behaviours is bigger than the set of session contracts because of the lack of

distinction between labels and base types. It is possible to write session behaviours as

?Int.1+?l1.1

which are image of no session type according to the given interpretation !−". Note,

though, that !−" = M, so the range of !−" is the set of session contracts, and our

Theorem 5.7 proves that !−" and their pre-order ≼: Barbanera and de’Liguoro (2010,

Definition 3.4) provides a complete model for the sub-typing. The completeness of ≼: was

only conjectured in Barbanera and de’Liguoro (2010).

Their approach is complementary to ours, in that they provide a co-inductive charac-

terization of the pre-order ≼:, which turns out to equal the intersection of their sub-server

and sub-client pre-orders. In contrast, we have studied the (restricted) server and the client

pre-orders independently, providing their co-inductive characterizations; we have then (1)

explained why it is necessary to use the intersection of the two pre-orders to obtain a
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fully-abstract model; and (2) proven that the intersection of these pre-orders is a sound

and complete model of the sub-typing.

The comparison with (Padovani 2010) is straightforward. Our definition of compliance

and the definition in that paper (Definition 2.1) are different; nevertheless, we can prove

that the resulting relations coincide (as long as we instantiate ◃▹ to the relation ◃▹i). As a

consequence, also our server pre-order ⊑◃▹i
srv coincides with the strong subcontract relation

(Padovani 2010, see Definition 2.2).

6.2.2. Fair-theories. In Bravetti and Zavattaro (2009) and Padovani (2011), the notion of

correctness requires all the components of a composition to be successful (i.e. be able of

performing #) at the same time in order for the whole composition to be successful. This

requirement implies that the compositions which contain terms as

nil, µx. a.x

cannot be correct, because the contracts above do not perform # at all. This phenomenon

renders the viability of contracts (Padovani 2011, Definition 3.1) a non-trivial matter; on

the contrary, in our theory every contract is viable wrt. must and ⊣.

The pre-orders on session contracts and session types that we have studied allow the

refinement

a ⊕ b ⊑ a. (14)

For instance, we can prove the following facts

µx. ( !espresso.x⊕ !moka.1 ) ⊑SC µx. !espresso.x
µX. ⊕ ⟨ livelock : X, stop : end ⟩ !st µX. ⊕ ⟨ livelock : X ⟩.

In Padovani (2011), it is pointed out that the refinements shown above are not sound

with respect to the fair-testing (Rensink and Vogler 2007); this will let us prove that

the refinements proposed in Padovani (2011) and Bravetti and Zavattaro (2009) are not

contained in our relations ⊑srv and ⊑SC .

Now we give the detailed comparisons with the mentioned papers. The language used

in Padovani (2011) is similar to our session contracts, the differences being that actions

are decorated with a role tag p, q, . . . ; and there is a special session type fail. Also,

sessions are multiparty, that is they are general compositions of session types (tagged with

a role), for instance

p1 : T1 ∥ p2 : T1 ∥ . . . ∥ pk : Tk.

The notion of correct session type composition is given in Padovani (2011, Definition 2.1),

and it is used to define a set-theoretical sub-typing relation on session types (Padovani

2011, Definition 2.2), which is denoted ". We can prove

µx. ( p!livelock.x ⊕ p!stop.1 ) ̸" µx. p!livelock.x

because the term µx. p!livelock.x cannot reach a successful state at all. This means that

(14) is not sound for ".
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Also the following facts are true:

µx. p!livelock.x " µx. p!stop.x
µx. p!livelock.x ̸⊑SC µx. p!stop.x

The first fact is true because no composition containing the session type µx. p!livelock.x
can be correct, as this term does not perform # at all; whereas the second fact follows

from the definition of M and Definition 2.10. It thus follows that

" ̸⊆ ⊑SC , ⊑SC ̸⊆ " .

Similar to Padovani (2011), in Bravetti and Zavattaro (2009) general compositions of

contracts are allowed

[C1] ∥ [C2] ∥ · · · ∥ [Cn]

and for a composition to be successful all its components have to be successful (i.e. be

able of performing #) at the same time.

As for the contract language, the main difference with our framework is that the

theory of Bravetti and Zavattaro (2009) involves output persistent contracts (Bravetti and

Zavattaro 2009, see Definition 4); for instance the term !a.1 + b.1 is a contract in our

theory, that is ruled out in Bravetti and Zavattaro (2009), as it is not output persistent.

Definition 12 of that paper introduces the subcontract relations ≼O on output persistent

contracts, where the parameter O is a the set of output actions that the compositions used

as tests can show. The comparison between our server pre-orders and the pre-orders ≼O

is complicated by two aspects,

— if C ′ ≼O C then it is safe to use C ′ in place of C; in view of this, we will compare our

pre-orders with the inverse of the pre-orders ≼O;

— a priori, it is not clear how to choose the parameter O. To solve this complication we

treat ≼O as a function of O, and briefly discuss its monotonicity.

The function ≼O is not monotonically increasing, as ! ⊆ {a}, while

a.nil ≼! a.1

a.nil ̸≼{a} a.1.

On the other hand ≼O is monotonically decreasing in O.

Proposition. If O ⊆ O′ then ≼O′ ⊆ ≼O .

This proposition gives us two criteria to reason on all the pre-orders ≼O:

— for every O the pairs in ≼N are in ≼O , where N = { a | a ∈ Act };
— for every O the pairs not in ≼! are not in ≼O .

As for the restriction on output persistent contracts, in the oncoming discussion we will

use only contracts that enjoy that property; thus our arguments are sound.

We have the following facts

1 + a.1 ⊑srv a.1

1 + a.1 ̸≼−1
! a.1
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where the test used to prove the second fact is 1. Also the ensuing facts are true,

a.nil ≼−1
N nil

a.nil ̸⊑srv nil.

The first fact holds because no system containing a.nil can be correct. The test that we

use to prove the second fact is a.1. Thus far we have proven

⊑srv ̸⊆ ≼!, ≼N ̸⊆ ⊑srv .

Similarly to what done for the relation " of (Padovani 2011), we can prove also that

µx. ( τ.!livelock.x + τ.!stop.1 ) ̸≼−1
! µx. !livelock.x

Thus our relation ⊑SC is coarser than ≼!. As ≼N relates also terms more general than

session contracts, we have the following facts

⊑SC ̸⊆ ≼!, ≼N ̸⊆ ⊑SC .

6.3. Future work

6.3.1. Models for session types and sub-typing. Session types have been originally used

to type dialects of the pi-calculus (Honda et al. 1998). Recently session types have been

proposed also to type other formalisms, for instance orchestration charts (Fantechi and

Najm 2008). In that paper session types have behaviours described by typecharts, which

are essentially LTS’s (see Section 4.1 there), and the sub-typing ≼, is defined in the

following simulation-like manner:

T1 ≼ T2 if and only if the following conditions are true,

— if T2
?m−→ T ′

2 implies that there exists a T ′
1 such that T1

?m−→ T ′
1 and T ′

1 ≼ T ′
2

— if T1
!m−→ T ′

1 implies that there exists a T ′
2 such that T2

!m−→ T ′
2 and T ′

1 ≼ T ′
2.

In view of Example 5.9, it should be clear that the relation ⊑SC does not model ≼. We

leave as an open problem the use of ⊑SC to model the inverse of ≼; the complication

being that the definition above does not account for the τ actions.

6.3.2. Higher-order language. The restriction to first-order session types is a severe

limitation on our results, and we intend to extend them to the full language of session

types in Gay and Hole (2005). To this end it will be necessary to use a higher-order

version of the language that we have used in the paper; that fact that we have used the

parameter ◃▹ to express the notion of co-action will be of some help here.

6.3.3. Refinements for clients. By and large, the results in the literature on contracts for

web-services pertain to refinements for either the server side of binary connections, or

peers of multi-party connections. To the best of our knowledge, the first paper that avails

of a refinement for clients is Barbanera and de’Liguoro (2010). Assuming the obvious

definition of the refinements for the clients due to the must testing and to the compliance
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relation, denoted respectively ⊑clt
must and ⊑clt, we can show that in our framework these

pre-orders differ from the respective refinement for servers,

⊑clt
must ̸⊆ ⊑must ̸⊆ ⊑clt

must

⊑clt ̸⊆ ⊑srv ̸⊆ ⊑clt

These facts call for an investigation of the client refinements ⊑clt
must and ⊑clt, which we

leave for future work.

6.3.4. Decidability refinements. In Corollary 5.8, we have briefly discussed the decidability

of the session pre-order. We leave as open problem the investigation of the decidability

of the other refinements we have discussed.
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