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Abstract. We study the behavioural theory of a higher-order
distributed calculus with private names and locations that can be passi-
vated. For this language, we present a novel Labelled Transition System
where higher-order inputs are symbolic agents that can perform a lim-
ited number of transitions, capturing the nature of passivation. Standard
first-order weak bisimulation over this LTS coincides with contextual
equivalence, and provides the first useful proof technique without a uni-
versal quantification over contexts for an intricate distributed language.

1 Introduction

Higher-order concurrency naturally arises from the combination of functional
and concurrent programming. In many concurrency scenarios, processes have
the ability to exchange values over communication channels; in languages with
functional characteristics, besides constants of base type, these values include
code in the form of function closures of higher types.

The behaviour of processes in simple higher-order concurrency has been stud-
ied in the setting of Higher-Order π-calculus (HOπ) [11] and CHOCS [1]. The
former work showed that higher-order systems can be translated and studied in
first-order π-calculus [12]. The translation is based on the notion of a trigger, a
simple value representing a function which, when run within a process, triggers
the execution of the function in another part of the system. This translation
gave rise to normal bisimulation, a first-order bisimulation method in which the
observer need only examine a process using finite trigger values, enabling sim-
ple proofs of equivalence. This proof method is both sound and complete with
respect to a natural contextual equivalence, called barbed congruence [12, 4, 6].

For distributed systems, however the approach of the trigger translation is
generally not applicable [15, 7]. The intuition is that in many distributed sce-
narios, the observable runtime behaviour of a higher-order value depends on the
location in which it is run. One of the simplest extensions to HOπ where this
location-dependent behaviour becomes apparent is when passivation is added to
the language, as in HOπP [7] which uses transparent locations whose contents
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can be passivated and restarted in a different context. This simple construct
is sufficient to demonstrate the intricacies arising when communication is loca-
tion dependent; for example, processes can become temporarily isolated from
the external observer, or indeed from other components of the system, essen-
tially encoding communication barriers. The resulting behavioural complexity is
emphasised by the results for HOπP, which show that extensions of triggers to
include arbitrary finite values do not capture contextual equivalence [7, Sec. 6].

The purpose of this paper is to demonstrate that contextual equivalence for
distributed systems exhibiting location-dependent behaviour can be captured
by a first-order bisimulation semantics in which triggers are replaced by simple
symbolic agents. We give the first sound and complete first-order bisimulation
technique for equivalence in a higher-order distributed language with passivation
and private names, which avoids universal quantification over contexts.

The starting point is the labelled transition system (LTS) semantics in previ-
ous work for HOπ [6], encoding Sangiorgi’s triggers as symbolic constants. These
constants represent the actual higher-order values transmitted between the ob-
server and the system under observation. This limits the size and complexity
of the resulting LTS as these constants can only be subsequently used by the
observer to run code produced by the system, and by the system to signal the
execution of observer-generated symbolic code. However, for location-dependent
behaviour the repertoire of symbolic constants has to be enlarged to what we
call symbolic agents, a small collection of probes designed to facilitate two kinds
of observations capturing the nature of passivation and more generally location-
dependent behaviour. The first is to discover if locations in systems where agents
are running can communicate with other locations and the observer. The other
is to examine the system when system-emitted code runs at agent locations.

The language we consider is a minor variation of HOπP in which, because
of lazy scope extrusion of π-calculus names, contextual equivalence can distin-
guish between systems solely on the basis of their free names [7, Sec. 2.4]. This
infelicity is avoided in a variant called HOπPn [10] in which π-calculus restric-
tion is replaced by name allocation; however, this sacrifices expressiveness since
basic programming constructs such as recursion and internal choice are not pro-
grammable (see Thm. 3.4). In this paper we opt for a passivation language
HOPass which, like HOπPn, avoids the complications with free names of HOπP,
but also can encode useful programming constructs. Our language essentially
adds CCS-style local communication ports to HOπPn solely for the purpose of
programmability.

Both HOπP and HOπPn have coinductive characterisations of contextual
equivalence, in terms of weak context bisimulation [7] and weak environmen-
tal bisimulation [10], respectively. However, the former does not provide a viable
proof technique for equivalence because of a significant universal quantification
over contexts. The latter also contains a similar quantification; however, powerful
up-to techniques [13] can certainly help with constructing witness bisimulations.

The symbolic agent LTS in this paper avoids any quantification over contexts
and provides a viable proof technique relying only on standard (weak) first-order
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a, . . . , t ∈ GName pL ∈ LPort x, y, z ∈ Var
u, v ∈ GName ∪ LPort û, v̂ ∈ Var ∪ GName ∪ LPort

Val : V ::= a
∣∣ λP V̂ ∈ Var ∪ Val

Proc : P,Q ::= 0
∣∣ û!V̂ .P

∣∣ û?(x:T ).P
∣∣ (P | P )

∣∣ if V̂ = V̂ thenP elseP∣∣ new x.P
∣∣ P\pL

∣∣ run V̂
∣∣ û!P "

Sys : M,N ::=P
∣∣ νa.M Type : T ::= Nm

∣∣ Pr

Fig. 1. Syntax of HOPass

bisimulation. The usefulness of first-order techniques have been demonstrated
for HOπ [12, 4–6], and are equally useful for HOPass. Additionally, our proof
technique reduces the size of bisimulations in proofs of equivalence by minimising
the number of symbolic transitions that need to be considered. Moreover, we
believe that our symbolic agent semantics can be adapted to other distributed
languages with location-dependent behaviour, including HOπP.

We continue with the description of HOPass (Sect. 2) and contextual equiv-
alence (Sect. 3). We then explain the intuitions of our LTS (Sect. 4) and detail
its symbolic agent transitions (Sect. 5). The sound and complete bisimulation
technique and an example equivalence are given in Sect(s). 6 and 7, respectively.

2 The Language HOPass

The abstract syntax of HOPass is shown in Fig. 1. Generated names (GName)
are used for general communication channels between processes, and local ports
(LPort) for programming via CCS-style locally scoped communication. Values
(Val) are the objects transmitted over channels which can be first-order generated
names of type Nm or higher-order code thunks of type Pr. Terms in HOPass are
constructed in two levels: the inner level of processes (Proc) and the outer level
of systems (Sys). A process can be one of the usual π-calculus inert (0), output
(c!V.P ), input (c?(x:T ).P ), parallel (P | Q), and conditional process. Because
channels can carry two types of values, we use the type annotation T at input
processes and a simple dynamic type system to rule out stuck processes (see [6]).

Processes can also create at runtime a fresh generated name (new x.P ), and
restrict local ports which are CCS channels used for programmability (P\pL).
We will only reason about closed processes with no free local ports or variables
but can have free generated names. Finally, a process can execute a code thunk
(runV ) and run a process within a location u (u!P "). As we will see, P can
reduce inside u and can be passivated by an input on u. A system takes the form
νn1. . . . νni.P , consisting of a single process P with a number of bound names.
We use the Barendregt convention for bound generated names. Free generated
names and local ports are given by fn(−) and flp(−), respectively; we use (− # −)
to mean “have disjoint names and ports”.

The reduction semantics of systems, M → N , is defined in terms of labelled

transitions of processes P
λ−→ N (Fig. 2). A process transition is annotated with

a label indicating an output (u!V ), input (u?V ), internal transition (τ), or fresh
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Process Transitions

RPin
#V V : T

u?(x:T ).P
u?V−−−→ P{V/x}

RPout
flp(V ) = ∅

c!V.P
c!V−−→ P

RPcommL

P
u!V−−→ P ′ Q

u?V−−−→ Q′

P | Q τ−→ P ′ | Q′

RPnew
n # P

new x.P
new n−−−→ P{n/x}

RPpass
flp(V ) = ∅

c!P " c!λP−−−→ 0

RPmatch

if a= a thenP elseQ
τ−→ P

RPport

P
λ−→ Q pL # λ

P\pL

λ−→ Q\pL

RPoutPort

pL!V.P
pL!V−−−→ P

RPmismatch
a '= b

if a= b thenP elseQ
τ−→ Q

RPrun

run λP
τ−→ P

RPloc

P
λ−→ Q

u!P " λ−→ u!Q"

RPparL

P
λ−→ P ′ new(λ) # Q

P | Q λ−→ P ′ | Q
System Reductions

RSnew
P

new n−−−→ P ′

P → νn.P ′

RSτ
P

τ−→ P ′

P → P ′

RSν
M → M ′

νn.M → νn.M ′

Fig. 2. Reduction semantics of HOPass (omitting symmetric rules and RPpassPort)

name generation (newn). Output (RPout) and passivation (RPpass) over gener-
ated names transmit closed values; over local ports (RPoutPort, RPpassPort)
they can transmit values with free local ports, enabling the encoding of useful
programming idioms (see Thm. 3.4) while avoiding the extrusion of local ports.
Input (RPin) receives values of the appropriate type; here #V λP : Pr (for any P )
and #V n : Nm, and P{V/x} is capture-avoiding substitution. A new generated
name is fresh because of the side-conditions in RPnew and RPparL; in the latter
rule new(λ) denotes {n}, when λ = newn, and ∅ otherwise. The rest are standard
rules for running a code thunk (RPrun), communication (RPcommL), equality
testing (RPmatch, RPmismatch), and propagating transitions over evaluation
contexts (RPparL, RPloc, RPport). System reductions simply bind freshly gen-
erated names and propagate internal process transitions. In the following we will
use usual syntactic abbreviations from CCS and π-calculus.

3 Contextual Equivalence

In this paper we study barbed congruence [8], the contextual equivalence asso-
ciated with weak bisimulation, which is reduction-closed, preserves weak barbs,
and is a congruence. A weak barb is the ability of a system to perform an output
on a free channel after a number of reductions.

Definition 3.1 (Weak Barb). M has a weak barb b, written as M ⇓b, when

M →∗ νñ.P and P
b!V−−→ Q, for some ñ, P , Q, and V with b # ñ.
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We use standard, single-hole contexts derived from the language grammar, adding
a process hole. We use the Barendregt convention only for bound names whose
scope does not extend over the hole. We writeK[P ] to mean the system obtained
by replacing the hole ofK with process P , and K[M ] to mean νñ.νm̃.K[P ] when
K = νñ.K and M = νm̃.P . Due to the convention for the bound names m̃ we
have m̃ # K, ñ; however, ñ may appear in P .

Definition 3.2 (Contextual Equivalence (∼=cxt)). The relation (∼=cxt) on
systems is the largest relation such that if M ∼=cxt M ′ then

1. For all b, M ⇓b iff M ′ ⇓b.
2. If M → N then there exists N ′ such that M ′ →∗ N ′ and N ∼=cxt N ′.
3. If M ′ → N ′ then there exists N such that M →∗ N and N ∼=cxt N ′.
4. For any context KS, KS[M ] ∼=cxt KS[M ′].

If we remove passivation from this language we obtain a language similar to
HOπ [11]. It is known that for such a language (∼=cxt) coincides with the version
of contextual equivalence which only requires preservation of the relation under
parallel contexts (cf. Thm. 3.2). As the following example shows, this is not the
case in the presence of passivation.

Example 3.3 (Passivation). Consider the systems

M3.3 = a!(λb!).0 M ′
3.3 = new k. (a!(λk!). ∗(k?b!))

These systems are indistinguishable if we consider only parallel contexts. The
intuition is that both systems output a code thunk to any parallel context.
The former outputs λb!, becoming 0, and the latter outputs λk!, leaving behind
∗(k?b!), a replicated process defined in Thm. 3.4. In the case ofM3.3, the parallel
context can essentially only run λb! producing a b-barb (possibly multiple times).
Because k is never revealed to the context, in the case of M ′

3.3 whenever the
parallel context runs λk! it will again trigger a b-barb. Thus, no parallel context
is able to induce an observable difference between M3.3 and M ′

3.3.
However, (∼=cxt) considers contexts that run M3.3 and M ′

3.3 in a location l,
enabling the passivation of process ∗(k?b!) and distinguishing the behaviour of
the two systems. The distinguishing context K3.3 = l! [·] " | a?(x). l?. runx can
input the code from channel a, passivate location l, and run the received code.
Thus, K3.3[M3.3]⇓b but K3.3[M

′
3.3] !!⇓b because the latter reduces to νk.k!. ()

Example 3.4 (Derived programming constructs). Consider an extension of
HOPass with standard operation of internal choice (− ⊕ −) with the non-
deterministic reduction semantics: P ⊕Q → P and P ⊕Q → Q. In this extended
language the definition of (∼=cxt) (Thm. 3.2) still applies. We can implement
the internal choice operator correctly using local ports. Using the bisimulation
technique developed in Sect. 6, one can show that

P ⊕Q ∼=cxt (pL! | pL?.P | pL?.Q)\pL
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An implementation using generated names

P ⊕new Q
def
= new x.(x! | x?.P | x?.Q)

would be incorrect because in general P⊕Q +∼=cxt P⊕newQ. To see this consider a
particular instance when P,Q are a!, b!, respectively; we show that a!⊕newb! +∼=cxt

a!⊕b!. The idea is to place the processes in a location l! " which can be passivated
and duplicated. Consider Rl = l!a! ⊕ b!". If we run Rl in parallel with process
K1 = l?(x). (l′!runx" | l′!runx") the code in location l will be passivated and
duplicated giving us Rl′ | Rl′ . Moreover, process K2 = l′?.a?.b?.c! blocks when
run in parallel with Rl′ | Rl′ . By putting the above processes together we have
Rl | K1 | K2 !!⇓c.

However, when R′
l = l!a! ⊕new b!" runs, a fresh name k is generated and we

obtain νk.l!k! | k?.a! | k?.b!". Thus R′
l | K1 | K2 ⇓c because it can evolve to

νk. l′!k! | k?.a! | k?.b!" | l′!k! | k?.a! | k?.b!" | l′?.a?.b?.c!
→∗ νk. l′! k?.a! | k?.b!" | l′! a! | b!" | l′?.a?.b?.c!
→ νk. l′! a! | b!" | a?.b?.c! → c!

Local ports can also be used to implement other standard programming con-
structs, such as various forms of recursion. Consider the operator ∗(P ) (omitted
from our language) with reduction semantics ∗(P ) → P | ∗(P ). This operator
can be encoded correctly using local ports and higher-order communication:

Rec(P )
def
= (δ(pL) | pL!λ(P | δ(pL)).0)\pL δ(pL)

def
= pL?(x:Pr).(runx | pL!x.0)

Again, an encoding Recnew using generated names would not be correct. The
process l!Recnew(a!)" | K1 | l′?.a?.c! can reduce to νk.l!δ(k)" | a?.c! !!⇓c, but
l!∗(a!)" | K1 | l′?.a?.c! cannot reduce to a system that does not have a barb on c.

Using only generated names, as in HOπPn [10] discussed in the introduction,
internal choice and general recursion are not encodable (∗(P ) is a primitive). ()

Example 3.5. In the last example of this section we show that passivation of
observer-generated code is observable; we will return to this example when mo-
tivating our LTS for HOPass (Thm. 4.1). Let M3.5 = a?(x).∗(l!run x") and
M ′
3.5 = a?(x).∗(run x | l!). In HOPass these two systems are distinguished by

contextual equivalence. This is achieved by the context testing if instances of
the code bound to x are passivated after an output on l. For example con-
sider the context K3.5 = [·] | a!(λb?.c!).b!.l?; we have: K3.5[M3.5] →∗ l!c!" |
∗(l!run(λb?.c!)") | l? = N3.5 !!⇓b ⇓c. This can be matched by K3.5[M

′
3.5] by

performing at least the reductions K3.5[P
′
3.5] →

∗ c! | l! | ∗(run(λb?.c!) | l!) |
l? = N ′

3.5 !!⇓b ⇓c. However, N3.5 +∼=cxt N ′
3.5 because the passivation of l,

N3.5 → ∗(l!run(λb?.c!)") !!⇓c, cannot be matched by N ′
3.5. ()

4 From HOπ to HOPass

The goal of this paper is to give a first-order, symbolic LTS for HOPass in
which standard weak bisimilarity fully captures contextual equivalence; i.e., weak
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bisimulation is sound and complete with respect to (∼=cxt). Moreover, we seek
an LTS with a small set of transitions to simplify bisimulation proofs. In this
section we motivate this new LTS by starting from a previous first-order LTS
for a version of HOπ [6]—essentially HOPass without locations—and examining
the additional observational power needed to add to the LTS in order to achieve
a sound bisimulation for HOPass.

As in our previous work, there are two basic ingredients to this LTS. The
first is the extension of the syntax with symbolic higher-order inputs that the
observer provides to the system. We thus extend the syntax of processes with
symbolic agents α ∈ Agent representing observer-generated processes.

P ::= . . .
∣∣ α EProc V ::= . . .

∣∣ λP EValue

The second ingredient in the construction of the LTS is the explicit recording of
the knowledge of the observer interrogating a system using a knowledge environ-
ment ∆. Any value sent from the system to the observer is recorded in ∆; if this
value is a code thunk it has a unique associated output index κ ∈ OIdx. These
constants provide an indirect way for referring to outputs and only appear in ∆
and on transitions of the LTS; they do not appear in processes and values. We
extend the freshness operator # to α’s and κ’s. A knowledge environment ∆ has
the following components:

1. names(∆) ⊂fin Name : a finite set of names known to the observer;
2. agents(∆) ⊂fin Agent : a finite set of observer-generated symbolic agents;
3. fun(∆) ∈ OIdx →fin EValue : a finite function mapping output indices to

system-generated code thunks.

Our LTS contains transitions over configurations of the form:

C ::= νã
〈
∆ * P

〉
Conf

The names in the vector ã are generated by the system but are not known to
the observer; they can appear in P and in the codomain of fun(∆). We consider
only configurations that are well-formed. That is, configurations νã

〈
∆ * P

〉

recording all names and constants used in P and in the codomain of fun(∆),
whose names ã are distinct pairwise and with respect to names(∆). We also
identify configurations up to alpha-renaming of ã.

As with our LTS for HOπ, our LTS for HOPass will contain one higher-order
input rule in which the input value is a fresh λα and two higher-order output
rules that that extend fun(∆) (one for output and one for passivation):

〈
∆ * c?(x:Pr).P

〉 c?λα−−−→
〈
∆,α * P{λα/x}

〉
if α # ∆ (TIn-Pr)

〈
∆ * c!λP .Q

〉 c!κ−−→
〈
∆,κ .→λP * Q

〉
if κ # ∆ (Tout-Pr)

〈
∆ * c!P"

〉 c!κ−−→
〈
∆,κ .→λP * 0

〉
if κ # ∆ (Tpass)

The LTS also has fairly standard rules for internal steps, to propagate transitions
over evaluation contexts, and for first-order input and output; we omit these
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transitions in this extended abstract (see [6]). Transitions in this LTS are labelled
either with τ (internal transition), with one of the I/O actions over generated
names µ ::= c?n

∣∣ c?λα
∣∣ c!n

∣∣ c!κ, or, purely for producing internal transitions,
with the corresponding I/O actions over local ports.

Two important transitions in the LTS for HOπ [6] are those implementing the
notion of triggers. When a HOπ system runs a symbolic input λα (removing the
λ) it enables the transition

νã
〈
∆ * α

〉 runα−−−→ νã
〈
∆ * 0

〉
(1)

indicating the execution of some code within the observer. Conversely, the ob-
server can run at any point system code stored under the index κ:

νã
〈
∆ * P

〉 runκ−−−→ νã
〈
∆ * P | run∆(κ)

〉
(2)

Similarly, in HOPass we need to give the observer the ability to run system-
generated code and detect the execution of observer code. However, the above
two transitions are not adequate to give us soundness of weak bisimulation. In
the rest of this section we give example inequivalent processes that can be distin-
guished by (∼=cxt) and motivate sufficient additions to the LTS of symbolic agents
we have described so far. The following section contains the precise definitions
of these additions and the relevant bisimulation.

We first show that (1) is no longer adequate in the presence of passivation. The
observer should not just forget α after it has been run once; instead it requires
the power to repeatedly ping α to ensure that the code implicitly represented
by this symbolic agent is still alive and can communicate.

Example 4.1 (Example 3.5 revisited). Let us reconsider the systems M3.5 =
a?(x).∗(l!run x"). and M ′

3.5 = a?(x).∗(run x | l!), which we have already seen
are distinguished by (∼=cxt) using the context K3.5 = [·] | a!(λb?.c!).b!.l? testing
whether an output c! is possible after the sequence of reductions a?(λb?.c!), b?, l?.

The LTS transitions we have seen so far cannot perform such a test; M3.5 and
M ′
3.5 are not distinguishable in the current LTS. Let us see how we might try to

mimic the distinguishing tests performed by K3.5. This context first sends in on
the channel a the actual code λb?.c! but our transitions are only allowed to send
in a symbolic agent λα. Next, K3.5 communicates with the sent code on b—in
the LTS this can only be translated to a transition of the form (1) above. Then,
it passivates l and tries to communicate on c with the sent code. The passivation
of l can be performed in the LTS, but we cannot translate the communication
on c because the previous use of (1) has replaced α with 0.

What is required is the ability to repeatedly check if the symbolic agent α
is still alive; i.e., that the system has not introduced a communication barrier
between α and the observer by passivating the former. In our LTS for HOPass
the single use transition (1) will be replaced by a more general ping transition
α!α′ which “updates” an α at evaluation position within the system to a
fresh α′. The observer can keep performing this indefinitely. In effect, in our
new LTS α’s represent the state of symbolic agents inside configurations, which
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changes after an agent performs a transition. The transition α!α′ is a symbolic
communication of an agent at state α with the observer, updating the state to
a fresh α′, which can be probed further (see Thm. 5.1). ()

These ping transitions α!α′ discover communication barriers between sym-
bolic agents and the external observer throughout the interrogation of a system.
However, they are not sufficient to discover all of the intricacies of HOPass.
Transparent locations together with passivation and reactivation can be used
to create communication barriers between parts of the system, creating a form
of opaque locations. We believe the ability to encode communication barriers
captures the essence of location-dependent behaviour expressible in HOPass.

To crystallise this phenomenon we introduce a trampoline operator (*+) which
can be encoded in HOPass (as well as in HOπP [7]). Consider the process P *+ Q
with reduction rules:

P *+ Q
λ−→ P ′ *+ Q if P

λ−→ P ′ P *+ Q
λ−→ P *+ Q′ if Q

λ−→ Q′

Essentially, P *+ Q represents a communication barrier between the processes P
and Q: they can communicate with their environment but not with each other.
Provided pL, pL

′ # P,Q, trampoline can be encoded in a fully-abstract manner:

P *+ Q ∼=cxt

(
pL!P " | pL

′!(λQ).0 | ∗
(
pL?(x).pL

′?(y).(pL!run y" | pL
′!x.0)

))
\pL, pL

′

We prove an instance of this equivalence in Sect. 7 and use this operator exten-
sively when motivating further symbolic transitions.

Example 4.2 (Communication barriers). Let us consider the systems M4.2 =
a?(x).(run x *+ b!) and M ′

4.2 = a?(x).(run x | b!). These systems can be distin-

guished byK4.2 = [·] | a!(λb?c!).0 becauseK4.2[M4.2] !!⇓c whereasK4.2[M
′
4.2]⇓c.

However, combinations of all LTS transitions we discussed so far are not able to
distinguish them. We need to give agents the ability to communicate with the
system, which in the next section we achieve by adding a transition µ/α!α′

with which an agent transition α!α′ synchronises with a parallel action µ.
We also need a synchronisation transition between two running symbolic agents

in order to observe the different behaviour ofN4.2 = a?(x).b?(y).(run x *+ run y)
and N ′

4.2 = a?(x).b?(y).(run x | run y). These are distinguished by K ′
4.2 = [·] |

a!(λc!).b!(λc?.d!).0 sinceK ′
4.2[N4.2] !!⇓d whereasK

′
4.2[N

′
4.2]⇓d. However, they are

not distinguished by the transitions discussed so far. They will be distinguishable
with a new synchronisation action α1|α2!α′

1|α′
2, signalling that two agents α1

and α2 can communicate and become α′
1 and α′

2 (see Thm. 5.2). ()

As we discussed, in HOπ the observer can use the transition runκ (2) to run
system code indexed by κ in the knowledge environment of a configuration;
this code runs in parallel with the system after the transition. Because again of
the communication barriers encodable in HOPass, code run in parallel with the
system may exhibit different behaviour than if it were run at the position of an
agent; in the presence of passivation we need a more general symbolic transition.
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Moreover, an adequate LTS for HOPass needs to enable the passivation of the
entire system and any code executed by the observer. The former is motivated
by the fact that (∼=cxt) is closed under the context a?(x).P | a![·].0; thus, any
related systems M ∼=cxt M ′, possibly obtained after a number of reductions and
context closures of (∼=cxt), can be entirely passivated and reused as code thunks
in P . The need for the latter is motivated in the next example.

To allow the observer to passivate running code we will use a set of special
location names only as a namespace for observer-generated locations. We call
these abstract locations γ ∈ Aloc, and extend the syntax of HOPass once more
to include such locations; we adjust (#) to abstract locations and record γ’s
in knowledge environments: P ::= . . .

∣∣ γ!P". Intuitively, γ!P" represents an
agent that is currently running in a new location γ process P , obtained from the
observer’s knowledge environment.

Remark 4.3. We use abstract locations instead of ordinary fresh names to limit
the possible LTS transitions: these names need not be used as inputs or elsewhere
in the system, considerably simplifying proofs of equivalence. ()

Example 4.4 (Code execution and passivation). Consider the systems

M4.4 = new t.a!(λt?.c!).b?(x).(run x %& t!) M ′
4.4 = new t.a!(λt?.c!).b?(x).(run x | t!)

distinguished by the context K4.4 = [·] | a?(y).b!y.0 which simply relays a value
from a to b. In K4.4[M4.4] this leads to system νt.((t?.c!) *+ t!) !!⇓c; however,
K4.4[M

′
4.4] reduces to νt.((t?.c!) | t!)⇓c. Thus, this context distinguishes the two

systems by running (λt?.c!) at the only position of M4.4 where communication
with the t! is impossible (in the LHS of the *+). Contexts that do not cause the
execution of (λt?.c!) at that position cannot distinguish M4.4 from M ′

4.4. The
transitions we have discussed so far encode observations made by such contexts
and therefore fail to distinguish the two systems.

To see that, we consider the interrogation of a configuration where λM4.4 is
in ∆, from which the observer, using the previously discussed transitions, can
only reach configurations of the form ν t̃

〈
∆ *

∏
αi *+ ti!

〉
, with ∆(κi) = λti?.c!.

The only way for the observer to run a κi without enabling a communication
on ti (and thus an observable c! transition) is to run κi at αi (as the context
K4.4 above did). The preceding LTS transitions do not capture such a move.
Therefore we introduce a separate transition α! γ!κ" which replaces a symbolic
agent α with γ!∆(κ)", for a fresh γ.

Now consider the systems:

N4.4 = new t.a!(λt?c!).b!(λt!).0 N ′
4.4 = new t.a!(λt!).b!(λt?c!).0

To distinguish them, the observer needs to input both code thunks on a and b, run
both, and passivate one of them after they communicate on t. The last move is
not possible with the transitions we have seen so far. A context that performs this
scenario and distinguishes N4.4 from N ′

4.4 is K ′
4.4 = [·] | a?(x).b?(y).(l!run x" |

run y | l?.c?.d!). We have K ′
4.4[N4.4] !!⇓d but K ′

4.4[N
′
4.4]⇓d.

In our new LTS, transitions a!κ1, b!κ2,α1! γ1!κ1",α2! γ2!κ2" let the ob-
server receive and run the code emitted from the systems (provided there are
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Trun-κ
∆(κ) = λP γ # ∆

〈
∆ % α

〉 α! γ!κ"−−−−−−→
〈
∆, γ % γ!P"

〉

Tpass-γ
κ,α # ∆

〈
∆ % γ!P"

〉 γ!κ"!α−−−−−−→
〈
∆,α,κ (→λP % α

〉

TioL@α〈
∆ % P

〉 α1!α2−−−−−→
〈
∆′ % P ′〉

〈
∆′ % Q

〉 µ−→
〈
∆′′ % Q′〉

〈
∆ % P | Q

〉 µ/α1!α2−−−−−−−→
〈
∆′′ % P ′ | Q′〉

Tsync 〈
∆ % P

〉 α1!α2−−−−−→
〈
∆′ % P ′〉

〈
∆′ % Q

〉 α3!α4−−−−−→
〈
∆′′ % Q′〉

〈
∆ % P | Q

〉 α1|α3!α2|α4−−−−−−−−−→
〈
∆′′ % P ′ | Q′〉

Tsig
α2 # ∆

〈
∆ % α1

〉 α1!α2−−−−−→
〈
∆,α2 % α2

〉

Textr@α

νã
〈
∆, n % P

〉 c!n/α1!α2−−−−−−−−→ ν b̃
〈
∆′ % P ′〉 c '= n

νn, ã
〈
∆ % P

〉 c!n/α1!α2−−−−−−−−→ ν b̃
〈
∆′ % P ′〉

Fig. 3. LTS: symbolic agent transitions (omitting symmetric rules)

running symbolic agents α1 and α2). However, to enable further passivation of
this code, we introduce transitions of the form γ1!κfr"!αfr which let the ob-
server passivate the code running in γ1, replacing it with a fresh symbolic agent
αfr, and indexing it by a fresh κfr in the knowledge environment. With the ad-
dition of this last LTS transition the observer can distinguish the above systems
in the same way as K ′

4.4 does (see Thm. 5.3 for details). ()

5 First-Order Symbolic Agent Transitions

The previous section briefly described internal (τ) and communication (µ) tran-
sitions and focused on motivating a set of new symbolic (ζ) transitions for an ad-
equate LTS for HOPass. Here we give the precise rules of the new ζ-transitions,
all of which describe a limited symbolic execution of agents running in a con-
figuration. An agent is an observer-generated process represented simply by
α ∈ PConst, or an abstract location γ!P" running a single system-generated
code thunk (γ ∈ LConst). The result is an LTS with first-order transitions
(η ::= τ

∣∣ µ
∣∣ ζ) simplifying bisimulation proofs.

Observer transitions are generated by the rules shown in Fig. 3 and are an-
notated with one of the following labels:

ζ ::= α!α
∣∣ µ/α!α

∣∣ α|α!α|α
∣∣ α! γ!κ"

∣∣ γ!κ"!α

These transitions encode symbolic moves performed by agents, visible to the
overall observer, in order to reconfigure agents and interrogate the system. They
fall naturally into two groups, the first concerned with communication barriers
and the second with code execution and passivation. The first three involve
communication barriers.

Ping: α1!α2. This transition, produced by rule Tsig, allows the observer to
determine if an agent α1 is running. There is a communication barrier between
the observer and α1 only if α1 is not running in the configuration. As a result of
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this transition, a running instance of α1 is replaced by a fresh α2, distinguishing
it from other instances of α1 in the configuration. In this way this transition can
be used to distinguish the processes in Thm. 4.1.

Example 5.1 (Thm. 4.1 continued). Let us see howM3.5 andM ′
3.5 can be distin-

guished. Consider an observer examining configurations such as
〈
∆ * M3.5

〉
and〈

∆ * M ′
3.5

〉
, where ∆ = {a, l}. After a transition a?λα1 we get the configura-

tions
〈
∆,α1 * ∗(l!runλα1")

〉
and

〈
∆,α1 * ∗(runλα1 | l!)

〉
. After τ -transitions

and transitions α1!α2 and l!κ we get
〈
∆, α̃,κ .→λα2 * ∗(l!runλα1")

〉
and〈

∆, α̃,κ .→λ0 * α2 | ∗ (runλα1 | l!)
〉
. The latter configuration has an α2!α3

transition but the former does not. ()

I/O from a Symbolic Agent: µ/α1!α2. Because of the communication
barriers encodable in HOPass, an agent may or may not be running at the
same time as an observable µ action in a configuration. This transition, due to
rule TioL@α and its symmetric one, allows the observer to detect this situation
and distinguish systems M4.2 and M ′

4.2 in Thm. 4.2. As with standard name
output, a name output detected by an agent can extrude a private name, moving
it from the list of bound names into the knowledge environment (rule Textr@α).
Note the chaining of the knowledge environments in the two premises of the rule
that accumulates the effects of the two transitions in the final ∆′′.

Agent Synchronisation: α1|α3!α2|α4. For the same reason as above, this
transition allows the observer to detect whether two symbolic agents are simul-
taneously running and can thus communicate. As before, the effects of the two
transitions in the premises (i.e., the extension of ∆ with fresh α2 and α4) are
accumulated in the final ∆′′ by chaining. Such a transition, generated by Tsync,
can be used to distinguish the systems N4.2 and N ′

4.2 in Thm. 4.2.

Example 5.2 (Thm. 4.2 continued). An observer can distinguish configurations
such as

〈
∆ * M4.2

〉
and

〈
∆ * M ′

4.2
〉
because the latter can perform the tran-

sition sequence a?α1, b!/α1!α2 but the former cannot. Similarly, the observer
can distinguish

〈
∆ * N4.2

〉
from

〈
∆ * N ′

4.2
〉
because the latter can perform the

transition sequence a?α1, b?α3,α1|α3!α2|α4 but the former cannot. ()

We now detail the symbolic transitions concerned with code execution and pas-
sivation. These only use fresh abstract locations γ, not generated names, sim-
plifying the LTS and the construction of witness bisimulations. We also ensure
that at each abstract location γ only one system-generated process is executing
at any time, further simplifying the LTS.

Code Execution: α! γ!κ". With this transition (due to Trun-κ) the observer
sends a system-generated code thunk, indexed in the knowledge environment by
κ, to the location of a running agent α to be executed. The agent originates
from a higher-order input transition (rule TIn-Pr in Sect. 4) and the thunk from
a higher-order system output (rule Tout-Pr), before or after the input. After the
transition, α is replaced by a fresh abstract location γ in which the code in ∆(κ)
runs (and only that).
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Abstract Location Passivation: γ!κ"!α. This transition (due to Tpass-γ)
allows the observer to passivate an abstract location γ, which has previously
been introduced by the symbolic transition just described, α! γ!κ".

Example 5.3 (Thm. 4.4 revisited). We have seen that systems N4.4 and N ′
4.4

are not contextually equivalent. Here we show how an observer can use the
above two symbolic transitions to distinguish them, when examining the con-
figurations

〈
∆1 * α1 | α2

〉
and

〈
∆′

1 * α1 | α2

〉
, where ∆1 = ∆,κ .→λN4.4,

∆′
1 = ∆,κ .→λN ′

4.4, and ∆ = {a, b, c, α̃}. After transition α1! γ1!κ" we get

νt
〈
∆1, γ1 * γ1!N4.4" | α2

〉
νt
〈
∆′

1, γ1 * γ1!N ′
4.4" | α2

〉

and after a sequence of weak transitions a!κ1, b!κ2, γ3!κ3"!α3:

νt
〈
∆κ1,κ2 * α3 | α2

〉
νt
〈
∆κ2,κ1 * α3 | α2

〉

where ∆x,y = ∆1, α̃, γ̃, (x .→λt?c!), (y .→λt!), (κ3 .→λ0). The observer can now run
both κ1 and κ2 (with the transitions α3! γ3!κ1" and α2! γ2!κ2") and obtain:

νt
〈
∆κ1,κ2 , γ̃ * γ3!t?c!" | γ2!t!"

〉
νt
〈
∆κ2,κ1 , l̃ * γ3!t!" | γ2!t?c!"

〉

Only the left configuration can now perform a weak sequence of transitions
(γ2!κ3"!α4), c!. Hence the original systems are differentiated by the observer.
Note that the passivation of γ1 in this example re-introduced a new symbolic
agent α3 in its place, allowing the observer to continue the interrogation of the
configuration. This is why Tpass-γ introduces a new constant in our LTS. ()

6 Weak Bisimulation Theory

We employ the standard bisimulation theory, applied to the LTS of configu-
rations generated by our first-order agent semantics outlined in the previous
sections. This is then restricted to a subset of configurations. Weak bisimilarity
over this subset is sound and complete with respect to contextual equivalence
(Thm. 3.2). We use the standard notation (

η
=⇒) to mean the reflexive transitive

closure of (
τ−→), when η = τ , and (

τ
=⇒ η−→ τ

=⇒) otherwise.

Definition 6.1 (Weak Bisimulation). : Conf × Conf is a weak bisimula-
tion when for all C1 C′

1 the following condition and its converse are satisfied:

If C1
η−→ C2 then there exists C′

2 such that C′
1

η
=⇒ C′

2 and C′
1 C′

2.

The largest weak bisimulation, weak bisimilarity (≈), is the union of all weak
bisimulations; it is straightforward to show that this is an equivalence relation.

We have deliberately restricted the number and form of symbolic transitions,
so as to facilitate the description of witness bisimulations when proving systems
equivalent. For example there is no direct way in which the observer can execute
at top-level code received from the system, indexed by a κ; this was even neces-
sary in the simpler language of HOπ [6]. In the current framework, the observer
interrogating a system, needs to have already executing within the system sym-
bolic agents, represented either by occurrences of α’s or γ’s. Because of this, we



180 V. Koutavas and M. Hennessy

let the observer interrogate a system νã.P by transitions in the agent LTS by
starting in the configuration νã

〈
∆,κ .→λP *

∏
αi

〉
. Here each symbolic agent αi

allows the observer to initiate the interrogation, by executing one of the symbolic
actions from Fig. 3. In fact only two such symbolic agents are necessary.

Theorem 6.2 (Soundness and Completeness of (≈)). Let M = νm̃.P ,
N = νñ.Q be closed systems. Then for ∆ = {c̃, α̃} ⊇ fn(M), fn(N),α1,α2:
M ∼=cxt N iff νm̃

〈
∆,κ .→λP * α1 | α2

〉
≈ νñ

〈
∆,κ .→λQ * α1 | α2

〉
.

7 Example Equivalence

The encoding in HOPass of internal choice (⊕), replication (∗( )), and the tram-
poline operator (*+) are fully abstract. Here we prove an instance of the last: in
HOPass extended with (*+) and replication, M = a?(x, y).(runx *+ run y) ∼=cxt

a?(x, y).(run x *+enc run y) = M ′, where (*+enc) is the encoding on page 175.
Soundness of (≈) holds for the extended language. Thus, from Thm. 6.2, it suf-
fices to show

〈
∆,κ .→λM * α1 | α2

〉
≈

〈
∆,κ .→λM ′ * α1 | α2

〉
. To reduce the size

of the proof we make use of a standard up-to beta steps technique, similar to that
in our previous work for HOπ [6], and observe that internal run transitions and
all transitions involving communication on pL and pL

′ in (*+enc) are beta steps.
We construct the following relation on well-formed configurations and prove it
is a weak bisimulation up to beta steps by induction on the construction and
enumeration of the possible LTS transitions.
〈
∆, κ̃1 .→λM,κ21 .→λα11 *+ α12, . . .κ2m .→λα1m *+ α2m * α3 | α4

〉
〈
∆, κ̃1 .→λM ′,κ21 .→λα11 *+enc α12, . . .κ2m .→λα1m *+enc α2m * α3 | α4

〉

(C, γ){{γ!runC(κ)/α"}} (C′, γ){{γ!runC′(κ)/α"}} if C C′

(C, α̃){{α1 *+ α2/M}} (C′, α̃){{α1 *+enc α2/M}} if C C′

Here {{P/Q}} replaces one occurrence of Q with P in a configuration, and (C,∆)
extends the knowledge environment of C with a fresh ∆; C(κ) denotes the code
indexed by κ in the environment of C. In the base case of the construction,
related knowledge environments contain an arbitrary number of indices to the
initial systems (κ1i .→λM and κ1i .→λM ′), as well as an arbitrary number of
κ2i .→λα1i *+ α2i and κ2i .→λα1i *+enc α2i, where the α1i’s are not necessarily
pairwise distinct (similarly for the α2i’s).

8 Conclusions

We presented the first first-order bisimulation proof technique for a distributed
language with passivation and private names, which is sound and complete with
respect to weak barbed congruence, the contextual equivalence associated with
weak bisimulation. In our language, code behaviour is location-dependent, the
usual encodings of useful systems are possible, and unnecessary complexities with
free names are avoided. We believe that our technique can be adapted to other
distributed languages with location-dependent behaviour, and indeed to HOπP
[7], a passivation language where free names are observable for which the only
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available proof technique is context bisimulation. Normal and environmental
bisimulation are sound only for sublanguages of HOπP [7, 9], and the latter
technique is sound and complete for a language with generative names [10].
These language variations, however, cannot express many useful systems, such
as those with internal choice, replication, or higher-order values containing input
processes. In other languages with passivation, context bisimulation is only sound
for the weak case [2, 3] or sound and complete for only the strong case [14].
Unlike context and environmental bisimulation, our proof technique avoids any
universal quantification over contexts. This is achieved by a labelled transition
system in which higher-order input values are replaced by abstract agents which
can perform limited symbolic transitions within systems, simplifying proofs.
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