
Background Communicating transactions Logics Results

Distinguishing between Communicating
Transactions

Matthew Hennessy
Trinity College Dublin

joint work with Vasileois Koutavas, Maciej Gadza

OPTCS’17 Vienna, June 2017

Paper available at:
www.scss.tcd.ie/Matthew.Hennessy/onlinepubs.html

1/20

www.scss.tcd.ie/Matthew.Hennessy/onlinepubs.html

Background Communicating transactions Logics Results

Outline

Background

Communicating transactions

Logics

Results

2/20

Background Communicating transactions Logics Results

Explaining why
process descriptions denote different behaviours

General scenario:

P1 6≈behav P2 iff P2 ` φ, P2 6` φ for some property φ

Property φ explains why P1, P2 behave differently

Counterexample synthesis: automatic

Concurrency workbench MCRL2 UPPAAL . . .

3/20

Background Communicating transactions Logics Results

Explaining why
process descriptions denote different behaviours

General scenario:

P1 6≈behav P2 iff P2 ` φ, P2 6` φ for some property φ

Property φ explains why P1, P2 behave differently

Counterexample synthesis: automatic

Concurrency workbench MCRL2 UPPAAL . . .

3/20

Background Communicating transactions Logics Results

Classical case: CCS and HML

P0 = a.(b.0+ c .0)

Q0 = a.(b.0+ c .0) + a.b.0

P0 6≈bisim Q0

Explanation:

P0 |= [a] 〈c〉 true
Q0 6|= [a] 〈c〉 true

P0 |= whenever a is performed c can subsequently be performed

4/20

Background Communicating transactions Logics Results

Classical case: CCS and HML

P0 = a.(b.0+ c .0)

Q0 = a.(b.0+ c .0) + a.b.0

P0 6≈bisim Q0

Explanation:

P0 |= [a] 〈c〉 true
Q0 6|= [a] 〈c〉 true

P0 |= whenever a is performed c can subsequently be performed

4/20

Background Communicating transactions Logics Results

TCCSm: Cooperating transactions

Syntax: P,Q ::=
∑
µi .Pi guarded choice

| P | Q parallel
| νaP hiding
| recX .P recursion
| JP .k QK running transaction named k
| co commit

Transaction JP .k QK

I execute P to completion (to execution of co)

I subject to random aborts

I if aborted, roll back all effects of P and initiate Q

I roll back includes . . . environmental impact of P

5/20

Background Communicating transactions Logics Results

TCCSm: Cooperating transactions

Syntax: P,Q ::=
∑
µi .Pi guarded choice

| P | Q parallel
| νaP hiding
| recX .P recursion
| JP .k QK running transaction named k
| co commit

Transaction JP .k QK

I execute P to completion (to execution of co)

I subject to random aborts

I if aborted, roll back all effects of P and initiate Q

I roll back includes . . . environmental impact of P

5/20

Background Communicating transactions Logics Results

TCCSm: Cooperating transactions

Syntax: P,Q ::=
∑
µi .Pi guarded choice

| P | Q parallel
| νaP hiding
| recX .P recursion
| JP .k QK running transaction named k
| co commit

Transaction JP .k QK

I execute P to completion (to execution of co)

I subject to random aborts

I if aborted, roll back all effects of P and initiate Q

I roll back includes . . . environmental impact of P

5/20

Background Communicating transactions Logics Results

Rollbacks and Commits

Co-operating actions: a← needs co-operation of→ a

Ta | Tb | Tc | Pd | Pe

where
Ta =

q
d .b.(co | a) .k1 0

y

Tb = Jc .(co | b) .k2 0K
Tc = Je.c.co .k3 0K
Pd = d .Rd

Pe = e.Re

I if Tc aborts, what roll-backs are necessary?

I When can action a be considered permanent?

I When can code Pd be considered permanent?

6/20

Background Communicating transactions Logics Results

Rollbacks and Commits

Co-operating actions: a← needs co-operation of→ a

Ta | Tb | Tc | Pd | Pe

where
Ta =

q
d .b.(co | a) .k1 0

y

Tb = Jc .(co | b) .k2 0K
Tc = Je.c.co .k3 0K
Pd = d .Rd

Pe = e.Re

I if Tc aborts, what roll-backs are necessary?

I When can action a be considered permanent?

I When can code Pd be considered permanent?

6/20

Background Communicating transactions Logics Results

Rollbacks and Commits

Co-operating actions: a← needs co-operation of→ a

Ta | Tb | Tc | Pd | Pe

where
Ta =

q
d .b.(co | a) .k1 0

y

Tb = Jc .(co | b) .k2 0K
Tc = Je.c.co .k3 0K
Pd = d .Rd

Pe = e.Re

I if Tc aborts, what roll-backs are necessary?

I When can action a be considered permanent?

I When can code Pd be considered permanent?

6/20

Background Communicating transactions Logics Results

Examples

Independent activity:

recX . Ja.b.co .k1 X K | recY . Jc .d .co .k2 Y K

Dependent activity:

(νp) recX . Ja.b.p.co .k1 X K | recY . Jc .d .p.co .k2 Y K

Very dependent activity:

(νp, q) recX . Ja.q.b.p.co .k1 X K | recY . Jc .q.d .p.co .k2 Y K

7/20

Background Communicating transactions Logics Results

Examples

Independent activity:

recX . Ja.b.co .k1 X K | recY . Jc .d .co .k2 Y K

Dependent activity:

(νp) recX . Ja.b.p.co .k1 X K | recY . Jc .d .p.co .k2 Y K

Very dependent activity:

(νp, q) recX . Ja.q.b.p.co .k1 X K | recY . Jc .q.d .p.co .k2 Y K

7/20

Background Communicating transactions Logics Results

Examples

Independent activity:

recX . Ja.b.co .k1 X K | recY . Jc .d .co .k2 Y K

Dependent activity:

(νp) recX . Ja.b.p.co .k1 X K | recY . Jc .d .p.co .k2 Y K

Very dependent activity:

(νp, q) recX . Ja.q.b.p.co .k1 X K | recY . Jc .q.d .p.co .k2 Y K

7/20

Background Communicating transactions Logics Results

Tentative vs Permanent actions for bisimulations

Ja.b.co + a.c .0 .k 0K
k(a)−−→ tentative a

k(b)−−→ tentative b

8/20

Background Communicating transactions Logics Results

Tentative vs Permanent actions for bisimulations

Ja.b.co + a.c .0 .k 0K
a−→ permanent a

b−→ permanent b

cok−−→ commit k

Ja.b.co + a.c .0 .k 0K
k(a)−−→ tentative a

k(c)−−→ tentative c

9/20

Background Communicating transactions Logics Results

Tentative vs Permanent actions for bisimulations

Ja.b.co + a.c .0 .k 0K
a−→ permanent a

b−→ permanent b

cok−−→ commit k

Ja.b.co + a.c .0 .k 0K
k(a)−−→ tentative a

k(c)−−→ tentative c

9/20

Background Communicating transactions Logics Results

Remembering via Histories: H � P

ε . Ja.p.co .k 0K | Jb.p.co .l 0K
k1(a)−−−→

tentative a k1 fresh

Id; k1(a) . Jp.co .k1 0K | Jb.p.co .l 0K
k2(b)−−−→

tentative b k2 fresh

Id; k1(a). k2(b) . Jp.co .k1 0K | Jp.co .k2 0K
τ−→

comm = merging k3 fresh

{k1, k2, k3}; k1(a). k2(b) . Jco .k3 0K | Jco .k3 0K
τ−→

committing

{k1, k2, k3}; k1(co). k2(co) . 0 | 0
permanent a, b

10/20

Background Communicating transactions Logics Results

Remembering via Histories: H � P

ε . Ja.p.co .k 0K | Jb.p.co .l 0K
k1(a)−−−→

tentative a k1 fresh

Id; k1(a) . Jp.co .k1 0K | Jb.p.co .l 0K
k2(b)−−−→

tentative b k2 fresh

Id; k1(a). k2(b) . Jp.co .k1 0K | Jp.co .k2 0K
τ−→

comm = merging k3 fresh

{k1, k2, k3}; k1(a). k2(b) . Jco .k3 0K | Jco .k3 0K
τ−→

committing

{k1, k2, k3}; k1(co). k2(co) . 0 | 0
permanent a, b

10/20

Background Communicating transactions Logics Results

Remembering via Histories: H � P

ε . Ja.p.co .k 0K | Jb.p.co .l 0K
k1(a)−−−→

tentative a k1 fresh

Id; k1(a) . Jp.co .k1 0K | Jb.p.co .l 0K
k2(b)−−−→

tentative b k2 fresh

Id; k1(a). k2(b) . Jp.co .k1 0K | Jp.co .k2 0K
τ−→

comm = merging k3 fresh

{k1, k2, k3}; k1(a). k2(b) . Jco .k3 0K | Jco .k3 0K
τ−→

committing

{k1, k2, k3}; k1(co). k2(co) . 0 | 0
permanent a, b

10/20

Background Communicating transactions Logics Results

Remembering via Histories: H � P

ε . Ja.p.co .k 0K | Jb.p.co .l 0K
k1(a)−−−→

tentative a k1 fresh

Id; k1(a) . Jp.co .k1 0K | Jb.p.co .l 0K
k2(b)−−−→

tentative b k2 fresh

Id; k1(a). k2(b) . Jp.co .k1 0K | Jp.co .k2 0K
τ−→

comm = merging k3 fresh

{k1, k2, k3}; k1(a). k2(b) . Jco .k3 0K | Jco .k3 0K
τ−→

committing

{k1, k2, k3}; k1(co). k2(co) . 0 | 0
permanent a, b

10/20

Background Communicating transactions Logics Results

Remembering via Histories: H � P

ε . Ja.p.co .k 0K | Jb.p.co .l 0K
k1(a)−−−→

tentative a k1 fresh

Id; k1(a) . Jp.co .k1 0K | Jb.p.co .l 0K
k2(b)−−−→

tentative b k2 fresh

Id; k1(a). k2(b) . Jp.co .k1 0K | Jp.co .k2 0K
τ−→

comm = merging k3 fresh

{k1, k2, k3}; k1(a). k2(b) . Jco .k3 0K | Jco .k3 0K
τ−→

committing

{k1, k2, k3}; k1(co). k2(co) . 0 | 0
permanent a, b

10/20

Background Communicating transactions Logics Results

Remembering via Histories: H � P

ε . Ja.p.co .k 0K | Jb.p.co .l 0K
k1(a)−−−→

tentative a k1 fresh

Id; k1(a) . Jp.co .k1 0K | Jb.p.co .l 0K
k2(b)−−−→

tentative b k2 fresh

Id; k1(a). k2(b) . Jp.co .k1 0K | Jp.co .k2 0K
τ−→

comm = merging k3 fresh

{k1, k2, k3}; k1(a). k2(b) . Jco .k3 0K | Jco .k3 0K
τ−→

committing

{k1, k2, k3}; k1(co). k2(co) . 0 | 0
permanent a, b

10/20

Background Communicating transactions Logics Results

Configurations: H � P

where H remembers

I tentative actions what commits they depend on

I aborted transactions

I committed transactions

I equivalence between transaction names

11/20

Background Communicating transactions Logics Results

Configurations: H � P

where H remembers

I tentative actions what commits they depend on

I aborted transactions

I committed transactions

I equivalence between transaction names

11/20

Background Communicating transactions Logics Results

Bisimulations

H1 � P1 ≈bisim H2 � P2

whenever
I H1, H2 are consistent :

I committed actions agree

I H1 � P1
λ−→ H ′

1 � P ′
1 where λ uses fresh names,

implies H2 � P2
λ

=⇒ H ′
2 � P ′

2 such that
H ′

1 � P1 ≈bisim H ′
2 � P ′

2

I . . .

Intricacies:

I Commits/aborts treated as internal actions

I Dummy actions allowed

12/20

Background Communicating transactions Logics Results

Bisimulations

H1 � P1 ≈bisim H2 � P2

whenever
I H1, H2 are consistent :

I committed actions agree

I H1 � P1
λ−→ H ′

1 � P ′
1 where λ uses fresh names,

implies H2 � P2
λ

=⇒ H ′
2 � P ′

2 such that
H ′

1 � P1 ≈bisim H ′
2 � P ′

2

I . . .

Intricacies:

I Commits/aborts treated as internal actions

I Dummy actions allowed

12/20

Background Communicating transactions Logics Results

Using logic

P1 = Ja.(b.co + c .co) .k 0K
Q1 = Ja.b.co + a.c .0) .l 0K

Distinguishing property:

P1 |= 〈x(a)〉 〈y(c)〉 Hasco(y)

Q1 6|=

Explanation:

P1 can

I execute a in some transaction

I then execute c is some other transaction

I reach a state in which second transaction is committed

13/20

Background Communicating transactions Logics Results

Using logic

P1 = Ja.(b.co + c .co) .k 0K
Q1 = Ja.b.co + a.c .0) .l 0K

Distinguishing property:

P1 |= 〈x(a)〉 〈y(c)〉 Hasco(y)

Q1 6|=

Explanation:

P1 can

I execute a in some transaction

I then execute c is some other transaction

I reach a state in which second transaction is committed

13/20

Background Communicating transactions Logics Results

Using logic

P1 = Ja.(b.co + c .co) .k 0K
Q1 = Ja.b.co + a.c .0) .l 0K

Distinguishing property:

P1 |= 〈x(a)〉 〈y(c)〉 Hasco(y)

Q1 6|=

Explanation:

P1 can

I execute a in some transaction

I then execute c is some other transaction

I reach a state in which second transaction is committed

13/20

Background Communicating transactions Logics Results

Property logics

φ ∈ L ::= 〈x(a)〉φ, x ∈ Var

| ∧{i∈I} φi | ¬φ | 〈τ〉φ
| some predicates on . . .

v ∈ Values ::= k ∈ TrName constants | x ∈ Var variables

Nominal Interpretation: à la Pitts Gabbay

H � P |= 〈x(a)〉φ if

I for almost all k ∈ TrName

I H � P
k(a)
==⇒ H ′ � P ′ |= φ

One useful predicate:

H � P |= Hasco(k) if

I l(co) is in H

I for some l equivalent to k

14/20

Background Communicating transactions Logics Results

Property logics

φ ∈ L ::= 〈x(a)〉φ, x ∈ Var

| ∧{i∈I} φi | ¬φ | 〈τ〉φ
| some predicates on . . .

v ∈ Values ::= k ∈ TrName constants | x ∈ Var variables

Nominal Interpretation: à la Pitts Gabbay

H � P |= 〈x(a)〉φ if

I for almost all k ∈ TrName

I H � P
k(a)
==⇒ H ′ � P ′ |= φ

One useful predicate:

H � P |= Hasco(k) if

I l(co) is in H

I for some l equivalent to k

14/20

Background Communicating transactions Logics Results

Property logics

φ ∈ L ::= 〈x(a)〉φ, x ∈ Var

| ∧{i∈I} φi | ¬φ | 〈τ〉φ
| some predicates on . . .

v ∈ Values ::= k ∈ TrName constants | x ∈ Var variables

Nominal Interpretation: à la Pitts Gabbay

H � P |= 〈x(a)〉φ if

I for almost all k ∈ TrName

I H � P
k(a)
==⇒ H ′ � P ′ |= φ

One useful predicate:

H � P |= Hasco(k) if

I l(co) is in H

I for some l equivalent to k

14/20

Background Communicating transactions Logics Results

An example

P2 = Ja.b.co + b.a.co) .k 0K
Q2 = Ja.co .k1 0K | Jb.co .k2 0K

Distinguishing property:

P2 |= 〈x(a)〉 〈y(b)〉 x = y

Q2 6|=

Intuition: P2 can execute both actions in same transaction

Semantics:
H � P |= k1 = k2 if

I k1, k2 are equivalent in H

I both k1, k2 are committed in H

15/20

Background Communicating transactions Logics Results

An example

P2 = Ja.b.co + b.a.co) .k 0K
Q2 = Ja.co .k1 0K | Jb.co .k2 0K

Distinguishing property:

P2 |= 〈x(a)〉 〈y(b)〉 x = y

Q2 6|=

Intuition: P2 can execute both actions in same transaction

Semantics:
H � P |= k1 = k2 if

I k1, k2 are equivalent in H

I both k1, k2 are committed in H

15/20

Background Communicating transactions Logics Results

An example

P2 = Ja.b.co + b.a.co) .k 0K
Q2 = Ja.co .k1 0K | Jb.co .k2 0K

Distinguishing property:

P2 |= 〈x(a)〉 〈y(b)〉 x = y

Q2 6|=

Intuition: P2 can execute both actions in same transaction

Semantics:
H � P |= k1 = k2 if

I k1, k2 are equivalent in H

I both k1, k2 are committed in H

15/20

Background Communicating transactions Logics Results

An example

P3 = νp. Ja.p.co + a.co) .k1 0K | Jb.p.co + b.co) .k2 0K
Q3 = Ja.co .k1 0K | Jb.co .k2 0K

Distinguishing property:

P3 can

I perform a followed by b in two distinct transactions

I then can simultaneously commit both

Logic:

I P3 |=cc 〈x(a)〉 〈y(b)〉 〈co({x , y})〉 true.

I Q3 6 |=cc

16/20

Background Communicating transactions Logics Results

An example

P3 = νp. Ja.p.co + a.co) .k1 0K | Jb.p.co + b.co) .k2 0K
Q3 = Ja.co .k1 0K | Jb.co .k2 0K

Distinguishing property:

P3 can

I perform a followed by b in two distinct transactions

I then can simultaneously commit both

Logic:

I P3 |=cc 〈x(a)〉 〈y(b)〉 〈co({x , y})〉 true.

I Q3 6 |=cc

16/20

Background Communicating transactions Logics Results

An example

P3 = νp. Ja.p.co + a.co) .k1 0K | Jb.p.co + b.co) .k2 0K
Q3 = Ja.co .k1 0K | Jb.co .k2 0K

Distinguishing property:

P3 can

I perform a followed by b in two distinct transactions

I then can simultaneously commit both

Logic:

I P3 |=cc 〈x(a)〉 〈y(b)〉 〈co({x , y})〉 true.

I Q3 6 |=cc

16/20

Background Communicating transactions Logics Results

Simultaneous commits
P3 = νp. Ja.p.co + a.co) .k1 0K | Jb.p.co + b.co) .k2 0K
Q3 = Ja.co .k1 0K | Jb.co .k2 0K

Distinguishing property:

P3 can

I perform a followed by b in two distinct transactions

I then can simultaneously commit both

I 〈x(a)〉 〈y(b)〉 〈co({x , y})〉 true

Semantics:
H � P |= 〈co(K)〉φ if

I H � P
τ

=⇒ H ′ � P ′ co(m)−−−→ τ
=⇒ H ′′ � P ′′ |= φ

I every k in K is equivalent to m in H ′

17/20

Background Communicating transactions Logics Results

Simultaneous commits
P3 = νp. Ja.p.co + a.co) .k1 0K | Jb.p.co + b.co) .k2 0K
Q3 = Ja.co .k1 0K | Jb.co .k2 0K

Distinguishing property:

P3 can

I perform a followed by b in two distinct transactions

I then can simultaneously commit both

I 〈x(a)〉 〈y(b)〉 〈co({x , y})〉 true

Semantics:
H � P |= 〈co(K)〉φ if

I H � P
τ

=⇒ H ′ � P ′ co(m)−−−→ τ
=⇒ H ′′ � P ′′ |= φ

I every k in K is equivalent to m in H ′

17/20

Background Communicating transactions Logics Results

Simultaneous commits
P3 = νp. Ja.p.co + a.co) .k1 0K | Jb.p.co + b.co) .k2 0K
Q3 = Ja.co .k1 0K | Jb.co .k2 0K

Distinguishing property:

P3 can

I perform a followed by b in two distinct transactions

I then can simultaneously commit both

I 〈x(a)〉 〈y(b)〉 〈co({x , y})〉 true

Semantics:
H � P |= 〈co(K)〉φ if

I H � P
τ

=⇒ H ′ � P ′ co(m)−−−→ τ
=⇒ H ′′ � P ′′ |= φ

I every k in K is equivalent to m in H ′

17/20

Background Communicating transactions Logics Results

Simultaneous commits
P3 = νp. Ja.p.co + a.co) .k1 0K | Jb.p.co + b.co) .k2 0K
Q3 = Ja.co .k1 0K | Jb.co .k2 0K

Distinguishing property:

P3 can

I perform a followed by b in two distinct transactions

I then can simultaneously commit both

I 〈x(a)〉 〈y(b)〉 〈co({x , y})〉 true

Semantics:
H � P |= 〈co(K)〉φ if

I H � P
τ

=⇒ H ′ � P ′ co(m)−−−→ τ
=⇒ H ′′ � P ′′ |= φ

I every k in K is equivalent to m in H ′

17/20

Background Communicating transactions Logics Results

Three logics

I LHasco: nominal HML + property Hasco has committed

I LEq: nominal HML + equality property v1 = v2

I LCanco:

I No properties
I nominal HML + 〈co(K)〉φ simultaneous commits

Main results:

I all three logics capture contextual equivalence

I All three logics are equally expressive

18/20

Background Communicating transactions Logics Results

Three logics

I LHasco: nominal HML + property Hasco has committed

I LEq: nominal HML + equality property v1 = v2

I LCanco:

I No properties
I nominal HML + 〈co(K)〉φ simultaneous commits

Main results:

I all three logics capture contextual equivalence

I All three logics are equally expressive

18/20

Background Communicating transactions Logics Results

Expressiveness

Weak:

P ≈cxt Q iff LHasco(P) = LHasco(Q)

iff LEq(P) = LEq(Q)

iff LCanco(P) = LCanco(Q)

Strong:

For all φ ∈ LX there is some tr(φ) ∈ LY such that

P |= φ ⇐⇒ P |= tr(φ)

19/20

Background Communicating transactions Logics Results

THE END

THANK YOU

20/20

	Background
	Communicating transactions
	Logics
	Results

