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Py = a.(b.® + C.®)
Q = a(b.®+c0)+a.bod
Po ?‘ébisim Qo

Explanation:

Py E [a]{(c)true
Q  [a]{c) true

Py |= whenever a is performed ¢ can subsequently be performed
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Syntax: P, Q > wi.P;  guarded choice

P|Q parallel

vaP hiding

recX.P  recursion

[P >k Q] running transaction named k

co commit

Transaction [P >, Q]

> execute P to completion (o execution of CO)

> subject to random aborts

» if aborted, roll back all effects of P and initiate @
» roll back includes ...environmental impact of P
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Background Communicating transactions

Rollbacks and Commits

Co-operating actions: ‘a < needs co-operation of — 3

Ta’Tb|TC|Pd|Pe

where B
T, = [d.b.(co]|a)r 0]
T, = [[E.(co | b) Dk, 0]]

T = [e.c.cory, 0]
Py = d.Ry
P. = eRe

» if T, aborts, what roll-backs are necessary?
» When can action a be considered permanent?

» When can code P, be considered permanent?
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Independent activity:

recX. [a.b.copy, X] | recY.[c.d.cory, Y]

Dependent activity:

(vp)recX.[a.b.p.cory, X] | recY.[c.d.p.cory, Y]

Very dependent activity:

(vp,q)recX.[a.q.b.p.cory, X] | recY.[c.q.d.p.cory, Y]
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Tentative vs Permanent actions for bisimulations

[a.b.coda.c.op, 0] 2 permanent a
b
= permanent b
cok commit k
k(a) .

[a.b.co+a.cOp, 0] — tentative a
k(c) .
— tentative ¢
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where H remembers

> tentative actions what commits they depend on
» aborted transactions

» committed transactions

» equivalence between transaction names
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Bisimulations
Hi > P1 ~pisim Ho > P>

whenever
» Hy, H, are consistent :
» committed actions agree

» Hi > P i> H{ > P{ where A\ uses fresh names,
implies Hp > P, 2 H} > P} such that

H{ > P]_ bisim Hé > Pé
| S

Intricacies:

» Commits/aborts treated as internal actions

» Dummy actions allowed e
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Using logic

P1 = Ja.(b.co+ c.co)pk 0]
Q1 = [a.b.co+ a.c.0)r> 0]

Distinguishing property:

Explanation:
P71 can
> execute a in some transaction
> then execute c is some other transaction

> reach a state in which second transaction is committed S
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Property logics
pel == (x(a))¢, x€ Var
| Agieny @i | = | (T) &
| some predicates on ...

v € Va|ueS = k S TrName constants | X € Var variables

Nominal Interpretation: s ia pitts Gabbay
Hr P (x(a)) ¢ if

» for almost all kK € TrName

s He P e Py

One useful predicate:
H > P = Hasco(k) if
» [(co) isin H
» for some / equivalent to k g
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An example
P, = Ja.b.co+ b.a.co)k 0]
Q2 = [a.copy 0] | [b.cory, 0]

Distinguishing property:

Intuition: P> can execute both actions in same transaction

Semantics:
Hp> P ': ki = ky if
> ki, ko are equivalent in H
» both ki, ko are committed in H

W oo
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An example
P3; = wvp.[a.p.co+ a.co)py O] | [b.p.co+ b.co) >y, 0]
@ = [a.cory O] | [b.cory, 0]

Distinguishing property:
P3 can
» perform a followed by b in two distinct transactions

> then can simultaneously commit both

Logic:
> Py ke (x(2)) (b)) (co({x, v})) true.
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Simultaneous commits
P; = wp.[a.p.co+ a.co)py 0] | [b.p.co+ b.co) >, 0]
@ = [a.copy O] | [b.cory, 0]

Distinguishing property:
P3 can
» perform a followed by b in two distinct transactions

> then can simultaneously commit both

> (x(a)) (y(b)) (co({x,y})) true
Semantics:
H Pl (co(K)) 6 if

» Hb P2 H > P =35 H' > P =g

» every k in K is equivalent to m in H’

, co(m) r

W oo
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Three logics
> LHasco: Nominal HML + property Hasco has committed
> Lgq: nominal HML + equality property vi = v»

» LcCanco:
» No properties
> nominal HML + <CO(K)>¢ simultaneous commits
Main results:

> all three logics capture contextual equivalence

> All three logics are equally expressive
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Expressiveness

Weak:
P ext Q iff »CHasco(P) = LHasco(Q)
iff Leq(P) = Leq(Q)
iff ECanco('D) - ECanco(Q)
Strong:

For all ¢ € Lx there is some tr(¢) € Ly such that

PEG < PEu(s)



THE END

THANK YOU
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