Distinguishing between Communicating
Transactions

Matthew Hennessy

Trinity College Dublin

joint work with Vasileois Koutavas, Maciej Gadza

OPTCS'17 Vienna, June 2017

Paper available at:
www.scss.tcd.ie/Matthew.Hennessy/onlinepubs.html

www.scss.tcd.ie/Matthew.Hennessy/onlinepubs.html

_ Backgound Communicatingtransactions ___________logis Results
Outline

Background

Communicating transactions

Logics

Results

Explaining why

process descriptions denote different behaviours

General scenario:

Pl aébehav ’D2 iff P2 F ng P2 }7[d) for some property ¢

Property ¢ explains why P;, P> behave differently

Explaining why

process descriptions denote different behaviours

General scenario:

Pl aébehav ’D2 iff P2 F ng P2 }7/ d) for some property ¢

Property ¢ explains why P;, P> behave differently

Counterexample synthesis: automatic

Concurrency workbench MCRL2 UPPAAL ...

Background

Classical case: CCS and HML

Py = a.(b.® + C.®)
Q = a(b.®+c0)+a.bod
Po ?‘ébisim Qo

Explanation:

Py E [a]{(c)true
Q [a]{c) true

Classical case: CCS and HML

Py = a.(b.® + C.®)
Q = a(b.®+c0)+a.bod
Po ?‘ébisim Qo

Explanation:

Py E [a]{(c)true
Q [a]{c) true

Py |= whenever a is performed ¢ can subsequently be performed

TCCS™: Cooperating transactions

Syntax: P, Q > wi.P; guarded choice

P|Q parallel

vaP hiding

recX.P recursion

[P >« Q] running transaction named k

co commit

TCCS™: Cooperating transactions

Syntax: P,Q > wi.P; guarded choice

P|Q parallel

vaP hiding

recX.P recursion

[P >k Q] running transaction named k

co commit

Transaction [P >, Q]

> execute P to completion (o execution of CO)
> subject to random aborts

» if aborted, roll back all effects of P and initiate @

TCCS™: Cooperating transactions

Syntax: P, Q > wi.P; guarded choice

P|Q parallel

vaP hiding

recX.P recursion

[P >k Q] running transaction named k

co commit

Transaction [P >, Q]

> execute P to completion (o execution of CO)

> subject to random aborts

» if aborted, roll back all effects of P and initiate @
» roll back includes ...environmental impact of P

Communicating transactions

Rollbacks and Commits

Co-operating actions: ‘a < needs co-operation of — 5‘

Communicating transactions

Rollbacks and Commits

Co-operating actions: ‘a < needs co-operation of — 3

o

| To | Te | Pa | Pe

where
T, = [d.b.(co]|a)r 0]
T, = [[E.(co | b) Dk, 0]]
T = [e.c.cory, 0]
Py = d.Ry
P. = eR.

Background Communicating transactions

Rollbacks and Commits

Co-operating actions: ‘a < needs co-operation of — 3

Ta’Tb|TC|Pd|Pe

where B
T, = [d.b.(co]|a)r 0]
T, = [[E.(co | b) Dk, 0]]

T = [e.c.cory, 0]
Py = d.Ry
P. = eRe

» if T, aborts, what roll-backs are necessary?
» When can action a be considered permanent?

» When can code P, be considered permanent?

Communicating transactions

Examples

Independent activity:

recX. [a.b.copy, X] | recY.[c.d.cory, Y]

Communicating transactions

Examples

Independent activity:

recX. [a.b.copy, X] | recY.[c.d.cory, Y]

Dependent activity:

(vp)recX.[a.b.p.cory, X] | recY.[c.d.p.cory, Y]

Communicating transactions

Examples

Independent activity:

recX. [a.b.copy, X] | recY.[c.d.cory, Y]

Dependent activity:

(vp)recX.[a.b.p.cory, X] | recY.[c.d.p.cory, Y]

Very dependent activity:

(vp,q)recX.[a.q.b.p.cory, X] | recY.[c.q.d.p.cory, Y]

Communicating transactions

Tentative vs Permanent actions for bisimulations
k(a) .
[a.b.co+a.cOp, 0] —= tentative a
k(b .
L> tentative b

Communicating transactions

Tentative vs Permanent actions for bisimulations
[a.b.co+a.cO, 0] > permanent a
b
= permanent b
cok commit k

Communicating transactions

Tentative vs Permanent actions for bisimulations

[a.b.coda.c.op, 0] 2 permanent a
b
= permanent b
cok commit k
k(a) .

[a.b.co+a.cOp, 0] — tentative a
k(c) .
— tentative ¢

Communicating transactions

Remembering via Histories: H > P

Communicating transactions

Remembering via Histories: H > P

e b [[a.p.co D NH | [[b,ﬁ,co > @]] @)

tentative a kq fresh

Id; ki(a) > [p.cony 8] | [ppcos 8] 22
tentative b ko fresh
Id; ki(a). ka(b) > [p.coy 0] | [p.cork, 0] 5
comm = merging k3 fresh
{ki, ko, k3}; ki(a). ka(b) > [cork, 0] | [co bk, 0] 5
committing
{kl,kQ,k3}; kl(CO). kQ(CO) > 0 | 0
permanent a, b
e

Communicating transactions

Remembering via Histories: H > P

e b [[a.p.co D NH | [[b,ﬁ,co > @]] @)

tentative a ky fresh

Id; ki(a) > [p.covy 8] | [ppcos 8] 22
tentative b ko fresh
Id; ki(a). ka(b) > [p.copy 0] | [p.cork, 0] 5
comm = merging k3 fresh
{ki, ko, k3}; ki(a). ka(b) > [cork, 0] | [co bk, 0] 5
committing
{kl,kQ,k3}; kl(CO). kQ(CO) > 0 | 0
permanent a, b
e

Communicating transactions

Remembering via Histories: H > P

e b [[a.p.co D NH | [[b,ﬁ,co > @]] @)

tentative a ky fresh

Id; ki(a) > [p.cony 8] | [ppcos 8] 22
tentative b ko fresh
Id; ki(a). ka(b) > [p.coy 0] | [p.cork, 0] 5
comm = merging k3 fresh
{ki, ko, k3}; ki1(a). ka(b) > [cory, 0] | [co bk, 0] 5
committing
{kl,kQ,k3}; kl(CO). kQ(CO) > 0 | 0
permanent a, b
e

Communicating transactions

Remembering via Histories: H > P

k
e > [apcodi®] | [bpcon 8] 2
tentative a ky fresh
. _ kz(b)
Id; ki(a) > [p.cory 0] | [b.p.co> 8] ——
tentative b ko fresh
Id; ki(a). ka(b) > [p.coy 0] | [p.cork, 0] 5
comm = merging k3 fresh
{ki, ko, k3}; ki(a). ka(b) > [cork, 0] | [co bk, 0] S
committing
{kl,kQ,k3}; kl(CO). kQ(CO) > 0 | 0
permanent a, b
g

Communicating transactions

Remembering via Histories: H > P

e b [[a.p.co D NH | [[b,ﬁ,co > @]] @)

tentative a ky fresh

Id; ki(a) > [p.cony 8] | [ppcos 8] 22
tentative b ko fresh
Id; ki(a). ka(b) > [p.coy 0] | [p.cork, 0] 5
comm = merging k3 fresh
{ki, ko, k3}; ki(a). ka(b) > [cork, 0] | [co bk, 0] 5
committing
{kl,kQ,k3}; kl(CO). kQ(CO) > 0 | 0
permanent a, b
e

Configurations: H > P

where H remembers

> tentative actions what commits they depend on

» aborted transactions

» committed transactions

Configurations: H > P

where H remembers

> tentative actions what commits they depend on
» aborted transactions

» committed transactions

» equivalence between transaction names

Bisimulations
Hi > P1 ~pisim Ho > P>

whenever
» Hy, H, are consistent :
» committed actions agree

A
» H; > Py = Hi > Pj where X uses fresh names,

implies Hp > P, 2 H} > P} such that
Hy > Py ~pisim Hy > Py

Bisimulations
Hi > P1 ~pisim Ho > P>

whenever
» Hy, H, are consistent :
» committed actions agree

» Hi > P i> H{ > P{ where A\ uses fresh names,
implies Hp > P, 2 H} > P} such that

H{ > P]_ bisim Hé > Pé
| S

Intricacies:

» Commits/aborts treated as internal actions

» Dummy actions allowed e

Using logic

P1 = Ja.(b.co+ c.co)pk 0]
Q1 = [a.b.co+ a.c.0)r; 0]

Using logic

P1 = Ja.(b.co+ c.co)pk 0]
Q1 = [a.b.co+ a.c.0)r; 0]

Distinguishing property:

Using logic

P1 = Ja.(b.co+ c.co)pk 0]
Q1 = [a.b.co+ a.c.0)r> 0]

Distinguishing property:

Explanation:
P71 can
> execute a in some transaction
> then execute c is some other transaction

> reach a state in which second transaction is committed S

Property logics
pel == (x(a))¢, x€ Var
| Agieny @i | —¢ | (1) ¢

| some predicates on ...

v € Va|ueS = k S TrName constants | X € Var variables

Property logics
pel == (x(a))¢, x€ Var
| Agiery @i | = | (1)@
| some predicates on ...
v € Values =k € TrName constants | X € Var variables

Nominal Interpretation: s ia pitts Gabbay
Hr P (x(a)) ¢ if

» for almost all kK € TrName

s He P e Py

Property logics
pel == (x(a))¢, x€ Var
| Agieny @i | = | (T) &
| some predicates on ...

v € Va|ueS = k S TrName constants | X € Var variables

Nominal Interpretation: s ia pitts Gabbay
Hr P (x(a)) ¢ if

» for almost all kK € TrName

s He P e Py

One useful predicate:
H > P = Hasco(k) if
» [(co) isin H
» for some / equivalent to k g

An example
P, = Ja.b.co+ b.a.co)k 0]
Q2 = [a.copy 0] | [b.cory, 0]

An example
P, = Ja.b.co+ b.a.co)k 0]
Q2 = [a.copy 0] | [b.cory, 0]

Distinguishing property:

Intuition: P> can execute both actions in same transaction

An example
P, = Ja.b.co+ b.a.co)k 0]
Q2 = [a.copy 0] | [b.cory, 0]

Distinguishing property:

Intuition: P> can execute both actions in same transaction

Semantics:
Hp> P ': ki = ky if
> ki, ko are equivalent in H
» both ki, ko are committed in H

W oo

An example

P3; = wvp.[a.p.co+ a.co)py O] | [b.p.co+ b.co) >y, 0]
@ = [a.cory O] | [b.cory, 0]

An example
P3; = wvp.[a.p.co+ a.co)py O] | [b.p.co+ b.co) >y, 0]

@ = [a.cory O] | [b.cory, 0]

Distinguishing property:
P3 can
» perform a followed by b in two distinct transactions

> then can simultaneously commit both

An example
P3; = wvp.[a.p.co+ a.co)py O] | [b.p.co+ b.co) >y, 0]
@ = [a.cory O] | [b.cory, 0]

Distinguishing property:
P3 can
» perform a followed by b in two distinct transactions

> then can simultaneously commit both

Logic:
> Py ke (x(2)) (b)) (co({x, v})) true.

Simultaneous commits
P; = wp.[a.p.co+ a.co)py 0] | [b.p.co+ b.co) >, 0]
@ = [a.copy O] | [b.cory, 0]

Simultaneous commits
P; = wp.[a.p.co+ a.co)py 0] | [b.p.co+ b.co) >, 0]
@ = [a.copy O] | [b.cory, 0]

Distinguishing property:
P3 can
» perform a followed by b in two distinct transactions

> then can simultaneously commit both

Simultaneous commits
P; = wp.[a.p.co+ a.co)py 0] | [b.p.co+ b.co) >, 0]
@ = [a.copy O] | [b.cory, 0]

Distinguishing property:
P3 can
» perform a followed by b in two distinct transactions

> then can simultaneously commit both

> (x(a)) (y(b)) (co({x,y})) true

Simultaneous commits
P; = wp.[a.p.co+ a.co)py 0] | [b.p.co+ b.co) >, 0]
@ = [a.copy O] | [b.cory, 0]

Distinguishing property:
P3 can
» perform a followed by b in two distinct transactions

> then can simultaneously commit both

> (x(a)) (y(b)) (co({x,y})) true
Semantics:
H Pl (co(K)) 6 if

» Hb P2 H > P =35 H' > P =g

» every k in K is equivalent to m in H’

, co(m) r

W oo

Three logics
> LHasco: Nominal HML + property Hasco has committed
> Lgq: nominal HML + equality property vi = v»

» LcCanco:

» No properties
> nominal HML + <CO(K)>¢ simultaneous commits

Three logics
> LHasco: Nominal HML + property Hasco has committed
> Lgq: nominal HML + equality property vi = v»

» LcCanco:
» No properties
> nominal HML + <CO(K)>¢ simultaneous commits
Main results:

> all three logics capture contextual equivalence

> All three logics are equally expressive

_Backgound Communicating tensactions L Logies L Resuks

Expressiveness

Weak:
P ext Q iff »CHasco(P) = LHasco(Q)
iff Leq(P) = Leq(Q)
iff ECanco('D) - ECanco(Q)
Strong:

For all ¢ € Lx there is some tr(¢) € Ly such that

PEG < PEu(s)

THE END

THANK YOU

	Background
	Communicating transactions
	Logics
	Results

