Distinguishing between Communicating Transactions

Matthew Hennessy
Trinity College Dublin
joint work with Vasileois Koutavas, Maciej Gadza

OPTCS'17 Vienna, June 2017

Paper available at:
www.scss.tcd.ie/Matthew.Hennessy/onlinepubs.html

Outline

Background

Communicating transactions

Logics

Results

Explaining why

 process descriptions denote different behavioursGeneral scenario:

$$
P_{1} \not \nsim \text { behav } P_{2} \text { iff } P_{2} \vdash \phi, P_{2} \nvdash \phi \quad \text { for some property } \phi
$$

Property ϕ explains why P_{1}, P_{2} behave differently
Counterexample synthesis: automatic
Concurrency workbench

Explaining why

 process descriptions denote different behavioursGeneral scenario:

$$
P_{1} \not \overbrace{\text { behav }} P_{2} \text { iff } P_{2} \vdash \phi, P_{2} \nvdash \phi
$$

Property ϕ explains why P_{1}, P_{2} behave differently
Counterexample synthesis:
Concurrency workbench MCRL2 UPPAAL...

Classical case: CCS and HML

$$
\begin{aligned}
P_{0}= & a .(b .0+c . \theta) \\
Q_{0}= & a .(b .0+c . \theta)+a . b .0 \\
& P_{0} \not \nsim_{\mathrm{bisim}} Q_{0}
\end{aligned}
$$

Explanation:

$$
\begin{aligned}
& P_{0} \not \models[a]\langle c\rangle \text { true } \\
& Q_{0} \not \vDash[a]\langle c\rangle \text { true }
\end{aligned}
$$

$P_{0}=$ whenever a is performed c can subsequently be performed

Classical case: CCS and HML

$$
\begin{aligned}
P_{0}= & a .(b .0+c .0) \\
Q_{0}= & a .(b .0+c . \theta)+a . b .0 \\
& P_{0} \not \nsim_{\text {bisim }} Q_{0}
\end{aligned}
$$

Explanation:

$$
\begin{aligned}
& P_{0} \not \models[a]\langle c\rangle \text { true } \\
& Q_{0} \not \vDash[a]\langle c\rangle \text { true }
\end{aligned}
$$

$P_{0} \models$ whenever a is performed c can subsequently be performed

TCCS ${ }^{m}$: Cooperating transactions

Syntax:	P, Q	$::=$	$\sum_{P \mid} \mu_{i} \cdot P_{i}$
		guarded choice	
		$P \mid Q$	parallel
		$\nu a P$	hiding
		$r e c X . P$	recursion
	$\llbracket P \triangleright_{k} Q \rrbracket$	running transaction named k	
		co	commit

Transaction $\llbracket P \triangleright_{k} Q \rrbracket$

- execute P to completion (to exection of co)
- subject to random aborts
- if aborted, roll back all effects of P and initiate Q

TCCS ${ }^{m}$: Cooperating transactions

Syntax: $\quad P, Q \quad::=\sum \mu_{i} \cdot P_{i} \quad$ guarded choice
$P \mid Q \quad$ parallel
$\nu a P$ hiding rec $X . P$ recursion $\llbracket P \triangleright_{k} Q \rrbracket$ running transaction named k co commit

Transaction $\llbracket P \triangleright_{k} Q \rrbracket$

- execute P to completion (to execution of co)
- subject to random aborts
- if aborted, roll back all effects of P and initiate Q
- roll back includes

TCCS ${ }^{m}$: Cooperating transactions

Syntax: $\quad P, Q \quad::=\sum \mu_{i} \cdot P_{i} \quad$ guarded choice
$P \mid Q \quad$ parallel
$\nu a P$ hiding rec $X . P$ recursion $\llbracket P \triangleright_{k} Q \rrbracket$ running transaction named k co commit

Transaction $\llbracket P \triangleright_{k} Q \rrbracket$

- execute P to completion (to execution of co)
- subject to random aborts
- if aborted, roll back all effects of P and initiate Q
- roll back includes ... environmental impact of P

Rollbacks and Commits

Co-operating actions: $a \leftarrow$ needs co-operation of $\rightarrow \bar{a}$

$$
T_{a}\left|T_{b}\right| T_{c}\left|P_{d}\right| P_{e}
$$

where

$$
\begin{aligned}
T_{a} & =\llbracket \bar{d} \cdot \bar{b} \cdot(\operatorname{co} \mid a) \triangleright_{k_{1}} 0 \rrbracket \\
T_{b} & =\llbracket \bar{c} \cdot(\operatorname{co} \mid b) \triangleright_{k_{2}} 0 \rrbracket \\
T_{c} & =\llbracket \bar{e} \cdot c \cdot c o \triangleright_{k_{3}} \otimes \rrbracket \\
P_{d} & =d \cdot R_{d} \\
P_{e} & =e \cdot R_{e}
\end{aligned}
$$

- if T_{c} aborts, what roll-backs are necessary?
- When can action a be considered permanent?
- When can code P_{d} be considered permanent?

Rollbacks and Commits

Co-operating actions: $a \leftarrow$ needs co-operation of $\rightarrow \bar{a}$

$$
T_{a}\left|T_{b}\right| T_{c}\left|P_{d}\right| P_{e}
$$

where

$$
\begin{aligned}
T_{a} & =\llbracket \bar{d} \cdot \bar{b} .(c o \mid a) \triangleright_{k_{1}} 0 \rrbracket \\
T_{b} & =\llbracket \bar{c} \cdot(\mathrm{co} \mid b) \triangleright_{k_{2}} 0 \rrbracket \\
T_{c} & =\llbracket \bar{e} . c . c o \triangleright_{k_{3}} 0 \rrbracket \\
P_{d} & =d . R_{d} \\
P_{e} & =e \cdot R_{e}
\end{aligned}
$$

- if T_{c} aborts, what roll-backs are necessary?
- When can action a be considered permanent?
- When can code P_{d} be considered permanent?

Rollbacks and Commits

Co-operating actions: $a \leftarrow$ needs co-operation of $\rightarrow \bar{a}$

$$
T_{a}\left|T_{b}\right| T_{c}\left|P_{d}\right| P_{e}
$$

where

$$
\begin{aligned}
T_{a} & =\llbracket \bar{d} \cdot \bar{b} \cdot(c o \mid a) \triangleright_{k_{1}} 0 \rrbracket \\
T_{b} & =\llbracket \bar{c} \cdot(c o \mid b) \triangleright_{k_{2}} 0 \rrbracket \\
T_{c} & =\llbracket \bar{e} \cdot c . c o \triangleright_{k_{3}} 0 \rrbracket \\
P_{d} & =d \cdot R_{d} \\
P_{e} & =e \cdot R_{e}
\end{aligned}
$$

- if T_{c} aborts, what roll-backs are necessary?
- When can action a be considered permanent?
- When can code P_{d} be considered permanent?

Examples

Independent activity:

$$
\text { rec } X . \llbracket a . b . c o \triangleright_{k_{1}} X \rrbracket \mid \operatorname{rec} Y . \llbracket c . d . c o \triangleright_{k_{2}} Y \rrbracket
$$

Dependent activity:

$$
(\nu p) \mathrm{rec} X . \llbracket \text { a.b.p.co } \triangleright_{k_{1}} X \rrbracket \mid \operatorname{rec} Y . \llbracket c . d . \bar{p} . \operatorname{co} \triangleright_{k_{2}} Y \rrbracket
$$

Very dependent activity:
$(\nu p, q) \operatorname{rec} X . \llbracket a . q . b . p . c o \triangleright_{k_{1}} X \rrbracket \mid \operatorname{rec} Y . \llbracket c . \bar{q} . d . \bar{p} . c o \triangleright_{k_{2}} Y \rrbracket$

Examples

Independent activity:

$$
\mathrm{rec} X . \llbracket a . b . \operatorname{co} \triangleright_{k_{1}} X \rrbracket \mid \operatorname{rec} Y . \llbracket c . d . \operatorname{co} \triangleright_{k_{2}} Y \rrbracket
$$

Dependent activity:

$$
(\nu p) \mathrm{rec} X . \llbracket \text { a.b.p.co } \triangleright_{k_{1}} X \rrbracket \mid \operatorname{rec} Y . \llbracket c . d . \bar{p} . \operatorname{co} \triangleright_{k_{2}} Y \rrbracket
$$

$(\nu p, q) \operatorname{rec} X . \llbracket a . q . b . p . c o \triangleright_{k_{1}} X \rrbracket \mid \operatorname{rec} Y . \llbracket c \cdot \bar{q} \cdot d . \bar{p} . \operatorname{co} \triangleright_{k_{2}} Y \rrbracket$

Examples

Independent activity:

$$
\mathrm{rec} X . \llbracket a . b . c o \triangleright_{k_{1}} X \rrbracket \mid \operatorname{rec} Y . \llbracket c . d . c o \triangleright_{k_{2}} Y \rrbracket
$$

Dependent activity:

$$
(\nu p) \mathrm{rec} X . \llbracket a . b . p . c o \triangleright_{k_{1}} X \rrbracket \mid \operatorname{rec} Y . \llbracket c . d . \bar{p} . \operatorname{co} \triangleright_{k_{2}} Y \rrbracket
$$

Very dependent activity:

$$
(\nu p, q) \mathrm{rec} X . \llbracket a . q . b . p . c o \triangleright_{k_{1}} X \rrbracket \mid \operatorname{rec} Y . \llbracket c . \bar{q} \cdot d . \bar{p} . \operatorname{co} \triangleright_{k_{2}} Y \rrbracket
$$

Tentative vs Permanent actions

$$
\begin{aligned}
\llbracket a . b . c o+a . c . \theta \triangleright_{k} 0 \rrbracket & \xrightarrow{k(a)} \\
& \text { tentative } a \\
& \xrightarrow{k(b)}
\end{aligned} \quad \text { tentative } b
$$

Tentative vs Permanent actions

$$
\begin{array}{rll}
\llbracket a . b . c o+a . c .0 \triangleright_{k} 0 \rrbracket & \xrightarrow{a} & \text { permanent } \\
& \xrightarrow{b} & \text { permanent } \\
& \xrightarrow{\text { cok }} & \text { commit } k
\end{array}
$$

Tentative vs Permanent actions

$$
\begin{array}{rll}
\llbracket a . b . c o+a . c .0 \triangleright_{k} \otimes \rrbracket & \xrightarrow{a} & \text { permanent } a \\
& \xrightarrow{b} & \text { permanent } b \\
\llbracket a . b . c o+a . c .0 \triangleright_{k} 0 \rrbracket & \xrightarrow{\text { cok }} & \text { commit } k \\
& \xrightarrow{k(c)} & \text { tentative } a \\
& \text { tentative } c
\end{array}
$$

Remembering via Histories: $H \triangleright P$

Remembering via Histories: $H \triangleright P$

$$
\begin{aligned}
& \varepsilon \triangleright \llbracket a . p . \operatorname{co~} \triangleright_{k} 0 \rrbracket|\llbracket b . \bar{p} . \operatorname{co} \triangleright| 0 \rrbracket \xrightarrow{k_{1}(a)} \\
& \text { tentative a } \quad k_{1} \text { fresh }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Id; } k_{1}(a) . k_{2}(b) \triangleright \llbracket p . c o \triangleright_{k_{1}} 0 \rrbracket \mid \llbracket \bar{p} . c o \triangleright_{k_{2}} 0 \rrbracket \xrightarrow{\tau} \\
& \text { comm }=\text { merging } \quad k_{3} \text { fresh } \\
& \left\{k_{1}, k_{2}, k_{3}\right\} ; k_{1}(a) \cdot k_{2}(b) \triangleright \llbracket c o \triangleright_{k_{3}} \text { Qt | } \llbracket c o \triangleright_{k_{3}} \text { Qt } \xrightarrow{\tau} \\
& \text { committing } \\
& \left\{k_{1}, k_{2}, k_{3}\right\} ; k_{1}(c o) \cdot k_{2}(c o) \triangleright 0 \mid 0 \\
& \text { permanent } a, b
\end{aligned}
$$

Remembering via Histories: $H \triangleright P$

$$
\begin{aligned}
& \varepsilon \triangleright \llbracket a . p . c o \triangleright_{k} 0 \rrbracket|\llbracket b . \bar{p} . \operatorname{co} \triangleright| 0 \rrbracket \xrightarrow{k_{1}(a)} \\
& \text { tentative a } \quad k_{1} \text { fresh }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Id; } k_{1}(a) . k_{2}(b) \triangleright \llbracket p . c o \triangleright_{k_{1}} 0 \rrbracket \mid \llbracket \bar{p} . c o \triangleright_{k_{2}} 0 \rrbracket \xrightarrow{\tau} \\
& \text { comm }=\text { merging } \quad k_{3} \text { fresh } \\
& \left\{k_{1}, k_{2}, k_{3}\right\} ; k_{1}(a) \cdot k_{2}(b) \triangleright \llbracket c o \triangleright_{k_{3}} \text { Qt | } \llbracket c o \triangleright_{k_{3}} \text { Qt } \xrightarrow{\tau} \\
& \text { committing } \\
& \left\{k_{1}, k_{2}, k_{3}\right\} ; k_{1}(c o) \cdot k_{2}(c o) \triangleright 0 \mid 0 \\
& \text { permanent } a, b
\end{aligned}
$$

Remembering via Histories: $H \triangleright P$

$$
\left\{k_{1}, k_{2}, k_{3}\right\} ; k_{1}(c o) \cdot k_{2}(c o) \triangleright 0 \mid 0
$$

$$
\begin{aligned}
& \varepsilon \triangleright \llbracket a . p . c o \triangleright_{k} 0 \rrbracket \mid \llbracket b . \bar{p} . \operatorname{co} \triangleright^{\prime} 0 \rrbracket \xrightarrow{k_{1}(a)} \\
& \text { tentative a } \quad k_{1} \text { fresh }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Id; } k_{1}(a) . k_{2}(b) \triangleright \llbracket p . c o \triangleright_{k_{1}} 0 \rrbracket \mid \llbracket \bar{p} . c o \triangleright_{k_{2}} 0 \rrbracket \xrightarrow{\tau} \\
& \text { comm }=\text { merging } \quad k_{3} \text { fresh } \\
& \left\{k_{1}, k_{2}, k_{3}\right\} ; k_{1}(a) \cdot k_{2}(b) \triangleright \llbracket c o \triangleright_{k_{3}} \text { Q } \mid \llbracket c o \triangleright_{k_{3}} \text { Qt } \xrightarrow{\tau} \\
& \text { committing }
\end{aligned}
$$

Remembering via Histories: $H \triangleright P$

$$
\begin{aligned}
& \varepsilon \triangleright \llbracket a . p . \operatorname{co} \triangleright_{k} 0 \rrbracket \mid \llbracket b . \bar{p} . \operatorname{co} \triangleright^{\prime} 0 \rrbracket \xrightarrow{k_{1}(a)} \\
& \text { tentative a } \quad k_{1} \text { fresh }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Id; } k_{1}(a) . k_{2}(b) \triangleright \llbracket p . c o \triangleright_{k_{1}} 0 \rrbracket \mid \llbracket \bar{p} . c o \triangleright_{k_{2}} 0 \rrbracket \xrightarrow{\tau} \\
& \text { comm }=\text { merging } \quad k_{3} \text { fresh } \\
& \left\{k_{1}, k_{2}, k_{3}\right\} ; k_{1}(a) \cdot k_{2}(b) \triangleright \llbracket c o \triangleright_{k_{3}} \text { Qt | } \llbracket c o \triangleright_{k_{3}} \text { Qt } \xrightarrow{\tau} \\
& \left\{k_{1}, k_{2}, k_{3}\right\} ; k_{1}(c o) \cdot k_{2}(c o) \triangleright 0 \mid 0
\end{aligned}
$$

Remembering via Histories: $H \triangleright P$

$$
\begin{aligned}
& \varepsilon \triangleright \llbracket a . p . \operatorname{co} \triangleright_{k} 0 \rrbracket \mid \llbracket b . \bar{p} . \operatorname{co} \triangleright^{\prime} 0 \rrbracket \xrightarrow{k_{1}(a)} \\
& \text { tentative a } \quad k_{1} \text { fresh }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Id; } k_{1}(a) . k_{2}(b) \triangleright \llbracket p . c o \triangleright_{k_{1}} 0 \rrbracket \mid \llbracket \bar{p} . c o \triangleright_{k_{2}} 0 \rrbracket \xrightarrow{\tau} \\
& \text { comm }=\text { merging } \quad k_{3} \text { fresh } \\
& \left\{k_{1}, k_{2}, k_{3}\right\} ; k_{1}(a) \cdot k_{2}(b) \triangleright \llbracket c o \triangleright_{k_{3}} \text { Qt | } \llbracket c o \triangleright_{k_{3}} \text { Qt } \xrightarrow{\tau} \\
& \text { committing } \\
& \left\{k_{1}, k_{2}, k_{3}\right\} ; k_{1}(c o) \cdot k_{2}(c o) \triangleright 0 \mid 0 \\
& \text { permanent } a, b
\end{aligned}
$$

Configurations: $H \triangleright P$

where H remembers

- tentative actions what commits they depend on
- aborted transactions
- committed transactions
- equivalence between transaction names

Configurations: $H \triangleright P$

where H remembers

- tentative actions what commits they depend on
- aborted transactions
- committed transactions
- equivalence between transaction names

Bisimulations

$$
H_{1} \triangleright P_{1} \approx_{\text {bisim }} H_{2} \triangleright P_{2}
$$

whenever

- H_{1}, H_{2} are consistent:
- committed actions agree
- $H_{1} \triangleright P_{1} \xrightarrow{\lambda} H_{1}^{\prime} \triangleright P_{1}^{\prime}$ where λ uses fresh names, implies $H_{2} \triangleright P_{2} \stackrel{\lambda}{\Rightarrow} H_{2}^{\prime} \triangleright P_{2}^{\prime}$ such that $H_{1}^{\prime} \triangleright P_{1} \approx_{\text {bisim }} H_{2}^{\prime} \triangleright P_{2}^{\prime}$

Bisimulations

$$
H_{1} \triangleright P_{1} \approx_{\text {bisim }} H_{2} \triangleright P_{2}
$$

whenever

- H_{1}, H_{2} are consistent:
- committed actions agree
- $H_{1} \triangleright P_{1} \xrightarrow{\lambda} H_{1}^{\prime} \triangleright P_{1}^{\prime}$ where λ uses fresh names, implies $H_{2} \triangleright P_{2} \stackrel{\lambda}{\Rightarrow} H_{2}^{\prime} \triangleright P_{2}^{\prime}$ such that $H_{1}^{\prime} \triangleright P_{1} \approx_{\text {bisim }} H_{2}^{\prime} \triangleright P_{2}^{\prime}$

Intricacies:

- Commits/aborts treated as internal actions
- Dummy actions allowed

Using logic

$$
\begin{aligned}
P_{1} & =\llbracket a .(b . c o+c . c o) \triangleright_{k} \bullet \rrbracket \\
Q_{1} & =\llbracket a . b . c o+a . c .0) \triangleright 0 \rrbracket
\end{aligned}
$$

Distinguishing property:

Explanation:
P_{1} can
$>$ execute a in some transaction
\Rightarrow then execute c is some other transaction
\rightarrow reach a state in which second transaction is committed

Using logic

$$
\begin{aligned}
P_{1} & =\llbracket a .(b . c o+c . c o) \triangleright_{k} \bullet \rrbracket \\
Q_{1} & =\llbracket a . b . c o+a . c .0) \triangleright 0 \rrbracket
\end{aligned}
$$

Distinguishing property:

$$
\begin{aligned}
P_{1} & \models\langle x(a)\rangle\langle y(c)\rangle \operatorname{Hasco}(y) \\
Q_{1} & \not \models \ldots \ldots
\end{aligned}
$$

Explanation:

P_{1} can
> execute a in some transaction
\Rightarrow then execute c is some other transaction
\rightarrow reach a state in which second transaction is committed

Using logic

$$
\begin{aligned}
P_{1} & =\llbracket a .(b . c o+c . c o) \triangleright_{k} 0 \rrbracket \\
Q_{1} & =\llbracket a . b . c o+a . c .0) \triangleright_{1} 0 \rrbracket
\end{aligned}
$$

Distinguishing property:

$$
\begin{aligned}
P_{1} & \models\langle x(a)\rangle\langle y(c)\rangle \operatorname{Hasco}(y) \\
Q_{1} & \not \models \ldots \ldots .
\end{aligned}
$$

Explanation:
P_{1} can

- execute a in some transaction
- then execute c is some other transaction
- reach a state in which second transaction is committed

Property logics

$$
\begin{aligned}
\phi \in \mathcal{L}::= & \langle x(a)\rangle \phi, x \in \operatorname{Var} \\
& \left|\wedge_{\{i(1)\}} \phi_{i}\right| \neg \phi \mid\langle\tau\rangle \phi \\
& \mid \text { some predicates on } \ldots \\
v \in \text { Values }::= & k \in \operatorname{TrName} \text { constants } \mid x \in \operatorname{Var} \text { variables }
\end{aligned}
$$

Property logics

$$
\begin{aligned}
\phi \in \mathcal{L}::= & \langle x(a)\rangle \phi, x \in \operatorname{Var} \\
& \left|\wedge_{\{i \in \mid\}} \phi_{i}\right| \neg \phi \mid\langle\tau\rangle \phi \\
& \mid \text { some predicates on } \ldots \\
v \in \text { Values }::= & k \in \operatorname{TrName} \text { constants } \mid x \in \operatorname{Var} \text { variables }
\end{aligned}
$$

Nominal Interpretation: à a Pitts Gabbay
$H \triangleright P \models\langle x(a)\rangle \phi$ if

- for almost all $k \in \operatorname{TrName}$
- $H \triangleright P \xrightarrow{k(a)} H^{\prime} \triangleright P^{\prime}=\phi$

One useful predicate:
$H \triangleright P \models \operatorname{Hasco}(k)$ if

- I(co) is in H
- for some / equivalent to k

Property logics

$$
\begin{aligned}
\phi \in \mathcal{L}::= & \langle x(a)\rangle \phi, x \in \operatorname{Var} \\
& \left|\wedge_{\{i \in \mid\}} \phi_{i}\right| \neg \phi \mid\langle\tau\rangle \phi \\
& \mid \text { some predicates on } \ldots \\
v \in \text { Values }::= & k \in \operatorname{TrName} \text { constants } \mid x \in \operatorname{Var} \text { variales }
\end{aligned}
$$

Nominal Interpretation: à a Pitts Gabbay
$H \triangleright P \models\langle x(a)\rangle \phi$ if

- for almost all $k \in \operatorname{TrName}$
- $H \triangleright P \xrightarrow{k(a)} H^{\prime} \triangleright P^{\prime} \equiv \phi$

One useful predicate:
$H \triangleright P \models \operatorname{Hasco}(k)$ if

- $/(\mathrm{co})$ is in H
- for some / equivalent to k

An example

$$
\begin{aligned}
P_{2} & =\llbracket a . b . c o+b . a . c o) \triangleright_{k} 0 \rrbracket \\
Q_{2} & =\llbracket a . c o \triangleright_{k_{1}} 0 \rrbracket \mid \llbracket b . c o \triangleright_{k_{2}} 0 \rrbracket
\end{aligned}
$$

Distinguishing property:

$$
\begin{aligned}
P_{2} & \models\langle x(a)\rangle\langle y(b)\rangle x=y \\
Q_{2} & \not \models \ldots \ldots
\end{aligned}
$$

Intuition: P_{2} can execute both actions in same transaction

Semantics:
$H \triangleright P=k_{1}=k_{2}$ if

- k_{1}, k_{2} are equivalent in H
- both k_{1}, k_{2} are committed in H

An example

$$
\begin{aligned}
P_{2} & =\llbracket a . b . c o+b . a . c o) \triangleright_{k} 0 \rrbracket \\
Q_{2} & =\llbracket a . c o \triangleright_{k_{1}} 0 \rrbracket \mid \llbracket b . c o \triangleright_{k_{2}} 0 \rrbracket
\end{aligned}
$$

Distinguishing property:

$$
\begin{aligned}
P_{2} & \models\langle x(a)\rangle\langle y(b)\rangle x=y \\
Q_{2} & \not \models \ldots \ldots
\end{aligned}
$$

Intuition: P_{2} can execute both actions in same transaction

An example

$$
\begin{aligned}
P_{2} & =\llbracket a . b . c o+b . a . c o) \triangleright_{k} 0 \rrbracket \\
Q_{2} & =\llbracket a . c o \triangleright_{k_{1}} 0 \rrbracket \mid \llbracket b . c o \triangleright_{k_{2}} \otimes \rrbracket
\end{aligned}
$$

Distinguishing property:

$$
\begin{aligned}
P_{2} & \neq\langle x(a)\rangle\langle y(b)\rangle x=y \\
Q_{2} & \not \models \ldots \ldots
\end{aligned}
$$

Intuition: P_{2} can execute both actions in same transaction
Semantics:
$H \triangleright P \models k_{1}=k_{2}$ if

- k_{1}, k_{2} are equivalent in H
- both k_{1}, k_{2} are committed in H

An example

$$
\begin{aligned}
& \left.\left.P_{3}=\nu p . \llbracket a . p . c o+a . c o\right) \triangleright_{k_{1}} 0 \rrbracket \mid \llbracket b . \bar{p} . c o+b . c o\right) \triangleright_{k_{2}} 0 \rrbracket \\
& Q_{3}=\llbracket a . c o \triangleright_{k_{1}} 0 \rrbracket \mid \llbracket b . c o \triangleright_{k_{2}} 0 \rrbracket
\end{aligned}
$$

Distinguishing property:

- perform a followed by b in two distinct transactions

- then can simultaneously commit both
- $\left.P_{3}\right|_{\overline{\text { cc }}}\langle x(a)\rangle\langle y(b)\rangle\langle\operatorname{co}(\{x, y\})\rangle$ true.
$\Rightarrow Q_{3}{ }^{\prime \prime}$

An example

$$
\begin{aligned}
& \left.\left.P_{3}=\nu p . \llbracket a . p . c o+a . c o\right) \triangleright_{k_{1}} 0 \rrbracket \mid \llbracket b . \bar{p} . c o+b . c o\right) \triangleright_{k_{2}} 0 \rrbracket \\
& Q_{3}=\llbracket a . c o \triangleright_{k_{1}} 0 \rrbracket \mid \llbracket b . c o \triangleright_{k_{2}} 0 \rrbracket
\end{aligned}
$$

Distinguishing property:
P_{3} can

- perform a followed by b in two distinct transactions
- then can simultaneously commit both
- $\left.P_{3}\right|_{\overline{\text { वc }}}\langle x(a)\rangle\langle y(b)\rangle\langle\operatorname{co}(\{x, y\})\rangle$ true.
$=Q_{3}{ }_{\text {Y }}^{\text {cc }}$

An example

$$
\begin{aligned}
& \left.\left.P_{3}=\nu p . \llbracket a . p . c o+a . c o\right) \triangleright_{k_{1}} 0 \rrbracket \mid \llbracket b . \bar{p} . c o+b . c o\right) \triangleright_{k_{2}} 0 \rrbracket \\
& Q_{3}=\llbracket a . c o \triangleright_{k_{1}} 0 \rrbracket \mid \llbracket b . c o \triangleright_{k_{2}} 0 \rrbracket
\end{aligned}
$$

Distinguishing property:
P_{3} can

- perform a followed by b in two distinct transactions
- then can simultaneously commit both

Logic:

- $\left.P_{3}\right|_{\overline{\text { वc }}}\langle x(a)\rangle\langle y(b)\rangle\langle\operatorname{co}(\{x, y\})\rangle$ true.
- Q_{3} 狺 $\ldots \ldots$.

Simultaneous commits

$$
\begin{aligned}
& \left.\left.P_{3}=\nu p . \llbracket a . p . c o+a . c o\right) \triangleright_{k_{1}} 0 \rrbracket \mid \llbracket b . \bar{p} . c o+b . c o\right) \triangleright_{k_{2}} 0 \rrbracket \\
& Q_{3}=\llbracket a . c o \triangleright_{k_{1}} 0 \rrbracket \mid \llbracket b . c o \triangleright_{k_{2}} 0 \rrbracket
\end{aligned}
$$

Distinguishing property:

Semantics:

$H \triangleright P \models\langle\operatorname{co}(K)\rangle \phi$ if
$\triangleright H \triangleright P \stackrel{\tau}{\Rightarrow} H^{\prime} \triangleright P^{\prime} \xrightarrow{c o(m)} \stackrel{\tau}{\Rightarrow} H^{\prime \prime} \triangleright P^{\prime \prime}=\phi$

- every k in K is equivalent to m in H^{\prime}

Simultaneous commits

$$
\begin{aligned}
& \left.\left.P_{3}=\nu p . \llbracket a . p . c o+a . c o\right) \triangleright_{k_{1}} 0 \rrbracket \mid \llbracket b . \bar{p} . c o+b . c o\right) \triangleright_{k_{2}} 0 \rrbracket \\
& Q_{3}=\llbracket a . c o \triangleright_{k_{1}} 0 \rrbracket \mid \llbracket b . c o \triangleright_{k_{2}} 0 \rrbracket
\end{aligned}
$$

Distinguishing property:
P_{3} can

- perform a followed by b in two distinct transactions
- then can simultaneously commit both

Simultaneous commits

$$
\begin{aligned}
& \left.\left.P_{3}=\nu p . \llbracket a . p . c o+a . c o\right) \triangleright_{k_{1}} 0 \rrbracket \mid \llbracket b . \bar{p} . c o+b . c o\right) \triangleright_{k_{2}} 0 \rrbracket \\
& Q_{3}=\llbracket a . c o \triangleright_{k_{1}} 0 \rrbracket \mid \llbracket b . c o \triangleright_{k_{2}} 0 \rrbracket
\end{aligned}
$$

Distinguishing property:
P_{3} can

- perform a followed by b in two distinct transactions
- then can simultaneously commit both
- $\langle x(a)\rangle\langle y(b)\rangle\langle\operatorname{co}(\{x, y\})\rangle$ true

Simultaneous commits

$$
\begin{aligned}
& \left.\left.P_{3}=\nu p . \llbracket a . p . c o+a . c o\right) \triangleright_{k_{1}} 0 \rrbracket \mid \llbracket b . \bar{p} . c o+b . c o\right) \triangleright_{k_{2}} 0 \rrbracket \\
& Q_{3}=\llbracket a . c o \triangleright_{k_{1}} 0 \rrbracket \mid \llbracket b . c \circ \triangleright_{k_{2}} 0 \rrbracket
\end{aligned}
$$

Distinguishing property:
P_{3} can

- perform a followed by b in two distinct transactions
- then can simultaneously commit both
- $\langle x(a)\rangle\langle y(b)\rangle\langle\operatorname{co}(\{x, y\})\rangle$ true

Semantics:

$H \triangleright P \models\langle\operatorname{co}(K)\rangle \phi$ if
$-H \triangleright P \stackrel{\tau}{\Rightarrow} H^{\prime} \triangleright P^{\prime} \xrightarrow{\mathrm{co}(m)} \stackrel{\tau}{\Rightarrow} H^{\prime \prime} \triangleright P^{\prime \prime} \models \phi$

- every k in K is equivalent to m in H^{\prime}

Three logics

- $\mathcal{L}_{\text {Hasco }}$: nominal HML + property Hasco has committed
- $\mathcal{L}_{\text {Eq }}$: nominal $\mathrm{HML}+$ equality property $v_{1}=v_{2}$
- $\mathcal{L}_{\text {Canco }}:$
- No properties
- nominal $\mathrm{HML}+\langle\operatorname{co}(K)\rangle \phi$ simultaneous commits

Main results:
 = all three logics capture contextual equivalence
 - All three logics are equally expressive

Three logics

- $\mathcal{L}_{\text {Hasco }}$: nominal HML + property Hasco has committed
- $\mathcal{L}_{\text {Eq }}$: nominal $\mathrm{HML}+$ equality property $v_{1}=v_{2}$
- $\mathcal{L}_{\text {Canco }}:$
- No properties
- nominal HML $+\langle\operatorname{co}(K)\rangle \phi \quad$ simultaneous commits

Main results:

- all three logics capture contextual equivalence
- All three logics are equally expressive

Expressiveness

Weak:

$$
\begin{array}{lll}
P \approx_{\mathrm{cxt}} Q & \text { iff } & \mathcal{L}_{\text {Hasco }}(P)=\mathcal{L}_{\text {Hasco }}(Q) \\
& \text { iff } & \mathcal{L}_{\text {Eq }}(P)=\mathcal{L}_{\mathrm{Eq}}(Q) \\
& \text { iff } & \mathcal{L}_{\text {Canco }}(P)=\mathcal{L}_{\text {Canco }}(Q)
\end{array}
$$

Strong:

For all $\phi \in \mathcal{L}_{X}$ there is some $\operatorname{tr}(\phi) \in \mathcal{L}_{Y}$ such that

$$
P \models \phi \quad \Longleftrightarrow \quad P \models \operatorname{tr}(\phi)
$$

THE END

THANK YOU

