
A coinductive equational characterisation of
trace inclusion for regular processes ?

Matthew Hennessy

Trinity College Dublin
matthew.hennessy@cs.tcd.ie

Abstract. In 1966 Arto Salomaa gave a complete axiomatisation of
regular expressions. It can be viewed as a sound and complete proof
system for regular processes with respect to the behavioural equivalence
called language equivalence. This proof system consists of a finite set of
axioms together with one inductive proof rule.
We show that the behavioural preorder called language containment or
trace inclusion can be characterised in a similar manner, but using a
coinductive rather than an inductive proof rule.

1 Introduction

In 1966 Arto Salomaa gave two complete axiomatisations for regular expressions;
see [13, 8]. We concentrate on the first one where the key idea is the uniqueness
of the solution of certain regular expression equations. This is recalled in Sec-
tion 2 within the framework of regular processes, from [9]. We use a language for
defining recursive processes of the form recx.t where the body t can be defined
using prefixing, a.u, nondeterministic choice, u1 + u2, or a termination event 0;
of course the body t may also contain further regular processes.

This language, referred to as rCCS, can be given various semantic interpreta-
tions, which can be expressed in terms of behavioural equivalences between pro-
cesses. One such behavioural equivalence is called language equivalence, where
each process p in rCCS is interpreted as a (regular) set of sequences of actions
L(p), intuitively the sequences of actions it can perform. Then two processes are
deemed to be language equivalent, written p ≡L q whenever L(p) = L(q). This
corresponds to may equivalence from [6] or trace equivalence from [7].

In this framework Salomaa’s result, as formulated for example in [12], is
a sound and complete proof system for determining when p ≡L q. The proof
system consists of

– simple proof rules for embodying the principle of substitution of equals for
equals

? This work was supported with the financial support of the Science Foundation Ire-
land grant 13/RC/2094 and co-funded under the European Regional Development
Fund through the Southern & Eastern Regional Operational Programme to Lero –
the Irish Software Research Centre.

– a set of equations (or axiom schemas)
– an inductive proof rule for ≡L for regular processes, called unique fixpoint

induction

Unique fixpoint induction is very intuitive:1

t{x 7→ q} = q

recx.t = q
(Ufi)

It states that if a process q satisfies (semantically) the body of a recursive process
then it is semantically equal to the recursive process itself.

Many other behavioural equivalences for regular processes can be captured in
the same manner, simply by varying the equations. For example strong bisimula-
tion equivalence and weak bisimulation equivalence are captured in this manner
in [10, 11].

However many behavioural theories of processes are expressed in terms of be-
havioural preorders rather than equivalences. Typical examples include refusals
[7], must testing [6], or the various contract preorders considered in [2]. It is
unclear how Salomaa’s proof system can be adapted for such behavioural pre-
orders. In particular there is no known complete induction principle to replace
unique fixpoint induction.

Here we consider a simple behavioural preorder, language or trace inclusion.
Let p ≤L q if L(p) ⊆ L(q). Of course it is straightforward to establish for a
particular pair of processes p, q whether or not p ≤L q using Salomaa’s proof
system; it is sufficient to try to establish p + q =L q. But this does not in itself
give a sound and complete proof system for the behavioural preorder ≤L based
on the ideas outlined above, namely

– simple proof rules for embodying the principle of substitution of equals for
equals

– a set of inequations
– some inductive proof rule for ≤L over regular processes.

This is the purpose of the current short paper. We show that by using a simple
coinductive proof rule we can give such a sound and complete proof system for
regular processes.

We now outline the remainder of the paper. In the next section we define
formally the language of regular processes, and their semantics. We then outline
the sound and complete proof system for language equivalence, based on an
inductive proof rule. In Section 4 we outline our novel proof system, based on
a set of standard inequations, together with one coinductive proof rule. Proving
the soundness of the proof system is non-trivial, and is given in Section 5. The
following section is devoted to completeness. The proof here depends on the fact
that the set of reachable states of processes, in a novel interpretation as a labeled
transition system, is finite. This topic is isolated in the independent Section 7.
The paper ends with a short conclusion.

1 For soundness the variable x in body t should be guarded.

µ.p
µ−→ p

(a-Pre)
recx.t

τ−→ t{x 7→ recx.t}
(Rec)

p
µ−→ p′

p + q
µ−→ p′

(Ext-l)
q

µ−→ q′

p + q
µ−→ q′

(Ext-r)

Fig. 1. Operational semantics

2 Regular processes and language equivalence

The language of recursive terms is given by the following grammar:

rCCS : t ::= 0 | µ.t, µ ∈ Actτ | t1 + t2

| x ∈ Var | recx.t

where Act is a set of actions, ranged over by a, and Actτ represents Act] { τ },
where τ is a special symbol for an internal action. All occurrences of the variable
x in t are bound in the term recx.t, and this leads to the standard notion of free
and bound variables. We are only interested in closed terms, those not containing
any free variables, which we refer to as processes. For the sake of simplicity we
will also assume that all terms of the form recx.t are guarded ; that is every
occurence of x in the body of the recursion t appears underneath an external
prefix a.−.

The (standard) operational semantics of processes is given in Figure 1, with

judgements for transitions of the form p
µ−→ q, where µ ranges over Actτ . The

rule (Rec) uses the standard notion of substitution: in general t{x 7→ p} repre-
sents the result of substituting all free occurrences of the variable x in the term
t by the closed term p. This may be defined by structural induction on t.

The transitions in Figure 1 are generalised to weak transitions of the form
p

s
=⇒ q, where s ranges over Act? as follows:

– p
ε

=⇒ p

– p
a−→ p′, p′

s
=⇒ q imply p

as
=⇒ q

– p
τ−→ p′, p′

s
=⇒ q imply p

s
=⇒ q

We use p
s

=⇒ to indicate that for some q, p
s

=⇒ q.

Definition 1 (Language of a process). For every k ≥ 0 let Lk(p) =

{ s ∈ Act? | p s
=⇒, |s| ≤ k }, and let L(p) = ∪k≥0Lk(p). L(p) is refered to as

the language of the process p, or it’s set of traces.

We write p ≤L q if L(p) ⊆ L(q), and p ≡L q if L(p) ⊆ L(q) and L(q) ⊆ L(p).
ut

3 The proof system for language equivalence

The proof system for language equivalence is given in Figure 2, with judgements
are of the form ` p = q where p, q are processes. A simple side-condition would
be required on the rule (UFI), if we did not have our simplifying assumption
that all recursive processes are guarded.

The rule (Eq) presupposes a set of equations Eq such as those in Figure 3.
In general axioms take the form T = U where T,U are words formed from the
alphabet { 0, µ.−, − + −} using axiom-variables X,Y, . . . taken from a set AVar.
We say the pair 〈p, p′〉 is an instance of an equation, written 〈p, p′〉 ∈ Ins(Eq),
if there exists some axiom T = U in Eq such that p = σ(T), p′ = σ(U) where σ
is an instantiation, that is a mapping from AVar to processes.

Let us write `eq p = q if there is a proof of ` p = q in the proof system using
the equations in Figure 3. Those on the left hand side determine an idempotent
commutative monoid; on the right hand side there is an axiom which says that
τ transitions are essentially invisible, together with the distribution of prefixing
over nondeterministic choice.

This proof system is both sound and complete with respect to language
equivalence:

Theorem 1 (Salomaa, Rabinovich). For all processes, `eq p = q if and only
if p ≡L q.

Proof. The proof for a corresponding property for regular expressions was given
in [13]. This was adapted in [12] for a slight variation on our regular processes,
using a proof technique from [10]. ut

One could attempt to adapt this proof system to deal with language inclusion,
with judgements of the form ` p ≤ q; for example the set of equations could be
replaced by inequations. However the major issue would be the replacement of
the fixpoint rule (UFI) with a fixpoint rule for inequations which is sufficiently
powerful to attain completeness.

In the next section we suggest an alternative approach.

4 The proof system for trace inclusion

This proof system has judgements of the form

A ` p ≤ p′

where p, p′ are processes and A is a finite set of assumptions, each of which takes
the form p1 ≤ p2. The rules for forming proof trees are given in Figure 4, many of
which are straightforward adaptations of corresponding rules from Figure 2. We
have (inEq) for instantiating inequations and the rule (Rec) from Figure 2 has
been split into two rules, one for unfolding and the other for folding. There are
also two obvious rules for managing assumptions, (Hyp) and (W). The major

` p = p (Id)
` p1 = p2, ` p2 = p3

` p1 = p3
(Tr)

` p = p′

` p′ = p
(Sym)

〈p, p′〉 ∈ Ins(Eq)

` p = p′
(Eq)

` p = p′

` p+ q = p′ + q
(Pl)

` p = p′

` a.p = a.p′
(Pre)

` recx.t = t{x 7→ recx.t}
(Rec)

` t{x 7→ q} = q

` recx.t = q
(Ufi)

Fig. 2. The proof system for language equivalence

X +X = X X + Y = Y +X τ.X = X
X + (Y + Z) = (X + Y) + Z X + 0 = X a.(X + Y) = a.X + a.Y

Fig. 3. The equations for language equivalence

change is the replacement of the structural rule for prefixing, (Pre) in Figure 2,
with the rule (coRec). Note that this can be viewed as a generalisation as in
the new proof system the rule (Pre) can be derived:

A ` p ≤ p′
W

A, a.p ≤ a.p′ ` p ≤ p′
CoRec

A ` a.p ≤ a.p′

We call this a coinductive rule because the conclusion of the rule is one of it’s
hypotheses. This of course makes it’s soundness problematic; see the discussion
in the next section.

Each equation in Figure 3 can be interpreted as two inequations. For example
in place of idempotency X + X = X we have the two inequations X + X ≤ X
and X ≤ X + X. In addition we need one new inequation:

X ≤ X + Y (1)

Let us write l̀eq A ` p ≤ p′ to mean that there is a valid proof tree with
conclusion A ` p ≤ p′; that is a proof tree constructed using the rules in Figure 4,
using the set of inequations just outlined. We abbreviate l̀eq ∅ ` p ≤ p′ to

l̀eq p ≤ p′. We also use p ≤ineq p′ to mean that p may be rewritten to p′ using
this set of inequations. More specifically, in the rewriting all the rules in Figure 4
may be used, except (Hyp),(W) and (coREC).

Example 1. Let r1, r2 denote recx.a.x, recx.a.a.x respectively. The following
is a valid proof tree:

` p ≤ p (Id)
A ` p1 ≤ p2, A ` p2 ≤ p3

A ` p1 ≤ p3
(Tr)

〈p, p′〉 ∈ Ins(InEq)

A ` p ≤ p′
(inEq)

A ` p ≤ p′

A ` p+ q ≤ p′ + q
(Pl)

A, a.p ≤ a.p′ ` p ≤ p′

A ` a.p ≤ a.p′
(coRec)

` recx.t ≤ t{x 7→ recx.t}
(Ufd)

` t{x 7→ recx.t} ≤ recx.t
(Fld)

p ≤ p′ ` p ≤ p′
(Hyp)

B ` p ≤ p′, A ⊆ B
AS ` p ≤ p′

(W)

Fig. 4. The proof system

(Hyp,W)

a.r1 ≤ a.a.r2, a.r1 ≤ a.r2 ` a.r1 ≤ a.a.r2
(Tr,Fld,Ufd)

a.r1 ≤ a.a.r2, a.r1 ≤ a.r2 ` r1 ≤ r2
(coRec)

a.r1 ≤ a.a.r2 ` a.r1 ≤ a.r2
(Ufd)

` r1 ≤ a.r1
(Tr)

a.r1 ≤ a.a.r2 ` r1 ≤ a.r2
(coRec)

` a.r1 ≤ a.a.r2
(Ufd)

` r1 ≤ a.r1
(Ufd)

` a.a.r2 ≤ r2
Tr

` r1 ≤ r2

This means that l̀eq recx.a.x ≤ recx.a.a.x. ut

5 Soundness

To prove soundness of the proof system we need a semantic interpretation of
the judgements A ` p ≤ p′ which is preserved by all instances of the proof rules.
There is an obvious choice, which is however unsound.

Example 2. Let us write

p1 ≤ p′1, . . . pk ≤ p′k �w p ≤ p′, for k ≥ 0,

if p1 ≤L p′1, . . . pk ≤L p′k implies p ≤L p′.
Unfortunately this is not preserved by the rule (coRec). An instance of this

rule is

a.b. 0 ≤ a. 0 ` b. 0 ≤ 0

` a.b. 0 ≤ a. 0

Note that the premise is (vacuously) semantically valid, a.b. 0 ≤ a. 0 �w b. 0 ≤ 0,
because a.b. 0 6≤L a. 0. However the conclusion is not semantically valid, 6�wa.b. 0 ≤
a. 0, because a.b. 0 6≤L a. 0. ut

Instead, as in [3], we base our semantic interpretation on a stratified charac-
terisation of language inclusion.

Definition 2 (Semantic interpretation). For n ≥ 0 write

p1 ≤ p′1, . . . , pk ≤ p′k �n p ≤ p′

if Ln(p1) ⊆ Ln(p′1), . . . ,Ln(pk) ⊆ Ln(p′k) implies Ln(p) ⊆ Ln(p′).
We use A � p ≤ p′ to mean that A �n p ≤ p′ for every n ≥ 0. ut

The counterexample given above no longer works for this stratified semantic
interpretation. This is because

a.b. 0 ≤ a. 0 6 � b. 0 ≤ 0

In particular a.b. 0 ≤ a. 0 6 �1 b. 0 ≤ 0 because L1(a.b. 0) ⊆ L1(a. 0) but L1(b. 0)
is not a subset of L1(0).

Theorem 2 (Soundness). l̀eq A ` p ≤ p′ implies A � p ≤ p′.
Proof. It suffices to show that each of the proof rules in Figure 4 preserves the
semantics. The only non-trivial case is the rule (coRec).

So suppose A, a.p ≤ a.p′ � p ≤ p′; that is

A, a.p ≤ a.p′ �k p ≤ p′ for all k ≥ 0 (2)

We have to show that from this hypothesis, which we refer to as the outer
hypothesis, the conclusion A � a.p ≤ a.p′ follows. In particular we show that
A �n a.p ≤ a.p′, for every n ≥ 0, by induction on n.

The base case, when n = 0, is straightforward, as L0(r) = { ε } for any
process r.

In the inductive case we let n = (m+ 1), and we can assume

A �m a.p ≤ a.p′ (3)

which we refer to as the inner hypothesis. We have to deduce A �(m+1) a.p ≤ a.p′.
To this end suppose L(m+1)(q) ⊆ L(m+1)(q′) for every q ≤ q′ ∈ A. We have

to show L(m+1)(a.p) ⊆ L(m+1)(a.p′).
First we apply the inner hypothesis (3): this is possible since L(m+1)(q) ⊆

L(m+1)(q′) implies Lm(q) ⊆ Lm(q′). So we obtain Lm(a.p) ⊆ Lm(a.p′).
With this we can apply the outer hypothesis (2) with k = m. We obtain

Lm(p) ⊆ Lm(p′), from which the required L(m+1)(a.p) ⊆ L(m+1)(a.p′) follows.
ut

In particular this soundness result means that if we can construct a valid proof
tree for the judgement ` p ≤ p′ then p ≤L p′:
Corollary 1. l̀eq p ≤ p′ implies p ≤L p′.
Proof. Suppose l̀eq p ≤ q, that is ∅ ` p ≤ q. By Theorem 2 we have that
Ln(p) ⊆ Ln(q) for all n ≥ 0. This means that L(p) ⊆ L(q) and therefore by
definition p ≤L q. ut

6 Completeness

The proof of completeness is constructive; we design an algorithm for construct-
ing valid proof trees. To describe the algorithm we need to introduce some no-
tation.

Definition 3 (Head normal forms). A process of the form
∑
a∈A a.pa, where

A is a finite subset of Act is said to be a head normal form, abbreviated to hnf.
ut

Proposition 1. For every process p there exists some head normal form, hnf(p),
such that p =ineq hnf(p).

Proof. See the appendix. The proof relies on the fact that all proceses are
guarded. ut

It will also be convenient at some point to work with processes up to the
equivalence generated by three axioms from Figure 3; that is the commutativity
and associativity of + together with idempotency. Let [p] denote the equivalence
class of all processes equivalent to p. However rather than manipulating these
sets of processes we will use particular representatives. We use (p)r to refer to any
actual process in the set [p], for which the idempotency axiom X+X = X cannot
be applied to it from left to right. Thus it will take the form s1 + s2 . . . + sn
where each of the processes si are syntactically different. We call such processes
reduced.

The algorithm also uses the three following derived proof rules:

A ` p1 ≤ q, A ` p2 ≤ q
A ` p1 + p2 ≤ q

(PlusL)
A ` p ≤ q1

A ` p ≤ q1 + q
(PlusRq)

A ` 0 ≤ q (Zeroq)

We leave the reader to show that these can be derived from the rules in Figure 4.
All use the transitivity rule (Tr). The derivation of (PlusL) uses two applica-
tions of (Pl), and an application of the inequation X+X ≤ X. That of (Plusq)
uses an application of the new inequation (1) above; this is also required in the
derivation of (Zeroq), in addition to the inequation 0 ≤ 0 + X.

The pseudo-code for the algorithm C(A, p, q) is given in Figure 5. It takes as
parameters A, a finite set of premises of the form pi ≤ qi, and a pair of processes
p, q. It returns with

– FAIL, indicating that p 6≤Lq,
– or a proof tree T , which is a valid proof tree for the judgement A ` p ≤ q.

The code is executed by matching the actual parameters sequentially against
the patterns on the left hand side in Figure 5; each of the possible five patterns
may be considered as rules for matching the actual parameters. The first call
transforms the parameters p, q into head normal forms. The remainder can be

1 C(A, p , q) => i f (p or q not in hnf)
2 then
3 let T = C(A, hnf (p) , hnf (q))
4 in return (T; (HNF))
5 else
6 C(A, 0 , q) => return Zeroq
7 C(A, p 1 + p 2 , q) => let T 1 = C(A, p 1 , q)
8 let T 2 = C(A, p 2 , q)
9 in

10 return (T 1 , T 2) ; (PlusL)
11 C(A, a . p , a . q + r) => i f a . p ≤a . q in A then return (HYP;PlusRr)
12 else let B = {A, a . p<a . q}
13 corec let T = C(B, (p)r , (q)r)
14 in
15 T; (coRec) ; (PlusRr)
16 S(A, a . p , q) => return FAIL

Fig. 5. The algorithm

considered as a case analysis on the structure of p, which when line 6 is reached
is guaranteed to be in head normal form. Note that if the final rule, on line 16,
is ever fired then we know that q, which is a hnf, does not have an a transition,
and therefore we can conclude the a.p 6≤L q.

The non-trivial rule is on line 11. Here both the processes being analysed
have a transitions. Moreover because they are hnfs we know r does not have
an a transition. If the assumption a.p ≤ a.q is already available in A then the
required proof tree is readily constructed. Otherwise this assumption is added
to A to get the set of assumptions B, and a proof tree T is constructed for
the judgement B ` (p)r ≤ (q)r. The returned proof tree for the judgement
A ` p ≤ q is then constructed using T , with an instance of the coinductive rule
(coRec), together with the derived rule (PlusRr) We elide the transformation
of (p)r, (q)r into the original parameters p, q respectively, but the use of these
reduced processes will be important in showing that the algorithm terminates.
For the purposes of later discussions we label this recursive call which constructs
the proof tree T with corec.

Note that in order to simplify the pseudo-code we have assumed that occurrences
of FAIL are percolated upwards through the code. For example on line 8 if the
innner call to C(A, p2, q) returns FAIL then FAIL is also returned by the outer
call C(A, p1 + p2, q).

Execution of the code for given parameters, C(A, p, q) consists of a sequence
of recursive calls C(Ai, pi, qi) until at some point a base case, such as on lines 6,
or 11, or 16, is reached. In order to analyse the behaviour of the algorithm we
introduce some notation for describing these sequences.

Definition 4 (Call trees). Let us write

C(A, p, q) 7→ C(A′, p′, q′)

if executing C(A, p, q) leads directly to a recursive call to C(A′, p′, q′). The call
tree of C(A, p, q) is defined to be the tree with root labelled by C(A, p, q) with
sub-trees consisting of all the call trees of the recursive calls C(A′, p′, q′) such
that C(A, p, q) 7→ C(A′, p′, q′). Note that in these trees the out-degree of each
node is at most 2. A recursive call matching line 7 generates two sub-nodes; all
other recursive calls generates at most one.

A call path for C(A, p, q) is a path (finite or infinite) in the call tree of
C(A, p, q) starting with the root. ut

µ.t
µ−→→ t

(a-Pre)
recx.t

τ−→→ t{x 7→ recx.t}
(rec)

t
τ−→→ t′

t + u
τ−→→ t′ + u

(tau-l)
u

τ−→→ u′

t + u
τ−→→ t + u′

(tau-r)

t
a−→→ t′, u 6a−→→ , u 6τ−→→
t + u

a−→→ t′
(ext-l)

u
a−→→ u′, t 6a−→→ , t 6a−→→
t + u

τ−→→ u′
(ext-r)

t
a−→→ t′, u

a−→→ u′

t + u
a−→→ t′ + u′

(ext)

Fig. 6. Towards hnfs

Proposition 2 (Algorithmic correctness). Suppose C(A, p, q) terminates.

(i) If it returns FAIL then p 6≤Lq.
(ii) If it returns a proof tree, then this is a valid proof tree for the judgement

A ` p ≤ q.

Proof. In each case the proof is by induction on the number of recursive calls to
C(−,−,−).

(i) FAIL can be returned on any one of the lines 3,7,8,13, or 16.
If it is the last then p has the form a.p′ and moreover, because there was
no match on line 11, we also know that q, which is a hnf, does not have an
a derivative. Consequently a.p′ 6≤L q.
Suppose it is on line 13, because the recursive call C(B, (p′)r, (q

′)r) returns
FAIL, in which case p, q have the form a.p′, a.q′ + r. By induction we know
that (p′)r 6≤L (q′)r, that is p′ 6≤L q′. Since a.q′ + r is a hnf we know that r
does not have an a derivative, and therefore it follows that a.p′ 6≤L a.q′ + r.
The other cases are handled in a similar manner.

(Hyp)

a.r1 ≤ a.(r2 + a.r2) ` a.r1 ≤ a.(r2 + a.r2)
(Ax,Tr)

a.r1 ≤ a.(r2 + a.r2) ` a.r1 ≤ a.(r2 + a.r2 + r2)
(Ax,Tr)

a.r1 ≤ a.(r2 + a.r2) ` a.r1 ≤ a.(r2 + a.r2) + a.r2
(Fld/Ufld)

a.r1 ≤ a.(r2 + a.r2) ` r1 ≤ r2 + a.r2
(coREC)

` a.r1 ≤ a.(r2 + a.r2)
(Fld)

a.(r2 + a.r2) ≤ r2
(Tr)

` a.r1 ≤ r2
(Ufld)

` r1 ≤ a.r1
(Tr)

` r1 ≤ r2

Fig. 7. r1 = recx.a.x, r2 = recx.a.(x+ a.x)

(ii) A proof schema can be returned on any of the lines 4, 6, 10, 11, or 15.
In each case the proof consists in checking that the returned schema is
indeed a valid proof of the judgement A ` p ≤ q, if necessary by invoking
induction. ut

The main difficulty in proving that the algorithm always terminates is to
characterise the parameters which can be used in a call path from C(A, p, q).
This characterisation is complicated by the use of head normal forms in the code.

We can capture their use via a relation t
µ−→→ t′ defined by the rules in Figure 6.

Note that for reasons which will be come apparent presently this relation is
defined over arbitrary process terms, rather than simply closed terms, as used
in Figure 1. So in the rule (Rec) we assume the standard notion of general
substitution of (open) terms for variables, which may involve applications of
α-conversion in order to avoid free variables being captured.

Proposition 3. Suppose hnf(p)
a−→ q. Then p

τ−→→ ? a−→→ q.

Proof. See the appendix. ut

Let Reach(t) = {u | t s−→→ u, s ∈ Act? }. In general Reach(t) is not finite.

Example 3. Consider r2 = recx.a.(x + a.x). Then Reach(r2) contains all pro-
cesses of the form r2 +

∑
1≤i≤n ui where each ui is the process r2 + a.r2;

therefore Reach(r2) is infinite.
This explains the use of the function (−)r in line 13 of the algorithm in

Figure 5. Without the application of this function one can check that a call to
C(∅, r1, r2), where r1 denotes recx.a.x, would not terminate. However with the
use of (−)r one can check that C(∅, r1, r2) terminates after six recursive calls.

Moreover in Figure 7 we have constructed a valid proof tree for the judgement
` r1 ≤ r2, although some abbreviations are used. We have indicated in bold font
an essential use of the idempotency axiom X = X + X. ut

Definition 5. Let t
µ−→→→ u if t

µ−→→ u′ for some u′ such that u = (u′)r. Thus if

t
µ−→→→ u the rules in Figure 6 are used to find a u′ such that t

µ−→→ u′, and then u′

is reduced to u. Let rReach(t) = {u | t s−→→→ u, s ∈ Act? }. ut

It is easy to check that rReach(r2), where r2 is defined in Example 3, is the
finite set { r2, r2 + a.r2, a(r2 + a.r2), a.(r2 + a.r2) + a.r2 }. This is a particular
instance of a general phenomenon:

Theorem 3. For every term t, the set rReach(t) is finite.

Proof. See the next section. ut

In the sequel we use Act(p) to denote the (finite) set of actions from Act
which appear in the process p.

Proposition 4. Suppose

C(A0, p0, q0) 7→ C(A1, p1, q1) 7→ . . . 7→ C(Ak, pk, qk), k ≥ 0

is an arbitrary call path. Then

(1) Ai ⊆ Ai+1, Act(pn) ⊆ Act(p0)

(2) If none of the recursive calls C(Ak, pk, qk) triggers the rule labelled corec,
on line 13 in Figure 5, then there exists some bound K such that k ≤ K.

(3) If p ≤ q ∈ Ak then either p ≤ q ∈ A0 or p, q have the form a.p′, a.q′

respectively, where a ∈ Act(p) and p′ ∈ rReach(p0), q′ ∈ rReach(q0).

Proof. The statement (1) follows by an analysis of the pseudo-code in Figure 5.
First note that nowhere is the set of assumptions Ak decreased. Only in one place,
line 12, is it changed; it is augmented. Secondly note that Act(hnf(p)) = Act(p),
and therefore by code one can check that Act(pn+1) ⊆ Act(pn).

Similarly (2) follows by an analysis of the code.

Part (3) is proved by induction on the number of i, 0 ≤ i ≤ k such that
Ai+1 6= Ai. We look at the first step, the least i such that C(Ai−1, pi−1, qi−1) 7→
C(Ai, p1, q1) where Ai 6= A0.

This call must be as a result of matching the rule labelled corec on line 13
in Figure 5. So pi−1, qi−1 must have the form a.p′, a.q′ + r, and pi, qi the form
p′, q′, and Ai must be A0] { a.p′ ≤ a.q′ }.

From part (1) we immediately have that a ∈ Act(p0). Moreover all preceeding
recursive calls must have either matched line 3, transforming p0, q0 to hnfs, or
successive matches to line 7. Therefore hnf(p) has the form a.p′ + . . . and hnf(q)
has the form a.q′ + r. It now follows from Proposition 3 that p′ ∈ rReach(p0)
and q′ ∈ rReach(q0), as required. ut

Theorem 4 (Termination). The recursive procedure C(A, p, q) terminates for
all parameters A, p, q.

Proof. Suppose

C(A, p, q) = C(A0, p0, q0) 7→ . . . 7→ C(Ak, pk, qk) 7→ . . . (4)

is an arbitrary call path, finite or infinite.
First consider any step C(An, pn, qn) 7→ C(An+1, pn+1, qn+1) resulting from

a successful match to line 13 in the algorithm, which we have labelled corec.
We know that pn, qn have the form a.p′, a.q′+ r respectively and pn+1, qn+1 are
p′, q′. Because the test on line 11 failed we have that An+1 = An]{ a.p′ ≤ a.q′ }.
By Proposition 4(3) p′ ∈ rReach(p0), q′ ∈ rReach(q0) and a ∈ Act(p). Obviously
Act(p) is a finite set, as are rReach(p0), rReach(q0) from Theorem 3. Therefore
there exists some k such that for all i ≥ k Ai = Ak.

It follows that in the sequence (4) above the rule labelled corec on line 13
can only be called a finite number of times. By part (2) of Proposition 4 we have
that the sequence (4) can only be finite. ut

We can now conclude with the main result of the paper:

Corollary 2 (Soundness and Completeness). l̀eq p ≤ q if and only if p ≤L
q.

Proof. One direction, Soundness, follows from Corollary 1.
Conversely suppose p ≤L q. We know from Theorem 4 that the algorithm

C(∅, p, q) terminates. By design this algorithm either returns FAIL or a proof
tree. By algorithmic correctness, Proposition 2, the former is not possible; the
same proposition ensures that the returned proof tree is a valid proof tree for
∅ ` p ≤ q. That is l̀eq p ≤ q. ut

7 Finite Reachability

We prove Theorem 3 by giving an over-approximation to the set of terms reach-
able from an arbitrary term t. The definition is by structural induction on t, and
by construction the resulting set is obviously finite.

Definition 6 (Over-approximation). For every term t the set of approxi-
mants t? is defined as follows:

(i) 0? = { 0 }, x? = {x }
(ii) (µ.t)? = {µ.t } ∪ {µ.t′ | t′ ∈ t′? }

(iii) (t1 + t2)? = t?1 ∪ t?2 ∪ { t′1 + t′2 | ti ∈ t?i }
(iv) (recx.t′)? = {recx.t′ } ∪ {Σ(S) | S ⊆ T },

where T = { t′′{x 7→ recx.t′} | t′′ ∈ t′? or t′′ + x ∈ t′? } and for any set of
terms S = { s1, s2, . . . sn }, Σ(S) denotes the term s1 + s2 + . . . + sn. ut

Lemma 1. For every t, the set t? is finite.

Proof. By structural induction on t. ut

The proof that rReach(t) ⊆ t∗ is also by structural induction on t and most of
the cases are straightforward. For example the case when t has the form t1 + t2
is handled by the following lemma. Here, and in subsequent proofs we ignore the
sequence of actions performed by terms, writing t −→→→ ? t′ in place of t

s−→→→ t′, or
sometimes t −→→→ k t′ when we know that there are k steps in the derivation. We
also use some standard notion of the size of such a derivation.

Lemma 2. Suppose t1 + t2 −→→→ ? u, with a derivation of size n. Then

1. t1 −→→→ ? u, with a derivation of size less then n
2. t2 −→→→ ? u, with a derivation of size less then n
3. or u = u1 + u2 where ti −→→→ ? ui, each also having a derivation size less than

n.

Proof. A straightforward induction on the length of the derivation t1 + t2 −→→→ ? u
and a case analysis of why t1 + t2 −→→→ u. ut

The most difficult case of rReach(t) ⊆ t∗ to treat is when t has the form
recx.u. In general a sequence of transitions takes the form

recx.u −→→ u{x 7→ recx.u} −→→ . . . −→→ t′

Therefore in order to understand the forms that t′ can take we need to charac-
terise the derivatives of u{x 7→ r} in terms of those of u and r.

Definition 7. We define the predicate t ↓ x by structural induction on t, as
follows:

(i) recy.u ↓ x, for all x and y
(ii) t1 ↓ x, t2 ↓ x implies t1 + t2 ↓ x

(iii) µ.u ↓ x for every µ ∈ Actτ .

We use t ↑ to mean that t ↓ is not true. ut

Intuitively t ↓ x means that r does not play any role in any transition from
t{x 7→ r}. This is captured in the first part of the following proposition.

Proposition 5. Suppose t{x 7→ r} µ−→→ u, where t is reduced. Then if t is differ-
ent from x, one of the following holds:

(i) t ↓ x and u = t′{x 7→ r} where t
µ−→→ t′

(ii) t ↑ x, t = t1 + x, t1 is reduced, and

(a) u = t1{x 7→ r} + r′ where r
µ−→→ r′

(b) u = t′1{x 7→ r} + r where t1
µ−→→ t′1

(c) u = t′1{x 7→ r} + r′ where t1
µ−→→ t′1, r

µ−→→ r′

Proof. By structural induction on t, with an intricate case analysis. ut

Proposition 6. Suppose t{x 7→ r} −→→→ ? (u)r, with a derivation of size k. Then
u has one of the following forms:

(i) t′{x 7→ r}, where t −→→→ ? t′ has a derivation of size less then k
(ii)

∑
1≤i≤n r

′
i, where each r −→→→ ? r′1 has a derivation of size less than k

(iii) t′{x 7→ r} +
∑

1≤i≤n r
′
i, where the derivations t −→→→ ? t′ + x and r −→→→ ? r′i

again have smaller size.

Proof. By induction on the size of the derivation k. In the general case the
transitions have the form

t{x 7→ r} −→→→ ? u′
µ−→→ (u)r

where u′ is reduced. Induction can be applied to the derivation t{x 7→ r} −→→→ ? u′′,
to give three possibilities for the structure of u′′, (i), (ii), (iii) above. In case (i) we

apply Proposition 5 to the transition u′
µ−→→ u. The case (ii) is a straightforward

argument, while (iii) is a combination of the first two cases. ut

Theorem 5. For every term t, rReach(t) ⊆ t?.

Proof. By structural induction on t. We show that if t −→→→ ? u then u ∈ t?.
The cases when t has one of the forms x, 0 are trivial, while when it is of

the form µ.t′ a very simple inductive argument suffices. When it has the form
t1 + t2 an inductive argument is also used, supported by Lemma 2. We look
briefly at the final and most difficult, case when it has the form recx.t1.

Here we use an inner induction on the size of the derivation recx.t1 −→→→ ? u.
If u is recx.t1, that is the length of the derivation is zero, then the result is
immediate as by definition recx.t1 ∈ (recx.t1)?. Otherwise we have

recx.t1
τ−→→ t1{x 7→ r} −→→→ ? u

where r denotes recx.t1, and we can read off the possible structure of u from
Proposition 6. There are three possibilities, and we examine the third when u
has the form

t′{x 7→ r} +
∑

1≤i≤n

r′i

where t −→→→ ? t′ + x, r −→→→ ? r′i, and each of these derivations being smaller in size
than the original one.

Using the inner induction we have ri ∈ (recx.t1)? for each 1 ≤ i ≤ n. Using
the other (structural) induction we have t′ + x ∈ t?1, and therefore by definition
t′{x 7→ r} ∈ (recx.t1)?.

It follows that u ∈ (recx.t1)?, since this is defined so that ui ∈ (recx.t1)?, 1 ≤
i ≤ n, implies u1 + . . . + un ∈ (recx.t1)?. ut

8 Conclusions

We have given a novel sound and complete proof system for trace inclusion of
regular processes. The novel rule of the proof system is co-inductive in nature,

in that the conclusion of the rule is already one of it’s hypotheses. Proof of
soundness is based on a technique used in [3] for a proof system for recursive
types, while completeness is demonstrated constructively; an algorithm is given
which constructs a proof for every semantically valid judgement. Intuitively the
algorithm works by on the fly determinising the processes, and systematically
comparing their a-derivatives, for each action a from Act. The proof that the
algorithm actually terminates is conceptually straightforward, but syntactically
intricate. It relies on the fact the set of reachable states from a given process
is finite, modulo a structural equivalence. A similar result is proved in [5] for
the language of regular expressions, where the equivalence used, between regular
expressions, is semantic identity. An alternative approach to proving termination
of our algorithm might be based on defining a relation between our semantics
for regular processes, and the derivatives of regular expressions given in [5].

We believe that our proof system can be adapted to a range of semantic
preorders between regular processes, such as the testing preorders of [6]. Of
particular interest are the contract preorders from [4, 2], and variations thereof.
Such preorders often have alternative characterisations, often expressed in terms
of intricate behavioural properties of processes; as an example see Definition 6 of
[1]. It would be instructive to instead characterise these preorders over regular
processes using variations on our proof system; the rules, including (coRec),
would remain but the set of inequations used would depend on the particular
contact preorder in mind.

Acknowledgements: The author would like to thank the anonymous referees,
and Giovanni Bernardi, for their useful comments on a previous draft.

A Some proofs

Guarded terms: A variable x is guarded in the term t if each free occurrence
of x in t occurs underneath a prefix a.−. A recursion recx.t is guarded if x is
guarded in t. Finally a term u is a guarded term if every sub-term of the form
recx.t is guarded.

It will be convenient to have an inductive principle for guarded processes,
that is closed terms which are guarded.

Definition 8. Let ⇓ be the least predicate over processes which satisfies the fol-
lowing rules:

(a) 0 ⇓, a.p ⇓
(b) p ⇓, q ⇓ implies τ.p ⇓ and (p+ q) ⇓
(c) t{x 7→ recx.t} ⇓ implies recx.t ⇓.

Lemma 3. Suppose x is guarded in t for every x ∈ fv(t). Then tρ ⇓, for any
substitution ρ such that dom(ρ) ⊆ fv(t).

Proof. By structural induction on t. ut

Proposition 7. If p is guarded then p ⇓.

Proof. By structural induction on p. The only non-trivial case is when it has the
form recx.t, where we know that x is guarded in t. By the previous lemma this
means that t{x 7→ recx.t} ⇓, and therefore employing rule (c) from Definition 8
we can conclude that recx.t ⇓. ut

In the remainder of this appendix we will assume that all processes are
guarded; this assumption is also used throughout the paper.

Proposition 8 (Proposition 1). For every process p there exists a head nor-
mal form hnf(p) such that p =ineq hnf(p).

Proof. By induction on p ⇓. We proceed by an analysis of the structure of p.

– If p has the form a.q, or 0 then it is already a hnf.
– If p is recx.t then by induction on ⇓ we know that there is some hnf h such

that t{x 7→ recx.t} =ineq h. Using the (Ufd) and (Fld) rules we obtain
recx.t =ineq h.

– If p is τ.q again the result follows by induction, using the axiom τ.X = X.
– Finally suppose p has the form p1 + p2. By induction pi =ineq hi for some

hnfs h1, h2. Suppose these have the form
∑
a∈Ai

a.pia, for i = 1, 2. Then one
can show that

p =ineq

∑
a∈(A1−A2)

a.p1a +
∑

a∈(A2−A1)

a.p2a +
∑

a∈(A2∩A1)

a.(p1a + p2a)

which is in hnf. ut

Corollary 3 (Proposition 3). If hnf(p)
a−→ q then p

τ−→→ ? a−→→ q.

Proof. The proof proceeds by induction on p ⇓ and a case analysis on the con-
struction of hnf(p) as outlined in the previous proposition. ut

References

1. Giovanni Bernardi and Adrian Francalanza. Full-abstraction for must testing pre-
orders (extended abstract), 2017. to appear.

2. Giovanni Bernardi and Matthew Hennessy. Mutually testing processes. Logical
Methods in Computer Science, 11(2), 2015.

3. Michael Brandt and Fritz Henglein. Coinductive axiomatization of recursive type
equality and subtyping. Fundam. Inform., 33(4):309–338, 1998.

4. Mario Bravetti and Gianluigi Zavattaro. A foundational theory of contracts for
multi-party service composition. Fundam. Inform., 89(4):451–478, 2008.

5. Janusz A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–494,
October 1964.

6. Rocco De Nicola and Matthew Hennessy. Testing equivalences for processes. Theor.
Comput. Sci., 34:83–133, 1984.

7. C. A. R. Hoare. Communicating sequential processes (reprint). Commun. ACM,
26(1):100–106, 1983.

8. Dexter Kozen. A completeness theorem for Kleene algebras and the algebra of
regular events. Inf. Comput., 110(2):366–390, 1994.

9. R. Milner. A Calculus of Communicating Systems. Springer, 1982.
10. Robin Milner. A complete inference system for a class of regular behaviours. J.

Comput. Syst. Sci., 28(3):439–466, 1984.
11. Robin Milner. A complete axiomatisation for observational congruence of finite-

state behaviors. Inf. Comput., 81(2):227–247, 1989.
12. Alexander Moshe Rabinovich. A complete axiomatisation for trace congruence of

finite state behaviors. In Stephen D. Brookes, Michael G. Main, Austin Melton,
Michael W. Mislove, and David A. Schmidt, editors, Mathematical Foundations of
Programming Semantics, 9th International Conference, New Orleans, LA, USA,
April 7-10, 1993, Proceedings, volume 802 of Lecture Notes in Computer Science,
pages 530–543. Springer, 1993.

13. Arto Salomaa. Two complete axiom systems for the algebra of regular events. J.
ACM, 13(1):158–169, 1966.

