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Abstract. We develop a theory of bisimulations for a simple language
containing communicating transactions, obtained by dropping the isola-
tion requirement of standard transactions. Such constructs have emerged
as a useful programming abstraction for distributed systems.
In systems with communicating transactions actions are tentative, wait-
ing for certain transactions to commit before they become permanent.
Our theory captures this by making bisimulations history-dependent, in
that actions performed by transactions need to be recorded. The main re-
quirement on bisimulations is the systems being compared need to match
up exactly in the permanent actions but only those.
The resulting theory is fully abstract with respect to a natural contextual
equivalence and, as we show in examples, provides an e↵ective verification
technique for comparing systems with communicating transactions.

1 Introduction

Communicating transactions, obtained by dropping the isolation requirement
of standard transactions, is a novel and powerful programming construct for
distributed systems. For example, it can be used to simplify the programming of
complex concurrent consensus scenarios, avoiding the use of locks and explicit
error handling [16]. Variants of such constructs have been proposed as extensions
to programming languages [5,7,11,16] and process calculi [2,1,3]. However, before
they can be adopted in mainstream programming, significant research is needed
in e�cient implementation strategies [6,11,16], programming paradigms [1,7],
and viable verification techniques [8]. The last concern is the topic of this paper.

Bisimulations [12] provide an elegant and e↵ective proof technique for proving
equivalences between processes in a variety of settings (e.g., [15,14]). They are
essentially defender strategies in a game where a challenger attempts to discover
a di↵erence in the extensional behaviour of two processes, while the defender tries
to refute these attempts [17]. For example, consider the standard CCS processes

P
1

= a.(b.0+ c.0) Q
1

= a.b.0+ a.c.0 (1)

which can perform the action a followed by either b or c, with a slight di↵erence in
when this choice is taken. The challenger choosesQ

1

to perform the action a, with
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residual Q0
1

= b.0 to which the defender must respond with a matching a action
from P

1

; the only possibility is for P
1

to perform a with residual P 0
1

= b.0+ c.0.
But now the challenger chooses P 0

1

to perform the c action, to which the defender
has no response. The defender loses the game. In fact there is no possible winning
strategy for the defender in this game and thus no bisimulation containing the
pair (P

1

, Q
1

). Therefore P
1

and Q
1

are deemed to be behaviourally distinct.
However, the appropriate notion of the bisimulation game for a language

with communicating transactions or similar constructs is a priori unclear. An
objective criterion for a potential bisimulation game is relation with contextual
equivalence. If the existence of a winning defender’s strategy in a game over two
systems implies that the systems are contextually equivalent then this game is
a sound verification technique. If the absence of such a strategy implies that the
two systems are contextually inequivalent then the game is a complete technique.
The main result of this paper is a weak bisimulation theory for a simple language
containing communicating transactions, TCCSm, which provides a sound and
complete proof methodology with respect to a natural contextual equivalence.

TCCSm is obtained from CCS [12] by essentially adding one construct JP .k QK
for communicating transactions, and a new command co for committing them.
Here k is the name of the transaction, P the body which is expected to be
completed in its entirety or not at all, and Q is the alternative, to be executed
in case the transaction is aborted. However it should be emphasised that if an
abort occurs not only is Q launched but P and all its e↵ects on the environment

are rolled back. For example consider the systems with p fresh from R and S:

P
2

= ⌫p. Ja.p.co.R .k 0K | Jb.p.co.S .l 0K (2)

Q
2

= Ja.b.co.(R |S) + b.a.co.(R |S) .m 0K

Here P
2

consists of two independent transactions which co-operate by synchro-
nising on a private channel p. If after this synchronisation the left-hand trans-
action aborts then the e↵ect of the a action, which is a communication with
the environment, must be rolled back. But the synchronisation on p must also
be undone, and therefore, because of the all-or-nothing nature of transactions,
the e↵ects of the b action in the right-hand transaction will be rolled back. In-
deed in our reduction semantics, given in Sect. 2, this right-hand transaction is
also aborted. Because of the synchronisation on p, the destiny of both transac-
tions is conjoined. For this reason we should be able to demonstrate that P

2

is
behaviourally equivalent to the single transaction Q

2

.
The standard bisimulation game outlined above cannot be easily extended

to TCCSm. Many actions, such as a, b in (2) above, are tentative, in the sense
that their e↵ect can only be considered to be permanent when the transactions
k and l commit, if ever. To underline this consider the processes:

P
3

= Ja.(b.co+ c.0) .k 0K Q
3

= Ja.b.co .l 0K (3)

Here P
3

commits only after performing the a, b. It would be unreasonable for the
challenger, after the a action, to demand a response to c. Not only is this action
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tentative on the completion of transaction k but also if c is performed then k
will never commit; so the defender should be able to ignore this challenge.

Our approach is to play the bisimulation game on configurations, of the form
C = (H B P ) where P is a system and H a history of all the tentative ac-
tions taken so far in the game by P . These are of the form k(a), where k is
the name of a transaction which needs to commit before the action becomes a
permanent a. When playing bisimulation moves, the histories of both systems
being scrutinised must remain consistent, in that permanent actions in the re-
spective histories must match exactly (for simplicity old permanent actions are
not garbage collected). The crucial aspect of this new game is that when a sys-
tem commits a transaction k, and only then, all tentative actions in its history
dependent on k are made permanent. This consistency requirement then forces
a response in which the corresponding actions match exactly.

For example consider the following variation on (1), using transactions:

P
4

= Ja.(b.co + c.co) .l 0K Q
4

= Ja.b.co + a.c.co .k 0K (4)

Replaying the game from (1), where the challenger first chooses a from Q
4

and
then c from P

4

with the same responses, we reach the configurations

C
4

= (k(a), k(c) B Jco .k 0K) D
4

= (l(a), l(b) B Jco .l 0K)

At this stage the two histories are still consistent as they contain no permanent
actions. However, now there is no possible response when the challenger chooses
the commit move C

4

! C0
4

= (a, c B 0). This is a silent move from C
4

in which
transaction k commits, making the two actions in the history permanent. There
are various ways in which D

4

can try to respond but all lead to an inconsistent
history. Thus, with our version of bisimulations P

4

and Q
4

are not bisimilar.
Note that such a successful attack by the challenger cannot be mounted

for (3) above. After one round in the game we have the configurations

C
3

= (k(a) B Jb.co+ c.0 .k 0K) D
3

= (l(a) B Jb.co .l 0K)

and since D
3

has no possible c actions the challenger might request a response
to the action C

3

! C0
3

= (k(a), k(c) B J0 .k 0K). However the tentative k(c)
recorded in the history will never become permanent and thus the defender
can successfully respond with any tentative action of D

3

which will also never
become permanent. To ensure that such responses can always be made, our
bisimulations will allow any configuration to make the degenerate silent move
(H B P ) ! (H, k(?) B P ), where ? is a reserved symbol. This defender move
represents a weak idle move whose validity is postponed until after k commits. So
C
3

’s move above can be matched by D
3

playing this degenerate move followed by
the abort of the transaction. Later we prove that P

3

and Q
3

are indeed bisimilar.
Using recursion we can write restarting transactions as recX.JP I XK. Here

JP I XK is an uninitiated transaction which has yet to be allocated a name.
These transactions can abort and re-run internal steps, thus branching di↵er-
ences in initial silent actions can be hidden from the challenger. Consider a
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compiler performing common subexpression elimination, transforming P
5

to Q
5

:

P
5

= recX.J⌧.b.co+ ⌧.c.co I XK Q
5

= recX.J⌧.(b.co+ c.co) I XK (5)

As we will show, all moves of the challenger can be matched by the defender
in the bisimulation game. The interesting scenario is when (after initiating the
transactions) the challenger picks the right ⌧ action from P

5

and the defender
responds with the ⌧ action from Q

5

. We then get the configurations:

C
5

= (" B Jc.co .k P
5

K) D
5

= (" B Jb.co+ c.co .l Q5

K)

The challenger then picks the b action from D
5

. The defender responds with
a silent abort of C

5

which will reinstate P
5

, re-initialise the transaction, and
select the left ⌧ action in P

5

followed by the b action. This would lead to the
configurations C0

5

= (k0(b) B Jco .k0 P
5

K) and D0
5

= (l(b) B Jco .l Q5

K). We will
in fact prove that this optimisation is sound in our setting, although it is not
sound in the case of P

4

, Q
4

, even if we used restarting transactions.
In the remainder of this extended abstract we explain the language TCCSm

(Sect. 2), which is a simplification of that used in previous work [4] in that we
do not consider nested transactions, simplifying technical development. Inspired
by cJoin [1], when transactions co-operate by synchronising on an action they
are virtually merged by acquiring the same name. Thus in P

2

from (2), when
synchronisation occurs on the private channel p, the residual will be a term
equivalent to the single transaction ⌫p. Jco.(R |S) .n 0 | 0K.

This is followed by an exposition of our history dependent bisimulations
(Sect. 3). As we have already stated, these bisimulations demand the appro-
priate matching of all actions, even those dependent on transactions which can
never commit. We also give a variation, called predictive bisimulations, in which
dependent actions need only be matched when the transaction on which they
depend has some future possibility of committing (Sect. 4). We ultimately show
that both equivalences coincide but the former is an easier proof technique while
the latter is easier to prove sound. We then outline the proof of the main result of
the paper, namely that these bisimulation equivalences coincide with contextual
equivalence (Sect. 5).

2 The language TCCSm

The syntax for terms in the language is given in Fig. 1 where a 2 Act are
actions, µ 2 Act ] {⌧} ] ⌦ are prefixes, and X ranges over a collection of re-
cursion variables. Here ! 2 ⌦ are special actions which will be used to define
contextual equivalence, while ( · ) : Act ! Act is a total bijection over Act, used
in the standard manner to formalise CCS synchronisation between processes.
The language contains all the standard constructs of CCS, with the result that
CCS is a sub-language of TCCSm. There are three extra operators, discussed
in the Introduction. We assume the standard notion of free and bound occur-
rence of recursion variables, and only consider closed terms, those which contain



Bisimulations for Communicating Transactions 5

TCCSm
Syntax

P,Q,R ::=
P

µi.Pi

�� P |Q
�� ⌫a.P

�� X
��

recX.P
�� JP .k QK

��
co.P

�� JP I QK
CCS Transitions

CCSsum

⌃µi.Pi
µi�!" Pi

CCSsync

P
a�!" P 0 Q

a�!" Q0

P |Q ⌧�!" P 0 |Q0

CCSrec

µX.P
⌧�!" P [µX.P/X]

Transactional Transitions

TrTau

P
⌧�!" P 0

JP .k QK ⌧�!"

q
P 0 .k Q

y

TrSum

⌃µi.Pi
k(a)���!" 7!k JPj | co .k ⌃µi.PiK

µj = a

TrAct

P
a�!" P 0

JP .l QK k(a)���!l 7!k

q
P 0 .k Q

yk ] l

TrSync

P
k(a)���!�1 P 0 Q

k(a)���!�2 Q0

P |Q k(⌧)���!(el1,el2) 7!k P 0�2 |Q0�1

�1 = el1 7! k

�2 = el2 7! k

Propagation Transitions

Restr

P
↵�!� P 0

⌫a.P
↵�!� ⌫a.P 0 a 62 ↵

ParL

P
↵�!� P 0

P |Q ↵�!� P 0 |Q�
range(�) ] Q

Fig. 1. Communication and internal transitions (omitting symmetric rules)

no free occurrences of variables. We use the standard abbreviations associated
with CCS, and write s ] s0 when the transaction names of the syntax object s
are fresh from those in s0; ftn(s) denotes the transaction names in s. Note that
unlike previous work [3,4] transaction names are never bound and we do not
require that all transaction names used in a term are distinct. Thus, we allow
terms of the form JP

1

.k P
2

K |R | JQ
1

.k Q
2

K . Here k should be looked upon as a
distributed transaction whose behaviour will be approximately the same as the
centralised JP

1

|Q
1

.k P
2

|Q
2

K . The use of these distributed transactions will
simplify considerably the exposition of the reduction semantics.

Definition 2.1. A closed term is called well-formed if in every occurrence of

JP .k QK, JP I QK, and recX.P , the subterms P and Q do not contain named

transactions of the form J� .� �K. We refer to well-formed terms as processes.

Note that dormant transactions can appear within other transactions and under
recursion but they will be activated only when they end up at top-level. In the
sequel we only consider well-formed terms.

The reduction semantics of the language is given as a binary relation between
processes P ! Q. However this is defined indirectly in terms of three auxiliary
relations, which will also be used in the formulation of bisimulations:

P ! Q when P
⌧�!� Q or P

��! Q or P
k(⌧)���!� Q (6)
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TrNew

JP I QK new k���! JP .k QK

TrAb

JP .k QK abk��! Q

TrCo

P  
co

P 0

JP .k QK cok��! P 0

TrBCast

P
��! P 0 Q

��! Q0

P |Q ��! P 0 |Q0
� 2 {cok, abk}

TrIgnore

P
��! P 0

P |Q ��! P 0 |Q
� ] Q

TrRestr

P
��! P 0

⌫a.P
��! ⌫a.P 0

Fig. 2. Transactional reconfiguration transitions

The first, P
⌧�!� Q, is essentially synchronisation between pure CCS processes.

The second, P
��! Q (Fig. 2), where � ranges over co k, ab k and new k, encode

the creation of new named transactions, and commit/abort broadcast transitions
(TrCo, TrAb, TrBCast) which eliminate distributed transactions. The notation
P  

co

P 0 means the execution of a top-level co in P and the replacement of
all other top-level commits with ⌧ -prefixes. We now concentrate on the third,

P
k(⌧)���!� Q, or more generally P

k(µ)���!� Q where µ 2 Act [ {⌧}.

Action P
k(a)���!� Q should be viewed as the synchronisation between P and

some transaction named k in the environment which can perform the comple-
mentary a. Because this transaction is external the freshness side conditions in
the rules of Fig. 1 ask that the name k is fresh with respect to P . Also, the
e↵ect of this synchronisation is that the future behaviour of P , or at least any
transactions involved in the execution of a, is dependent on the eventual com-
mitting of k. This dependency is implemented by �, a substitution renaming
the responsible transaction in P to k. The essential rule in the generation of
these judgements is TrAct in Fig. 1. For example, this rule ensures that we

can derive Ja.P
1

.l1 Q
1

K k(a)���!l1 7!k JP
1

.k Q
1

K for any fresh k. The substitution
recorded in the action is propagated by ParL into contexts. Note that by TrSum,
even pure CCS processes with no transactions can perform a k(a) action; e.g.,

a.P
k(a)���!" 7!k JP | co .k a.P K . This embeds P into the k-transaction; the

distributed part of the k-transaction surrounding P is always ready to commit
(hence the introduction of co). Note that this is a communication-driven em-

bedding, which reduces the nondeterminism of embedding of previous work [3,4],
making semantics more concrete [16]. Embedding leads to a uniform treatment
of CCS processes and transactions, and a simple reduction semantics.

The conjoining of transactions is implemented in TrSync. Using it we infer:

Ja.P
1

.l1 Q
1

K | Ja.P
2

.l2 Q
2

K k(⌧)���!
(l1,l2) 7!k JP

1

.k Q
1

K | JP
2

.k Q
2

K

for any fresh k. Here the previously independent transactions l
1

, l
2

have been
merged into the transaction k (recorded in the substitution (l

1

, l
2

) 7! k). Note
that this new transaction is distributed, in that its activity is divided in two. In
order for it to commit the rules in Fig. 2 ensure that both components commit.
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Example 2.2. Consider the process P
2

defined in (2) in the Introduction. Two
applications of TrAct followed by rule Restr gives the reduction from (6) above

P
2

| a.b !⇤ ⌫p. Jp.co.R .k1 0K | Jp.co.S .k2 0K = P 0
2

where k
1

and k
2

are fresh names. The synchronisation rule TrSync then gives

P 0
2

! ⌫p. Jco.R .k 0K | Jco.S .k 0K

where k is an arbitrary fresh name. Here the residual is a single transaction
named k, albeit distributed. For it to commit both components have to commit:
using TrBCast this leads to the process R |S. ut

The semantics has a number of properties: it preserves well-formedness, gen-
erates only fresh transaction names and is equivariant. The properties about
transaction names are important because they give us the liberty to pick fresh
enough transaction names in proofs. To state these properties we use renamings,
ranged over by r, which are bijective substitutions of the form {l

1

/k
1

, . . . , ln/kn}.
The range of a fresh renaming r

fr

has names not appearing in the proof.

Lemma 2.3 (Names). Suppose P
l(µ)��!� Q. Then

1. l is fresh to P , Q is well-formed, and the substitution � has the form

ek 7! l;

2. (Equivariance) Pr
fr

l0(µ)���!�r
fr

Qr
fr

, where r
fr

(l) = l0. ut

Based on this semantics we give a natural contextual equivalence, using stan-
dard formulations [15]. We write ) for the reflexive transitive closure of !.

Definition 2.4 (Barb). P+! (! 2 ⌦) if 9 Q, Q0
such that P ) Q

!�!✏ Q
0
.

Definition 2.5 (Reduction Barbed Equivalence (⇠=
rbe

)). (⇠=
rbe

) is the largest
relation for which P ⇠=

rbe

Q when:

1. P+! i↵ Q+!,
2. if P ! P 0

then there exists Q0
such that Q ) Q0

and P 0 ⇠=
rbe

Q0
,

3. if Q ! Q0
then there exists P 0

such that P ) P 0
and P 0 ⇠=

rbe

Q0
,

4. P |R ⇠=
rbe

Q |R for any R with R ] P,Q.

Here we consider contexts with fresh transaction names to enforce that observer
transactions are distinct from process transactions before communication occurs.
If this was not the case then transaction names would be observable: JP .k QK
would not be equivalent to JP .l QK because by introducing the context J0 .k 0K
the k-transaction can no longer commit but l still can. Thus, all transaction
names are considered local here; the side condition R ] P,Q enforces this without
the syntactic overhead of a ⌫-binder for all transaction names.

To see why in the above definition we use barbs from a distinct ⌦ consider:

P = Ja.co .k 0K Q = a.0+ ⌧.0

Intuitively, we would expect P to have exactly the same behaviour as Q, eventu-
ally executing the single action a, or failing with a ⌧ step. But if we allowed the
barb +a in Def. 2.5 then they would not be equivalent because P 6+a and Q+a.



8 V. Koutavas, C. Spaccasassi, M. Hennessy

Example 2.6. P
4

and Q
4

from (4) in the Introduction are indeed inequivalent.
Assume P

4

⇠=
rbe

Q
4

. Take C
1

= ā. Then P
4

|C
1

⇠=
rbe

Q
4

|C
1

. We have:

Q
4

|C
1

l(⌧)��! Jb.co .l 0K | Jco .l C1

K = Q0
4

thus Q
4

|C
1

�! Q0
4

Process Q0
4

should be equivalent to P
4

|C
1

or one of its successors:

1. P
4

|C
1

. Let C
2

= c̄.!; then Q0
4

|C
2

6+!, P
4

|C
1

|C
2

+!. Thus P
4

|C
1

6⇠=
rbe

Q0
4

.
2. P 0

4

= Jb.co+ c.co .m 0K | J0 .m C
1

K. Again, P 0
4

|C
2

+!, thus P 0
4

6⇠=
rbe

Q0
4

.
3. C

1

(after an abort). Q0
4

| b.!+! but C
1

| b.! 6+!, so C
1

6⇠=
rbe

Q0
4

.

Thus Q0
4

6⇠=
rbe

P
4

|C
1

or any later state (contradiction), and P
4

6⇠=
rbe

Q
4

. ut

Note that the di↵erence in the branching structure of P
4

and Q
4

is not
observable by the may- and must-testing equivalences [3,4]. These equivalences
are characterised by so-called clean traces, which are traces in which all tentative
actions are committed. If bisimulations were developed using such clean traces,
P
4

and Q
4

would also be identified in the resulting bisimulation theory but it
would not correspond to a natural definition of (⇠=

rbe

).

3 Bisimulations

As mentioned in the Introduction, our bisimulations will be over configurations
(H B P ) with a process P and a history H of the tentative interactions of P with
its environment. An element of such a history can be a k(a), a, ab, k(?), or ?. A
past tentative action k(a) that has not been committed or aborted is recorded
as is in the history. If the k-transaction that performed this action commits, the
action becomes a; if k aborts, it becomes ab. Histories also record the trivial ac-
tions k(?) which can be performed by any process. If k commits, k(?)-recordings
become ?, which terminates the bisimulation game in favour of the attacker; if k
aborts they become ab. For technical convenience in proofs, elements in a history
are uniquely indexed and permanent actions are not garbage-collected.

Definition 3.1 (History). A history H is a partial function from objects i of
a countable set I to the set {a, ?, k(a), k(?), ab | a 2 Act}.

We often write histories as lists, omitting the indices of their elements. History
composition, written as H

1

, H
2

, is defined when dom(H
1

) \ dom(H
2

) = ;. We
also let â and b̂ range over Act[{?} and µ̂ range over Act[⌦[{⌧, ?}. To express
the e↵ect of commits and aborts to histories we define the following operations.

Definition 3.2. H \
co

k and H \
ab

k are the lifting to lists of the operations:

(i 7! k(â)) \
co

k = (i 7! â) (i 7! k(â)) \
ab

k = (i 7! ab)
(i 7! l(â)) \

co

k = (i 7! l(â)) (i 7! l(â)) \
ab

k = (i 7! l(â)) when k ] l
(i 7! â) \

co

k = (i 7! â) (i 7! â) \
ab

k = (i 7! â)
(i 7! ab) \

co

k = (i 7! ab) (i 7! ab) \
ab

k = (i 7! ab)
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For the reasons we explained in the Introduction, weak bisimulations for
TCCSm require configurations to agree on the committed actions in their histo-
ries, and only those actions. Soundness of our technique will establish this as a
su�cient requirement for contextual equivalence between processes.

Definition 3.3 (Consistency). H
1

and H
2

are consistent when they have the

same domain and for all i 2 I, a 2 Act: H
1

(i) = a i↵ H
2

(i) = a.

History consistency is one of the two main requirements for weakly bisimilar
configurations; the other is to have the same barbs. Thus the weak bisimulation
game for TCCSm will be over transitions with three simple labels: ⇣ ::= ⌧

�� k
�� !

annotating internal (⌧), tentative synchronisation (k), and barb (!) transitions.

Definition 3.4 (Bisimulation Transitions). C ⇣�! C0
is derived by the rules:

(H B P )
⌧�! (�(H) B Q) if P

⌧�!� Q (LTS⌧)

(H B P )
⌧�! (�(H) B Q) if P

k(⌧)���!� Q and k ] H (LTSk(⌧))

(H B P )
⌧�! (H B Q) if P

new k���! Q and k ] H (LTSnew)

(H B P )
⌧�! (H \

co

k B Q) if P
co k��! Q (LTSco)

(H B P )
⌧�! (H \

ab

k B Q) if P
ab k��! Q (LTSab)

(H B P )
k�! (�(H), k(a) B Q) if P

k(a)���!� Q and k ] H (LTSk(a))

(H B P )
k�! (H, k(?) B P ) if k ] H,P (LTS?)

(H B P )
!�! (�(H) B Q) if P

!�!� Q (LTS!)

We define

⇣
=) to be

⌧�!⇤
when ⇣ = ⌧ , and

⌧
=) ⇣�! ⌧

=) otherwise.

The first five rules encode the TCCSm reduction semantics of (6) in Sect. 2,
updating the history of the configurations accordingly. LTSk(a) encodes the syn-
chronisation between a transaction in the process and its environment, yielding a
fresh transaction k; this tentative action is recorded in the history. LTS! encodes
top-level barbs and LTS? records a trivial defender synchronisation move. Weak
⌧ - and k-transitions can always be performed by the defender in the bisimulation
game. Moreover, there are no top-level a-transitions because they can always be
simulated by a k(a)-transition followed by the commit of k.

Lemma 3.5. Suppose P
a�!" Q; then P

k(a)���!" 7!k P 0 cok��! Q and (H B P )
k�!

(H, k(a) B P 0)
⌧�! (H, a B Q) for some P 0

, any H, and any k ] P,H. ut

To keep histories and the bisimulation game finite in examples, the challenger
of this bisimulation game performs all-but-? transitions.

Definition 3.6. C
1

⇣�!C
2

is a challenger move if it is derived without using LTS?.

We now give the definition for a weak bisimulation over the above transitions.

Definition 3.7 (Weak Bisimulation). A binary relation R over configura-

tions is a weak bisimulation when for all C
1

R C
2

:
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R3
def
= { ((" B P3), (" B Q3)), ((k(a) B Jb.co+ c.0 .k 0K), (k(a) B Jb.co .k 0K)),

((k(a), k(b) B Jco .k 0K), (k(a), k(b) B Jco .k 0K)), ((a, b B 0), (a, b B 0)),
((k(a), k(c) B J0 .k 0K), (ab, ab B 0)), ((ab, . . . B 0), (ab, . . . B 0)) | any k}

R2
def
= { ((" B P2), (" B Q2)), ((ab, . . . B 0), (ab, . . . B 0)),

(k1(a) B ⌫p. Jp.co.R .k1 0K | Jb.p.co.S .k2 0K), (k1(a) B Jb.co.(R |S) .k1 0K)),
(k2(b) B ⌫p. Ja.p.co.R .k1 0K | Jp.co.S .k2 0K), (k2(b) B Ja.co.(R |S) .k2 0K)),
((k1(a),k2(b) B ⌫p. Jp.co.R .k1 0K | Jp.co.S .k2 0K),
(k2(a), k2(b) B Jco.(R |S) .k2 0K)),

((k2(b),k1(a) B ⌫p. Jp.co.R .k1 0K | Jp.co.S .k2 0K),
(k1(b), k1(a) B Jco.(R |S) .k1 0K)),

((k(x),k(y) B ⌫p. Jco.R .k 0K | Jco.S .k 0K), (k(x), k(y) B Jco.(R |S) .k 0K))
((x, y,H B ⌫p. R |S), (x, y,H B R |S))
| any k, k1, k2, R, S,H and (x, y) = (a, b) or (b, a) }

R5
def
= { ((H B P5), (H B Q5)), ((H,x B 0), (H,x B 0))

((H B J⌧.b.co+ ⌧.c.co I P5K), (H B J⌧.(b.co+ c.co) I Q5K)),
((H B J⌧.b.co+ ⌧.c.co .k P5K), (H B J⌧.(b.co+ c.co) .l Q5K)),
((H B Jb.co .k P5K), (H B J(b.co+ c.co) .l Q5K)),
((H B Jc.co .k P5K), (H B J(b.co+ c.co) .l Q5K)),
((H, k(x) B Jco .k P5K), (H, k(x) B Jco .k Q5K)),
| any k, l,H = (ab, . . .), and x = a or b }

Fig. 3. Relations used to prove the equivalences in Ex(s). 3.10 to 3.12.

1. hist(C
1

) and hist(C
2

) are consistent,

2. if C
1

⇣�! C0
1

is a challenger move and ⇣ ] C
2

then 9 C0
2

: C
2

⇣
=) C0

2

and C0
1

R C0
2

,

3. the converse of the preceding condition.

Condition ⇣ ] C
2

guarantees that the choice of fresh transaction names in ⇣
does not hinder the transition from C

2

. Weak bisimilarity (⇡) is the largest weak
bisimulation, and extends to processes P ⇡ Q if (; B P ) ⇡ (; B Q). Bisimulation
transitions and weak bisimulations are una↵ected by fresh renaming. Thus, the
name selected in a challenger move is unimportant.

Lemma 3.8 (⇣-Equivariance). If C ⇣�! C0
then Cr

fr

⇣r
fr��! C0r

fr

. ut

Lemma 3.9 (Equivariance of (⇡)). If C ⇡ D then C ⇡ Dr. ut

We close this section by showing the equivalence of the processes in the in-
troduction by proving them weakly bisimilar. The soundness of our bisimulation
technique establishes a proof of contextual equivalence between these processes.

Example 3.10. Recall P
3

and Q
3

from (3) in the Introduction. We show that
P
3

⇡ Q
3

; i.e., (; B P
3

) ⇡ (; B Q
3

). It su�ces to check thatR
3

in Fig. 3 is a weak
bisimulation. Related histories in R

3

are consistent. The interesting case is when

(k(a) B Jb.co+ c.0 .k 0K)
k0
�! (k0(a), k0(c) B J0 .k0 0K). The defender responds:
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(k(a) B Jb.co .k 0K)
k0
�!

LTS? (k0(a), k0(?) B Jb.co .k 0K)
⌧�!
LTSab

(ab, ab B 0)
and get (k0(a), k0(c) B J0 .k0 0K) R

3

(ab, ab B 0). The rest is trivial, thus the
defender always wins, therefore R

3

is a weak bisimulation and P
3

⇡ Q
3

. ut

Example 3.11. Let us now prove P
2

⇡ Q
2

from (2) in the Introduction. For this
proof we construct relation R

2

in Fig. 3. It is easy to verify that all histories
related in R

2

are consistent and all challenger moves can be matched by the de-
fender. Here it is noteworthy that the two tentative actions a and b are recorded
in the left-hand history under di↵erent transaction names (k

1

and k
2

, respec-
tively) until the synchronisation on p merges the two transactions; these history
annotations are highlighted in bold typeface. ut

Example 3.12. In our final example proof we show that P
5

⇡ Q
5

from (5) in the
Introduction. Here we construct relation R

5

in Fig. 3. In this construction, H is
a history with zero or more aborted actions; we add this to our configurations
because restarting transactions can nondeterministically abort and restart. The
proof that R

5

is a weak bisimulation is again by an easy inspection of the
moves of the challenger. The important move is when from the pair ((H B
Jb.co .k P

5

K), (H B J(b.co+ c.co) .l Q5

K)) the challenger picks the transition

(H B J(b.co+ c.co) .l Q5

K)) l0�! (H, l0(c) B Jco .l0 Q5

K)) and the defender:

((H B Jb.co .k P
5

K) ⌧�!
(LTSab)

(H B P
5

)
⌧�!

(LTS⌧ ) (H B J⌧.b.co+ ⌧.c.co I P
5

K) ⌧�!
(LTSnew)

(H B J⌧.b.co+ ⌧.c.co .k P
5

K)
⌧�!

(LTSk(⌧)) (H B Jc.co .k0 P
5

K) l0�!
(LTSk(a)) (H, l0(c) B Jco .l0 P5

K)

and get (H, l0(c) B Jco .l0 Q5

K)) R
5

(H, l0(c) B Jco .l0 P5

K). ut

4 Predictive bisimulations

In the previous section we showed that weak bisimulations provide an e↵ective
verification technique of equivalence. However, it does not enable a direct sound-
ness proof. The di�culty is in proving weak bisimulation compositional (i.e., a
congruence). Here we define predictive bisimulations, an alternative notion of
bisimulations that allows us to give an indirect proof of soundness of (⇡). First
we explain the problem with directly proving (⇡) compositional.

Failing Proof (Compositionality) We need to prove R a weak bisimulation, when

(H
1

B P |R) R (H
2

B Q |R) (7)

for any context R and (H
1

B P ) ⇡ (H
2

B Q). Let (H
1

B P )
k�! (H

1

, k(a) B P 0)
and R can perform k(a) to become R0. We have (H

1

B P |R)
⌧�! (H

1

B P 0 |R0).
We need to show that there exist H 0

2

, Q00, and R00 such that (H
2

B Q |R)
⌧
=)

(H 0
2

B Q00 |R00) and (H
1

B P 0 |R0) R (H 0
2

B Q00 |R00). Weak bisimilarity gives

(H
2

B Q)
k
=) (H

2

, k(b̂) B Q0) and (H
1

, k(a) B P 0) ⇡ (H
2

, k(b̂) B Q0)
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for some b̂, Q0, and the new parts k(a) and k(b̂) of the histories are consistent.
However, consistency does not restrict the values of b̂; it can be a name di↵erent
than a, or even ?, provided that k does not commit in any extension of the
bisimulation game. When b̂ = a we can complete the proof by taking H 0

2

=
(H

2

, k(â)), Q00 = Q0 and R00 = R0, showing (H
1

, k(a) B P 0 |R0) R (H
2

, k(a) B
Q0 |R0) because it is of the same shape as (7). However, when b̂ = c 6= a or b̂ = ?
it is unclear how to proceed in this direct proof. 6 ut

We instead prove soundness by defining (⇡
prd

) and showing:

P ⇡ Q implies P ⇡
prd

Q implies P ⇠=
rbe

Q (8)

To show the second implication we need to prove (⇡
prd

) compositional. The in-
tuition of why this is possible is because (⇡

prd

) only takes into account those
challenger transitions that have the possibility to be committed later in the
bisimulation game. This allows us to define a stronger definition of consistency
which avoids the problematic cases of the above failed direct proof. Strong con-
sistency is a reflexive, symmetric, and transitive relation.

Definition 4.1 (Strong Consistency (l)). H
1

l H
2

when:

(H
1

(i) = â i↵ H
2

(i) = â) and (9k.H
1

(i) = k(â) i↵ 9l.H
2

(i) = l(â))

In a predictive bisimulation game the challenger only performs transitions
within transactions when those transactions can commit later in the game. Thus,
here we di↵erentiate between ⌧ - and k(⌧)-transitions. Moreover, we emphasise
that a challenger k(a) move has to be matched with an identical defender move.
Thus predictive bisimulations are over the actions ⌘ ::= ⌧

�� k(⌧)
�� k(a)

�� !.

Definition 4.2 (Pred. Bisim. Transitions). C ⌘�! C0
is derived by the rules:

(H B P )
⌧�! (H B Q) if P

⌧�!" Q (LTS

0⌧)

(H B P )
k(⌧)���! (�(H) B Q) if P

k(⌧)���!� Q and k ] H (LTS

0k(⌧))

(H B P )
⌧�! (H B Q) if P

new k���! Q and k ] H (LTS

0
new)

(H B P )
⌧�! (H \

co

k B Q) if P
cok��! Q (LTS

0
co)

(H B P )
⌧�! (H \

ab

k B Q) if P
abk��! Q (LTS

0
ab)

(H B P )
k(a)���! (�(H), k(a) B Q) if P

k(a)���!� Q and k ] H (LTS

0k(a))

(H B P )
!�! (�(H) B 0) if P

!�!� Q (LTS

0!)

We define

⌘
=) to be

⇣
(
⌧�!)[ (

k(⌧)���!)
⌘⇤

when ⌘ 2 {⌧, k(⌧)}, and ⌧
=) ⌘�! ⌧

=) otherwise.

In a predictive bisimulation game, defender moves are weak ⌘-transitions,
with no need for k(?)-transitions. Challenger moves are commitable transitions.

Definition 4.3 (Commitable Transition). C ⌘�! C0
with ⌘ 2 {⌧,!} is com-

mitable; C k(µ)���! (H
1

B P
1

) is commitable when there exists (H
1

B P
1

)
⌘1�!

. . .
⌘(n+1)����! (Hn B Pn) such that for any a and i 62 dom(H

1

):

(H
1

, (i 7! k(a)) B P
1

)
⌘1�! . . .

⌘(n+1)����! (Hn, (i 7! a) B Pn)
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Weak predictive bisimulations are thus defined as follows.

Definition 4.4 (Weak Predictive Bisimulation). A binary relation R is a

weak predictive bisimulation when for all C
1

R C
2

:

1. hist(C
1

) and hist(C
2

) are strongly consistent,

2. if C
1

⌘�! C0
1

is a commitable transition and ftn(⌘) ] C
2

then 9 C0
2

such that

C
2

⌘
=) C0

2

and C0
1

R C0
2

, and its converse.

Weak predictive bisimilarity (⇡
prd

) is the largest such bisimulation and (⇡
prd

)
extends to processes in the same way as (⇡). The first part of (8) follows by:

Theorem 4.5. Let C ⇡ C0
with strongly consistent histories; then C ⇡

prd

C0
.

Proof. The proof of this proposition relies on showing that strong consistency is
closed under commitable transitions of weakly bisimilar configurations. ut

To prove the second part of (8) we need to show that (⇡
prd

) is compositional.

Theorem 4.6. If P ⇡
prd

Q and ftn(R) ] P,Q then P |R ⇡
prd

Q |R.

Proof. This relies on de-/re-composition of actions; e.g., we need to decompose

(H B P |R)
⌘�! (H B P 0 |R0) into the constituent sub-actions from P , R with

appropriate histories. This is facilitated by strongly consistent histories. ut

5 Full abstraction

Using (⇡) we can prove soundness of our original bisimulation game.

Theorem 5.1 (Soundness). If P ⇡ Q then P ⇠=
rbe

Q.

Proof. In view of Thm. 4.5 it is su�cient to prove the result for (⇡
prd

). The
major step in this proof is already established in Thm. 4.6. ut

We prove completeness for L
Act

by first translating any history H into a
process LHM. Then we show that the transitions of a configuration (H B P )
examined by bisimulations can be modelled by reductions of the process LHM |P ,
when put in parallel with the appropriate contexts. The translation of H is the
parallel composition of the translation of each element in H according to:

Li 7! k(a)M =
q
co |!commit

ai .k !abort

i

y
Li 7! aM = !commit

ai Li 7! abM = !abort

i

Li 7! k(?)M =
q
co .k !abort

i

y
Li 7! ?M = 0

A tentative k(a)-action, recorded in the history as (i 7! k(a)), corresponds to a
particular move of the bisimulation game—say the ith move. This is translated
to a k-transaction which is ready to commit. When k commits because all dis-
tributed parts of k commit, a unique “success” barb !commit

ai becomes observable,
signalling that the ith move in the bisimulation game was a synchronisation on
a which became permanent. In the history this is recorded as (i 7! a). If the
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k-transaction aborts then a unique !abort

i barb signals the abortion of the ith
move, corresponding to (i 7! ab) in the history. The translation of a defender’s
(i 7! k(?)) move is similar, with the exception that this is a no-action that has
no “success” barb associated with it. A key proposition is that reductions of
translated configurations model silent bisimulation transitions.

Proposition 5.2. (H
1

B P )
⌧�! (H

2

B Q) i↵ LH
1

M |P ! LH
2

M |Q.

Moreover, the ith tentative k-transition in the bisimulation game is modelled by
the reduction induced by the context:

LkMi = Jco | (
P

a2Act

a.!commit

ai ) + ⌧.0+ !before

i .k !abort

i K

When synchronising with a process, this context becomes Li 7! k(a)M (for any
a), modelling a tentative k(a)-transition. It may also spontaneously become
Li 7! k(?)M, modelling a k(?)-transition. In any case it loses the weak barb !before

i .

Proposition 5.3. Let H
2

= �(H
1

), (i 7! k(â)) and k0 ] k,H
1

, P , and ftn(H
1

) ✓
ftn(P ); then (H

1

B P )
k�! (H

2

B Q) i↵ LH
1

M |P | Lk0Mi ! LH
2

M |Q 6+!before

i . ut

Theorem 5.4 (Completeness). If P,Q 2 L
Act

and P ⇠=
rbe

Q then P ⇡ Q.

Proof. Using the above propositions we show X is a weak bisimulation, where
X= {((H B P ), (H 0 B Q)) | H,H 0 cons., P,Q 2 L

Act

, LHM |P ⇠=
rbe

LH 0M |Q}. ut

6 Conclusions

We presented a weak bisimulation theory for TCCSm, a simple language with
communicating transactions. In TCCSm, two transactions that communicate
are conjoined by being renamed to the same name forming a distributed ver-
sion of cJoin’s merged transactions [1]. When a transaction communicates with
a non-transactional process, the latter is embedded in the former in line with
the semantics of previous work [3]. Compared to that semantics, embedding and
merging in TCCSm is communication-driven limiting nondeterminism. For sim-
plicity this language has only single-level transactions, although we believe that
the results of this paper can be adapted to a language with nested transactions.

The bisimulation equivalence is sound and complete with respect to a natu-
ral contextual equivalence which equates transactions that di↵er only in uncom-
mitable actions; these are destined to eventually be rolled back. We motivated
this with examples in the Introduction which we verified in Sect. 3 using our tech-
nique. In related work about reversible calculi [10,9], contextual equivalence can
discriminate between transactions Jb+ a.b.co .k 0K and Ja.b.co .k 0K by virtue
of the fact that the former contains an extra uncommitable b-action.

Our bisimulations provide an e↵ective verification technique for the afore-
mentioned contextual equivalence which can be applied to related programming
languages where uncommitable actions have no e↵ect [5,7,11,16]. They can also
serve as a verification technique for other forms of contextual equivalences, such
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as may- and must-testing equivalences [3,4]. Other bisimulation methods for
reversible computation [2,8,9,10] may also be used in these settings, but they
are more fine-grained, discriminating even between the above two processes.
Forward-reverse and hereditary history-preserving bisimulations [13] di↵erenti-
ate between forward and reverse transitions, which would discriminate between
the processes P

5

and Q
5

shown in the Introduction capturing a possible compiler
optimisation. To our knowledge, the bisimulation technique presented here is the
only one that can be used to prove the correctness of such compiler optimisations.
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