
Using higher-order contracts to model session types?

(Extended Abstract)

Giovanni Bernardi1 and Matthew Hennessy2

1 IMDEA Software Institute, Madrid
bernargi@tcd.ie

2 School of Computer Science and Statistics, University of Dublin, Trinity College
matthew.hennessy@cs.tcd.ie

Abstract. Session types are used to describe and structure interactions between
independent processes in distributed systems. Higher-order types are needed in
order to properly structure delegation of responsibility between processes. In this
paper we show that higher-order web-service contracts can be used to provide
a fully-abstract model of recursive higher-order session types. The model is set-
theoretic, in the sense that the denotation of a contract is given by the set of
contracts with which it complies; we use a novel notion of peer compliance. A
crucial step in the proof of full-abstraction is showing that every contract has a
non-empty denotation.

1 Introduction

The purpose of this paper is to show that recursive higher-order session types [15],
[11] can be given a behavioural interpretation using web-service contracts [19], which
is fully-abstract with respect to the Gay & Hole subtyping [13]. Higher-order session
types are necessary to handle session delegation, and in turn this calls for the develop-
ment of a novel form of peer compliance between higher-order contracts. Our model
interprets a higher-order session type as the set of session types, again higher-order,
with which it complies. This is formalised by viewing session types as contracts [19]
and using a notion of compliance, which we call peer compliance. The completeness
of the model relies on showing that every type has at least one other type with which
it complies. We prove this using the recently suggested type complement [6]. We also
believe that this type complement captures the intuition of complementary behaviour
more faithfully than the standard notion of type duality from [15]; in the full report [5]
we show that type-checking systems for session types, such as in [23], can be improved
by using type complement rather than type duality.

Session types: The interactions between processes in a complex distributed system
often follow a pre-ordained pattern. Session types [21,15] have been proposed as a
mechanism for concisely describing and structuring these interactions. As a simple
example consider a system consisting of two entities

(νs) (urls?(x+ : S ).store || urls![ s+ ].cstmr)
? Research supported by SFI project SFI 06 IN.1 1898, and FCT project PTDC/EIA-

CCO/122547/2010.



which first exchange a new private communication channel or session, s, over the public
address of the store urls; using the conventions of [13] the customer sends to the store
one endpoint of this private session, namely s+, and keeps the other endpoint s− for
itself. The session type S determines the nature of the subsequent interaction allowed
between the two entities; as an example S could be

?[ Id ]; &〈 l1 : ![ Addr ]; ?[ Int ]; T, l2 : ![ Addr ]; ?[ Int ]; T 〉 (1)

where Int, Addr, Id are some base types of integers, addresses and credentials respec-
tively, and &〈 l1 : S 1, . . . , ln : S n 〉 is a branch type which accepts a choice between
interaction on any of the predefined labels li, followed by the interaction described by
the residual type S i. Thus (1) above dictates that store offers a sequence of four inter-
actions on its end s+ of the session, namely (i) reception of credential, (ii) acceptance
of a choice among two commodities labelled by l1, and l2, (iii) followed by the receipt
of an address, and (iv) the transmission of a price, of type Int; subsequent behaviour is
determined by the type T .

The behaviour of cstmr on the other end of the session, s−, is required to match the
behaviour described by S , thus satisfying a session type which is intuitively dual to S .
For example, the dual to (1) above is

![ Id ];⊕〈 l1 : ?[ Addr ]; ![ Int ]; T ′, l2 : ?[ Addr ]; ![ Int ]; T ′ 〉 (2)

under the assumption that T ′ is the dual of T . Intuitively, input is dual to output and the
dual to a branch type is a choice type ⊕〈 l1 : S 1, . . . lk : S k 〉, which allows the process
executing the role described by the type to choose one among the labels li. These two
principles lead to a general definition of the dual of a session type T , denoted T in
[21,15].

In order to allow flexibility to the processes fulfilling the roles described by these
types a subtyping relation between session types, T 4 S , is essential; see [13] for a
description of the crucial role played by subtyping. Intuitively T 4 S means that any
process or component fulfilling the role dictated by the session type S may be used
where one is required to fulfil the role dictated by T . Thus subtyping gives an intuitive
comparative semantics to session types. In Definition 1 of Section 2 we slightly gen-
eralise the standard definition of [13], so as to account also for base types such as Int
and Bool.

Recursive types are necessary in order to handle sessions which may allow interac-
tions between their endpoints to go on indefinitely.

Example 1. [ An ever-lasting session ]

Ds = X(y) := yB { plus : y?(x) in y?(z) in y![ x + z ].X[ y ] 8
pos : y?(z) in x![ z > 0 ].X[ y ] }

Dc = Y(x) := xC { pos : x![ random() ].x?(z) in Y[ x ] }
P = (νκ) (def Ds in def Dc in X[ κ+ ] || Y[ κ− ])

The peer X[ κ+ ], defined by instantiating Ds, accepts over κ+ the invocation of one of the
two methods plus and pos, reads the actual parameters, sends the result of the chosen



method and starts again. The peer Y[ κ− ], defined by instantiating Dc, invokes via its
endpoint κ− the method pos, sends a random number, reads the result of the invoked
method, and also starts again. The composition of these two peers in P results in a never
ending session in which interaction occurs between the two peers forever. Note that the
definition of Ds is a recursive version of the math server of [13]. �

The type T that describes the behaviour of Ds on an endpoint k+ is naturally expressed
using recursion:

µX.&〈 plus : ?[ Int ]; ?[ Int ]; ![ Int ]; X, pos : ?[ Int ]; ![ Int ]; X 〉

Contracts: Web services [19,9] are distributed components which may be combined
and extended to offer services to clients. These services are advertised using contracts,
which are high-level descriptions of the expected behaviour of services. These contracts
come equipped with a sub-contract relation cnt1 v cnt2; intuitively this means that
the contract cnt2, or rather a service offering the behaviour described by this contract,
may be used as a service which is required to provide the contract cnt1; these abstract
contracts are reminiscent of process calculi as CCS and CSP [18,14].

Contracts are very similar, at least syntactically, to sessions types; for example
(2) above can very easily be read as the following process description from CCS,
!(Id).(?l1.?Addr.!Int.cnt′ + ?l2.?Addr.!Int.cnt′). In fact in Section 3 we give the
obvious translationM from the language of session types to that of contracts; however
we continue to use the two distinct languages in order to emphasise the intended use
of terms. Then if we provide a behavioural theory of contracts it should be possible to
explain how session types determine process behaviour via this mapping M, at least
along individual sessions. Indeed steps in this direction have already been made in
[1,4] restricting session types to the first-order ones, that is types that cannot express
session delegation. But, as we will now explain, the use of delegation in session types
requires the use of higher-order types, and in turn higher-order contracts, for which
suitable behavioural theories are lacking.

Session delegation: Consider the following system where the customer cstmr is
replaced by girlf and there are now four components:

(νs) (νp) (νb) (urls![ s+ ].urlb![ p+ ].urlb![ b+ ].girlf ||
urls?(s+ : S ).store || urls?(p+ : S p).bank ||
urlbf?(b+ : S b).boyf)

Three private sessions s, p, b are created and the positive endpoints are distributed to
the store, bank, and boyf respectively. One possible script for the new customer girlf
is as follows:

(i) send credential to store: send id on session s−

(ii) delegate choice of commodity to boyf: send session b− on session s−

(iii) await delegation from boyf to arrange payment: receive session s− back on ses-
sion b−.

Thus the session type S b at which the boyfriend uses the session end b+ must counte-
nance both the reception and transmission of session ends, rather than simply data. In



this case we can take S b to be the higher-order session type ?[ T1 ]; ![ T2 ]; end, where
in turn T1 is the session type ⊕〈 l1 : ?[ Addr ]; end 〉 and T2 must allow girlf to arrange
payment through the bank. This in turn means that T2 is a higher-order session type as
payment will involve the transmission of the payment session p.

The combination of delegation and recursion leads to processes with complicated
behaviour which in turn puts further strain on the system of session types.

Example 2. [ Everlasting generation of finite sessions ]
We use the syntax of [23]. Consider the process P = (νκo) (def D in X[ κ+

o , κ
−
o ]),

where D := X(x, y) = (νκf) (throw x[ κ+
f ]; 0 || catch y( z ) in X[ z, κ−f ]). Intuitively,

at each iteration the code X[ κ+
o , κ

−
f ] has the two endpoints of a pre-existing session, κo,

delegates over the endpoint κ+
o the endpoint κ+

f , and then recursively repeats the loop
using κf as pre-existing session.

According to the reduction semantics in [23] the execution of P will never give rise
to a communication error or a deadlock. But the endpoint κ+

f can only be assigned a
session type of the form µX. ![ X ]; end. Such types are forbidden in [2] but they are
allowed in the typing systems of [15,13,23,22]. �

If session types are to be explained behaviourally via the translation M into con-
tracts, the target language of contracts needs to be higher-order. For instance, the type
?[ T1 ]; ![ T2 ]; end is mapped byM to the contract ?( !l1.?(Addr). 1 ).?( cnt2 ). 1, where
cnt2 = M(T2). This in turn means that we require a behavioural theory of higher-
order contracts. This is the topic of the current paper. In particular we develop a novel
sub-contract preorder, which we refer to as the peer sub-contract preorder @∼ with the
property that, for all session types,

S 4 T if and only ifM(S ) @∼ M(T ) (3)

On the left hand-side we have the subtyping preorder between session types, which
determines when processes with session type T can play the role required by type S ; on
the right-hand side we have a behaviourally determined sub-contract preorder between
the interpretation of the types as higher-order contracts. This behavioural preorder is
defined in terms of a novel definition of peer compliance between these contracts.

In the remainder of this Introduction we briefly outline how the peer sub-contract
preorder is defined. Intuitively σ1 @∼ σ2, where σi are contracts, if every contract ρ
which complies with σ1 also complies with σ2. In turn the intuition behind compliance
is as follows. We say that a contract ρ complies with contract σ, written ρ a

p2p σ, if any
pair of processes in the source language p, q which guarantee the contracts ρ, σ respec-
tively, can interact indefinitely to their mutual satisfaction; in particular if no further
interaction is possible between them, individually they both have reached successful or
happy states. We call this concept mutual or peer compliance, as both participants are
required to attain a happy state simultaneously. This is in contrast to [9,19,4] where an
asymmetric compliance is used, in which only one participant, the client, is required to
reach a happy state.

In this paper, rather than discussing processes in the source language, how they can
interact and how they guarantee contracts, we mimic the interaction between processes



using a symbolic semantics between contracts. We define judgements of the form

ρ || σ
τ
−→ ρ′ || σ′ (4)

meaning that if p, q, from the source language, guarantee the contracts ρ, σ respec-
tively, then they can interact and evolve to processes p′, q′ which guarantee the residual
contracts ρ′, σ′ respectively.

For example we will have the judgement !Int.ρ′ || ?Real.σ′
τ
−→ ρ′ || σ′. On the

left-hand side of the parallel constructor || we have a contract guaranteed by a process
that supplies an Int; on the right-hand side there is a contract guaranteed by a process
which will accept a datum that can be used as a real. Since we are assuming that integers
can be interpreted as reals, that is Int 4b Real, we know that an interaction described
by the judgement above takes place.

However it is unclear when an interaction of the form

!(σ1).ρ′ || ?(σ2).σ′
τ
−→ ρ′ || σ′ (5)

should take place. Here on the left is a contract satisfied by a process which provides
a session endpoint that satisfies the contract σ1; on the right is a contract satisfied by a
process that accepts any session endpoint which guarantees the contract σ2. Intuitively
the interaction should be allowed if σ1 is a sub-contract of σ2, that is σ2 @∼ σ. However
the whole purpose of defining the judgements (4) above is in order to define the preorder
@
∼; there is a circularity in our arguments.

We break this circularity by supposing a predefined sub-contract preorder B and al-
lowing the interaction (5) wheneverσ1 B σ2. More generally we develop a parametrised
theory, with interaction judgements of the form ρ || σ

τ
−→B ρ′ || σ′ leading to a

parametrised peer-compliance relation σ aB
p2p ρ which in turn leads to a parametrised

sub-contract preorder ρ1 v
B ρ2. We then prove the main result of the paper, (3) above,

by showing:

There exists some preorder B0 over higher-order contracts such that S 4 T if
and only ifM(S ) vB0 M(T )

This particular preorder B0, which we construct and in (3) above has been referred to
as @∼, has a natural behavioural interpretation. It satisfies the behavioural equation

σ1 B0 σ2 if and only if σ1 v
B0 σ2 (6)

Moreover it is the largest preorder between higher-order contracts which satisfies (6).
The proof of (6) depends on an alternative syntactic characterisation of the set-based

preorders vB which in turn relies crucially on a natural property of the peer-compliance
relations:

For every contract σ there exists a complementary contract, cplmt(σ), which
complies with it, σ aB

p2p cplmt(σ). (?)

In view of the natural correspondence between contracts and session types there is a
natural candidate for complementary contracts. Intuitively the dual of a type T is de-
signed to capture the complementary behaviour expressed by the type T . Moreover the



duality function on session types discussed on page 2 immediately extends to contracts;
specifically we can define σ to beM(M−1(σ)).

However, somewhat surprisingly, there are contracts σ which do not comply with
their duals, σ 6aB

p2p σ; see Example 4. However (?) above can be established by using
instead a different notion of dual, first proposed in [6] for typing copyless message-
passing processes. We also believe that this alternative notion, which in this paper we
call complement, captures the intuitive notion of complementary behaviour more faith-
fully than the standard duality.

Paper structure: In Section 2 we recall the standard theory of recursive higher-
order session types, while Section 3 introduces higher-order contracts and our novel
parametrised peer sub-contract preorder vB. Although the definition of this preorder
is set-theoretic, it can be characterised using only the syntactic form of contracts; this
stems from the very restricted form that our higher-order contracts can take. This is
also discussed in Section 3. Using this syntactic characterisation we develop enough
properties of the preorders vB to ensure the existence of the particular preorder B0
alluded to in (6) above; this is the topic of Section 4. The complementation operator on
contracts from [6], cplmt(σ), alluded to above is also defined and discussed in Section 4.
Related work is then discussed in Section 5.

All the proofs and the technical details are omitted from this extended abstract, and
can be found in the companion report [5].

2 Session types

Here we recall, using the notation from [13], the standard theory of subtyping for recur-
sive session types. The grammar for the language LSTyp of session type terms is given by
the following grammar, which uses a collection of unspecified base types BT, of which
we enumerate a sample.

S ,T ::= end | X | ?[ M ]; S | ![ M ]; S | µX.S |&〈 l1 : S 1, . . . , ln : S n 〉

⊕〈 l1 : S 1, . . . , ln : S n 〉

M,N ::= S | t
t ::= Id, Addr, Int, Real, . . .

In the grammar above we assume n ≥ 1; moreover we use a denumerable set of labels,
L = { l1, l2, l3, . . . }, in the branch and choice constructs. Recall from the Introduction
that &〈 l1 : S 1, . . . , ln : S n 〉 offers different possible behaviours based on a set of labels
{ l1, l2, l3, . . . ln } while ⊕〈 l1 : S 1, . . . , ln : S n 〉 takes a choice of behaviours; in both
constructs the labels used are assumed to be distinct.

We use STyp to denote the set of session type terms in LSTyp which are closed
and guarded; both these concepts have standard definitions, which may be found in [5,
Appendix A]. We refer to the terms in STyp as session types. For instance µX.X and
&〈 tea : µX.X 〉 are not in STyp.

Subtyping is defined coinductively and uses some unspecified subtyping preorder
4b between base types, a typical example being Int 4b Real, meaning that an integer
may be supplied where a real number is required. Recursive types are handled by a



standard function unfold(T ) which unfolds all the first-level occurrences of µX.− in the
(guarded) type T . The formal definition of unfold in turn depends on the definition of
substitution T { S/X }, the syntactic substitution of the term S for all free occurrences of
X in T . The details may be found in [5].

Definition 1. [ Subtyping ]
Let F4 : P(STyp2) −→ P(STyp2) be the functional defined so that (T,U) ∈ F4(R)
whenever one of the following holds:

(i) if unfold(T ) = end then unfold(U) = end

(ii) if unfold(T ) = ?[ t1 ]; S 1 then unfold(U) = ?[ t2 ]; S 2 and S 1 R S 2 and t1 4b t2
(iii) if unfold(T ) = ![ t1 ]; S 1 then unfold(U) = ![ t2 ]; S 2 and S 1 R S 2 and t2 4b t1
(iv) if unfold(T ) = ![ T1 ]; S 1 then unfold(U) = ![ T2 ]; S 2 and S 1 R S 2 and T2 R T1
(v) if unfold(T ) = ?[ T1 ]; S 1 then unfold(U) = ?[ T2 ]; S 2 and S 1 R S 2 and T1 R T2

(vi) if unfold(T ) = &〈 l1 : S 1, . . . lm : S m 〉 then unfold(U) = &〈 l1 : S ′1, . . . , ln : S ′n 〉
where m ≤ n and S i R S ′i for all i ∈ [1, . . . ,m]

(vii) if unfold(T ) = ⊕〈 l1 : S 1, . . . lm : S m 〉 then unfold(U) = ⊕〈 l1 : S ′1, . . . , ln : S ′n 〉
where n ≤ m and S i R S ′i for all i ∈ [1, . . . , n]

If R ⊆ F4(R), then we say that R is a type simulation. Standard arguments ensure that
there exists the greatest solution of the equation R = F4(R); we call this solution the
subtyping, and we denote it 4. �

Intuitively S 4 T means that processes adhering to the role dictated by T may
be used where processes following the role dictated by S are required. Our aim is to
formalise this intuition by proving that the higher-order contracts determined by these
types, respectivelyM(S ) andM(T ) are related behaviourally, using our notion of peer
compliance.

3 Higher-order contracts

Here first we define higher-order session contracts and explain the set-based subcontract
preorder on them; this uses the notion of peer compliance between them. Afterwards
we characterise up-to a parameter B this set-based preorder. We do so by comparing the
purely syntactic structure of contracts.

The grammar for the language of contract terms LSCts is:

ρ, σ ::= 1 | ?t.σ | !t.σ | !(σ).σ | ?(σ).σ | x | µx.σ |
∑
i∈I

?li.σi |
⊕

i∈I

!li.σi

where we assume the labels lis to be pairwise distinct and the set I to be non-empty.
We use SCts to denote the set of terms which are guarded and closed. These will be
referred to as higher-order session contracts, or simply contracts. When I is a singleton
set { k }, we write !lk.σk and ?lk.σk in place of

⊕
i∈I!li.σi and

∑
i∈I?li.σi.

The operational meaning of contracts is given by interpreting them as processes
from a simple process calculus. To this end let Act, ranged over by λ, be the union of
three sets, namely { ?l, !l | l ∈ L }, { ?t, !t | t ∈ BT }, and { ?(σ), !(σ) | σ ∈ SCts }.



We use Actτ to denote the set Act∪ { τ } to emphasise that the special symbol τ is not in
Act. We define judgements of the form σ1

µ
−→ σ2, where µ ∈ Actτ and σ1, σ2 ∈ SCts,

by using the following (standard) axioms, where | I | is the cardinality of I,

λ.σ
λ
−→ σ

λ ∈ Act
µx.σ

τ
−→ σ { µx.σ/x }

⊕
i∈I!li.σi

τ
−→!li.σi

| I | > 1 ∑
i∈I?li.σi

?li
−→ σi

We also have the special judgement 1
X
−→, which formalises operationally that 1

is the satisfied contract. Although terms like !l.σ stand actually for singleton internal

sums, we infer their semantics by using the rule for prefixes; for example !l.σ
!l
−→ σ.

In order to define the peer compliance between two contracts ρ, σ, we also need to
say when two processes p, q satisfying these contracts can interact. This is formalised
indirectly as a relation of the form ρ || σ

τ
−→B ρ′ || σ′ which, as explained in the

Introduction, is designed to capture the intuition that if processes p, q satisfy the con-
tracts ρ, σ respectively, then they can interact and their residuals will satisfy the residual
contracts ρ′, σ′ respectively.

The relation −→B is determined by the following inference rules:

ρ
τ
−→ ρ′

ρ || σ
τ
−→B ρ

′ || σ

σ
τ
−→ σ′

ρ || σ
τ
−→B ρ || σ

′

ρ
λ1
−→ ρ′ σ

λ2
−→ σ′

ρ || σ
τ
−→B ρ

′ || σ′
λ1 ./B λ2

This reduction relation is parametrised on a relation σ1 B σ2 between contracts,
which determines when the contract σ1 can be accepted when σ2 is required. Using
such a B we define an interaction relation between contracts as follows:

λ1 ./B λ2 =



λ1 = !l, λ2 = ?l
λ1 = ?l, λ2 = !l
λ1 = !t1, λ2 = ?t2 t1 4b t2

λ1 = ?t1, λ2 = !t2 t2 4b t1

λ1 = !(σ1), λ2 = ?(σ2) σ1 B σ2

λ1 = ?(σ1), λ2 = !(σ2) σ2 B σ1

Essentially the relation ./B treats B as a subtyping on contracts.

Definition 2. [ B-Peer compliance ]
Let Cp2p : P(SCts2) × P(SCts2) −→ P(SCts2) be the rule functional defined so that
(ρ, σ) ∈ Cp2p(R,B) whenever both the following conditions hold:

(i) if ρ || σ
τ

6−→B then ρ
X
−→ and σ

X
−→

(ii) if ρ || σ
τ
−→B ρ

′ || σ′ then ρ′ R σ′

If R ⊆ Cp2p(R,B), then we say that R is a B-coinductive peer compliance. Fix a B.
Standard arguments ensure that there exists the greatest solution of the equation X =

Cp2p(X,B); we call this solution the B-peer compliance, and we denote it aB
p2p. �



The intuition here is that if ρ aB
p2p σ then processes satisfying these contracts can interact

safely; the co-inductive nature of the definition even allows this interaction to continue
forever. But if a point is reached where no further interaction is allowed condition (i)
means that both participants must be happy simultaneously; that is they must be able to
perform the success action X.

Definition 3. [ B-peer subcontract preorder ]
For σ1, σ2 ∈ SCts let σ1 v

B σ2 whenever ρ aB
p2p σ1 implies ρ aB

p2p σ2, for every
ρ ∈ SCts. �

The parametrised peer subcontract preorder σ1 v
B σ2 is set based, and quantifies

over all peers in B-compliance with σ1. However, because of the restricted syntax of
higher-order contracts, it turns out that vB can be characterised by the syntactic struc-
ture of σ1 and σ2, at least for behavioural preorders B which satisfy certain minimal
conditions.

Definition 4. [ B-syntactic peer preorder ]
Let S : P(SCts2)×P(SCts2) −→ P(SCts2) be the functional defined so that (σ1, σ2) ∈
S(R,B) whenever one of the following holds:

(i) if unfold(σ1) = 1 then unfold(σ2) = 1
(ii) if unfold(σ1) = ?t1.σ′1 then unfold(σ2) = ?t2.σ′2 and σ′1 R σ

′
2 and t1 4b t2

(iii) if unfold(σ1) = !t1.σ′1 then unfold(σ2) = !t2.σ′2 and σ′1 R σ
′
2 and t2 4b t1

(iv) if unfold(σ1) = !(σ′′1 ).σ′1 then unfold(σ2) = !(σ′′2 ).σ′2 and σ′1 R σ
′
2 and σ′′2 B σ

′′
1

(v) if unfold(σ1) = ?(σ′′1 ).σ′1 then unfold(σ2) = ?(σ′′2 ).σ′2 and σ′1 R σ
′
2 and σ′′1 B σ

′′
2

(vi) if unfold(σ1) =
∑

i∈I?li.σ
1
i then unfold(σ2) =

∑
j∈J?l j.σ

2
j where I ⊆ J and

σ1
i R σ

2
i for all i ∈ I

(vii) if unfold(σ1) =
⊕

i∈I!li.σ
1
i then unfold(σ2) =

⊕
j∈J!l j.σ

2
j where J ⊆ I and

σ1
j R σ

2
j for all j ∈ J

Fix a B. Since S is monotone ([5, Lemma 3.3]), standard arguments ensure that there
exists the greatest solution of the equation X = S(X, B); we call this solution the B-
syntactic peer preorder, and we denote it by 4B. �

Our intention is to show that the set-theoretic relation σ1 v
B σ2 coincides with the

more amenable syntactically defined relation σ1 4
B σ2, provided B satisfies some

simple properties. In one direction the proof follows directly from the definitions of the
relations at issue. In the other we need a non-trivial property of session contracts that
we relegate to Section 4; see Theorem 4.

Theorem 1. Let B be a transitive relation on session contracts. Then σ1 4
B σ2 implies

σ1 v
B σ2.

Example 3. Here we show that Theorem 1 requires the relationB to be transitive. LetB
be { (1, σ), (σ, !l. 1) }, where σ is the contract !l.!l. 1; this is obviously not transitive.
We show that 4B * vB. First, the relation R = { (σ1, σ2), (1, 1) }, where σ1 = !(σ). 1,
σ2 = !(1). 1, is a prefixed point of S, and thus σ1 4

B σ2. Now let ρ = ?(!l. 1). 1. The
reason why σ1 @

B σ2 is that ρ aB
p2p σ1, because { (ρ, σ1), (1, 1) } is a B-coinductive

compliance, while ρ 6aB
p2p σ2 because of the computation ρ || σ2

τ

6−→B. �



Theorem 2. For every preorder on session contracts B, σ1 v
B σ2 implies σ1 4

B σ2.

Proof (Outline). The argument is by case analysis on unfold(σ1). For instance, consider
the case in which unfold(σ1) =!(t).σ′1. Thanks to Theorem 4 there exists a ρ′ such that
ρ′ aB

p2p σ
′
1. It follows that ?(t).ρ′ aB

p2p unfold(σ1), and so ρ aB
p2p unfold(σ2). This is enough

to show the properties of unfold(σ2) required by the definition of 4B.

Corollary 1. For any preorder B over session contracts, σ1 4
B σ2 if and only if σ1 v

B

σ2.

4 Modelling session types

Session types and contracts, formalisms developed independently, are nevertheless just
syntactic variations of each other:

M(end) = 1, M(X) = x, M(µX.S ) = µx.M(S ), M(![ T ]; S ′) = !(M(T )).M(S ′),
M(&〈 l1 : S 1, . . . , ln : S n 〉) =

∑
i∈[1;n]?li.M(S i), M(![ t ]; S ′) = !t.M(S ′),

M(⊕〈 l1 : S 1, . . . , ln : S n 〉) =
⊕

i∈[1;n]!li.M(S i), M(?[ T ]; S ′) = ?(M(T )).M(S ′),
M(?[ t ]; S ′) = ?t.M(S ′)

Our aim is to show that the subtyping relation between session types, S 4 T , can be
modelled precisely by the set-based contract preorder, M(S ) vB M(T ), for a partic-
ular choice of B. In order to determine this B we need to develop some properties of
functionals over contracts. Let Pre denote the collection of preorders over the set of
contracts SCts; ordered set-theoretically this is a complete lattice [5, Lemma 4.2]. Let
F : Pre −→ Pre be defined by letting F (B) be the preorder vB. By Corollary 1 we
know that F (B) =4B, and therefore F (B) = νX.S(X, B), from Definition 4. Since S
is monotone in its second parameter ([5, Lemma 3.3 (b)]), the endofunction F over the
complete lattice Pre is monotone. The Knaster-Tarski theorem now ensures that F has
fixed points, in particular a maximal one.

Definition 5. [ Peer subcontract preorder ]
Let @∼ denote νX.F (X), the greatest fixed point of the function F . We refer to @∼ as the
Peer subcontract preorder. �

The proof that @∼ provides a fully-abstract model of subtyping 4 on session types,
relies on a syntactic characterisation of @∼, stated in the next lemma, and it implies a
result on the decidability of @∼.

Lemma 1. @∼= νX.S(X, X).

Theorem 3. [ Full-abstraction ]
For every T, S ∈ STyp, S 4 T if and only ifM(S ) @∼ M(T ).

Proof (Outline). The subtyping 4 is the greatest fixed point of F4 by definition, @∼ is
the greatest fixed point of S because of Lemma 1, and M provides a bijection from
prefixed points of F4 to prefixed points S ([5, Lemma 4.8, Lemma 4.9]). This is why
full-abstraction is true.



Proposition 1. If 4b is decidable, then the relation @∼ is decidable.

Theorem 3 depends on Corollary 1, which depends on Theorem 2. In turn this theo-
rem relies on the existence for every session contract σ of a “complementary” session
contract cplmt(σ) that is inB-peer compliance with σ, at least forBs that satisfy certain
minimal conditions. To construct cplmt(σ), the well-known syntactic duality of session
types is an obvious candidate. This is defined inductively as follows [15]:

end = end, X = X, µX.S = µX.S , ?[ M ]; S = ![ M ]; S , ![ M ]; S = ?[ M ]; S ,

&〈 l1 : S 1, . . . , ln : S n 〉 = ⊕〈 l1 : S 1, . . . , ln : S n 〉,

⊕〈 l1 : S 1, . . . , ln : S n 〉 = &〈 l1 : S 1, . . . , ln : S n 〉

This operator can also be applied to contracts in the obvious manner, using the injection
M(−).

Example 4. In general it is not true that a contract σ complies with its dual σ. To prove
this, we say that the relation B is reasonable whenever σ1 B σ2 implies the following
conditions:

i) unfold(σ1) B unfold(σ2)
ii) σ1

λ1
−→ and σ2

λ2
−→ imply that λ1 and λ2 are both input actions or both output

actions.

If B is reasonable then we can find a contract σ such that σ 6aB
p2p σ. For example take

σ to be µx.?(x). 1; here σ is µx.!(x). 1. The behaviour of these contracts is σ
τ
−→

?(σ ). 1
?(σ)
−→ 1

X
−→, and σ

τ
−→!(σ ). 1

!(σ)
−→ 1

X
−→. If B is reasonable, then the pair

(!(σ), ?(σ)) is not in B, and so σ and σ are not in B-mutual compliance.
Since unfold(σ) performs inputs, while unfold(σ) performs outputs, and B is a rea-

sonable relation, condition ii) above ensures that ( unfold(σ), unfold(σ) ) <B, so con-
dition i) implies that (σ, σ) <B. This implies that !(σ) 6./B?(σ), and so σ || σ

τ
−→B

unfold(σ) || unfold(σ)
τ

6−→B. But this means that σ 6aB
p2p σ because neither unfold(σ) nor

unfold(σ) perform X. �

In view of the previous example, we introduce a function to syntactically manip-
ulate session contracts, whereby the result of manipulating ρ is a session contract in
mutual compliance with ρ, at least for preorders Bs. In view of the encoding M, this
syntactic transformation applies equally well to session types.

Definition 6 ([ Complement ] [6] ).
Let cplmt : LSCts −→ LSCts be defined inductively as follows,

cplmt(1) = 1, cplmt(x) = x, cplmt(µx.σ) = µx.cplmt(σbµx.σ/xc),

cplmt(!(σ′′).σ′) = ?(σ′′).cplmt(σ′), cplmt(?(σ′′).σ′) = !(σ′′).cplmt(σ′),

cplmt(
∑

i∈I?li.σi) =
⊕

i∈I!li.cplmt(σi), cplmt(
⊕

i∈I!li.σi) =
∑

i∈I?li.cplmt(σi)

We say that cplmt(σ) is the complement of σ. �



In this definition the application of bσ/xc to σ′ stands for the substitution of σ in place
of x in the message fields that appear in σ′; this is called inner substitution in [6]. The
formal definition for our contracts is in [5, Appendix A].

Example 5. Suppose that σ = µx.?(x).x, then cplmt(σ) = µx.!(σ).x. Observe that,
intuitively, the input of σ depends on σ itself. The application of cplmt results in a
contract which does not show that dependency, in that the output of cplmt(σ) does not
depend on cplmt(σ).

Let us check a more involved example. We show how cplmt acts on session con-
tracts. Let σ = µx.µy.!(y)!(x).y, and σ′ = µy.!(y)!(σ).y. By definition,

cplmt(σ) = µx.cplmt((µy.!(y).!(x).y)bσ/xc)
= µx.cplmt(σ′)
= µx.µy.cplmt((!(y).!(σ).y)bσ

′

/yc)
= µx.µy.cplmt(!(σ′).!(σ).y)
= µx.µy.?(σ′).?(σ).y

Here again note that the contacts used in the input fields of cplmt(σ) are not defined in
terms of cplmt(σ). �

In the previous example the contract σ and its complement are syntactically quite dif-
ferent objects, the complement being syntactically more complicated than σ,

cplmt(σ) = µx.µy.?(µy.!(y)!(σ).y).?(µx.µy.!(y)!(x).y).y

What matters, though, are the behaviours of σ and of its complement. Those two be-
haviours are in B-mutual compliance for every preorder B. What was just argued for σ
and its complement is true for every contract; the proof of it uses the commutativity of
unfold and cplmt.

Proposition 2. [ Unfolding and complement commute ]
For every contract σ, cplmt(unfold(σ)) = unfold(cplmt(σ)).

Theorem 4. For every preorder on contracts B, ρ aB
p2p cplmt(ρ) for every session con-

tract ρ.

In the full version of the paper [5] we argue that the notion of complement of a session
type, Definition 6, in addition to being indispensable in the proof of Theorem 4, can
also have a significant impact on type-checking systems for session types. For example
the program P in Example 2 from the Introduction cannot be typed using the type-
checking rules from [23]; the difficulty is the use of the duality operator T in the rule
[CRes] on page 14. The bulk of the argument is that the dual of µX. ![ X ]; end, that is
µX. ?[ X ]; end, is not equivalent to ?[ µX. ![ X ]; end ]; end, and this hinders the necessary
application of [CRes]. However we exhibit a type inference if instead cplmt(T ) were
used: the complement of µX. ![ X ]; end, namely µX. ?[ µX. ![ X ]; end ]; end, is equivalent
to ?[ µX. ![ X ]; end ]; end, and this allows us to apply rule [CRes].



5 Related work

In this paper we proposed a new behavioural model for recursive higher-order session
types [15], which is fully-abstract with respect to the subtyping relation [13]. The de-
notation of a type consists of the set of higher-order contracts with which it complies,
when it in turn is viewed as a contract. We use a novel notion of compliance, called peer
compliance, which is also parametrised with a particular decidable relation B0, used for
comparing higher-order contracts which are supplied by one peer in order to satisfy the
higher-order contract required by it’s partner. Moreover this relation B0 is the maximal
solution to a natural behavioural equation over contracts.

Contracts for web-service: First-order contracts for web-services and an opera-
tionally defined contract compliance have been proposed first in [16], where the compli-
ance is defined in terms of the LTS of contracts, and then, in the style of testing theory
[10], the sub-contract preorder is defined using the compliance. All the subsequent
works - including this paper - adhere to that style.

The most recent accounts of first-order contracts for web-services are [19,9]. A
striking difference between the two papers is the treatment of infinite behaviours. In
[19] infinite behaviours are expressed by recursive contracts, whereas in [9] there is no
recursive construct, µX.−, and the theory accounts for infinite behaviours by using a
coinductively defined language. Our treatment of infinite behaviours follows the lines
of [19].

Session types: Recursive higher-order session types appeared first in [15], where
also the definition of type duality that we reported in Section 4 has been proposed.
The authors of [15] argue in favour of program abstractions, that help programmers
structure the interaction of processes around sessions. The proposed result is that a
“typable program never reduces into an error” (see Theorem 5.4 (3) of [15]). In [23,
pag. 86, paragraph 4], though, it is shown that that result is not true, that is the type
system of [15] does not satisfy type-safety. The authors of [23] amend the type system
of [15], thereby achieving type-safety (see Theorem 3.4 of [23]).

Subtyping for recursive higher-order session types has been introduced in [13],
along with a coinductive definition of the duality. In addition to the standard type-safety
result (Theorem 2), the authors show also a type-checking algorithm which they prove
sound (Theorem 5) wrt the type system. The proof of completeness, though, relies on a
relation between the inductive and the coinductive dualities (Proposition 5 there) which
in general is false; a counter example is provided by the session type µX. ![ X ]; end.
The consequence is that there is the possibility that the algorithm of [13], if employed
in more general settings, may reject programs which are well-typed.

An alternative “fair” subtyping has been proposed recently in [20]. There session
types are higher-order and recursive, their operational semantics is defined by parametris-
ing the interactions of session types on pre-subtyping relations, and the fair subtyping
is defined as a greatest fixed point (Definition 2.4). In our development we adopted the
same technique as [20]. However, our aim was to model the standard subtyping of [13],
while Padovani focuses on the properties of his new fair subtyping.

Models of Gay & Hole subtyping: The first attempt to model the Gay & Hole sub-
typing of [13] in terms of a compliance preorder appeared in [17]. For a comparison of
that research and our work the reader is referred to [4]. The authors of [1] have shown



the first sound model of this subtyping restricted to first-order session types, by using
a subset of contracts for web-services, a mutual compliance, called orthogonality, and
the preorder generated by it. The B-peer compliances we used in this work generalises
to parametrised LTS the orthogonality of [1].

Following the approach of [1], in [4] we have shown a fully-abstract model of the
subtyping for first-order session types, but using the standard asymmetric compliance
and an intersection of the obvious server and client preorders. An alternative definition
of the model proposed in [4] can be found in [3, Chapter 5], where the must testing of
[10] is used in place of the compliance.

Semantic subtyping: We view our main result as a behavioural or semantic inter-
pretation of Gay & Hole subtyping. There is an alternative well-developed approach to
semantic theories of types and subtyping [12] in which the denotation of a type is given
by the set of values which inhabit it, and subtyping is simply subset inclusion. This
apparent simplicity is tempered by the fact that for non-trivial languages, such as the
pi-calculus [7], there is a circularity in the constructions due to the fact that determining
which terms are values depends in turn on the set of types. This circularity is broken us-
ing a technique called bootstrapping or stratification, essentially an inductive approach.
The research using this approach which is closest to our results on Gay & Hole subtyp-
ing may be found in [8]; this contains a treatment of a very general language of session
types, an extension of Gay & Hole types. But there are essential differences. The most
important is that their model does not yield a semantic theory of Gay & Hole subtyp-
ing. Their subtyping relation, ≤, is defined via an LTS generated by considering the
transmission of values rather than session types; effectively subtyping is not allowed
on messages. The resulting subtyping is very different than our focus of concern, the
Gay & Hole subtyping relation 4. For example the preorder ≤ has bottom elements, in
contrast to 4, and ?[ Int ]; end 4 ?[ Real ]; end whereas ?[ Int ]; end � ?[ Real ]; end.
The particular use of stratification (Theorem 2.6) is also complex, and rules out the
use of session types such as µX. ![ X ]; end. Finally they use as types infinite regular
trees whereas we prefer to work directly with recursive terms, as proposed in [13]; for
example this allows us to discuss the inadequacies of the type-checking rules of [23].

Nevertheless the extended language of sessions types of [8] is of considerable sig-
nificance. It would be interesting to see if it can be interpreted behaviourally using our
co-inductive approach, particularly endowed with a larger subtyping preorder more akin
to the standard Gay & Hole relation [13].

Acknowledgements The authors would like to thank the reviewers, and reviewers of a
previous version of this paper, for their insightful comments and questions.

References

1. Barbanera, F., de’Liguoro, U.: Two notions of sub-behaviour for session-based client/server
systems. In: Kutsia, T., Schreiner, W., Fernández, M. (eds.) PPDP. pp. 155–164. ACM (2010)

2. Barbanera, F., de’ Liguoro, U.: Sub-behaviour relations for session-based client/server sys-
tems (2013), submitted for publication

3. Bernardi, G.: Behavioural Equivalences for Web Services. Ph.D. thesis, Trinity College
Dublin (2013), available at https://software.imdea.org/∼giovanni.bernardi



4. Bernardi, G., Hennessy, M.: Modelling session types using contracts. In: Ossowski, S.,
Lecca, P. (eds.) SAC. pp. 1941–1946. ACM (2012)

5. Bernardi, G., Hennessy, M.: Using higher-order contracts to model session types. CoRR
abs/1310.6176 (2013)

6. Bono, V., Padovani, L.: Typing copyless message passing. Logical Methods in Computer
Science 8(1) (2012)

7. Castagna, G., De Nicola, R., Varacca, D.: Semantic subtyping for the pi-calculus. Theor.
Comput. Sci. 398(1-3), 217–242 (2008)

8. Castagna, G., Dezani-Ciancaglini, M., Giachino, E., Padovani, L.: Foundations of session
types. In: Porto, A., López-Fraguas, F.J. (eds.) PPDP. pp. 219–230. ACM (2009)

9. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services. ACM Trans.
Program. Lang. Syst. 31(5), 1–61 (2009), supersedes the article in POPL ’08

10. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theoretical Computer Sci-
ence 34, 83–133 (1984)

11. Dezani-Ciancaglini, M., de’Liguoro, U.: Sessions and session types: An overview. In: Lan-
eve, C., Su, J. (eds.) WS-FM. Lecture Notes in Computer Science, vol. 6194, pp. 1–28.
Springer (2009)

12. Frisch, A., Castagna, G., Benzaken, V.: Semantic subtyping: Dealing set-theoretically with
function, union, intersection, and negation types. J. ACM 55(4), 19:1–19:64 (Sep 2008),
http://doi.acm.org/10.1145/1391289.1391293

13. Gay, S.J., Hole, M.: Subtyping for session types in the pi calculus. Acta Inf. 42(2-3), 191–225
(2005)

14. Hoare, C.A.R.: Communicating sequential processes. Prentice-Hall (1985)
15. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline for struc-

tured communication-based programming. In: Hankin, C. (ed.) ESOP. Lecture Notes in
Computer Science, vol. 1381, pp. 122–138. Springer (1998)

16. Laneve, C., Padovani, L.: The must preorder revisited. In: Proceedings of the 18th interna-
tional conference on Concurrency Theory. pp. 212–225. Springer-Verlag, Berlin, Heidelberg
(2007), http://portal.acm.org/citation.cfm?id=1421822.1421826

17. Laneve, C., Padovani, L.: The pairing of contracts and session types. In: Degano, P., De
Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models. Lecture Notes in Computer
Science, vol. 5065, pp. 681–700. Springer (2008)

18. Milner, R.: Communication and concurrency. PHI Series in computer science, Prentice Hall
(1989)

19. Padovani, L.: Contract-based discovery of web services modulo simple orchestrators. Theor.
Comput. Sci. 411(37), 3328–3347 (2010)

20. Padovani, L.: Fair Subtyping for Multi-Party Session Types. In: Proceedings of the 13th
Conference on Coordination Models and Languages. vol. LNCS 6721, pp. 127–141. Springer
(2011)

21. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typing system. In:
Halatsis, C., Maritsas, D.G., Philokyprou, G., Theodoridis, S. (eds.) PARLE. Lecture Notes
in Computer Science, vol. 817, pp. 398–413. Springer (1994)

22. Vasconcelos, V.T.: Fundamentals of session types. Inf. Comput. 217, 52–70 (2012)
23. Yoshida, N., Vasconcelos, V.T.: Language primitives and type discipline for structured

communication-based programming revisited: Two systems for higher-order session com-
munication. Electr. Notes Theor. Comput. Sci. 171(4), 73–93 (2007)

http://doi.acm.org/10.1145/1391289.1391293
http://portal.acm.org/citation.cfm?id=1421822.1421826

	Using higher-order contracts to model session types[.1em] (Extended Abstract)

