
Logical Methods in Computer Science
Vol. 10(2:15)2014, pp. 1–51
www.lmcs-online.org

Submitted Nov. 28, 2012
Published Jun. 25, 2014

COMPOSITIONAL REASONING FOR EXPLICIT RESOURCE MANAGEMENT IN
CHANNEL-BASED CONCURRENCY ∗

ADRIAN FRANCALANZA a, EDSKO DEVRIES b, AND MATTHEW HENNESSY c

a ICT, University of Malta
e-mail address: adrian.francalanza@um.edu.mt

b Well-Typed LLP, UK
e-mail address: edsko@well-typed.com

c Trinity College Dublin, Ireland
e-mail address: matthew.hennessy@cs.tcd.ie

Abstract. We define a π-calculus variant with a costed semantics where channels are treated as re-
sources that must explicitly be allocated before they are used and can be deallocated when no longer
required. We use a substructural type system tracking permission transfer to construct coinductive
proof techniques for comparing behaviour and resource usage efficiency of concurrent processes. We
establish full abstraction results between our coinductive definitions and a contextual behavioural
preorder describing a notion of process efficiency wrt. its management of resources. We also jus-
tify these definitions and respective proof techniques through numerous examples and a case study
comparing two concurrent implementations of an extensible buffer.

1. Introduction

We investigate the behaviour and space efficiency of concurrent programs with explicit resource-
management. In particular, our study focuses on channel-passing concurrent programs: we define a
π-calculus variant, called Rπ, where the only resources available are channels; these channels must
explicitly be allocated before they can be used, and can be deallocated when no longer required.
As part of the operational model of the language, channel allocation and deallocation have costs
associated with them, reflecting the respective resource usage.

Explicit resource management is typically desirable in settings where resources are scarce. Re-
source management programming constructs such as explicit deallocation provide fine-grained con-
trol over how these resources are used and recycled. By comparison, in automated mechanisms
such as garbage collection, unused resources (in this case, memory) tend to remain longer in an
unreclaimed state [27, 28]. Explicit resource management constructs such as memory deallocation
also carry advantages over automated mechanisms such as garbage collection techniques when it

2012 ACM CCS: [Theory of computation]: Models of Computation—Concurrency—Process Calculi.
Key words and phrases: π-calculus, concurrency, memory management, coinductive reasoning.
∗ An extended abstract of a preliminary version of the paper has appeared in [11].
c Supported by SFI project SFI 06 IN.1 1898.

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-10(2:15)2014

c⃝ A. Francalanza, E. DeVries, and M. Hennessy
CC⃝ Creative Commons

2 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

comes to interactive and real-time programs [10, 27, 28]. In particular, garbage collection tech-
niques require additional computation to determine otherwise explicit information as to which parts
of the memory to reclaim and at what stage of the computation; the associated overheads may lead
to uneven performance and intolerable pause periods where the system becomes unresponsive [10].

In the case of channel-passing concurrency with explicit memory-management, the analysis of
the relative behaviour and efficiency of programs is non-trivial for a number of reasons. Explicit
memory-management introduces the risk of either premature or multiple deallocation of resources
along separate threads of execution; these are more difficult to detect than in single-threaded pro-
grams and potentially result in problems such as wild pointers or corrupted heaps which may, in
turn, lead to unpredictable, even catastrophic, behaviour [27, 28]. It also increases the possibility
of memory leaks, which are often not noticeable in short-running, terminating programs but subtly
eat up resources over the course of long-running programs. In a concurrent settings such as ours,
complications relating to the assessment and comparison of resource consumption is further com-
pounded by the fact that the runtime execution of channel-passing concurrent programs can have
multiple interleavings, is sometimes non-deterministic and often non-terminating.

1.1. Scenario: Consider a setting with two servers, S1 and S2, which repeatedly listen for service
requests on channels srv1 and srv2, respectively. Requests send a return channel on srv1 or srv2
which is then used by the servers to service the requests and send back answers, v1 and v2. A
possible implementation for these servers is given in (1.1) below, where recw.P denotes a process
P recursing at w, c?x.P denotes a process inputting on channel c some value that is bound to the
variable x in the continuation P, and c!v.P outputs a value v on channel c and continues as P:

Si ! recw. srvi?x. x!vi. w for i ∈ {1, 2} (1.1)
Clients that need to request service from both servers, so as to report back the outcome of both

server interactions on some channel, ret, can be programmed in a variety of ways:
C0 ! recw. alloc x1.alloc x2. srv1!x1. x1?y. srv2!x2. x2?z. ret!(y, z). w
C1 ! recw. alloc x. srv1!x. x?y. srv2!x. x?z.ret!(y, z). w
C2 ! recw.alloc x. srv1!x. x?y. srv2!x. x?z. free x. ret!(y, z). w

(1.2)

C0 corresponds to an idiomatic π-calculus client. In order to ensure that it is the sole recipient of
the service requests, it creates two new return channels to communicate with S1 and S2 on srv1
and srv2, using the command alloc x.P; this command allocates a new channel c and binds it
to the variable x in the continuation P. Allocating a new channel for each service request ensures
that the return channel used between the client and server is private for the duration of the service,
preventing interferences from other parties executing in parallel.

One important difference between the computational model considered in this paper and that of
the standard π-calculus is that channel allocation is an expensive operation i.e., it incurs an additional
(spatial) cost compared to the other operations. Client C1 attempts to address the inefficiencies of
C0 by allocating only one additional new channel, and reusing this channel for both interactions
with the servers. Intuitively, this channel reuse is valid, i.e., it preserves the client-server behaviour
C0 had with servers S1 and S2, because the server implementations above use the received return-
channels only once. This single channel usage guarantees that return channels remain private during
the duration of the service, despite the reuse from client C1.

Client C2 attempts to be more efficient still. More precisely, since our computational model
does not assume implicit resource reclamation, the previous two clients can be deemed as having
memory leaks: at every iteration of the client-server interaction sequence, C0 and C1 allocate new

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RESOURCE MANAGEMENT 3

channels that are not disposed of, even though these channels are never used again in subsequent it-
erations. By contrast, C2 deallocates unused channels at the end of each iteration using the construct
freec.P.

In this work we develop a formal framework for comparing the behaviour of concurrent pro-
cesses that explicitly allocate and deallocate channels. For instance, processes consisting of the
servers S1 and S2 together with any of the clients C0, C1 or C2 should be related, on the basis
that they exhibit the same behaviour. In addition, we would like to order these systems, based on
their relative efficiencies wrt. the (channel) resources used. We note that there are various, at times
contrasting, notions of efficiency that one may consider. For instance, one notion may consider
acquiring memory for long periods to be less efficient than repeatedly allocating and deallocating
memory; another notion of efficiency could instead focus on minimising the allocation and deallo-
cation operations used, as these as considerably more expensive than other operations. In this work,
we mainly focus on a notion of efficiency that accounts for the relative memory allocations required
to carry out the necessary computations. Thus, we would intuitively like to develop a framework
yielding the following preorder, where "∼ reads ”more efficient than”:

S1 ∥ S2 ∥ C2 "
∼ S1 ∥ S2 ∥ C1 "

∼ S1 ∥ S2 ∥ C0 (1.3)
A pleasing property of this preorder would be compositionality, which implies that orderings are
preserved under larger contexts, i.e., for all (valid) contexts C[−], P"∼ Q implies C[P]"∼ C[Q]. Du-
ally, compositionality would also improve the scalability of our formal framework since, to show
that C[P]"∼ C[Q] (for some context C[−]), it suffices to obtain P"∼ Q. For instance, in the case of
(1.3), compositionality would allow us to factor out the common code, i.e., the servers S1 and S2 as
the context S1 ∥ S2 ∥ [−], and focus on showing that

C2 "∼ C1 "∼ C0 (1.4)

1.2. Main Challenges: The details are however far from straightforward. To begin with, we need
to assess relative program cost over potentially infinite computations. Thus, rudimentary aggregate
measures such as adding up the total computation cost of processes and comparing this total at
the end of the computation is insufficient for system comparisons such as (1.3). In such cases, a
preliminary attempt at a solution would be to compare the relative cost for every server interaction
(action): in the sense of [4], the preorder would then ensure that every costed interaction by the
inefficient clients must be matched by a corresponding cheaper interaction by the more efficient
client (and, dually, costed interactions by the efficient client must be matched by interactions from
the inefficient client that are as costly or more).
C3 ! recw.alloc x1.alloc x2. srv1!x1. x1?y. srv2!x2. x2?z. free x1.free x2.ret!(y, z).w (1.5)

There are however problems with this approach. Consider, for instance, C3 defined in (1.5). Even
though this client allocates two channels for every iteration of server interactions, it does not exhibit
any memory leaks since it deallocates them both at the end of the iteration. It may therefore be
sensible for our preorder to equate C3 with client C2 of (1.2) by having C2 "∼ C3 as well as C3 "∼ C2.
However showing C3 "∼ C2 would not be possible using the preliminary strategy discussed above,
since, C3 must engage in more expensive computation (allocating two channels as opposed to 1) by
the time the interaction with the first server is carried out.

Worse still, an analysis strategy akin to [4] would not be applicable for a comparison involving
the clients C1 and C3. In spite of the fact that over the course of its entire computation C3 requires
less resources than C1, i.e., it is more efficient, client C3 appears to be less efficient than C1 after the

4 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

interaction with the first server on channel srv1 since, at that stage, it has allocated two new channels
as opposed to one. However, C1 becomes less efficient for the remainder of the iteration since it
never deallocates the channel it allocates whereas C3 deallocates both channels. To summarise, for
comparisons C3 "∼ C2 and C3 "∼ C1, we need our analysis to allow a process to be temporarily
inefficient as long as it can recover later on.

In this paper, we use a costed semantics to define an efficiency preorder to reason about the
relative cost of processes over potentially infinite computation, based on earlier work by [30, 34].
In particular, we adapt the concept of cost amortisation to our setting, used by our preorders to
compare processes that are eventually more efficient than others over the course of their entire
computation, but are temporarily less efficient at certain stages of the computation.

Issues concerning cost assessment are however not the only obstacles tackled in this work; there
are also complications associated with the compositionality aspects of our proposed framework.
More precisely, we want to limit our analysis to safe contexts, i.e., contexts that use resources in a
sensible way, e.g., not deallocating channels while they are still in use. In addition, we also want to
consider behaviour wrt. a subset of the possible safe contexts. For instance, our clients from (1.2)
only exhibit the same behaviour wrt. servers that (i) accept (any number of) requests on channels
srv1 and srv2 containing a return channel, which then (ii) use this channel at most once to return
the requested answer. We can characterise the interface between the servers and the clients using
fairly standard channel type descriptions adapted from [31] in (1.6), where [T]ω describes a channel
than can be used any number of times (i.e., the channel-type attribute ω) to communicate values of
type T, whereas [T]1 denotes an affine channel (i.e., a channel type with attribute 1) that can be used
at most once to communicate values of type T:

srv1 : [[T1]1]ω, srv2 : [[T2]1]ω (1.6)
In the style of [45, 21], we could then use this interface to abstract away from the actual server
implementations described in (1.1) and state that, wrt. contexts that observe the channel mappings
of (1.6), client C2 is more efficient than C1 which is, in turn, more efficient than C0. These can be
expressed as:

srv1 : [[T1]1]ω, srv2 : [[T2]1]ω |= C2 "∼ C1 (1.7)
srv1 : [[T1]1]ω, srv2 : [[T2]1]ω |= C1 "∼ C0 (1.8)

Unfortunately, the machinery of [45, 21] cannot be easily extended to our costed analysis be-
cause of two main reasons. First, in order to limit our analysis to safe computation, we would need
to show that clients C0, C1 and C2 adhere to the channel usage stipulated by the type associations
in (1.6). However, the channel reuse in C1 and C2 (an essential feature to attain space efficiency)
requires our analysis to associate potentially different types (i.e., [T1]1 and [T2]1) to the same re-
turn channel; this channel reuse at different types amounts to a form of strong update, a degree of
flexibility not supported by [45, 21].

Second, the equivalence reasoning mechanisms used in [45, 21] would be substantially limiting
for processes with channel reuse. More specifically, consider the slightly tweaked client implemen-
tation of C2 below:

C′2 ! recw.alloc x.
(

srv1!x ∥ x?y.(srv2!x ∥ x?z.free x.c!(y, z).X)
)

(1.9)
The only difference between the client in (1.9) and the original one in (1.2) is that C2 sequences
the service requests before the service inputs, i.e., . . . srv1!x. x?y. . . and . . . srv2!x. x?z. . ., whereas
C′2 parallelises them, i.e., . . .srv1!x ∥ x?y. . . and . . .srv2!x ∥ x?z. . .. Resource-centric type disci-
plines such as [12, 40] preclude name matching for a particular resource once all the permissions to

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RESOURCE MANAGEMENT 5

use that resource have been used up; this feature is essential to statically reason about a number of
basic design patterns for reuse. For such type settings, it turns out that the client implementations C2
and C′2 exhibit the same behaviour because the return channel used by both clients for both server
interactions is private, i.e., unknown to the respective servers; as a result, the servers cannot answer
the service on that channel before it is receives it on either srv1 or srv2.1 Through scope extru-
sion, theories such as [45, 21] can reason adequately about the first server interaction, and relate
. . . srv1!x. x?y. . . of C2 with . . . srv1!x ∥ x?y.. . . of C2. However, they have no mechanism for
tracking channel locality post scope extrusion, thereby recovering the information that the return
channel becomes private again to the client after the first server interaction (since the servers use
up the permission to use the return channel once they reply on it). This prohibits [45, 21] from
determining that the second server interaction is just an instance of the first server interaction, thus
failing to relate these two implementations.

In [12] we developed a substructural type system based around a type attribute describing chan-
nel uniqueness, and this was used to statically ensure safe computations for Rπ. In this work,
we weave this type information into our framework, imbuing it with an operational permission-
semantics to reason compositionally about the costed behaviour of (safe) processes. More specif-
ically, in (1.2), when C2 allocates channel x, no other process knows about x: from a typing per-
spective, but also operationally, x is unique to C2. Client C2 then sends x on srv1 at an affine type,
which (by definition) limits the server to use x at most once. At this point, from an operational
perspective, x is to C2, the entity previously “owning” it, unique-after-1 (communication) use. This
means that after one communication step on x, (the derivative of) C2 recognises that all the other
processes apart from it must have used up the single affine permission for x, and hence x becomes
once again unique to C2. This also means that C2 can safely reuse x, possibly at a different object
type (strong update), or else safely deallocate it.

The concept of affinity is well-known in the process calculus community. By contrast, unique-
ness (and its duality to affinity) is used far less. In a compositional framework, uniqueness can
be used to record the guarantee at one end of a channel corresponding to the restriction associated
with affine channel usage at the other; an operational semantics can be defined, tracking the permis-
sion transfer of affine permissions back and forth between processes as a result of communication,
addressing the aforementioned complications associated with idioms such as channel reuse. We
employ such an operational (costed) semantics to define our efficiency preorders for concurrent pro-
cesses with explicit resource management, based on the notion of amortised cost discussed above.

1.3. Paper Structure: Section 2 introduces our language with constructs for explicit memory man-
agement and defines a costed semantics for it. We illustrate issues relating to resource usage in this
language through a case study in Section 3, discussing different implementations for an unbounded
buffer. Section 4 develops a labelled-transition system for our language that takes into consideration
some representation of the observer and the permissions that are exchanged between the program
and the observer; it is a typed transition system similar to [38, 21, 19], nuanced to the resource-
focussed type system of [12]. Based on this transition system, the section also defines a coinductive
cost-based preorder and proves a number of properties about it. Section 5 justifies the cost-based
preorder by relating it with a behavioural contextual preorder defined in terms of the reduction se-
mantics of Section 2. Section 6 applies the theory of Section 4 to reason about the efficiency of
the unbounded buffer implementations of Section 3. Finally, Section 7 surveys related work and
Section 8 concludes.

1Analogously, in the π-calculus, new d.(c!d ∥ d?x.P) is indistinguishable from new d.(c!d.d?x.P)

6 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

P,Q ::= u!⃗v.P (output) | u?x⃗.P (input)
| nil (nil) | if u = v then P else Q (match)
| recw.P (recursion) | x (process variable)
| P ∥ Q (parallel) | alloc x.P (allocate)
| free u.P (deallocate)

Figure 1: Rπ Syntax

2. The Language

Figure 1 shows the syntax for our language, the resource π-calculus, or Rπ for short. It has the
standard π-calculus constructs with the exception of scoping, which is replaced with primitives
for explicit channel allocation, alloc x.P, and deallocation, free x.P. The syntax assumes two
separate denumerable sets of channel names c, d ∈ Chan, and variables x, y, z,w ∈ Var, and lets
identifiers u, v range over both sets, Chan ∪ Var. The input construct, c?x.P, recursion construct,
recw.P, and channel allocation construct, alloc x.P, are binders whereby free occurrences of the
variables x and w in P are bound. As opposed to more standard versions of the π-calculus, we do not
use name scoping to bind and bookkeep the visibility of names; we shall however use alternative
mechanisms to track name knowledge and usage in subsequent development.

Rπ processes run in a resource environment, ranged over by M,N, representing predicates over
channel names stating whether a channel is allocated or not. We find it convenient to denote such
functions as a list of channels representing the set channels that are allocated, e.g., the list c, d de-
notes the set {c, d}, representing the resource environment returning true for channels c and d and
false otherwise - in this representation, the order of the channels in the list is unimportant, but dupli-
cate channels are disallowed; as shorthand, we also write M, c to denote M∪ {c} whenever c ! M. In
this paper we consider only resource environments with an infinite number of deallocated channels,
i.e., M is a total function. Models with finite resources can be easily accommodated by making
M partial; this also would entail a slight change in the semantics of the allocation construct, which
could either block or fail whenever there are no deallocated resources left. Although interesting in
its own right, we focus on settings with infinite resources as it lends itself better to the analysis of
resource efficiency that follows.

We refer to the pair M ◃P, consisting of a resource environment M and a closed process2 P as a
system; note that not all free names in P need to be allocated i.e., present in M: intuitively, any name
c used by P and c ! M represents a dangling pointer. Contexts consist of parallel composition of
processes; they are however defined over systems, through the grammar and the respective definition
at the top of Figure 2. The reduction relation is defined as the least contextual relation over systems
satisfying the rules in Figure 2. More specifically our reduction relation leaves the following rule
implicit:

M ◃ P −→k M ◃ Q
rCtx

C[M ◃ P] −→k C[M ◃ Q]
2A closed process has no free variables. Note that the absence of name binders i.e., no name scoping, means that all

names are free.

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RESOURCE MANAGEMENT 7

Contexts

C ::= [−] | C ∥ P | P ∥ C

[M ◃ P] def
= M ◃ P

C[M ◃ P] ∥ Q def
= M′ ◃ (P′ ∥ Q) if C[M ◃ P] = M′ ◃ P′

Q ∥ C[M ◃ P] def
= M′ ◃ (Q ∥ P′) if C[M ◃ P] = M′ ◃ P′

Structural Equivalence

sCom P∥Q≡Q∥P sAss P∥ (Q∥R)≡ (P∥Q)∥R sNil P∥nil≡ P

Reduction Rules

rCom
M, c ◃ c!d⃗.P ∥ c?x⃗.Q −→0 M, c ◃ P ∥ Q{ d⃗/x⃗ }

rThen
M, c ◃ if c = c then P else Q −→0 M, c ◃ P

rElse
M, c, d ◃ if c = d then P else Q −→0 M, c, d ◃ Q

rRec
M ◃ recw.P −→0 M ◃ P{recw.P/w}

P ≡ P′ M ◃ P′ −→k M ◃ Q′ Q′ ≡ Q
rStr

M ◃ P −→k M ◃ Q

rAll
M ◃ alloc x.P −→+1 M, c ◃ P{c/x} rFree

M, c ◃ free c.P −→−1 M ◃ P

Reflexive Transitive Closure

M ◃ P −→∗0 M ◃ P

M ◃ P −→∗k M
′ ◃ P′ M′ ◃ P′ −→l M′′ ◃ P′′

M ◃ P −→∗k+l M
′′ ◃ P′′

Figure 2: Rπ Reduction Semantics

Rule (rStr) extends reductions to structurally equivalent processes, P ≡ Q, i.e., processes that are
identified up to superfluous nil processes, and commutativity/associativity of parallel composition
(see the structural equivalence rules Figure 2).

Most rules follow those of the standard π-calculus, e.g., (rRec), with the exception of those
involving resource handling. For instance, the rule for communication (rCom) requires the commu-
nicating channel to be allocated. Allocation (rAll) chooses a deallocated channel, allocates it, and

8 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

a ::= ω (unrestricted) | 1 (affine) | (•, i) (unique after i steps)

T ::= U (channel type) | proc (process type)
U ::= [U⃗]a (channel) | µX.U (recursion) | X (variable)

Figure 3: Type Attributes and Types

substitutes it for the bound variable of the allocation construct.3 Deallocation (rFree) changes the
states of a channel from allocated to deallocated, making it available for future allocations. The
rules are annotated with a cost reflecting resource usage; allocation has a cost of +1, deallocation
has a (negative) cost of −1 while the other reductions carry no cost, i.e., 0. Figure 2 also shows the
natural definition of the reflexive transitive closure of the costed reduction relation. In what follows,
we use k, l ∈ Z as integer metavariables to range over costs.

Example 2.1. The following reduction sequence illustrates potential unwanted behaviour resulting
from resource mismanagement:

M, c ◃ free c.(c!1 ∥ c?x.P) ∥ alloc y.(y!42 ∥ y?z.Q) −→−1 (2.1)
M ◃ c!1 ∥ c?x.P ∥ alloc y.(x!42 ∥ x?z.Q) −→+1 (2.2)
M, c ◃ c!1 ∥ c?x.P ∥ c!42 ∥ c?z.Q (2.3)

Intuitively, allocation should yield “fresh” channels i.e., channels that are not in use by any active
process. This assumption is used by the right process in system (2.1), alloc y.(y!42 ∥ y?z.Q),
to carry out a local communication, sending the value 42 on some local channel y that no other
process is using. However, the premature deallocation of the channel c by the left process in (2.1),
free c.(c!1 ∥ c?x.P), allows channel c to be reallocated by the right process in the subsequent
reduction, (2.2). This may then lead to unintended behaviour since wemay end up with interferences
when communicating on c in the residuals of the left and right processes, (2.3).4 #

In [12] we defined a type system that precludes unwanted behaviour such as in Example 2.1.
The type syntax is shown in Figure 3. The main type entities are channel types, denoted as [U⃗]a,
where type attributes a range over
• 1, for affine, imposing a restriction/obligation on usage;
• (•, i), for unique-after-i usages (i ∈ N), providing guarantees on usage;
• ω, for unrestricted channel usage without restrictions or guarantees.
Uniqueness typing can be seen as dual to affine typing [18], and in [12] we make use of this duality
to keep track of uniqueness across channel-passing parallel processes: an attribute (•, i) typing an
endpoint of a channel c accounts for (at most) i instances of affine attributes typing endpoints of that
same channel.

A channel type [U⃗]a also describes the type of the values that can be communicated on that
channel, U⃗, which denotes a list of types U1, . . . ,Un for n ∈ Nat; when n = 0, the type list is an

3The expected side-condition c ! M is implicit in the notation (M, c) used in the system M, c ◃ P{c/x} to which it
reduces, since c cannot be present in M for M, c to be valid.

4Operationally, we do not describe errors that may result from attempted communications on deallocated channels
(we do not have error values). This may occur after reduction (2.1), if the residual of the left process communicate on
channel c. Rather, communications on deallocated channels are blocked.

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RESOURCE MANAGEMENT 9

empty list and we simply write []a. Note the difference between [U⃗]1, i.e., a channel with an affine
usage restriction, and [U⃗](•,1), i.e., a channel with a unique-after-1 usage guarantee. We denote fully
unique channels as [U⃗]• in lieu of [U⃗](•,0).

The type syntax also assumes a denumerable set of type variables X, Y , bound by the recursive
type construct µX.U. In what follows, we restrict our attention to closed, contractive types, where
every type variable is bound and appears within a channel constructor [−]a; this ensures that chan-
nel types such as µX.X are avoided. We assume an equi-recursive interpretation for our recursive
types [36] (see tEq in Figure 4), characterised as the least type-congruence satisfying rule eRec in
Figure 4.

Γ ⊢ P dom(Γ) ⊆ M Γ is consistent
tSys

Γ ⊢ M ◃ P
The rules for typing processes are given in Figure 4 and take the usual shape Γ ⊢ P stating

that process P is well-typed with respect to the environment Γ, a list of pairs of identiers and types.
Systems are typed according to (tSys) above: a system M◃P is well-typed under Γ if P is well-typed
wrt. Γ, Γ ⊢ P, and Γ only contains assumptions for channels that have been allocated, dom(Γ) ⊆ M.
This restricts channel usage in P to allocated channels and is key for ensuring safety.

In [12], typing environments are multisets of pairs of identifiers and types; we do not require
them to be partial functions. However, the (top-level) typing rule for systems (tSys) requires that
the typing environment is consistent. A typing environment is consistent if whenever it contains
multiple assumptions about a channel, then these assumptions can be derived from a single assump-
tion using the structural rules of the type system (see the structural rule tCon and the splitting rule
pUnq in Figure 4).

Definition 2.2 (Consistency). A typing environment Γ is consistent if there is a partial map Γ′ such
that Γ′ ≺ Γ.

The environment structural rules, Γ1 ≺ Γ2, defined in Figure 4, govern the way type environ-
ments are syntactically manipulated. For instance, rules tCon and tJoin state that type assumptions
for the same identifier can be split or joined according to the type splitting relation T = T1 ◦ T2,
also defined in Figure 4: apart from standard splitting of unrestricted channels, pUnr, and process
types, pProc, we note that a unique-after-i channel may be split into a unique-after-(i + 1) channel
and an affine channel; we also note that affine channels are never split. The environment structural
rules also allow for weakening, tWeak, equi-recursive manipulation of types, tEq and eRec, and
subtyping, tSub; the latter rule is defined in terms of the subtyping relation also stated in Figure 4
(bottom) where, for instance, an unrestricted channel can be used instead of an affine channel (that
can be used at most once). The key novel structural rule is however tRev, which allows us to change
(revise) the object type of a channel whenever we are guaranteed that the type assumption for that
identifier is unique. These rules are recalled from [12] and the reader is encouraged to consult that
document for more details.

The consistency condition of Definition 2.2 ensures that there is no mismatch in the duality
between the guarantees of unique types and the restrictions of affine types, which allows sound
compositional type-checking by our type system. For instance, consistency rules out environments
such as

c : [U]•, c : [U]1 (2.4)
where a process typed under the guarantee that a channel c is unique now, c : [U]•, contradicts the
fact that some other process may be typed under the affine usage allowed by the assumption c : [U]1.

10 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

Logical rules

Γ, u : [T⃗]a−1 ⊢ P
tOut

Γ, u : [T⃗]a,−−→v :T ⊢ u!⃗v.P

Γ, u : [T⃗]a−1,−−−→x :T ⊢ P
tIn

Γ, u : [T⃗]a ⊢ u?x⃗.P

Γ1 ⊢ P Γ2 ⊢ Q
tPar

Γ1, Γ2 ⊢ P ∥ Q

u, v ∈ Γ Γ ⊢ P Γ ⊢ Q
tIf

Γ ⊢ if u = v then P else Q
Γω, x :proc ⊢ P

tRec
Γω ⊢ recw.P

tVar
x :proc ⊢ x

Γ ⊢ P
tFree

Γ, u : [T⃗]• ⊢ free u.P
Γ, x : [T⃗]• ⊢ P

tAll
Γ ⊢ alloc x.P

tNil
∅ ⊢ nil

Γ′ ⊢ P Γ ≺ Γ′

tStr
Γ ⊢ P

where Γω can only contain unrestricted assumptions and all bound variables are fresh.

Structural rules (≺) is the least reflexive transitive relation satisfying

T = T1 ◦ T2
tCon

Γ, u :T ≺ Γ, u :T1, u :T2

T = T1 ◦ T2
tJoin

Γ, u :T1, u :T2 ≺ Γ, u :T
T1 ∼ T2

tEq
Γ, u :T1 ≺ Γ, u :T2

tWeak
Γ, u :T ≺ Γ

T1 ≺s T2
tSub

Γ, u :T1 ≺ Γ, u :T2
tRev

Γ, u : [T⃗1]• ≺ Γ, u : [T⃗2]•

Equi-Recursion Counting channel usage

eRec
µX.U ∼ U{µX.U/X}

c : [T⃗]a−1 def=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ε (empty list) if a = 1
c : [T⃗]ω if a = ω
c : [T⃗](•,i) if a = (•, i + 1)

Type splitting
pUnr

[T⃗]ω = [T⃗]ω ◦ [T⃗]ω
pProc

proc = proc ◦ proc
pUnq

[T⃗](•,i) = [T⃗]1 ◦ [T⃗](•,i+1)

Subtyping

sIndx
(•, i) ≺s (•, i + 1)

sUnq
(•, i) ≺s ω

sAff
ω ≺s 1

a1 ≺s a2
sTyp

[T⃗]a1 ≺s [T⃗]a2

Figure 4: Typing processes

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RESOURCE MANAGEMENT 11

For similar reasons, consistency also rules out environments such as
c : [U]•, c : [U]ω (2.5)

However, it does not rule out environments such as (2.6) even though the guarantee provided by
c : [U](•,2) is too conservative: it states that channel c will become unique after two uses but, in
actual fact, it becomes unique after one use since the (top-level) environment contains only one
other affine type assumption, c : [U]1, that other processes can be typed at.

c : [U](•,2), c : [U]1 (2.6)
A less conservative uniqueness typing guarantee would therefore be c : [U](•,1) as shown in (2.7)
below; this environment constitutes another case of a consistent environment allowed by Defini-
tion 2.2.

c : [U](•,1), c : [U]1 (2.7)

The type system is substructural, implying that typing assumptions can be used only once
during typechecking [37]. This is clearly manifested in the output and input rules, tOut and tIn in
Figure 4. In fact, using the operation c : [T⃗]a−1 (see5 Figure 4), rule tOut collapses three different
possibilities for typing output processes, which could alternatively have been expressed as the three
separate typing rules in (2.8).

Γ ⊢ P
tOutA

Γ, u : [T⃗]1, −−→v :T ⊢ u!⃗v.P

Γ, u : [T⃗]ω ⊢ P
tOutW

Γ, u : [T⃗]ω, −−→v :T ⊢ u!⃗v.P

Γ, u : [T⃗](•,i) ⊢ P
tOutU

Γ, u : [T⃗](•,i+1), −−→v :T ⊢ u!⃗v.P

(2.8)

Rule tOutA states that an output of values v⃗ on channel u is allowed if the type environment has an
affine channel-type assumption for that channel, u : [T⃗]1, and the corresponding type assumptions
for the values communicated, −−→v :T, match the object type of the affine channel-type assumption,
T⃗; in the rule premise, the continuation P must also be typed wrt. the remaining assumptions in
the environment, without the assumptions consumed by the conclusion. Rule tOutW is similar,
but permits outputs on u for environments with an unrestricted channel-type assumption for that
channel, u : [T⃗]ω. The continuation P is typechecked wrt. the remaining assumptions and a new
assumption, u : [T⃗]ω; this assumption is identical to the one consumed in the conclusion, so as to
model the fact that uses of channel u are unrestricted. Rule tOutU is again similar, but it allows
outputs on channel u for a “unique after i+1” channel-type assumption; in the premise of the rule,
P is typechecked wrt. the remaining assumptions and a new assumption u : [T⃗](•,i), where u is now
unique after i uses. Analogously, the input rule, tIn, also encodes three input cases (listed below):

Γ,
−−−→
x :T ⊢ P

tInO
Γ, u : [T⃗]1 ⊢ u?x⃗.P

Γ, u : [T⃗]ω,−−−→x :T ⊢ P
tInW

Γ, u : [T⃗]ω ⊢ u?x⃗.P
Γ, u : [T⃗](•,i),−−−→x :T ⊢ P

tInU
Γ, u : [T⃗](•,i+1) ⊢ u?x⃗.P

(2.9)

5This operation on type assumptions, c : [T⃗]a−1, defined in Figure 4, describes the cases where, when using an affine
type assumption to typecheck a process, the continuation of the process in the rule premise is typed without that assump-
tion (the operation returns no type assumption), whereas when using an unrestricted or unique-after-i assumptions, the
premise judgement use wrt. (new) unrestricted and unique-after-(i− 1) assumptions, respectively. Note that the operation
c : [T⃗]a−1 is not defined for a = •. See [12] for more detail.

12 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

Parallel composition (tPar) enforces the substructural treatment of type assumptions, by ensuring
that type assumptions are used by either the left process or the right, but not by both. However,
some type assumption can be split using contraction, i.e., rules (tStr) and (tCon). For example, an
assumption c : [T⃗](•,i) can be split as c : [T⃗]1 and c : [T⃗](•,i+1)—see (pUnq).

The rest of the rules in Figure 4 are fairly straightforward. Even though these typing rules do
not require Γ to be consistent, the consistency requirement at the top level typing judgement (tSys)
ensures that whenever a process is typed wrt. a unique assumption for a channel, [T⃗]•, no other
process has access to that channel. It can therefore safely deallocate it (tFree), or change the object
type of the channel (tRev). Dually, when a channel is newly allocated it is assumed unique (tAll).
Note also that name matching is only permitted when channel permissions are owned, u, v ∈ Γ in
(tIf). Uniqueness can therefore also be thought of as “freshness”, a claim we substantiate further in
Section 4.2.

In [12] we prove the usual subject reduction and progress lemmas for this type system, given
an (obvious) error relation.

Example 2.3. All client implementations discussed in Section 1 typecheck wrt. the type environ-
ment

Γ = srv1 : [[T1]1]ω, srv2 : [[T2]1]ω, ret : [T1,T2]ω.
For instance, to typecheck C2 from (1.2), we can apply the typing rules tRec and tAll from Figure 4
to obtain the typing sequent:

Γ, w :proc, x : [T1]• ⊢ srv1!x. x?y. srv2!x. x?z. free x. ret!(y, z). w (2.10)
Using the environment structural rules (i.e., tCon) we can split the type assumption for x:

Γ, w :proc, x : [T1]• ≺ Γ, w :proc, x : [T1]1, x : [T1](•,1)

Using tStr and tOut we can type (2.10) to obtain
Γ, w :proc, x : [T1](•,1) ⊢ x?y. srv2!x. x?z. free x. ret!(y, z). w

After applying tIn to typecheck the input, we are left with the sequent
Γ, w :proc, x : [T1]•, y :T1 ⊢ srv2!x. x?z. free x. ret!(y, z). w

In particular, we note that the input typing rule stipulates that the input continuation process needs
to type wrt. the following type assumption for x : [T1](•,1)−1 which is equal to x : [T1]•. Since x is
unique now, we can change the object type from T1 to T2 using tRev, which allows us to type the
interactions with srv2 in analogous fashion. This leaves us with

Γ, w :proc, x : [T2]•, y :T1, z :T2 ⊢ free x. ret!(y, z). w
which we can discharge using rules tFree, tOut and tVar.

3. A Case Study

Resource management is particularly relevant to programs manipulating (unbounded) regular struc-
tures. We consider the concurrent implementation of an unbounded buffer, Buff, receiving values to

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RESOURCE MANAGEMENT 13

queue on channel in and dequeuing values by outputting on channel out.

Buff def
= in?y. alloc z.

(

Frn ∥ b!z ∥ c1!(y, z)
)

∥ c1?(y, z). out!y.
(

Bck ∥ d!z
)

Frn def
= recw. b?x. in?y.alloc z.

(

w ∥ b!z ∥ x!(y, z)
)

Bck def
= recw. d?x. x?(y, z). out!y.

(

w ∥ d!z
)

In order to decouple input requests from output requests while still preserving the order of inputted
values, the process handling inputs in Buff, in?y.alloc z.

(

Frn ∥ b!z ∥ c1!(y, z)
)

, stores inputted val-
ues v1, . . . , vn as a queue of interconnected outputs

c1!(v1, c2) ∥ . . . ∥ cn!(vn, cn+1) (3.1)
on the internal6 channels c1, . . . , cn+1. The process handling the outputs, c1?(y, z).out!y.

(

Bck ∥ d!z
)

,
then reads from the head of this queue, i.e., the output on channel c1, so as to obtain the first value
inputted, v1, and the next head of the queue, c2. The input and output processes are defined in terms
of the recursive processes, Frn and Bck resp., which are parameterised by the channel to output
(resp. input) on next through the channels b and d.7

Since the buffer is unbounded, the number of internal channels used for the queue of intercon-
nected outputs, (3.1), is not fixed and these channels cannot therefore be created up front. Instead,
they are created on demand by the input process for every value inputted, using the Rπ construct
alloc z.P. The newly allocated channel z is then passed on the next iteration of Frn through channel
b, b!z, and communicated as the next head of the queue when adding the subsequent queue item;
this is received by the output process when it inputs the value at the head of the chain and passed on
the next iteration of Bck through channel d, d!z.

3.1. Typeability and behaviour of the Buffer. Our unbounded buffer implementation, Buff, can
be typed wrt. the type environment

Γint
def
= in : [T]ω, out : [T]ω, b : [Trec]ω, d : [Trec]ω, c1 : [T,Trec]• (3.2)

where T is the type of the values stored in the buffer and Trec is a recursive type defined as

Trec
def
= µX.[T, X](•,1).

This recursive type is used to type the internal channels c1, . . . , cn+1 — recall that in (3.1) these
channels carry channels of the same kind in order to link to one another as a chain of outputs. In
particular, using the typing rules of Section 2 we can prove the following typing judgements:

in : [T]ω, b : [Trec]ω, c1 : [T,Trec]1 ⊢ in?y. alloc z.
(

Frn ∥ b!z ∥ c1!(y, z)
)

(3.3)

out : [T]ω, d : [Trec]ω, c1 : [T,Trec](•,1) ⊢ c1?(y, z). out!y.
(

Bck ∥ d!z
)

(3.4)
From the perspective of a user of the unbounded buffer, Buff implements the interface defined by
the environment

Γext
def
= in : [T]ω, out : [T]ω

abstracting away from the implementation channels b, d and c1.

6Subsequent allocated channels are referred to as c2, c3, etc..
7This models parametrisable process definitions Frn (x) and Bck (x) within our language.

14 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

3.2. A resource-conscious Implementation of the Buffer. When the buffer implementation of
Buff retrieves values from the head of the internal queue, e.g., (3.1), the channel holding the initial
value, i.e., c1 in (3.1), is never reused again even though it is left allocated in memory. This fact
will repeat itself for every value that is stored and retrieved from the buffer and amounts to the
equivalent of a “memory leak”. A more resource-conscious implementation of the unbounded
buffer is eBuff, defined in terms of the previous input process used for Buff, and a modified output
process, c1?(y, z).free c1.out!y.

(

eBk ∥ d!z
)

, which uses the tweaked recursive process, eBk.

eBuff def
= in?y.alloc z.

(

Frn ∥ b!z ∥ c1!(y, z)
)

∥ c1?(y, z).free c1.out!y.
(

eBk ∥ d!z
)

eBk def= recw. d?x. x?(y, z). free x. out!y.
(

w ∥ d!z
)

The main difference between Buff and eBuff is that the latter deallocates the channel at the head of
the internal chain once it is consumed. We can typecheck eBuff as safe since no other process uses
the internal channels making up the chain after deallocation. More specifically, the typeability of
eBuff wrt. Γint of (3.2) follows from (3.3) and the type judgement below:

out : [T]ω, d : [Trec]ω, c1 : [T,Trec](•,1) ⊢ c1?(y, z). free c1. out!y.
(

Bck ∥ d!z
)

Note that by the typing rule tIn of Figure 4, we need to typecheck the continuation of the input
process, free c1. out!y.

(

Bck ∥ d!z
) wrt. the type environment

out : [T]ω, d : [Trec]ω, c1 : [T,Trec]•, y :T, z :Trec
where, in particular, c1 is now assigned a unique channel type. According to the typing rule tFree,
this suffices to safely type the respective deallocation of c1.

4. A Cost-Based Preorder

We define our cost-based preorder as a bisimulation relation that relates two systems M ◃ P and
N ◃ Q whenever they have equivalent behaviour and when, in addition, M ◃ P is more efficient than
N ◃ Q. We are interested in reasoning about safe computations, aided by the type system described
in Section 2. For this reason, we limit our analysis to instances of M◃P and N ◃Q that are well-typed,
i.e., that there exist (consistent) environments ∆,∆′ such that ∆ ⊢ M ◃ P and ∆′ ⊢ N ◃ Q. In order to
preserve safety, we also need to reason under the assumption of safe contexts. Again, we employ the
type system described in Section 2 and characterise the (safe) context through a type environment
that typechecks it, Γobs. Thus our bisimulation relations take the form of a typed relation, indexed
by type environments [21]:

Γobs $ (M ◃ P) R (N ◃ Q) (4.1)
Behavioural reasoning for safe systems is achieved by ensuring that the overall type environment
(Γsys, Γobs), consisting of the environment typing M ◃P and N ◃Q, say Γsys, and the observer environ-
ment Γobs, is consistent according to Definition 2.2. This means that there exists a global environ-
ment, Γglobal, which can be decomposed into Γobs and Γsys; it also means that the observer process,
which is universally quantified by our semantic interpretation (4.1), typechecks when composed in
parallel with P, resp. Q (see tPar of Figure 4).

There is one other complication worth highlighting regarding (4.1): although both systems
M ◃ P and N ◃ Q are related wrt. the same observer, Γobs, they can each be typed under different

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RESOURCE MANAGEMENT 15

typing environments. For instance, consider the two clients C0 and C1 we would like to relate from
the introduction:

C0 ! recw. alloc x1.alloc x2. srv1!x1. x1?y.srv2!x2. x2?z.c!(y, z).w
C1 ! recw. alloc x. srv1!x. x?y.srv2!x. x?z.c!(y, z).w

(4.2)

Even though, initially, they may be typed by the same type environment, after a few steps, the
derivatives of C0 and C1 must be typed under different typing environments, because C0 allocates
two channels, while C1 only allocates a single channel. Our typed relations allows for this by exis-
tentially quantifying over the type environments typing the respective systems. All this is achieved
indirectly through the use of configurations.

Definition 4.1 (Configuration). The triple Γ ▹ M ◃ P is a configuration if and only if dom(Γ) ⊆ M
and there exist some ∆ such that (Γ,∆) is consistent and ∆ ⊢ M ◃ P.

Note that, in a configuration Γ ▹ M ◃ P (where Γ types some implicit observer):
• c ∈ (dom(Γ) ∪ names(P)) implies c ∈ M i.e., M is a global resource environment accounting for
both P and Γ.
• c ∈ M and c ! (dom(Γ) ∪ names(P)) denotes a resource leak for channel c.
• c ! dom(Γ) implies that channel c is not known to the observer; in some sense, this mimics name
scoping in more standard π-calculus settings.

Definition 4.2 (Typed Relation). A type-indexed relation R relates systems under a observer char-
acterized by a context Γ; we write

Γ $ M ◃ P R N ◃ Q
if R relates Γ ▹ M ◃ P and Γ ▹ N ◃ Q, and both Γ ▹ M ◃ P and Γ ▹ N ◃ Q are configurations.

4.1. Labelled Transition System. In order to be able to reason coinductively over our typed rela-
tions, we define a labelled transition system (LTS) over configurations. Apart from describing the
behaviour of the system M ◃P in a configuration Γ▹M ◃P, the LTS also models interactions between
the system and an observer typed under Γ. Our LTS is also costed, assigning a cost to each form of
transition.

The costed LTS, whose actions take the form
µ
−−→k, is defined in Figure 5, in terms of a top-

level rule, lRen, and a pre-LTS, denoted as µ
−−⇁k. The rule lRen allows us to rename channels

for transitions derived in the pre-LTS, as long as this renaming is invisible to the observer, and is
comparable to alpha-renaming of scoped bound names in the standard π-calculus. It relies on the
renaming-modulo (observer) type environments given in Definition 4.3.

Definition 4.3 (Renaming Modulo Γ). Let σΓ : Name 0→ Name range over bijective name substitu-
tions satisfying the constraint that c ∈ dom(Γ) implies cσΓ = cσ−1Γ = c.

The renaming introduced by lRen allows us to relate the clients C0 and C1 of (4.2) wrt. an ob-
server environment such as srv1 : [[T1]1]ω, srv2 : [[T2]1]ω of (1.6) and some appropriate common
set of resources M even when, after the initial channel allocations, the two clients communicate
potentially different (newly allocated) channels on srv1. The rule is particularly useful when, later
on, we need to also match the output of a new allocated channel on srv2 from C0 with the output on
the previously allocated channel from C1 on srv2. The renaming-modulo observer environments
function can be used for C1 at that stage — even though the client reuses a channel previously com-
municated to the observer — because the respective observer information relating to that channel
is lost, i.e., it is not in the domain of the observer environment; see discussion for lOut and lIn

16 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

below for an explanation of how observers lose information. This mechanism differs from standard
scope-extrusion techniques for π-calculus which assume that, once a name has been extruded, it
remains forever known to the observer. As a result, there are more opportunities for renaming in our
calculus than there are in the standard π-calculus.

To ensure that only safe interactions are specified, the (pre-)LTS must be able to reason compo-
sitionally about resource usage between the process, P, and the observer, Γ. We therefore imbue our
type assumptions from Section 2 with a permission semantics, in the style of [42, 13]. Under this
interpretation, type assumptions constitute permissions describing the respective usage of resources.
Permissions are woven into the behaviour of configurations giving them an operational role: they
may either restrict usage or privilege processes to use resources in special ways. In a configuration,
the observer and the process each own a set of permissions and may transfer them to one another
during communication. The consistency requirement of a configuration ensures that the guarantees
given by permissions owned by the observer are not in conflict with those given by permissions
owned by the configuration process, and viceversa.

To understand how the pre-LTS deals with permission transfer and compositional resource
usage, consider the rule for output, (lOut). Since we employ the type system of Section 2 to ensure
safety, this rule models the typing rule for output (tOut) on the part of the process, and the typing
rule for input (tIn) on the part of the observer. Thus, apart from describing the communication of
values d⃗ from the configuration process to the observer on channel c, it also captures permission
transfer between the two parties, mirroring the type assumption usage in tOut and tIn. More
specifically, rule (lOut) employs the operation c : [T⃗]a−1 of Figure 4 so as to concisely describe
the three variants of the output rule:

lOutU
Γ, c : [T⃗](•,i+1) ▹ M ◃ c!d⃗.P c!d⃗

−−−⇁0 Γ, c : [T⃗](•,i), d⃗ : T⃗ ▹ M ◃ P

lOutA
Γ, c : [T⃗]1 ▹ M ◃ c!d⃗.P c!d⃗

−−−⇁0 Γ, d⃗ : T⃗ ▹ M ◃ P

lOutW
Γ, c : [T⃗]ω ▹ M ◃ c!d⃗.P c!d⃗

−−−⇁0 Γ, c : [T⃗]ω, d⃗ : T⃗ ▹ M ◃ P

(4.3)

The first output rule variant, lOutU, deals with the case where the observer owns a unique-after-(i+1)
permission for channel c. Definition 4.1 implies that the process in the configuration is well-typed
(wrt. some environment) and, since the process is in a position to output on channel c, rule tOut
must have been used to type it. This typing rule, in turn, states that the type assumptions relating to
the values communicated, d⃗ : T⃗, must have been owned by the process and consumed by the output
operation. Dually, since the observer is capable of inputting on c, rule tIn must have been used to
type it,8 which states that the continuation (after the input) assumes the use the assumptions d⃗ : T⃗.
Rule lOutU models these two usages operationally as the explicit transfer of the permissions d⃗ : T⃗
from the process to the observer.

The rule also models the implicit transfer of permissions between the observer and the output
process. More precisely, Definition 4.1 requires that the process is typed wrt. an environment that
does not conflict with the observer environment, which implies that the process environment must
have (necessarily) used an affine permission, c : [T⃗]1, for outputting on channel c.9 In fact, any other

8More specifically, tInU of (2.9).
9This implies that tOutA of (2.8) was used when typing the process

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RESOURCE MANAGEMENT 17

Costed Transitions and pre-Transitions

Γ ▹
(

M ◃ P
)

σΓ
µ
−−⇁k Γ

′ ▹ M′ ◃ P′
lRen

Γ ▹ M ◃ P
µ
−−→k Γ

′ ▹ M′ ◃ P′

lOut
Γ, c : [T⃗]a ▹ M ◃ c!d⃗.P c!d⃗

−−⇁0 Γ, c : [T⃗]a−1, d⃗ : T⃗ ▹ M ◃ P

lIn
Γ, c : [T⃗]a, d⃗ : T⃗ ▹ M ◃ c?x⃗.P c?d⃗

−−⇁0 Γ, c : [T⃗]a−1 ▹ M ◃ P{d⃗/⃗x}

Γ1 ▹ M ◃ P c!d⃗
−−⇁0 Γ

′
1 ▹ M ◃ P

′ Γ2 ▹ M ◃ Q c?d⃗
−−⇁0 Γ

′
2 ▹ M ◃ Q

′

lCom-L
Γ ▹ M ◃ P ∥ Q τ

−⇁0 Γ ▹ M ◃ P′ ∥ Q′

Γ ▹ M ◃ P µ
−−⇁k Γ

′ ▹ M′ ◃ P′
lPar-L

Γ ▹ M ◃ P ∥ Q µ
−−⇁k Γ

′ ▹ M′ ◃ P′ ∥ Q

Γ ≺ Γ′

lStr
Γ ▹ M ◃ P env

−−−⇁0 Γ
′ ▹ M ◃ P

lRec
Γ ▹ M ◃ recw.P τ

−⇁0 Γ ▹ M ◃ P{recw.P/w}

lThen
Γ ▹ M, c ◃ if c = c then P else Q τ

−⇁0 Γ ▹ M, c ◃ P

lElse
Γ ▹ M, c, d ◃ if c = d then P else Q τ

−⇁0 Γ ▹ M, c, d ◃ Q

lAll
Γ ▹ M ◃ alloc x.P τ

−⇁+1 Γ ▹ M, c ◃ P{c/x}
lAllE

Γ ▹ M ◃ P alloc
−−−−⇁+1 Γ, c : [T⃗]• ▹ M, c ◃ P

lFree
Γ ▹ M, c ◃ free c.P τ

−⇁−1 Γ ▹ M ◃ P
lFreeE

Γ, c : [T]• ▹ M, c ◃ P free c
−−−−⇁−1 Γ ▹ M ◃ P

Weak (Cost-Accumulating) Transitions

Γ ▹ M ◃ P
µ
−−→k ∆ ▹ N ◃ Q

wTra
Γ ▹ M ◃ P

µ
=⇒k ∆ ▹ N ◃ Q

Γ ▹ M ◃ P τ
−−→l Γ

′ ▹ M′ ◃ P
µ
=⇒k Γ

′′ ▹ N ◃ Q
wLeft

Γ ▹ M ◃ P
µ
=⇒(l+k) Γ

′′ ▹ N ◃ Q

Γ ▹ M ◃ P
µ
=⇒l Γ

′ ▹ M′ ◃ P
τ
−−→k Γ

′′ ▹ N ◃ Q
wRight

Γ ▹ M ◃ P
µ
=⇒(l+k) Γ

′′ ▹ N ◃ Q

Figure 5: LTS Process Moves

18 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

type of permission would conflict with the unique-after-(i+1) permission for channel c owned by the
observer. Moreover, through the guarantee given by the permission used, c : [T⃗](•,i+1), the observer
knows that, after the communication, it is one step closer towards gaining exclusive permission for
channel c. Rule lOutU models all this as the (implicit) transfer of the affine permission c : [T⃗]1
from the process to the observer, updating the observer’s permission for c to [T⃗](•,i) — note that two
permissions c : [T⃗](•,i+1), c : [T⃗]1 can be consolidated as c : [T⃗](•,i) using the structural rules tJoin and
pUnq of Figure 4.

The second output rule variant of (4.3), lOutA, is similar to the first when modelling the explicit
transfer of permissions d⃗ : T⃗ from the process to the observer. However, it describes a different
implicit transfer of permissions, since the observer uses an affine permission to input from the
configuration process on channel c. The rule caters for two possible subcases. In the first case, the
process could have used a unique-after-(i+1) permission when typed using tOut: this constitutes
a dual case to that of rule lOutU, and the rule models the implicit transfer of the affine permission
c : [T⃗]1 in the opposite direction, i.e., from the observer to the process. In the second case, the process
could have used an affine or an unrestricted permission instead, which does not result in any implicit
permission transfer, but merely the consumption of affine permissions. Since the environment on
the process side is existentially quantified in a configuration, this difference is abstracted away and
the two subcases are handled by the same rule variant. Note that, in the extreme case where the
observer affine permission is the only one relating to channel c, the observer loses all knowledge of
channel c.

The explicit permission transfer for lOutW of (4.3), is identical to the other two rule variants.
The use of an unrestricted permission for c from the part of the observer, c : [T⃗]ω, implies that the
output process could have either used an affine or an unrestricted permission—see (2.5). In either
case, there is no implicit permission transfer involved. Moreover, the observer permission is not
consumed since it is unrestricted.

The pre-LTS rule lIn can also be expanded into three rule variants, and models analogous per-
mission transfer between the observer and the input process. Importantly, however, the explicit
permission transfer described is in the opposite direction to that of lOut, namely from the observer
to the input process. As in the case of lOutA of (4.3), the permission transfer from the observer to
the input process may result in the observer losing all knowledge relating to the channels communi-
cated, d⃗.

In order to allow an internal communication step through either lCom-L, or its dual lCom-R
(elided), the left process should be considered to be part of the “observer” of the right process, and
vice versa. However, it is not necessary to be quite so precise; we can follow [19] and consider an
arbitrary observer instead. More explicitly, the rule states that if we can find observer environments
(Γ1 and Γ2) to induce the respective input and output actions from separate constituent processes
making up the system, we can then express these separate interactions as a single synchronous
interaction; since this interaction is internal, it is independent of the environment representing the
observer in the conclusion, Γ. See [19] for more justification.

In our LTS, both the process (lAll, lFree) and the observer (lAllE, lFreeE) can allocate
and deallocate memory. Finally, since the observer is modelled exclusively by the permissions it
owns, we must allow the observer to split these permissions when necessary (lStr). The only rules
that may alter the observer environment are those corresponding to external actions i.e., lIn, lOut,
lAllE, lFreeE and lStr. The remaining axioms in the pre-LTS model reduction rules from Figure 2
and should be self-explanatory; note that, as in the reduction semantics, the only actions carrying

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RESOURCE MANAGEMENT 19

a cost are those describing allocation and deallocation, where the respective costs associated are
inherited directly from the reduction semantics of Section 2.

In Figure 5 we also specify weak costed transitions for configurations, based on the transitions
of our LTS (rule wTra). As is standard, the relation denotes actions padded by τ-transitions to the
left and right. However, it also accumulates the costs of the respective transitions into one aggregate
cost for the entire weak action (rules wLeft and wRight).

Technically, the pre-LTS is defined over triples Γ,M, P rather than configurations Γ ▹M ◃P, but
we can prove that the pre-LTS rules preserve the requirements for such triples to be configurations;
see Lemma 4.5.

Lemma 4.4 (Transition and Structure). Γ ▹ M ◃ P µ
−−−⇁k Γ

′ ▹ M′ ◃ P′ and for ∆ consistent
∆ ⊢ M ◃ P implies the cases:
If µ = c!d⃗: M = M′, k = 0, P ≡ c!d⃗.P1 ∥ P2, P′ ≡ P1 ∥ P2 and Γ = (Γ′′, c : [T⃗]a),
Γ′ = (Γ′′, c : [T⃗]a−1, ⃗d :T) and ∆ ≺ (∆′, c : [T⃗]b, ⃗d :T), (∆′, c : [T⃗]b−1) ⊢ P′
for some P1, P2, Γ′′, b, T⃗ and ∆′.

If µ = c?d⃗: M = M′, k = 0, P ≡ c?x⃗.P1 ∥ P2, P′ ≡ P1{d⃗/⃗x} ∥ P2 and
Γ = (Γ′′, c : [T⃗]a, ⃗d :T), Γ′ = (Γ′′, c : [T⃗]a−1) and ∆ ≺ (∆′, c : [T⃗]b),
(∆′, c : [T⃗]b−1, ⃗d :T) ⊢ P′ for some P1, P2, Γ′′, b, T⃗ and ∆′.

If µ = τ: Either of three cases hold :
• M = M′, k = 0 and Γ = Γ′ and ∆ ⊢ P′ or;
• M = (M′, c), k = −1 and P ≡ free c.P1 ∥ P2, P′ ≡ P1 ∥ P2, Γ = Γ′ and ∆ ≺ ∆′, c : [T⃗]•
where ∆′ ⊢ P′ (for some P1, P2, T⃗ and ∆′) or;
• M′ = (M, c), k = +1 and P ≡ alloc x.P1 ∥ P2, P′ ≡ P1{c/x} ∥ P2 and Γ = Γ′ and ∆ ≺ ∆′
and ∆′, c : [T⃗]• ⊢ P′ (for some P1, P2, T⃗ and ∆′)

If µ = free c: M = (M′, c), k = −1 and Γ = Γ′, c : [T⃗]• and P = P′ for some T⃗.
If µ = alloc: M′ = (M, c), k = +1 and Γ, c : [T⃗]• = Γ′ and P = Q for some T⃗.
If µ = env: Γ ≺ Γ′, M = M′, k = 0 and P = P′

Proof. By rule induction on Γ ▹ M ◃ P µ
−−⇁k Γ

′ ▹ M′ ◃ P′

Lemma 4.5 (Subject reduction). If Γ ▹ M ◃ P is a configuration and Γ ▹ M ◃ P µ
−−⇁k ∆ ▹ N ◃ Q then

∆ ▹ N ◃ Q is also a configuration.

Proof. We assume that dom(Γ) ⊆ M and that there exists ∆ such that Γ,∆ is consistent and that
∆ ⊢ M ◃ P. The rest of the proof follows from Lemma 4.4 (Transition and Structure), by case
analysis of µ.

As a consistency check, we can also show that our LTS semantics is in accordance with the
reduction semantics presented in 2. In particular, τ-transitions correspond to reductions modulo
renaming and process structural equivalence.

Lemma 4.6 (Reduction and Silent Transitions).
(1) M ◃ P −→k M′ ◃ P′ implies Γ ▹ M ◃ P

τ
−→k Γ ▹ M′ ◃ P′′ for arbitrary Γ where P′′ ≡ P′.

(2) Γ ▹ M ◃ P τ
−→k ∆ ▹ M′ ◃ P′ implies (M ◃ P)σΓ −→k M′ ◃ P′ for some σΓ.

Proof. By rule induction on M ◃ P −→k M′ ◃ P′ and Γ ▹ M ◃ P
τ
−−→k ∆ ▹ M′ ◃ P′.

20 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

Example 4.7. Recall the buffer implementation Buff from Section 3 and the respective external
environment Γext defined in Section 3.1. The transition rules of Figure 5 allow us to derive the
following behaviour for the configuration Γext ▹ M, c1 ◃ Buff (where in, out, b, d ∈ M):

Γext ▹ M, c1 ◃ Buff
in?v1
−−−−→0 Γext ▹ M, c1 ◃

(

alloc z.
(

Frn ∥ b!z ∥ c1!(v1, z)
)

∥ c1?(y, z).out!y.
(

Bck ∥ d!z
)

)

(4.4)

τ
−−−→+1 Γext ▹ M, c1, c2 ◃

(
(

Frn ∥ b!c2 ∥ c1!(v1, c2)
)

∥ c1?(y, z).out!y.
(

Bck ∥ d!z
)

)

(4.5)

= Γext ▹ M, c1, c2 ◃

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

recw. b?x. in?y.alloc z.
(

w ∥ b!z ∥ x!(y, z)
)

∥ b!c2 ∥ c1!(v1, c2)
∥ c1?(y, z).out!y.

(

Bck ∥ d!z
)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

τ
−−−→0 Γext ▹ M, c1, c2 ◃

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

b?x. in?y.alloc z.
(

Frn ∥ b!z ∥ x!(y, z)
)

∥ b!c2 ∥ c1!(v1, c2)
∥ c1?(y, z).out!y.

(

Bck ∥ d!z
)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(4.6)

τ
−−−→0 Γext ▹ M, c1, c2 ◃

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

in?y.alloc z.
(

Frn ∥ b!z ∥ c2!(y, z)
)

∥ c1!(v1, c2)
∥ c1?(y, z).out!y.

(

Bck ∥ d!z
)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(4.7)

in?v2
====⇒+1 Γext ▹ M, c1, c2, c3 ◃

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

in?y.alloc z.
(

Frn ∥ b!z ∥ c3!(y, z)
)

∥ c1!(v1, c2) ∥ c2!(v2, c3)
∥ c1?(y, z).out!y.

(

Bck ∥ d!z
)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(4.8)

out!v1
====⇒0 Γext ▹ M, c1, c2, c3 ◃

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

in?y.alloc z.
(

Frn ∥ b!z ∥ c3!(y, z)
)

∥ c2!(v2, c3)
∥ c2?(y, z).out!y.

(

Bck ∥ d!z
)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(4.9)

Transition (4.4) describes an input from the user whereas (4.5) allocates a new internal channel, c2,
followed by a recursive process unfolding, (4.6), and the instantiation of the unfolded process with
the newly allocated channel c2, (4.7), through a communication on channel b. The weak transition
(4.8) is an aggregation of 4 analogous transitions to the ones just presented, this time relating to
a second input of value v2. This yields an internal output chain of length 2, i.e., c1!(v1, c2) ∥
c2!(v2, c3). Finally, (4.9) is an aggregation of 4 transitions relating to the consumption of the first
item in the chain, c1!(v1, c2), the subsequent output of v1 on channel out, and the unfolding and
instantiation of the recursive process Bck with c2 — see definition for Bck.

4.2. Costed Bisimulation. We define a cost-based preorder over systems as a typed relation, cf.
Definition 4.2, ordering systems that exhibit the same external behaviour at a less-than-or-equal-to
cost. We require the preorder to consider client C1 as more efficient than C0 wrt. an appropriate
resource environment M and observers characterised by the type environment stated in (1.6) but
also that, wrt. the same resource and observer environments, client C3 of (1.5) is more efficient than
C1. This latter ordering is harder to establish since client C1 is at times temporarily more efficient
than C3.

In order to handle this aspect we define our preorder as an amortized bisimulation [30]. Amor-
tized bisimulation uses a credit n to compare a system M ◃P with a less efficient system N ◃Q while
allowing M ◃ P to do a more expensive action than N ◃ Q, as long as the credit can make up for
the difference. Conversely, whenever M ◃ P does a cheaper action than N ◃ Q, then the difference

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RESOURCE MANAGEMENT 21

gets added to the credit.10 Crucially, however, the amortisation credit is never allowed to become
negative i.e., n ∈ Nat. In general, we refine Definition 4.2 to amortized typed relations with the
following structure:

Definition 4.8 (Amortised Typed Relation). An amortized type-indexed relation R relates systems
under an observer characterized by a context Γ, with credit n (n ∈ Nat); we write

Γ $ M ◃ P Rn N ◃ Q
if Rn relates Γ ▹ M ◃ P and Γ ▹ N ◃ Q, and both Γ ▹ M ◃ P and Γ ▹ N ◃ Q are configurations.

Definition 4.9 (Amortised Typed Bisimulation). An amortized type-indexed relation over processes
R is a bisimulation at Γ with credit n if, whenever Γ $ (M ◃ P)Rn (N ◃ Q),
• If Γ ▹ M ◃ P

µ
−−→k Γ

′ ▹ M′ ◃ P′ then there exist N′ and Q′ such that
Γ ▹ N ◃ Q

µ̂
=⇒l Γ

′ ▹ N′ ◃ Q′ where Γ′ $ (M′ ◃ P′)Rn+l−k (N′ ◃ Q′)
• If Γ ▹ N ◃ Q

µ
−−→l Γ

′ ▹ N′ ◃ Q′ then there exist M′ and P′ such that
Γ ▹ M ◃ P

µ̂
=⇒k Γ

′ ▹ M′ ◃ P′ where Γ′ $ (M′ ◃ P′)Rn+l−k (N′ ◃ Q′)
where µ̂ is the empty string if µ = τ and µ otherwise.

Bisimilarity at Γ with credit n, denoted Γ $ M ◃ P"∼nbisN ◃ Q, is the largest amortized typed
bisimulation at Γ with credit n. We sometimes existentially quantify over the credit and write
Γ $ M ◃ P"∼bis N ◃ Q. We write Γ $ M ◃ P ≃bis N ◃ Q to denote the kernel of the preorder (i.e.,
whenever we have both Γ $ M ◃P"∼bis N ◃Q and Γ $ N ◃Q"∼bis M ◃P), and write Γ $ M ◃P "bis N ◃Q
whenever Γ $ M ◃ P"∼bis N ◃ Q but Γ $ N ◃ Q ̸"∼bis M ◃ P.

Example 4.10 (Assessing Client Efficiency). For the (observer) type environment

Γ1
def
= srv1 : [[T1]1]ω, srv2 : [[T2]1]ω, c : [T1,T2]ω (4.10)

and clients C0 and C1 defined earlier in (1.2), we can show that Γ1 $ (M ◃ C1) "∼bis(M ◃ C0) by
constructing the witness bisimulation (family of) relation(s) R for Γ1 $ (M ◃C1) "∼0bis (M ◃C0) stated
below:11

R
def
=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⟨Γ, n, M′ ◃ C1, N′ ◃ C0⟩ n ≥ 0
〈

Γ, n,M′ ◃ alloc x. srv1!x. x?y.srv2!x. x?z.c!(y, z).C1
,N′ ◃ alloc x1.alloc x2. srv1!x1. x1?y.srv2!x2. x2?z.c!(y, z).C0

〉

d!dom(Γ)
〈

Γ, n, (M′, d) ◃ srv1!d. d?y.srv2!d. d?z.c!(y, z).C1
, (N′, d′) ◃ alloc x2. srv1!d′. d′?y.srv2!x2. x2?z.c!(y, z).C0

〉

d′ !dom(Γ)
〈

Γ, n + 1, (M′, d) ◃ srv1!d. d?y.srv2!d. d?z.c!(y, z).C1
, (N′, d′, d′′) ◃ srv1!d′. d′?y.srv2!d′′. d′′?z.c!(y, z).C0

〉

d′′ !dom(Γ)
〈

(Γ, d : [T1]1), n + 1, (M′, d) ◃ d?y.srv2!d. d?z.c!(y, z).C1
, (N′, d, d′′) ◃ d?y.srv2!d′′. d′′?z.c!(y, z).C0

〉

M′ ⊆ N′
〈

Γ, n + 1, (M′, d) ◃ srv2!d. d?z.c!(v, z).C1
, (N′, d, d′′) ◃ srv2!d′′. d′′?z.c!(v, z).C0

〉

dom(Γ) ⊆ M′

⟨(Γ, d : [T2]1), n + 1, (M′, d) ◃ d?z.c!(v, z).C1, (N′, d′, d) ◃ d?z.c!(v, z).C0⟩
⟨Γ, n + 1, (M′, d) ◃ c!(v, v′).C1, (N′, d′, d) ◃ c!(v, v′).C0⟩

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

10Stated otherwise, M ◃ P can do a more expensive action than N ◃ Q now, as long as it makes up for it later.
11In families of relations ranging over systems indexed by type environments and amortisation credits, such as R, we

represent Γ $ (M ◃ P) "∼
n
bis (∆ ◃ Q) as the quadruple ⟨Γ, n, (M ◃ P), (∆ ◃ Q)⟩.

22 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

It is not hard to see that R contains the quadruple ⟨Γ1, 0,M ◃ C1,M ◃ C0⟩. One can also show that it
is closed wrt. the transfer property of Definition 4.9. The key moves are:
• a single channel allocation by C1 is matched by two channel allocations by C0 — from the second
up to the fourth quadruple in the definition of R. Since channel allocations carry a positive cost,
the amortisation credit increases from n to n+2−1, i.e., n+1, but this still yields a quadruple that
is in the relation. One thing to note is that the first channel allocated by both systems is allowed
to be different, e.g., d and d′, as long as it is not allocated already.
• Even though the internal channels allocated may be different, rule lRen allows us to rename the
resp. names of the allocated channels (not known to the observer) so as match the channels
communicated on srv1 by the other system (fourth and fifth quadruples). Since these channels
are not known to the observer, i.e., they are not in dom(Γ), they all amount to fresh names, akin
to scope extrusion [35, 19].
• Communicating on the previously communicated channel on srv1 consumes all of the observer’s
permissions for that channel (fifth quadruple), which allows rule lRen to be applied again so as
to match the channels communicated on srv2 (sixth quadruple).
We cannot however prove that Γ1 $ (M ◃ C0) "∼nbis (M ◃ C1) for any n because we would need

an infinite amortisation credit to account for additional cost incurred by C0 when it performs the
channel extra allocation at every iteration; recall that this credit cannot become negative, and thus
no finite credit is large enough to cater for all the additional cost incurred by C0 over sufficiently
large transition sequences.

Similarly, from (1.2), we can show that Γ1 $ (M ◃ C2) "bis (M ◃ C1) but also, from (1.5), that
Γ1 $ (M ◃ C3) "bis (M ◃ C1). In particular, we can show Γ1 $ (M ◃ C3) "∼bis (M ◃ C1) even though
M ◃ C1 is temporarily more efficient than M ◃ C3, i.e., during the course of the first iteration. Our
framework handles this through the use of the amortisation credit whereby, in this case, it suffices
to use a credit of value 1 and show Γ1 $ (M ◃C3) "∼1bis (M ◃C1); we leave the details to the interested
reader. Using an amortisation credit of 1 we can also show Γ1 $ (M ◃ C3) "∼1bis (M ◃ C2) through the
bisimulation family-of-relations R′ below — it is easy to check that it observes the transfer property
of Definition 4.9; by constructing a similar relation, one can also show that Γ1 $ (M◃C2) "∼0bis (M◃C3)
which implies that Γ1 $ (M ◃ C2) ≃bis (M ◃ C3). We just note that in R′, the amortisation credit n
can be capped 0 ≤ n ≤ 1 and revisit this point again in Section 4.4.

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RESOURCE MANAGEMENT 23

R′
def
=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⟨Γ, 1, M ◃ C3, M ◃ C2⟩
〈

Γ, 1, M ◃
(

alloc x1.alloc x2. srv1!x1. x1?y.
srv2!x2. x2?z.free x1.free x2.c!(y, z).C3

)

,

M ◃ alloc x. srv1!x. x?y.srv2!x. x?z.free x.c!(y, z).C2

〉

〈

Γ, 1, (M, d) ◃
(

alloc x2. srv1!d. d?y.
srv2!x2. x2?z.free d.free x2.c!(y, z).C3

)

,

(M, d′) ◃ srv1!d′. d′?y.srv2!d′. d′?z.free d′.c!(y, z).C2

〉

d!dom(Γ)

〈

Γ, 0, (M, d, d′′) ◃
(

srv1!d. d?y.srv2!d′′. d′′?z.
free d.free d′′.c!(y, z).C3

)

,

(M, d′) ◃ srv1!d′. d′?y.srv2!d′. d′?z.free d′.c!(y, z).C2

〉

d′ !dom(Γ)

〈

(Γ, d : [T1]1), 0, (M, d, d′′) ◃
(

d?y.srv2!d′′. d′′?z.
free d.free d′′.c!(y, z).C3

)

,

(M, d) ◃ d?y.srv2!d. d?z.free d.c!(y, z).C2

〉

d′′ !dom(Γ)
〈

Γ, 0, (M, d, d′′) ◃ srv2!d′′. d′′?z.free d.free d′′.c!(v, z).C3,
(M, d) ◃ srv2!d. d?z.free d.c!(v, z).C2

〉

〈

(Γ, d′ : [T2]1), 0, (M, d, d′) ◃ d′?z.free d.free d′.c!(v, z).C3,
(M, d′) ◃ d′?z.free d′.c!(v, z).C2

〉

dom(Γ) ⊆ M
〈

Γ, 0, (M, d, d′) ◃ free d.free d′.c!(v, z).C3,
(M, d′) ◃ free d′.c!(v, v′).C2

〉

〈

Γ, 0, (M, d′) ◃ free d′.c!(v, z).C3, M ◃ c!(v, v′).C2
〉

〈

Γ, 1, M ◃ c!(v, z).C3, M ◃ c!(v, v′).C2
〉

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

#

4.3. Alternatives. The cost model we adhere to in Section 4 is not the only plausible one, but
is intended to follow that described by costed reductions of Section 2. There may however be
other valid alternatives, some of which can be easily accommodated through minor tweaking to our
existing framework.

For instance, an alternative cost model may focus on assessing the runtime execution of pro-
grams, whereby operations that access memory such as alloc x.P and free c.P have a runtime cost
that far exceeds that of other operations. We can model this by considering an LTS that assigns a
cost of 1 to both of these operations, which can be attained as a derived LTS from our existing LTS
of Section 4.1 through the rule

Γ ▹ M ◃ P
µ
−−→k Γ

′ ▹ M′ ◃ P′
lDer1

Γ ▹ M ◃ P
µ
−−−−%|k| Γ

′ ▹ M′ ◃ P′

where |k| returns the absolute value of an integer. Definition 4.9 extends in straightforward fash-
ion to work with the derived costed LTS

µ
−−−−%k. This new preorder would allow us to conclude

Γ1 $ (M ◃ C1) "∼bis (M ◃ C2) because, according to the new cost model, for every server-interaction
iteration, client C1 uses less expensive memory operations than C2.

Another cost model may require us to refine our existing preorder. For instance, consider an-
other client C4, defined below, that creates a single channel and keeps on reusing it for all iterations:

C4 ! alloc x. recw. srv1!x. x?y. srv2!x. x?z.ret!(y, z). w

24 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

At present, we are able to equate this client with C2 and C3 from (1.2) and (1.5) resp., on the basis
that neither client carries any memory leaks.

Γ1 $ (M ◃ C4) ≃bis (M ◃ C3) ≃bis (M ◃ C2)
However, we may want a finer preorder where C4 is considered to be (strictly) more efficient

than C2, which is in turn more efficient than C3. The underlying reasoning for this would be that C4
uses the least amount of expensive operations; by contrast C2 keeps on allocating (and deallocating)
new channels for each iteration, and C3 allocates (and deallocates) two new channels for every
iteration. We can characterise this preorder as follows. First we generate the derived costed LTS
using the rule lDer2 below— ⌊k⌋maps all negative integers to 0, leaving positive integers unaltered.

Γ ▹ M ◃ P
µ
−−→k Γ

′ ▹ M′ ◃ P′
lDer2

Γ ▹ M ◃ P
µ
−−−−%⌊k⌋ Γ

′ ▹ M′ ◃ P′

Then, after adapting Definition 4.9 to this derived LTS, denoting such a bisimulation relation as
"
∼bis2, we can define the refined preorder, denoted as "∼bis3, as follows:

Γ $ M ◃ P "∼bis3 N ◃ Q
def
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Γ $ M ◃ P"∼bis N ◃ Q and
Γ $ N ◃ Q"∼bis M ◃ P implies Γ $ M ◃ P"∼bis2 N ◃ Q

The new refined preorder "∼bis3 above requires that M ◃ P is at least as efficient as N ◃ Q (possibly
more) when it comes to memory leaks, i.e., "∼bis, and moreover, whenever they are equally efficient
wrt. these leaks, M ◃ P must also be as efficient (possibly more) wrt. memory allocations, i.e., "∼bis2.

4.4. Properties of "∼bis. We show that our bisimulation relation of Definition 4.9 observes a number
of properties that are useful when reasoning about resource efficiency; see Example 4.24 below.
Lemmas 4.11 and 4.12 prove that the relation is in fact a preorder, whereas Lemma 4.14 outlines
conditions where symmetry can be recovered. Finally, Theorem 4.23 shows that this preorder is
preserved under (valid) context; this is the main result of the section.

First off, we show that "∼bis is a preorder following Lemma 4.11 (where σΓ would be the identity)
and Lemma 4.12.

Lemma 4.11 (Reflexivity upto Renaming). Whenever the triple Γ ▹ M ◃ P is a configuration, then
Γ $ (M ◃ P)σΓ ≃bis M ◃ P

Proof. By coinduction, by showing that the family of relations
{

⟨Γ, 0, (M ◃ P)σΓ,M ◃ P⟩ | Γ ▹ M ◃ P is a configuration
}

is a bisimulation.

Lemma 4.12 (Transitivity). Whenever Γ $ M ◃ P"∼bis M′ ◃ P′ and Γ $ M′ ◃ P′ "∼bis M′′ ◃ P′′ then
Γ $ M ◃ P"∼bis M′′ ◃ P′′

Proof. Γ $ M ◃ P"∼bis M′ ◃ P′ implies that there exists some n ≥ 0 and corresponding bisimulation
relation justifying Γ $ M ◃ P"∼nbis M′ ◃ P′. The same applies for Γ $ M′ ◃ P′ "∼bis M′′ ◃ P′′ and
some m ≥ 0. From these two relations, one can construct a corresponding bisimulation justifying
Γ $ M ◃ P"∼n+mbis M′′ ◃ P′′.

Corollary 4.13 (Preorder). "∼bis is a preorder.

Proof. Follows from Lemma 4.11 (for the special case where σΓ is the identity) and Lemma 4.12.

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RESOURCE MANAGEMENT 25

We can define a restricted form of amortised typed bisimulation, in analogous fashion to Def-
inition 4.9, whereby the credit is capped at some upper bound, i.e., some natural number m. We
refer to such relations as Bounded Amortised Typed-Bisimulations and write

Γ $m M ◃ P"∼nbis N ◃ Q
to denote that Γ ▹ M ◃ P and Γ ▹ N ◃ Q are related by some amortised typed-indexed bisimulation at
index Γ and credit n, and where every credit in this relation is less than or equal to m; whenever the
precise credit n is not important we elide it and simply write Γ $m M ◃ P"∼bis N ◃ Q. We can show
that bounded amortised typed-bisimulations are symmetric.

Lemma 4.14 (Symmetry). Γ $m M ◃ P"∼bis N ◃ Q implies Γ $m N ◃ Q"∼bis M ◃ P

Proof. If R is the bounded amortised typed relation justifying Γ $m M ◃ P"∼bis N ◃ Q, we define the
amortised typed relation

Rsym = {⟨Γ, (m − n),N ◃ Q,M ◃ P⟩ | ⟨Γ, n,M ◃ P,N ◃ Q⟩ ∈ R}
and show that it is a bounded amortised typed bisimulation as well. Consider an arbitrary pair of
configurations Γ $ N ◃ QRm−n

sym M ◃ P:

• Assume Γ ▹ N ◃ Q
µ
−→l Γ

′ ▹ N′ ◃Q′. From the definition of Rsym, it must be the case that ⟨Γ, n,M ◃
P,N ◃ Q⟩ ∈ R. Since R is a bounded amortised typed bisimulation, we know that Γ ▹ M ◃
P
µ̂
=⇒l Γ

′ ▹ M′ ◃ P′ where ⟨Γ′, n + l − k,M′ ◃ P′,N′ ◃ Q′⟩ ∈ R. We however need to show that
⟨Γ′, ((m − n) + k − l),N′ ◃ Q′,M′ ◃ P′⟩ ∈ Rsym, which follows from the definition of Rsym and the
fact that

(

m − (n + l − k)
)

= (m − n) + k − l.
What is left to show is that Rsym is an amortised typed bisimulation bounded by m, i.e., we

need to show that 0 ≤ (m−n)+ k− l ≤ m. Since R is an m-bounded amortised typed bisimulation,
we know that 0 ≤ (n + l − k) ≤ m from which we can drive −m ≤ −(n + l − k) ≤ 0 and, by adding
m throughout we obtain 0 ≤

(

m − (n + l − k) = (m − n) + k − l
)

≤ m as required.
• The dual case for Γ ▹ M ◃ P

µ
−→l Γ

′ ▹ M′ ◃ P′ is analogous.

Contextuality is an important property for any behavioural relation. In our case, this means that
two systems M◃P and N◃Q related by "∼bisunder Γ, remain related when extended with an additional
process, R, whenever this process runs safely over the respective resource environments M and N,
and observes the type restrictions and guarantees assumed by Γ (and dually, those of the respective
existentially-quantified type environments for M ◃ P and N ◃Q). Following Definition 4.1, for these
conditions to hold, contextuality requires R to typecheck wrt. a sub-environment of Γ, say Γ1 where
Γ = Γ1, Γ2, and correspondingly strengthens the relation of M ◃ P ∥ R and N ◃ Q ∥ R in "∼bisunder
the remaining sub-environment, Γ2. Stated otherwise, contextuality requires the transfer of the
respective permissions associated with the observer sub-process R from the observer environment
Γ; this is crucial in order to preserve consistency, thus safety, in the respective configurations. The
formulation of Theorem 4.23, proving contextuality for "∼bis, follows this reasoning. It relies on a
list of lemmas outlined below.

Lemma 4.15 (Weakening). If Γ ▹M ◃P µ
−−⇁k Γ

′ ▹M′ ◃P′ then (Γ,∆) ▹M ◃P µ
−−⇁k (Γ′,∆) ▹M′ ◃P′.

(These may or may not be configurations.)

Proof. By rule induction on Γ ▹ M ◃ P µ
−−⇁k Γ

′ ▹ M′ ◃ P′. Note that, in the case of alloc, the action
can still be performed.

26 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

Lemma 4.16 (Strengthening). If (Γ,∆) ▹M ◃P µ
−−⇁k (Γ′,∆) ▹M′ ◃P′ then Γ ▹M ◃P

µ
−−⇁k Γ

′ ▹M′ ◃P′.

Proof. By rule induction on Γ,∆ ▹ P µ
−−⇁k Γ

′,∆ ▹ P′. Note that strengthening is restricted to the
part of the environment that remains unchanged (∆ is the same on the left and right hand side) —
otherwise the property does not hold for actions c!d⃗ and c?d⃗.

Lemma 4.17. If Γ,∆ is consistent and ∆ ≺ ∆′ then Γ,∆′ is consistent and Γ,∆ ≺ Γ,∆′

Proof. As in [12].

Lemma 4.18 (Typing Preserved by ≡). Γ ⊢ P and P ≡ Q implies Γ ⊢ Q

Proof. As in [12].

Lemma 4.19 (Environment Structural Manipulation Preserves Bisimulation).
Γ $ S "∼nbis T and Γ ≺ Γ′ implies Γ′ $ S "∼nbis T

Proof. By coinduction. We define the quarternary relation
{

⟨Γ′, n, S , T ⟩| Γ $ S "∼nbis T and Γ ≺ Γ
′
}

and show that it observes the transfer property of Definition 4.9.

Lemma 4.20 (Bisimulation and Structural Equivalence).

P ≡ Q and Γ ▹ M ◃ P
µ
−−→k ∆ ▹ M′ ◃ P′ implies Γ ▹ M ◃ Q

µ
−−→k ∆ ◃ M′ ◃ Q′ and P′ ≡ Q′

Proof. By rule induction on P ≡ Q and then a case analysis of the rules permitting Γ ▹ M ◃ P
µ
−−→k

∆ ▹ M′ ◃ P′.

Corollary 4.21 (Structural Equivalence and Bisimilarity). P ≡ Q implies Γ $ M ◃ P"∼nbis M ◃ Q for
arbitrary n and Γ where Γ ▹ M ◃ P and Γ ▹ M ◃ Q are configurations.

Proof. By coinduction and Lemma 4.20.

Lemma 4.22 (Renaming). If Γ,∆ $ (M ◃ P) "∼nbis (N ◃ Q) then Γ, (∆σΓ) $ (M ◃ P)σΓ "∼
n
bis (N ◃ Q)σΓ

Proof. By coinduction.

Theorem 4.23 (Contextuality). If Γ,∆ $ (M ◃ P) "∼nbis (N ◃ Q) and ∆ ⊢ R then
Γ $ (M ◃ P ∥ R) "∼nbis (N ◃ Q ∥ R) and Γ $ (M ◃ R ∥ P) "∼nbis (N ◃ R ∥ Q)

Proof. We define the family of relations RΓ,n to be the least one satisfying the rules
Γ $ (M ◃ P)"∼nbis(N ◃ Q)

Γ $ (M ◃ P) Rn (N ◃ Q)

Γ,∆ $ (M ◃ P) Rn (N ◃ Q) ∆ ⊢ R

Γ $ (M ◃ P ∥ R) Rn (N ◃ Q ∥ R)

Γ,∆ $ (M ◃ P) Rn (N ◃ Q) ∆ ⊢ R

Γ $ (M ◃ R ∥ P) Rn (N ◃ R ∥ Q)
and then show that RΓ,n is a costed typed bisimulation at Γ and n (up to ≡). Note that the premise of
the first rule implies that both Γ,∆ ▹M ◃ P and Γ,∆ ▹N ◃Q are configurations. We consider only the
transitions of the left hand configurations for second case of the relation; the first is trivial and the
third is analogous to the second. Although the relation is not symmetric, the transition of the right
hand configurations are analogous to those of the left hand configurations. There are three cases to
consider.

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RESOURCE MANAGEMENT 27

(1) Case the action was instigated by P, i.e., we have:
Γ ▹ (M ◃ P)σΓ

µ
−−⇁l Γ

′ ▹ M′ ◃ P′
lPar-L

Γ ▹ (M ◃ P ∥ R)σΓ
µ
−−⇁l Γ

′ ▹ M′ ◃ P′ ∥ RσΓ
lRen

Γ ▹ M ◃ P ∥ R
µ
−−→l Γ

′ ▹ M′ ◃ P′ ∥ RσΓ

(4.11)

By Lemma 4.15 (Weakening), lRen and (4.11) we obtain

Γ, (∆σΓ) ▹ (M ◃ P)σΓ
µ
−−→l Γ

′, (∆σΓ) ▹ M′ ◃ P′ (4.12)
Lemma 4.22 can be extended to Rn is straightforward fashion, and from the case assumption
Γ,∆ $ M ◃ PRn N ◃ Q (defining RΓ,n) and the extension of Lemma 4.22 to Rn we obtain:

Γ, (∆σΓ) $ (M ◃ P)σΓRn(N ◃ Q)σΓ (4.13)
Hence by (4.13), (4.12) and I.H. there exists a N′ ◃ Q′ such that

Γ, (∆σΓ) ▹ (N ◃ Q)σΓ
µ̂
=⇒k Γ

′, (∆σΓ) ▹ N′ ◃ Q′ (4.14)

where Γ′, (∆σΓ) $ (M′ ◃ P′) Rn+k−l (N′ ◃ Q′) (4.15)
By (4.14) and lRen, were Γ1 = Γ, (∆σΓ), we obtain

Γ, (∆σΓ) ▹
(

(N ◃ Q)σΓ)
)

σ′Γ1
(τ
−−⇁
∗

k1
) µ̂
−⇁k2

(τ
−−⇁
∗

k3
)

Γ′, (∆σΓ) ▹ N′ ◃ Q′ (4.16)
where k = k1 + k2 + k3. By lPar Lemma 4.16 (Strengthening) and (4.16) we deduce

Γ ▹
(

(N ◃ Q)σΓ)
)

σ′Γ1 ∥ RσΓ
(τ
−−⇁
∗

k1
) µ̂
−⇁k2

(τ
−−⇁
∗

k3
)

Γ′ ▹ N′ ◃ Q′ ∥ RσΓ (4.17)
From ∆ ⊢ R we know

∆σΓ ⊢ RσΓ (4.18)
and, from Γ1 = Γ, (∆σΓ) and Definition 4.3 (Renaming Modulo Environments), we know that
(RσΓ)σ′Γ1 = RσΓ since the renaming does not modify any of the names in the domain of Γ1,
hence of ∆σΓ. Also, from Definition 4.3, σ′Γ1 is also a substitution modulo Γ and can therefore
refer to it as σ′

Γ
, thereby rewriting (4.17) as

Γ ▹
(

N ◃ Q ∥ R
)

σΓσ
′
Γ

(τ
−−⇁
∗

k1
) µ̂
−⇁k2

(τ
−−⇁
∗

k3
)

Γ′ ▹ N′ ◃ Q′ ∥ RσΓ (4.19)
From (4.19) and lRen we thus obtain

Γ ▹ N ◃ Q ∥ R
µ̂
=⇒k Γ′ ▹ N′ ◃ (Q′ ∥ RσΓ)

This is our matching move since and by (4.15), (4.18) and the definition of R we obtain Γ′ $
(M′ ◃ P′ ∥ RσΓ) Rn+l−k (N′ ◃ Q′ ∥ RσΓ).

(2) Case the action was instigated by R, i.e., we have:
Γ ▹ (M ◃ R)σΓ

µ
−−⇁l Γ′ ▹ M′ ◃ R′

lPar-R
Γ ▹

(

M ◃ P ∥ R
)

σΓ
µ
−−⇁l Γ′ ▹ M′ ◃ P ∥ R′

lRen
Γ ▹ M ◃ P ∥ R

µ
−−→l Γ′ ▹ M′ ◃ P ∥ R′

(4.20)

The proof proceeds by case analysis of µ whereby the most interesting cases are when l = +1
or l = −1. We here show the case for when l = −1 (the other case is analogous). By Lemma 4.4
we know that either µ = free c and

MσΓ = M′, c R′ ≡ RσΓ Γ = Γ′, c : [T⃗]•

28 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

or else that µ = τ and
MσΓ = M′, c (4.21)
RσΓ ≡ free c.R1 ∥ R2 and R′ ≡ R1 ∥ R2 (4.22)
Γ = Γ′ (4.23)

∆σΓ ≺ ∆
′, c : [T⃗]• and ∆′ ⊢ R′. (4.24)

We here focus on the latter case, i.e., when µ = τ. The main complication in finding a matching
move for this subcase is that of inferring a pair of resultant systems (one of which is Γ ▹M′ ◃P ∥
R′) that are related by R by using the inductive nature of the relation definition. To be able to do
so, we need to mimic the effect of R’s deallocation transition on M in the corresponding system
N ◃ Q; we do this with the help of an appropriate external deallocation transition free c.
By the extension of Lemma 4.22 to Rn we know Γ,∆σΓ $ (M ◃ P)σΓ Rn (N ◃ Q)σΓ, and by

(4.24) and a straightforward extension of Lemma 4.19 to R we obtain

Γ,∆′, c : [T⃗]• $ (M ◃ P)σΓ Rn (N ◃ Q)σΓ (4.25)
and by (4.21) and lFreeE we deduce

Γ,∆′, c : [T⃗]• ▹ (M ◃ P)σΓ
free c
−−−−−−→−1 Γ,∆

′ ▹
(

M′ ◃ P
)

σΓ

and by (4.25) and I.H. there exists a matching move

Γ,∆′, c : [T⃗]• ▹ (N ◃ Q)σΓ
free c
=====⇒k Γ,∆

′ ▹ N′ ◃ Q′ (4.26)

and Γ,∆′ $ M′ ◃ P′ Rn+k−(−1) N′ ◃ Q′ (4.27)
By (4.26) and lRen, for k = k1 − 1 + k2, we know

Γ,∆′, c : [T⃗]• ▹ ((N ◃ Q)σΓ
)

σ′Γ2
τ
−−⇁
∗

k1 Γ,∆′, c : [T⃗]• ▹ N′′ ◃ Q′′ (4.28)

where Γ2 = Γ,∆′, c : [T⃗]• (used in σ′Γ2 above) (4.29)

Γ,∆′, c : [T⃗]• ▹ N′′ ◃ Q′′ free c
−−−−−⇁−1 Γ,∆′ ▹ N′′′ ◃ Q′′ (4.30)

Γ,∆′ ▹ N′′′ ◃ Q′′ τ
−−⇁
∗

k2 Γ,∆′ ▹ N′ ◃ Q′ (4.31)
From (4.28), (4.31), lPar-L and Lemma 4.16 (Strengthening) we obtain:

Γ ▹
(

(N ◃ Q)σΓ
)

σ′Γ2 ∥ RσΓ
τ
−−⇁
∗

k1 Γ ▹ N′′ ◃ Q′′ ∥ (RσΓ) (4.32)

Γ ▹ N′′′ ◃ Q′′ ∥ R′ τ
−−⇁
∗

k2 Γ ▹ N′ ◃ Q′ ∥ R′ (4.33)
Also, from (4.30) and Lemma 4.4 (Transition and Structure) we deduce that N′′ = N′′′, c and
thus, from (4.22), lFree, lPar-R we obtain:

Γ ▹ N′′ ◃ Q′′ ∥ RσΓ τ
−−⇁−1 Γ ▹ N′′′ ◃ Q′′ ∥ R′ (4.34)

By (4.24) and (4.29), we know that we can find an alternative renaming function σ′′
Γ3
, where

Γ3 = Γ, (∆σΓ), in a way that, from (4.32), we can obtain
Γ ▹

(

(N ◃ Q)σΓ
)

σ′′Γ3 ∥ RσΓ
τ
−−⇁
∗

k1 Γ ▹ N′′ ◃ Q′′ ∥ (RσΓ) (4.35)
Now, by ∆ ⊢ R we know ∆σΓ ⊢ RσΓ and subsequently, by Definition 4.3 and (4.29) we know
(RσΓ)σ′′Γ3 = RσΓ. Thus, we can rewrite

(

(N ◃ Q)σΓ
)

σ′′
Γ3
∥ RσΓ in (4.35) as

(

(N ◃ Q ∥ R)σΓ
)

σ′′
Γ3
.

Merging (4.35), (4.34) and (4.33) we obtain:
Γ ▹

(

(N ◃ Q ∥ R)σΓ
)

σ′′Γ3
τ
−−⇁
∗

k1
τ
−−⇁−1

τ
−−⇁
∗

k2 Γ ▹ N′ ◃ Q′ ∥ R′

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RESOURCE MANAGEMENT 29

By Definition 4.3 we know that σ′′
Γ3
can be rewritten as σ′′

Γ
and thus by lRen we obtain the

matching move
Γ ▹ N ◃ Q ∥ R

τ
=⇒k Γ ▹ N′ ◃ Q′ ∥ R′

because by (4.27), (4.24) and the definition of R we know that
Γ $ M′ ◃ P′ ∥ R′ Rn+k−(−1) N′ ◃ Q′ ∥ R′.

(3) Case the action resulted from an interaction between P and R, i.e., we have:

Γ1 ▹ (M ◃ P)σΓ c!d⃗
−−⇁0 Γ

′
1 ▹ M

′ ◃ P′ Γ2 ▹ (M ◃ R)σΓ c?d⃗
−−⇁0 Γ

′
2 ▹ M

′ ◃ R′
lCom-L

Γ ▹ (M ◃ P ∥ R)σΓ τ
−−−⇁0 Γ ▹ M′ ◃ P′ ∥ R′

lRen
Γ ▹ M ◃ P ∥ R

τ
−−−−→0 Γ ▹ M′ ◃ P′ ∥ R′

(4.36)

By the two top premises of (4.36) and Lemma 4.4 we know
MσΓ = M′ (4.37)

PσΓ ≡ c!d⃗.P1 ∥ P2 P′ ≡ P1 ∥ P2 (4.38)

RσΓ ≡ c?x⃗.R1 ∥ R2 R′ ≡ R1{d⃗/⃗x} ∥ R2 (4.39)
From ∆ ⊢ R we obtain ∆σΓ ⊢ RσΓ, and by (4.39), ∆ ⊢ R and Inversion we obtain

∆σΓ ≺ ∆1,∆2, c : [U⃗]a (4.40)

∆1, c : [U⃗]a−1, x⃗ :U⃗ ⊢ R1 (4.41)
∆2 ⊢ R2 (4.42)

Note that through (4.41) we know that

c : [U⃗]a−1 is defined. (4.43)
By (4.41), the Substitution Lemma (Lemma 4.4 from [12]) and (4.42) we obtain

∆1,∆2, c : [U⃗]a−1, d⃗ :U⃗ ⊢ R1{d⃗/⃗x} ∥ R2 (4.44)
From the assumption defining R, and Lemma 4.22 we obtain

Γ, (∆σΓ) $ (M ◃ P)σΓ Rn (N ◃ Q)σΓ, (4.45)
and by (4.40) and Proposition 4.17 we know that Γ, (∆σΓ) ≺ Γ,∆1,∆2, c : [U⃗]a and also that
Γ,∆1,∆2, c : [U⃗]a is consistent. Thus by (4.45) and Lemma 4.19 we deduce

Γ,∆1,∆2, c : [U⃗]a $ (M ◃ P)σΓ Rn (N ◃ Q)σΓ (4.46)
Now by (4.43), (4.38), (4.37), lOut, lPar-L, lRen and Lemma 4.20 we deduce

Γ,∆1,∆2, c : [U⃗]a ▹ (M ◃ P)σΓ
c!d⃗
−−−→0 Γ,∆

′
1,∆

′
2, c : [U⃗]

a−1, d⃗ :U⃗ ▹ M′ ◃ P′ (4.47)
and hence by (4.46) and I.H. we obtain

Γ,∆1,∆2, c : [U⃗]a ▹ (N ◃ Q)σΓ
c!d⃗
====⇒k Γ,∆

′
1,∆

′
2, c : [U⃗]

a−1, d⃗ :U⃗ ▹ N′ ◃ Q′ (4.48)

such that Γ,∆1,∆2, c : [U⃗]a−1, d⃗ :U⃗ $ (M′ ◃ P′) Rn+k−0 (N′ ◃ Q′) (4.49)

30 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

From (4.48) and lRen we know
Γ,∆1,∆2, c : [U⃗]a ▹

(

(N ◃ Q)σΓ
)

σ′Γ4
τ
−−⇁
∗

k1 Γ,∆1,∆2, c : [U⃗]
a ▹ N′′ ◃ Q′′ (4.50)

Γ,∆1,∆2, c : [U⃗]a ▹ N′′ ◃ Q′′
c!d⃗
−−−→0 Γ,∆1,∆2, c : [U⃗]a−1, d⃗ :U⃗ ▹ N′′ ◃ Q′′′ (4.51)

Γ,∆1,∆2, c : [U⃗]a−1, d⃗ :U⃗ ▹ N′′ ◃ Q′′′ τ−−⇁
∗

k2 Γ,∆1,∆2, c : [U⃗]
a−1, d⃗ :U⃗ ▹ N′ ◃ Q′ (4.52)

where k = k1 + k2 and Γ4 = Γ,∆1,∆2, c : [U⃗]a (Γ4 is used in (4.50)) (4.53)
From (4.50), (4.52), lPar-L and Lemma 4.16 (Strengthening) we obtain:

Γ ▹
(

(N ◃ Q)σΓ
)

σ′Γ4 ∥ RσΓ
τ
−−⇁
∗

k1 Γ ▹ N
′′ ◃ Q′′ ∥ RσΓ (4.54)

Γ ▹ N′′ ◃ Q′′′ ∥ R′ τ−−⇁∗k2 Γ ▹ N
′ ◃ Q′ ∥ R′ (4.55)

By (4.39), lIn and lPar-L we can construct (for some Γ6, Γ7)

Γ6 ▹ N′′ ◃ RσΓ c?d⃗
−−⇁0 Γ7 ▹ N′′ ◃ R′ (4.56)

and by (4.51), (4.56) and lCom-L we obtain
Γ ▹ N′′ ◃ Q′′ ∥ RσΓ τ

−−−⇁0 Γ ▹ N′′ ◃ Q′′′ ∥ R′ (4.57)
By (4.40) and (4.53), we know that we can find an alternative renaming function σ′′

Γ5
, where

Γ5 = Γ, (∆σΓ), in a way that, from (4.54), we can obtain
Γ ▹

(

(N ◃ Q)σΓ
)

σ′′Γ5 ∥ RσΓ
τ
−−⇁
∗

k1 Γ ▹ N
′′ ◃ Q′′ ∥ RσΓ (4.58)

By Definition 4.3, ∆σΓ ⊢ RσΓ, (4.40), (4.53) we know that (RσΓ)σ′′Γ5 = RσΓ, and also that σ
′′
Γ5

is also a renaming modulo Γ, so we can denote it as σ′′
Γ
and rewrite

(

(N ◃ Q)σΓ
)

σ′′
Γ5
∥ RσΓ as

(

(N ◃ Q ∥ R)σΓ
)

σ′′
Γ
in (4.58). Thus, by (4.58), (4.57), (4.55), (4.53) and lRen we obtain the

matching move
Γ ▹ N ◃ Q ∥ R

τ
==⇒k Γ ▹ N′ ◃ Q′ ∥ R′

since by (4.49), (4.44), (4.39) and the definition of R we obtain
Γ $ (M′ ◃ P′ ∥ R′) Rn+k−0 (N′ ◃ Q′ ∥ R′)

as required.

Example 4.24 (Properties of "∼bis). From the proved statements Γ1 $ (M ◃ C1) "∼bis (M ◃ C0) and
Γ1 $ (M ◃ C2) "∼bis (M ◃ C1) of Example 4.10, and by Corollary 4.13 (Preorder), we may conclude
that

Γ1 $ (M ◃ C2) "∼bis (M ◃ C0) (4.59)
without the need to provide a bisimulation relation justifying (4.59). We also note that R′ of Exam-
ple 4.10, justifying Γ1 $ (M ◃ C3) "∼bis (M ◃ C2) is a bounded amortised typed-bisimulation, and by
Lemma 4.14 we can also conclude

Γ1 $ (M ◃ C2) "∼bis (M ◃ C3)
and thus Γ1 $ (M ◃ C3) ≃bis (M ◃ C2). Finally, by Theorem 4.23, in order to show that

c : [T1,T2]ω $ (M ◃ S1 ∥ S2 ∥ C1) "bis (M ◃ S1 ∥ S2 ∥ C0)
it suffices to abstract away from the common code, S1 ∥ S2, and show Γ1 $ (M ◃C1) "bis (M ◃C0),
as proved already in Example 4.10.

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RESOURCE MANAGEMENT 31

5. Characterisation

In this section we give a sound and complete characterization of bisimilarity in terms of the reduc-
tion semantics of Section 2, justifying the bisimulation relation and the respective LTS as a proof
technique for reasoning about the behaviour of Rπ processes. Our touchstone behavioural preorder
is based on a costed version of families of reduction-closed barbed congruences along similar lines
to [20]. In order to limit behaviour to safe computations, these congruences are defined as typed
relations (Definition 4.2), where systems are subject to common observers typed by environments.

The observer type-environment delineates the observations that can be made: the observer
can only make distinctions for channels that it has a permission for, i.e., at least an affine typing
assumption. The observations that can be made in our touchstone behavioural preorder are described
as barbs [24] that take into account the permissions owned by the observer. We require systems
related by our behavioral preorder to exhibit the same barbs wrt. a common observer.

Definition 5.1 (Barb). (Γ ▹ M ◃ P) ⇓barbc
def
= (M ◃ P) −→∗k≡ (M

′ ◃ P′ ∥ c!d⃗.P′′) and c ∈ dom(Γ).

Definition 5.2 (Barb Preservation). A typed relation R is barb preserving if and only if
Γ $ M ◃ P R N ◃ Q implies

(

Γ ▹ M ◃ P ⇓barbc iff Γ ▹ N ◃ Q ⇓barbc
)

.

Our behavioural preorder takes cost into consideration; it is defined in terms of families of
amortised typed relations that are closed under costed reductions.

Definition 5.3 (Cost Improving). An amortized type-indexed relation R is cost improving at credit
n iff whenever Γ $ (M ◃ P) Rn (N ◃ Q) and
(1) if M ◃ P −→k M′ ◃ P′ then N ◃ Q −→∗l N

′ ◃ Q′ such that Γ $ (M′ ◃ P′) Rn+l−k (N′ ◃ Q′);
(2) if N ◃ Q −→l N′ ◃ Q′ then M ◃ P −→∗k M

′ ◃ P′ such that Γ $ (M′ ◃ P′) Rn+l−k (N′ ◃ Q′).

Related processes must be related under arbitrary (parallel) contexts; moreover, these contexts
must be allowed to allocate new channels. We note that the second clause of our contextuality
definition, Definition 5.4, is similar to that discussed earlier in Section 4.4, where we transfer the re-
spective permissions held by the observer along with the test R placed in parallel with the processes.
This is essential in order to preserve consistency (see Definition 2.2) thus limiting our analysis to
safe computations. Definition 5.4 also requires an additional condition, when compared to the con-
textuality definition discussed in Section 4.4, namely that of resource extensions where we consider
systems in larger resource contexts (owned exclusively by the observer). This is described by the
first clause in the definition; we recall the implicit condition for resource environment representa-
tions from Section 2, requiring the channel c not to be present (thus allocated) in M (resp. N) for the
resource environment to be well-formed — c is therefore fresh. In order to disambiguate between
the different contextuality definitions, we refer to Definition 5.4 as full contextuality.

Definition 5.4 (Full Contextuality). An amortized type-indexed relation R is contextual at environ-
ment Γ and credit n iff whenever Γ $ (M ◃ P) Rn (N ◃ Q):
(1) Γ, c : [T⃗]• $ (M, c ◃ P) Rn (N, c ◃ Q)
(2) If Γ ≺ Γ1, Γ2 where Γ2 ⊢ R then
• Γ1 $ (M ◃ P ∥ R) Rn (N ◃ Q ∥ R) and
• Γ1 $ (M ◃ R ∥ P) Rn (N ◃ R ∥ Q)

We can now define the preorder defining our notion of observational system efficiency:

Definition 5.5 (Behavioral Contextual Preorder). &Γ,nbeh is the largest family of amortized typed rela-
tions that is:

32 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

• Barb Preserving;
• Cost Improving at credit n;
• Full contextual at environment Γ.
A system M ◃ P is said to be behaviourally as efficient as another system N ◃ Q wrt. an observer
Γ, denoted as Γ $ M ◃ P &beh N ◃ Q, whenever there exists an amortisation credit n such that
Γ $ M ◃ P &nbeh N ◃ Q. Similarly, we can lift our preorder to processes: a process P is said to be as
efficient as Q wrt. M and Γ whenever there exists an n such that Γ $ M ◃ P &nbeh M ◃ Q

5.1. Soundness for "∼bis. Through Definition 5.5 we are able to articulate why clients C2 and C′2
should be deemed to be behaviourally equally efficient wrt. Γ1 of (4.10): for an appropriate M, it
turns out that we cannot differentiate between the two processes under any context allowed by Γ.
Unfortunately, the universal quantification of contexts of Definition 5.4 makes it hard to verify such
a statement. Through Theorem 5.10 we can however establish that our bisimulation preorder of
Definition 4.9 provides a sound technique for determining behavioural efficiency. This Theorem, in
turn, relies on the lemmas we outline below. In particular, Lemma 5.7 and Lemma 5.8 prove that
bisimulations are barb-preserving and cost-improving, whereas Lemma 5.9 proves that bisimula-
tions are preserved under resource extensions. The required result then follows from Theorem 4.23
of Section 4.4.
Lemma 5.6 (Reductions and Bijective Renaming). For any bijective renaming σ,
(M ◃ P)σ −→k (M′ ◃ P′)σ implies M ◃ P −→k M ◃ P
Proof. By rule induction on (M ◃ P)σ −→k (M′ ◃ P′)σ.
Lemma 5.7 (Barb Preservation).

Γ $ M ◃ P "∼bis N ◃ Q and Γ ▹ M ◃ P ⇓barbc implies Γ ▹ N ◃ Q ⇓barbc

Proof. By Definition 5.1 we know M ◃ P −→∗l≡ (M′ ◃ P′ ∥ c!d⃗.P′′) where c ∈ dom(Γ). By
Lemma 4.6(1) we obtain Γ ▹ M ◃ P ===⇒l Γ ▹ M′ ◃ P′′′ where P′′′ ≡ (P′ ∥ c!d⃗.P′′). Moreover, by

lOut, lPar-R and Lemma 4.20 we deduce Γ▹M◃P
c!d⃗
==⇒l≡ Γ

′▹M◃P′ ∥ P′′. By Γ $ M◃P "∼bis N◃Qwe

know that there exists a move Γ▹N ◃Q
c!d⃗
==⇒k Γ

′ ▹N′ ◃Q′ and from this matching move, Lemma 4.6(2)
(for the initial τ moves of the weak action) and Lemma 4.4 we obtain (N ◃Q)σΓ −→∗k1≡ (N

′′ ◃Q′′ ∥
c!d⃗.Q′′′)σΓ, which, together with c ∈ dom(Γ) and Lemma 5.6, implies N ◃ Q −→∗k1≡ N′′ ◃ Q′′ ∥
c!d⃗.Q′′′ i.e., c is unaffected by the renaming σΓ, and thus Γ ▹ N ◃ Q ⇓barbc .
Lemma 5.8 (Cost Improving). Γ $ M ◃ P "∼nbis N ◃ Q and M ◃ P −→l M′ ◃ P′ then there exist some
N′ ◃ Q′ such that N ◃ Q −→∗k N

′ ◃ Q′ and Γ $ M′ ◃ P′ "∼n+k−lbis N′ ◃ Q′

Proof. By M ◃P −→l M′ ◃P′ and Lemma 4.6(1) we know Γ ▹M ◃P
τ
−−→l Γ ▹M ◃P′′ where P′′ ≡ P′.

By Definition 4.9 and assumption Γ $ M ◃ P "∼nbis N ◃Q, this implies that Γ ▹ N ◃ Q ==⇒k Γ ▹ M′ ◃ Q′
where

Γ $ M′ ◃ P′′"∼n+k−lbis N′ ◃ Q′. (5.1)
By Lemma 4.6(2) we deduce (N ◃ Q)σΓ −→∗k N

′ ◃ Q′ and by Lemma 5.6 we obtain N ◃ Q −→∗

N′′ ◃ Q′′ where N′′ ◃ Q′′ = (N′ ◃ Q′)σΓ. The required result follows from Γ $ M′ ◃ P′"∼0bisM
′ ◃ P′′,

which we obtain from P′ ≡ P′′ and Corollary 4.21 (Structural Equivalence and Bisimilarity), (5.1),
Γ $ N′′ ◃ Q′′"∼0bisN

′ ◃ Q′ which we obtain from Lemma 4.11 (Reflexivity upto Renaming) and
N′′ ◃ Q′′ = (N′ ◃ Q′)σΓ, and Lemma 4.12.

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RESOURCE MANAGEMENT 33

Lemma 5.9 (Resource Extensions).
Γ $ M ◃ P "∼nbis N ◃ Q implies Γ, c : [T⃗]• $ (M, c) ◃ P "∼nbis (N, c) ◃ Q

Proof. By coinduction.

Theorem 5.10 (Soundness). Γ $ (M ◃ P) "∼nbis (N ◃ Q) implies Γ $ (M ◃ P) &nbeh (N ◃ Q).
Proof. Follows from Lemma 5.7 (Barb Preservation), Lemma 5.8 (Cost Improving), Lemma 5.9
(Resource Extensions) and Theorem 4.23 (Contextuality).

Corollary 5.11 (Soundness). Γ $ (M ◃ P) "∼bis (N ◃ Q) implies Γ $ (M ◃ P) &beh (N ◃ Q).

5.2. Full Abstraction of &beh. To prove completeness, i.e., that for every behavioural contextual
preorder there exists a corresponding amortised typed-bisimulation, we rely on the adapted notion
of action definability [19, 21], which intuitively means that every action (label) used by our LTS
can, in some sense, be simulated (observed) by a specific test context. For our specific case, two
important aspects need to be taken into consideration:
• the typeability of the testing context wrt. our substructural type system;
• the cost of the action simulation, which has to correspond to the cost of the action being observed.
These aspects are formalised in Definition 5.13, which relies on the functions definitions doml and
codl:

doml(ϵ) def= ϵ codl(ϵ) def= ϵ

doml(Γ, c :T) def= doml(Γ), c codl(Γ, c :T) def= codl(Γ),T
These two meta-functions take a substructural type environment and returning respectively a list of
channel names and a list of types. For example, for the environment Γ = c : [T]1, d : [T′]ω, c : [T](•,1),
we have doml(Γ) = c, d, c and codl(Γ) = [T]1, [T′]ω, [T](•,1).

Before stating cost-definability for actions, Definition 5.13, we prove the technical Lemma 5.12
which allows us to express transitions in a convenient format for the respective definition without
loss of generality.

Lemma 5.12 (Transitions and Renaming). Γ ▹M ◃P
µ
−−→k Γ

′ ▹M′ ◃P′ if and only if Γ ▹M ◃P
µ
−−→k

(

Γ′′ ▹ M′′ ◃ P′′
)

σΓ for some σΓ, Γ′′,M′′, P′′ where Γ′ = Γ′′σΓ, M′ = M′′σΓ and P′ = P′′σΓ.

Proof. The if case is immediate. The proof for the only-if is complicated by actions that perform
channel allocation (see lAll and lAllE from Figure 5) because, in such cases, the renaming used
in lRen’s premise cannot be used directly. More precisely, from the premise we know:

Γ ▹
(

M ◃ P
)

σΓ
µ
−−⇁k Γ

′ ▹ M′ ◃ P′
lRen

Γ ▹ M ◃ P
µ
−−→k Γ

′ ▹ M′ ◃ P′

and the required result follows if we prove the (slightly more cumbersome) sublemma:

Sublemma (Transition and Renaming). Γ ▹
(

M ◃ P
)

σΓ
µ
−−⇁k Γ

′ ▹M′ ◃ P′ where fn(P) ⊆ M implies
Γ ▹

(

M ◃ P
)

σΓ
µ
−−⇁k

(

Γ′′ ▹ M′′ ◃ P′′
)

σ′
Γ
for some σ′

Γ
, Γ′′,M′′, P′′ where

• Γ′ = Γ′′σ′
Γ
, M′ = M′′σ′

Γ
and P′ = P′′σ′

Γ
;

• c ∈ dom(M) implies σΓ(c) = σ′Γ(c)

The above sublemma is proved by rule induction on Γ ▹
(

M ◃ P
)

σΓ
µ
−−⇁k Γ

′ ▹M′ ◃ P′. We show
one of the main cases:

34 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

lAll: We have Γ ▹
(

M ◃ alloc x.P
)

σΓ
τ
−−⇁+1 Γ ▹

(

(M)σΓ, c
)

◃
(

(P)σΓ{c/x}
)

. From the fact that
c ! (MσΓ) — it follows because

(

(M)σΓ, c
)

is defined — we know that σ−1
Γ
(c) ! M. We thus

choose some fresh channel d, i.e., d ! (

M ∪ (MσΓ) ∪ dom(Γ)
)12, and define σ′

Γ
as σΓ, except

that it maps d to c and also maps σ−1
Γ
(c) (i.e., the channel name that mapped to c in σΓ) to σΓ(d),

since this channel is not mapped to by d anymore (in order to preserve bijectivity):

σ′Γ(x)
def
=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

c if x = d
σΓ(d) if x = σ−1

Γ
(c)

σΓ(x) otherwise
We subsequently define
• Γ′′ as Γ since Γσ′

Γ
= ΓσΓ = Γ;

• M′′ as M, d since (M, d)σ′
Γ
=

(

(M)σΓ, c
)

; and
• P′′ as P{d/x} since P{d/x}σ′

Γ
= PσΓ{c/x}

Definition 5.13 (Cost Definable Actions). An action µ is cost-definable iff for any pair of type envi-
ronments13 Γ and Γ′, a corresponding substitution σΓ, a set of channel namesC ∈ Chan, and channel
names succ, fail ! C, there exists a test R such that Γ, succ : [codl(Γ′)]1, fail : []1, fail : []1 ⊢ R
and whenever M ∈ C:
(1) Γ ▹ M ◃ P

µ
−−→k

(

Γ′ ▹ M′ ◃ P′
)

σΓ implies
M, succ, fail ◃ P ∥ R −→∗k M

′, succ, fail ◃ P′ ∥ succ!
(

doml(Γ′)
)

.
(2) M, succ, fail ◃ P ∥ R −→∗k M

′′ ◃ P′′ where succ : [codl(Γ′)]a, fail : []a ▹ M′′ ◃ P′′ ̸⇓barb
fail

and
succ : [codl(Γ′)]a, fail : []a ▹ M′′ ◃ P′′ ⇓barbsucc implies Γ ▹ M ◃ P

µ
=⇒k

(

Γ′ ▹ M′ ◃ P′
)

σΓ where
M′′ = M′, succ, fail and P′′ ≡ P′′′ ∥ succ!

(doml(Γ′)).

Lemma 5.14 (Action Cost-Definability). External actions µ ∈
{

c!d⃗, c?d⃗, alloc, free c | c, d⃗ ⊂ Chan
}

are cost-definable.

Proof. The witness tests for c!d⃗ and c?d⃗ are reasonably standard (see [19]), but need to take into
account permission transfer. For instance, for the specific case of the action c!d where d ! doml(Γ),
if the transition Γ ▹ M ◃ P

µ
−−→k

(

Γ′ ▹ M′ ◃ P′
)

σΓ holds then we know that, for some Γ1 and [T]a:
• Γ = Γ1, c : [T]a;
• Γ′σΓ = Γ1, c : [T]a−1, d :T
In particular, when a = 1 (affine), using the permission to input on c implicitly transfers the per-
mission to process P (see Section 4.1), potentially revoking the test’s capability to perform name
matching on channel name c (see tIf in Figure 4) — this happens if c ! dom(Γ1). For this reason,
when a = 1 the test is defined as

fail! ∥ c?x.if
(

x ∈ doml(Γ1)
)

then nil else fail?.succ!
(

doml(Γ′)
)

where x ∈ doml(Γ1) is shorthand for a sequence of name comparisons as in [19]. Otherwise, the
respective type assumption is not consumed from the observer environment and the test is defined
as

fail! ∥ c?x.if
(

x ∈ doml(Γ)) then nil else fail?.succ!(doml(Γ′))

12The condition that d ! dom(Γ) is required since we do not state whether the triple Γ ▹ M ◃ P is a configuration;
otherwise, it is redundant — see comments succeeding Definition 4.1.

13Cost Definability cannot be defined wrt. the first environment only in the case of action alloc, since it non-
deterministically allocates a fresh channel name and adds it to the residual environment - see lAllE in Figure 5.

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RESOURCE MANAGEMENT 35

Note that name comparisons on freshly acquired names are typeable since we also obtain the respec-
tive permissions upon input, i.e., the explicit permission transfer (see Section 4.1). The reader can
verify that these tests typecheck wrt. the environment Γ, succ : [codl(Γ′)]1, fail : []1, fail : []1 and
that they observe clauses (1) and (2) of Definition 5.13. In the case of clause (2), we note that from
the typing of the tests above, we know that c ∈ doml(Γ) must hold (because both tests use channel
c for input); this is is a key requirement for the transition to fire — see lOut of Figure 5.

The witness tests for alloc and free c involve less intricate permission transfer and are re-
spectively defined as:

fail! ∥ alloc x.fail?.succ!
(doml(Γ), x)

and
fail! ∥ free c.fail?.succ!

(

doml(Γ′)
)

We here focus on alloc and leave the analogous proof for free c for the interested reader:

(1) If Γ ▹ M ◃ P alloc
−−−−−−→k (Γ′ ▹ M′ ◃ P′)σΓ we know that, for some d ! M and c ! MσΓ where

σΓ(d) = c, we have (Γ′)σΓ = (Γ, d : [T]•)σΓ = Γ, c : [T]•, M′ = (M, d) and P′ = P. We can
therefore simulate this action by the following sequence of reductions:

M ◃ P ∥ fail! ∥ alloc x.fail?.succ!
(

doml(Γ), x
)

−→

M, d ◃ P ∥ fail! ∥ fail?.succ!
(doml(Γ), d) −→ M, d ◃ P ∥ succ!

(doml(Γ), d)

(2) From the structure of R and the assumption that fail, succ ! fn(P), we conclude that, if
succ : [codl(∆)]a, fail : []a ▹ M′ ◃ P′ ̸⇓barb

fail
and succ : [codl(∆)]a, fail : []a ▹ M′ ◃ P′ ⇓barbsucc,

then it must be the case that, for some d ! M, P′ = P′′ ∥ succ!
(doml(Γ), d) where M′′ =

(M′, succ, fail, d) for some M′.
Since P and R do not share common channels there could not have been any interaction

between the two processes in the reduction sequence M, succ, fail ◃ P ∥ R −→∗k M′ ◃ P′.
Within this reduction sequence, from every reduction Mi ◃ Pi ∥ R′ −→ki Mi+1 ◃ Pi+1 ∥ R′
resulting from derivatives of P, i.e., Mi ◃Pi −→ki Mi+1 ◃Pi+1 that happened before the allocation
of channel d, we obtain a corresponding silent transition

Γi ▹ (Mi \ {succ, fail}) ◃ Pi
τ
−−→ki Γi ▹ (Mi+1 \ {succ, fail}) ◃ Pi+1 (5.2)

by Lemma 4.6(1) and an appropriate lemma that uses the fact {succ, fail} ∩ fn(P) = ∅ to al-
lows us to shrink the allocated resources from Mi to (Mi \ {succ, fail}). A similar procedure
can be carried out for reductions that happened after the allocation of d as a result of reductions
from P derivatives, and by applying renaming σΓ we can obtain

(

Γi ▹ (Mi \ {succ, fail}) ◃ Pi
)

σΓ
τ
−−→ki

(

Γi ▹ (Mi+1 \ {succ, fail}) ◃ Pi+1
)

σΓ (5.3)
The reduction

Mi, succ, fail ◃ Pi ∥ alloc x.fail?.succ!
(doml(Γ), x) −→+1

Mi, succ, fail, d ◃ Pi ∥ fail?.succ!
(

doml(Γ), d
)

can be substituted by the transition

Γi ▹ Mi ◃ Pi
alloc

=====⇒+1 Γi, (d)σΓ : [T]• ▹
(

(Mi)σΓ, (d)σΓ
)

◃ (Pi)σΓ (5.4)
This follows from the fact that d ! Mi and the fact that σΓ is a bijection, which implies that
(d)σΓ ! (Mi)σΓ (necessary for

(

(Mi)σΓ, (d)σΓ
)

to be a valid resource environment). By joining
together the transitions from (5.2), (5.4) and (5.3) in the appropriate sequence we obtain the
required weak transition.

36 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

The proof of Theorem 5.18 (Completeness) relies on Lemma 5.14 to simulate a costed action
by the appropriate test and is, for the most part, standard. As stated already, one novel aspect is
that the cost semantics requires the simulation to incur the same cost as that of the costed action.
Through Reduction Closure, Lemma 5.14 again, and then finally the Extrusion Lemma 5.15 we then
obtain the matching bisimulation move which preserves the relative credit index. Another novel
aspect of the proof for Theorem 5.18 is that the name matching in the presence of our substructural
type environment requires a reformulation of the Extrusion Lemma. More precisely, in the case
of the output actions, the simulating test requires all of the environment permissions to perform
all the necessary name comparisons. We then make sure that these permissions are not lost by
communicating them all again on succ; this passing on of permissions then allows us to show
contextuality in Lemma 5.15.

Lemma 5.15 (Extrusion). Whenever Γ ▹ M ◃ P and Γ ▹ N ◃ Q are configurations and d⃗ ! dom(Γ):
succ : [codl(Γ)](•,1) $ (

M, succ, d⃗
)

◃ P ∥ succ!(doml(Γ)) &nbeh
(

N, succ, d⃗
)

◃ Q ∥ succ!(doml(Γ))
implies Γ ⊢ M ◃ P &nbeh N ◃ Q

Proof. By coinduction we show that a family of amortized typed relations Γ ⊢ M ◃ P Rn N ◃ Q ob-
serves the required properties of Definition 5.5. Note that the environment succ : [codl(Γ)](•,1)
ensures that succ ! names(P,Q) since both P ∥ succ!(doml(Γ)) and Q ∥ succ!(doml(Γ)) must
typecheck wrt. a type environment that is consistent with succ : [codl(Γ)](•,1). Cost improving is
straightforward and Barb Preserving and Contextuality follow standard techniques; see [19].

For instance, for barb preservation we are required to show that Γ ▹ M ◃ P ⇓barbc implies Γ ▹ N ◃
Q ⇓barbc (and viceversa). From Γ ▹ M ◃ P ⇓barbc and Definition 5.1 we know that c : [T⃗]a ∈ Γ at some
index i. We can therefore define the process R ! succ?x⃗.xi?y⃗.ok! where |T⃗| = |⃗y|; this test process
typechecks wrt. succ : [codl(Γ)](•,1), ok : []1. Now by Definition 5.4(1) we know

succ : [codl(Γ)](•,1), ok : []• $ (

M, succ, d⃗, ok
)

◃ P ∥ succ!(doml(Γ))

&nbeh
(

N, succ, d⃗, ok
)

◃ Q ∥ succ!(doml(Γ))

and thus, by Definition 5.4(2) and succ : [codl(Γ)](•,1), ok : []1 ⊢ R
ok : [](•,1) $

(

M, succ, d⃗, ok
)

◃ P ∥ succ!(doml(Γ)) ∥ R

&nbeh
(

N, succ, d⃗, ok
)

◃ Q ∥ succ!(doml(Γ)) ∥ R
(5.5)

Clearly, if Γ ▹ M ◃ P ⇓barbc then
(

ok : [](•,1) ▹
(

M, succ, d⃗, ok
)

◃ (P ∥ succ!(doml(Γ)) ∥ R)) ⇓barbok . By
(5.5) and Definition 5.2 we must have

(

ok : [](•,1) ▹
(

N, succ, d⃗, ok
)

◃ (Q ∥ succ!(doml(Γ)) ∥ R)
)

⇓barbok
as well, which can only happen if N ◃ Q −→∗≡ Q′ ∥ c!d⃗.Q′′. This means that Γ ▹ N ◃ Q ⇓barbc .

Lemma 5.16. Γ $ M ◃ P &nbeh N ◃ Q and Γ ≺ Γ′ implies Γ′ $ M ◃ P &nbeh N ◃ Q

Proof. By coinduction.

Lemma 5.17. Γ $ M ◃ P &nbeh N ◃ Q and σ is a bijective renaming implies Γσ $
(

M ◃ P
)

σ &nbeh
(

N ◃ Q
)

σ

Proof. By coinduction.

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RESOURCE MANAGEMENT 37

Theorem 5.18 (Completeness). Γ $ (M ◃ P) &nbeh (N ◃ Q) implies Γ $ (M ◃ P) "∼
n
bis (N ◃ Q).

Proof. By coinduction, we show that for arbitrary Γ, n, the family of relations included in Γ $
M ◃ P &nbeh N ◃ Q observes the transfer properties of Definition 4.9 at Γ, n. Assume

Γ ▹ M ◃ P
µ
−−→k

(

Γ′ ▹ M′ ◃ P′
)

σΓ (5.6)
If µ = τ, the matching move follows from Lemma 4.6, Definition 5.3 and Definition 5.5.

If µ ∈
{

c!d⃗, c?d⃗, alloc, free c | c, d⃗ ∈ Chan
}

, by Lemma 5.14 we know that there exists a test
process that can simulate it; we choose one such test R with channel names succ, fail ! M,N. By
Definition 5.4(1) we know

Γ, succ : [codl(Γ)]•, fail : []• $ M, succ, fail ◃ P &nbeh N, succ, fail ◃ Q
and by Definition 5.4(2) and Γ, succ : [codl(∆)]1, fail : []1, fail : []1 ⊢ R (Definition 5.13) we ob-
tain
succ : [codl(Γ)](•,1), fail : [](•,2) $ (M, succ, fail) ◃ P ∥ R &nbeh (N, succ, fail) ◃ Q ∥ R (5.7)

From (5.6) and Definition 5.13(1), we know
(M, succ, fail) ◃ P ∥ R −→∗k (M

′, succ, fail) ◃ P′ ∥ succ! doml(Γ′)
By (5.7) and Definition 5.3 (Cost Improving) we know

(N, succ, fail) ◃ Q ∥ R −→∗l N
′′ ◃ Q′′

where
succ : [codl(Γ)](•,1), fail : [](•,2) $ (M′, succ, fail) ◃ P′ ∥ succ! doml(Γ′) &n+l−kbeh N′′ ◃ Q′′ (5.8)

By Definition 5.2 (Barb Preservation), this means that succ : [codl(Γ)](•,1), fail : [](•,2)▹N′◃Q′ ̸⇓barb
fail

and also that succ : [codl(Γ)](•,1), fail : [](•,2) ▹ N′ ◃ Q′ ⇓barbsucc. By Definition 5.13(2) we obtain
Q′′ ≡ Q′ ∥ succ! doml(Γ′) and N′′ = (N′, succ, fail) (5.9)

Γ ▹ N ◃ Q
µ
=⇒l

(

Γ′ ▹ N′ ◃ Q′
)

σΓ (5.10)
Transition (5.10) is the matching move because by (5.8) and Lemma 5.16 we obtain

succ : [codl(Γ)](•,1) $ (M′, succ, fail) ◃ P′ ∥ succ! doml(Γ′) &n+l−kbeh N′′ ◃ Q′′

By (5.9), and Lemma 5.15 we obtain Γ′ $ M′ ◃ P′ &n+l−kbeh N′ ◃ Q′ and subsequently by Lemma 5.17
we obtain

Γ′σΓ $
(

M′ ◃ P′
)

σΓ &
n+l−k
beh

(

N′ ◃ Q′
)

σΓ
as required.

38 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

6. Revisiting the Case Study

We can formally express that eBuff is (strictly) more efficient than Buff in terms of the reduction
semantics outlined in Section 2 through the following statements:

Γext $ M ◃ eBuff &beh M ◃ Buff (6.1)
Γext $ M ◃ Buff &̸beh M ◃ eBuff (6.2)

In order to show that the second statement (6.2) holds, we need to prove that there is no amor-
tisation credit n for which Γext $ M ◃ Buff &nbeh M ◃ eBuff. By choosing the set of inductively
defined contexts Rn where:14

R0 ! nil Rn+1 ! in!v.out?x.Rn
we can argue by analysing the reduction graph of the respective systems that, for any n ≥ 0:

Γext $ M ◃ (Buff ∥ Rn+1) ̸&nbeh M ◃ (eBuff ∥ Rn+1)
since it violates the Cost Improving property of Definition 5.5.

Another way how to prove (6.2) is by exploiting completeness of our bisimulation proof tech-
nique wrt. our behavioural preorder, Theorem 5.18, and work at the level of the transition system of
Section 4 showing that, for all n ≥ 0, the following holds:

Γext $ M ◃ Buff ̸"∼nbis M ◃ eBuff (6.3)
We prove the above statement as Theorem 6.3 of Section 6.1.

Property (6.1), prima facie, seems even harder to prove than (6.2), because we are required to
show that Barb Preservation and Cost Improving hold under every possible valid context interacting
with the two buffer implementations. Once again, we use the transition system of Section 4 and
show instead that:

Γext $ M ◃ eBuff "∼0bis M ◃ Buff (6.4)
The required result then follows from Theorem 5.10. The proof for this statement is presented

in Section 6.2.
In order to make the presentation of these proofs more manageable, we define the following

macro definitions for sub-processes making up the derivatives of Γext ▹M ◃Buff and Γext ▹M ◃ eBuff.

Frn’ def= b?x.in?y.alloc z.
(

Frn ∥ b!z ∥ x!(y, z)
)

Bck’ def= d?x.x?(y, z).out!y.
(

Bck ∥ d!z
)

Frn”(x) def= in?y.alloc z.
(

Frn ∥ b!z ∥ x!(y, z)
)

Bck”(x) def= x?(y, z).out!y.
(

Bck ∥ d!z
)

Frn”’(x, y) def= alloc z.
(

Frn ∥ b!z ∥ x!(y, z)
)

Bck”’(y, z) def= out!y.
(

Bck ∥ d!z
)

eBk’ def= d?x.x?(y, z).free x.out!y.
(

eBk ∥ d!z
)

eBk”(x) def= x?(y, z).free x.out!y.
(

eBk ∥ d!z
)

eBk”’(x, y, z) def= free x.out!y.
(

eBk ∥ d!z
)

eBk””(y, z) def= out!y.
(

eBk ∥ d!z
)

We can thus express the definitions for Buff and eBuff as:

Buff def
= Frn”(c1) ∥ Bck”(c1) eBuff def

= Frn”(c1) ∥ eBk”(c1) (6.5)

14Note that Γext ⊢ Rn for any n.

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RESOURCE MANAGEMENT 39

Frn”(c1) ∥ Bck”(c1) = BuffFrn”’(c1 , v) ∥ Bck”(c1)

Frn ∥ b!c2 ∥ c1!(v, c2)∥ Bck”(c1) Frn’ ∥ b!c2 ∥ c1!(v, c2)∥ Bck”(c1) Frn”(c2) ∥ c1!(v, c2)∥ Bck”(c1)

Frn ∥ b!c2 ∥ Bck”’(v, c2) Frn’ ∥ b!c2 ∥ Bck”’(v, c2) Frn”(c2) ∥ Bck”’(v, c2)

Frn ∥ b!c2 ∥ Bck ∥ d!c2 Frn’ ∥ b!c2 ∥ Bck ∥ d!c2 Frn”(c2) ∥ Bck ∥ d!c2

Frn ∥ b!c2 ∥ Bck’ ∥ d!c2 Frn’ ∥ b!c2 ∥ Bck’ ∥ d!c2 Frn”(c2) ∥ Bck’ ∥ d!c2

Frn ∥ b!c2 ∥ Bck”(c2) Frn’ ∥ b!c2 ∥ Bck”(c2) Frn”(c2) ∥ Bck”(c2)

in?v

τ+1

τ

τ

τ

τ

τ

out!v

τ

out!v

τ

out!v

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ τ

Figure 6: Transition graph for Γext ▹ M ◃ Buff restricted to
in?v · out!v
=========⇒

6.1. Proving Strict Inefficiency. In order to prove (6.3), we do not need to explore the entire state
space for Γext ▹M ◃Buff and Γext ▹M ◃eBuff. Instead, it suffices to limit external interactions with the
observer to traces of the form

(in?v ·out!v
========⇒

)∗, which simulate interactions with the observing processes
Rn discussed in Section 6. It is instructive to visualise the transition graphs for both Γext▹M◃Buff and
Γext ▹ M ◃ eBuff for a single iteration

in?v · out!v
========⇒ as depicted in Figure 6 and Figure 7: due to lack of

space, the nodes in these graphs abstract away from the environment Γext and appropriate resource
environments M,N, . . . containing internal channels c1, c2, . . . as required.15 For instance the first
node of the graph in Figure 6, Frn”(c1)∥Bck”(c1), i.e., Buff, stands for Γext▹M◃(Frn”(c1)∥Bck”(c1)),
where c1 ∈ M, whereas the third node in the same graph, Frn ∥b!c2 ∥c1!(v, c2)∥Bck”(c1), stands for
Γext ▹ N ◃

(

Frn∥b!c2 ∥c1!(v, c2)∥Bck”(c1)
)

, where c1, c2 ∈ N.
For instance, the graph in Figure 6 shows that after the input action and the channel allocation

for c2 τ-action (with a cost of +1) the inefficient buffer implementation reaches a state where it can
perform a number of internal transitions: either the subcomponent Frn may take a recursion unfold
step (the first right τ-action) followed by an input on channel b that instantiates the continuation
with channel c2 (the second right τ-action), or else the subcomponent Bck”(c1) reads from the head
of the buffer c1!(v, c2) (the first downwards τ-action). These τ-actions may be interleaved, but no
other silent transitions are possible until an output action is performed, after which the backend sub-
component can perform an unfold τ-action (the first downwards τ-action following action out!v)
followed by an instantiation communication on channel d (the first downwards τ-action following
action out!v), When all of these actions are completed we reach again the starting process, instanti-
ated with channel c2 instead. The transitions in Figure 7 are analogous, but include a deallocation
transition with a cost of −1.

15The transition graph also abstracts away from environment moves.

40 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

Frn”(c1) ∥ eBk”(c1) = eBuffFrn”’(c1 , v) ∥ eBk”(c1)

Frn ∥ b!c2 ∥ c1!(v, c2)∥ eBk”(c1) Frn’ ∥ b!c2 ∥ c1!(v, c2)∥ eBk”(c1) Frn”(c2) ∥ c1!(v, c2)∥ eBk”(c1)

Frn ∥ b!c2 ∥ eBk”’(c1, v, c2) Frn’ ∥ b!c2 ∥ eBk”’(c1, v, c2) Frn”(c2) ∥ eBk”’(c1 , v, c2)

Frn ∥ b!c2 ∥ eBk””(v, c2) Frn’ ∥ b!c2 ∥ eBk””(v, c2) Frn”(c2) ∥ eBk””(v, c2)

Frn ∥ b!c2 ∥ eBk ∥ d!c2 Frn’ ∥ b!c2 ∥ eBk ∥ d!c2 Frn”(c2) ∥ eBk ∥ d!c2

Frn ∥ b!c2 ∥ eBk’ ∥ d!c2 Frn’ ∥ b!c2 ∥ eBk’ ∥ d!c2 Frn”(c2) ∥ eBk’ ∥ d!c2

Frn ∥ b!c2 ∥ eBk”(c2) Frn’ ∥ b!c2 ∥ eBk”(c2) Frn”(c2) ∥ eBk”(c2)

in?v

τ+1

τ

τ

τ

τ

τ

τ−1

τ

τ−1

τ

τ−1

out!v

τ

out!v

τ

out!v

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ τ

Figure 7: Transition graph for Γext ▹ M ◃ eBuff restricted to
in?v · out!v
=========⇒

Theorem 6.3, which proves (6.3), relies on two lemmas. The main one is Lemma 6.2, which
establishes that a number of derivatives from the configurations Γext ▹ M ◃ Buff and Γext ▹ M ◃ eBuff
cannot be related for any amortisation credit. This Lemma, in turn, relies on Lemma 6.1, which es-
tablishes that, for a particular amortisation credit n, if some pair of derivatives of the configurations
Γext ▹ M ◃ Buff and Γext ▹ M ◃ eBuff resp. cannot be related, then other pairs of derivatives cannot
be related either. Lemma 6.1 is used again by Theorem 6.3 to derive that, from the unrelated pairs
identified by Lemma 6.2, the required pair of configurations Γext ▹ M ◃ Buff and Γext ▹ M ◃ eBuff
cannot be related for any amortisation credit. Upon first reading, the reader who is only interested
in the eventual result may safely skip to the statement of Theorem 6.3 and treat Lemma 6.2 and
Lemma 6.1 as black-boxes.

In order to be able to state Lemma 6.1 and Lemma 6.2 more succinctly, we find it convenient
to delineate groups of processes relating to derivatives of Buff and eBuff. For instance, we can
partition the processes depicted in the transition graph of Figure 7 (derivatives of eBuff) into three

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RESOURCE MANAGEMENT 41

sets:

PrcA
def
=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

Frn∥b!c2 ∥c1!(v, c2)∥eBk”(c1)
)

,
(

Frn’∥b!c2 ∥c1!(v, c2)∥eBk”(c1)
)

, c1 " c2 ∈
(

Frn”(c2)∥c1!(v, c2)∥eBk”(c1)
)

,
(

Frn∥b!c2 ∥eBk”’(c1, v, c2)
)

, Chan \ {in, out, b, d}
(

Frn’ ∥ b!c2 ∥ eBk”’(c1, v, c2)
)

,
(

Frn”(c2) ∥ eBk”’(c1, v, c2)
)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

PrcB
def
=

{
(

Frn∥b!c2 ∥eBk””(v, c2)
)

,
(

Frn’∥b!c2 ∥eBk””(v, c2)
)

, c2 ∈ Chan \ {in, out, b, d}
(

Frn”(c2)∥eBk””(v, c2)
)

}

PrcC
def
=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

Frn ∥ b!c2 ∥ eBk ∥ d!c2
)

,
(

Frn’ ∥ b!c2 ∥ eBk ∥ d!c2
)

,
(

Frn”(c2) ∥ eBk ∥ d!c2
)

,
(

Frn ∥ b!c2 ∥ eBk’ ∥ d!c2
)

,
(

Frn’ ∥ b!c2 ∥ eBk’ ∥ d!c2
)

,
(

Frn”(c2) ∥ eBk’ ∥ d!c2
)

, c2 ∈ Chan \ {in, out, b, d}
(

Frn ∥ b!c2 ∥ eBk”(c2)
)

,
(

Frn’ ∥ b!c2 ∥ eBk”(c2)
)

,
(

Frn”(c2) ∥ eBk”(c2)
)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

With respect to the transition graph of Figure 7, PrcA groups the processes after the allocation of an
(arbitrary) internal channel c2 but not before any deallocation, i.e., the second and third rows of the
graph. The set PrcB groups the processes after the deallocation of the (arbitrary) internal channel
c1, i.e., the fourth row of the graph. Finally, the set PrcC groups processes after the output action
out!v is performed (before an input action is performed), i.e., the last three rows of the graph.

Lemma 6.1 (Related Negative Results).
(1) For any amortisation credit n and appropriate M,N, whenever:
• Γext $ M ◃ Frn”’(c1, v)∥Bck”(c1) ̸"∼nbis N ◃ Frn”’(c

′
1, v)∥eBk”(c

′
1)

• For any Q ∈ PrcA we have Γext $ M ◃ Frn”’(c1, v)∥Bck”(c1) ̸"∼n+1bis N ◃ Q
• For any Q ∈ PrcB we have Γext $ M ◃ Frn”’(c1, v)∥Bck”(c1) ̸"∼nbis N ◃ Q
then, for any P ∈ PrcC, we have Γext $ M ◃ Frn”(c1)∥Bck”(c1) ̸"∼nbis N ◃ P.

(2) For any amortisation credit n and appropriate M,N, and for any Q ∈ PrcC:
(a) Γext $ M ◃ Frn”(c1)∥Bck”(c1) ̸"∼nbis N ◃ Q implies

for any P ∈ PrcC Γext $ M ◃ Frn’∥b!c1 ∥Bck”(c1) ̸"∼nbis N ◃ P
(b) Γext $ M ◃ Frn’∥b!c1 ∥Bck”(c1) ̸"∼nbis N ◃ Q implies

for any P ∈ PrcC Γext $ M ◃ Frn∥b!c1 ∥Bck”(c1) ̸"∼nbis N ◃ P
(c) Γext $ M ◃ Frn∥b!c1 ∥Bck”(c1) ̸"∼nbis N ◃ Q implies

for any P ∈ PrcC Γext $ M ◃ Frn∥b!c1 ∥Bck’∥d!c1 ̸"∼nbis N ◃ P
(d) Γext $ M ◃ Frn∥b!c1 ∥Bck’∥d!c1 ̸"∼nbis N ◃ Q implies

for any P ∈ PrcC Γext $ M ◃ Frn∥b!c1 ∥Bck∥d!c1 ̸"∼nbis N ◃ P
(3) For any amortisation credit n and appropriate M,N, and for any R ∈ PrcB, Q ∈ PrcC:

(a) Γext $ M ◃ Frn∥b!c2 ∥Bck∥d!c2 ̸"∼nbis N ◃ Q implies
for any P ∈ PrcB Γext $ M ◃ Frn∥b!c2 ∥Bck”’(v, c2) ̸"∼nbis N ◃ P

(b) Γext $ M ◃ Frn∥b!c2 ∥Bck”’(v, c2) ̸"∼nbis N ◃ R implies
for any P ∈ PrcB Γext $ M ◃ Frn∥b!c2 ∥c1!(v, c2)∥Bck”(c1) ̸"∼nbis N ◃ P

(4) For any amortisation credit n and appropriate M,N, and for any Q ∈ PrcC:
(a) Γext $ M ◃ Frn∥b!c1 ∥Bck∥d!c1 ̸"∼nbis N ◃ Q implies

for any P ∈ PrcA Γext $ M ◃ Frn∥b!c1 ∥Bck”’(v, c1) ̸"∼n+1bis N ◃ P
(b) Γext $ M ◃ Frn∥b!c1 ∥Bck∥d!c1 ̸"∼nbis N ◃ Q implies
Γext $ M ◃ Frn∥b!c1 ∥Bck”’(v, c1) ̸"∼nbis N ◃ Frn”’(c′1, v) ∥ eBk”(c

′
1)

(c) Γext $ M ◃ Frn∥b!c1 ∥Bck∥d!c1 ̸"∼nbis N ◃ Q implies
Γext $ M ◃ Frn∥b!c2 ∥c1!(v, c2)∥Bck”(c1) ̸"∼nbis N ◃ Frn”’(c

′
1, v) ∥ eBk”(c

′
1)

42 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

Proof. Each case is proved by contradiction:
(1) Assume the premises together with the inverse of the conclusion, i.e.,

Γext $ M ◃ Frn”(c1)∥Bck”(c1) "∼nbis N ◃ P.
Consider the transition from the left-hand configuration:

Γext ▹ M ◃ Frn”(c1)∥Bck”(c1)
in?v
−−−−→0 Γext ▹ M ◃ Frn”’(c1, v)∥Bck”(c1).

For any P ∈ PrcC, this can only be matched by the right-hand configuration, Γext ▹N ◃P, through
either of the following cases:
(a) Γext ▹ N ◃ P

in?v
====⇒0 Γext ▹ N ◃ Frn”’(c′1, v) ∥ eBk”(c

′
1), i.e., a weak input action without

trailing τ-moves after the external action in?v— see first row of the graph in Figure 7. But
we know Γext $ M ◃ Frn”’(c1, v) ∥Bck”(c1) ̸ "∼nbis N ◃ Frn”’(c

′
1, v) ∥ eBk”(c

′
1) from the first

premise.
(b) Γext ▹ N ◃ P

in?v
====⇒+1 Γext ▹ N ◃ Q for some Q ∈ PrcA. However, from the second premise

we know that Γext $ M ◃ Frn”’(c1, v)∥Bck”(c1) ̸"∼n+1bis N ◃ Q

(c) Γext ▹ N ◃ P
in?v
====⇒0 Γext ▹ N ◃ Q for some Q ∈ PrcB. Again, from the third premise we

know that Γext $ M ◃ Frn”’(c1, v)∥Bck”(c1) ̸"∼nbis N ◃ Q
Since Γext ▹ N ◃ P cannot perform a matching move, we obtain a contradiction.

(2) We here prove case (a). The other cases are analogous.
Assume Γext $ M ◃ Frn’∥b!c1 ∥Bck”(c1) "∼nbis N ◃ P and consider the action

Γext ▹ M ◃ Frn’∥b!c1 ∥Bck”(c1)
τ
−−→0 Γext ▹ M ◃ Frn”(c1)∥Bck”(c1).

For our assumption to hold, Γext ▹N ◃P would need to match this move by a (weak) silent action
leading to a configuration that can match Γext ▹M ◃Frn”(c1)∥Bck”(c1). The only matching move
can be

Γext ▹ N ◃ P =⇒0 Γext ▹ N ◃ Q for some Q ∈ PrcC.
However, from our premise we know Γext $ M ◃ Frn”(c1) ∥ Bck”(c1) ̸ "∼nbis N ◃ Q′ for any
amortisation credit n and Q′ ∈ PrcC and therefore conclude that the move cannot be matched,
thereby obtaining a contradiction.

(3) We here prove case (a). Case (b) is analogous.
Assume Γext $ M ◃ Frn∥b!c2 ∥Bck”’(v, c2) "∼nbis N ◃ P and consider the action

Γext ▹ M ◃ Frn∥b!c2 ∥Bck”’(v, c2)
out!v
−−−−−→0 Γext ▹ M ◃ Frn∥b!c2 ∥Bck∥d!c2

This action can only be matched by a transition of the form

Γext ▹ N ◃ P
out!v
=====⇒0 Γext ▹ N ◃ Q for some Q ∈ PrcC.

However, from our premise we know Γext $ M ◃ Frn ∥ b!c2 ∥ Bck ∥ d!c2 ̸ "∼
n
bis N ◃ Q for

any amortisation credit n and Q ∈ PrcC. Thus we conclude that the move cannot be matched,
thereby obtaining a contradiction.

(4) Cases (a) and (b) are analogous to 3(a) and 3(b). We here outline the proof for case (c).

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RESOURCE MANAGEMENT 43

First we note that from the premise Γext $ M ◃ Frn ∥ b!c1 ∥ Bck ∥ d!c1 ̸ "∼nbis N ◃ Q (for any
Q ∈ PrcC) and Lemma 6.1.3(a), Lemma 6.1.4(a) and Lemma 6.1.4(b) resp. we obtain:

Γext $ M ◃ Frn∥b!c2 ∥Bck”’(v, c2) ̸"∼nbis N ◃ P for any P ∈ PrcB (6.6)
Γext $ M ◃ Frn∥b!c1 ∥Bck”’(v, c1) ̸"∼n+1bis N ◃ P for any P ∈ PrcA (6.7)
Γext $ M ◃ Frn∥b!c1 ∥Bck”’(v, c1) ̸"∼nbis N ◃ Frn”’(c

′
1, v) ∥ eBk”(c

′
1) (6.8)

We assume Γext $ M ◃ Frn ∥ b!c2 ∥ c1!(v, c2) ∥Bck”(c1) "∼nbis N ◃ Frn”’(c
′
1, v) ∥ eBk”(c

′
1) and

then showing that this leads to a contradiction. Consider the move

Γext ▹ M ◃ Frn∥b!c2 ∥c1!(v, c2)∥Bck”(c1)
τ
−−→0 Γext ▹ M ◃ Frn∥b!c2 ∥Bck”’(v, c2)

This can be matched by Γext ▹ N ◃ Frn”’(c′1, v) ∥ eBk”(c
′
1) using either of the following moves:

• Γext ▹ N ◃ Frn”’(c′1, v) ∥ eBk”(c
′
1) =⇒0 Γext ▹ N ◃ Frn”’(c′1, v) ∥ eBk”(c

′
1). But (6.8) prohibits

this from being the matching move.
• Γext ▹ N ◃ Frn”’(c′1, v) ∥ eBk”(c

′
1) =⇒+1 Γext ▹ N ◃ Q for some Q ∈ PrcA. But (6.7) prohibits

this from being the matching move.
• Γext ▹ N ◃ Frn”’(c′1, v) ∥ eBk”(c

′
1) =⇒0 Γext ▹ N ◃ Q for some Q ∈ PrcB. But (6.6) prohibits

this from being the matching move.
This contradicts our earlier assumption.

Lemma 6.2. For all n ∈ Nat and appropriate M,N:
(1) For any Q ∈ PrcA we have Γext $ M ◃ Frn ∥ b!c2 ∥ Bck”’(v, c2) ̸"∼nbis N ◃ Q
(2) For any Q ∈ PrcA we have Γext $ M ◃ Frn ∥ b!c2 ∥ c1!(v, c2) ∥ Bck”(c1) ̸"∼nbis N ◃ Q
(3) For any Q ∈ PrcA we have Γext $ M ◃ Frn”’(c1, v) ∥ Bck”(c1) ̸"∼n+1bis N ◃ Q
(4) For any Q ∈ PrcB we have Γext $ M ◃ Frn”’(c1, v) ∥ Bck”(c1) ̸"∼nbis N ◃ Q
(5) Γext $ M ◃ Frn”’(c1, v) ∥ Bck”(c1) ̸"∼nbis N ◃ Frn”’(c

′
1, v) ∥ eBk”(c

′
1)

Proof. We prove statements (1) to (5) simultaneously, by induction on n.
n = 0: We prove each clause by contradiction:

(1) Assume Γext $ M ◃ Frn ∥ b!c2 ∥ Bck”’(v, c2) "∼0bis N ◃ Q for some Q ∈ PrcA and consider the
transition

Γext ▹ M ◃ Frn ∥ b!c2 ∥ Bck”’(v, c2)
out!v
−−−−−→0 Γext ▹ M ◃ Frn ∥ b!c2 ∥ Bck ∥ d!c2

For any Q ∈ PrcA, this cannot be matched by any move from Γext ▹N ◃Q since output actions
must be preceded by a channel deallocation, which incurs a negative cost — see second and
third rows of the graph in Figure 7. Stated otherwise, every matching move can only be of
the form

Γext ▹ N ◃ Q
out!v
=====⇒−1 Γext ▹ N′ ◃ Q′

where N =
(

N′, c′1
)

for some c′1 and Q
′ ∈ PrcC. However, since the amortisation credit

cannot be negative, we can never have Γext $ M ◃ Frn ∥ b!c2 ∥ Bck ∥ d!c2 "∼−1bis N′ ◃ Q′. We
therefore obtain a contradiction.

(2) Assume Γext $ M ◃ Frn ∥ b!c2 ∥ c1!(v, c2) ∥ Bck”(c1) "∼0bis N ◃ Q for some Q ∈ PrcA and
consider the transition
Γext ▹ M ◃ Frn ∥ b!c2 ∥ c1!(v, c2) ∥ Bck”(c1)

τ
−−→0 Γext ▹ M ◃ Frn ∥ b!c2 ∥ Bck”’(v, c2)

Since the amortisation credit can never be negative, the matching move can only be of the
form

Γext ▹ N ◃ Q =⇒0 Γext ▹ N ◃ Q′

44 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

for some Q′ ∈ PrcA. But then we get a contradiction since, from the previous clause, we
know that Γext $ M ◃ Frn ∥ b!c2 ∥ Bck”’(v, c2) ̸"∼0bis N ◃ Q

′.
(3) Assume Γext $ M ◃ Frn”’(c1, v) ∥ Bck”(c1) "∼1bis N ◃ Q for some Q ∈ PrcA and consider the

transition
Γext ▹ M ◃ Frn”’(c1, v) ∥ Bck”(c1)

τ
−−→+1 Γext ▹ M, c2 ◃ Frn ∥ b!c2 ∥ c1!(v, c2) ∥ Bck”(c1)

for some newly allocated channel c2. As in the previous case, since the amortisation credit
can never be negative, the matching move can only be of the form

Γext ▹ N ◃ Q =⇒0 Γext ▹ N ◃ Q′

for some Q′ ∈ PrcA. But then we get a contradiction since, from the previous clause, we
know that Γext $ (M, c2) ◃ Frn ∥ b!c2 ∥ c1!(v, c2) ∥ Bck”(c1) ̸"∼0bis N ◃ Q

′.
(4) Analogous to the previous case.
(5) Assume Γext $ M ◃ Frn”’(c1, v) ∥ Bck”(c1) "∼0bis N ◃ Frn”’(c

′
1, v) ∥ eBk”(c

′
1) and consider the

transition
Γext ▹ M ◃ Frn”’(c1, v) ∥ Bck”(c1)

τ
−−→+1 Γext ▹ M, c2 ◃ Frn ∥ b!c2 ∥ c1!(v, c2) ∥ Bck”(c1)

Since the transition incurred a cost of +1 and the current amortisation credit is 0, the match-
ing weak transition must also incur a cost of +1 and thus Γext ▹ N ◃ Frn”’(c′1, v) ∥ eBk”(c

′
1)

can only match this by the move

Γext ▹ N ◃ Frn”’(c′1, v) ∥ eBk”(c
′
1)

τ
=⇒+1 Γext ▹ N, c′2 ◃ Q

for some Q ∈ PrcA. But then we still get a contradiction since, from clause (2), we know
Γext $ M ◃ Frn ∥ b!c2 ∥ c1!(v, c2) ∥ Bck”(c1) ̸"∼0bis N ◃ Q.

n = k + 1: We prove each clause by contradiction. However before we tackle each individual clause,
we note that from clauses (3), (4) and (5) of the I.H. we know

For any Q ∈ PrcA we have Γext $ M ◃ Frn”’(c1, v) ∥ Bck”(c1) ̸"∼k+1bis N ◃ Q
For any Q ∈ PrcB we have Γext $ M ◃ Frn”’(c1, v) ∥ Bck”(c1) ̸"∼kbis N ◃ Q
Γext $ M ◃ Frn”’(c1, v) ∥ Bck”(c1) ̸"∼kbis N ◃ Frn”’(c1, v) ∥ eBk”(c1)

By Lemma 6.1.1 we obtain, for any Q′ ∈ PrcC and appropriate N′:
Γext $ M ◃ Frn”(c1)∥Bck”(c1) ̸"∼kbis N

′ ◃ Q′

and by Lemma 6.1.2(a), Lemma 6.1.2(b), Lemma 6.1.2(c) and Lemma 6.1.2(d) we obtain, for
any Q′ ∈ PrcC and appropriate N′:

Γext $ M ◃ Frn ∥ b!c2 ∥ Bck ∥ d!c2 ̸"∼kbis N ◃ Q
′ (6.9)

Also, by (6.9), Lemma 6.1.3(a) and Lemma 6.1.3(b) we obtain, for any Q′′ ∈ PrcB:
Γext $ M ◃ Frn∥b!c2 ∥Bck”’(v, c2) ̸"∼kbis N ◃ Q

′′ (6.10)
Γext $ M ◃ Frn∥b!c2 ∥c1!(v, c2)∥Bck”(c1) ̸"∼kbis N ◃ Q

′′ (6.11)
Moreover, by (6.9), Lemma 6.1.4(a), Lemma 6.1.4(b) and Lemma 6.1.4(c) we obtain:

Γext $ M ◃ Frn∥b!c2 ∥c1!(v, c2)∥Bck”(c1) ̸"∼kbis N ◃ Frn”’(c
′
1, v) ∥ eBk”(c

′
1) (6.12)

The proofs for each clause are as follows:

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RESOURCE MANAGEMENT 45

(1) Assume Γext $ M ◃ Frn ∥ b!c2 ∥ Bck”’(v, c2) "∼k+1bis N ◃Q for some Q ∈ PrcA and consider the
transition

Γext ▹ M ◃ Frn ∥ b!c2 ∥ Bck”’(v, c2)
out!v
−−−−−→0 Γext ▹ M ◃ Frn ∥ b!c2 ∥ Bck ∥ d!c2

For any Q ∈ PrcA, this can (only) be matched by any move of the form

Γext ▹ N ◃ Q
out!v
=====⇒−1 Γext ▹ N′ ◃ Q′

where N =
(

N′, c′1
)

for some c′1, Q
′ ∈ PrcC, and the external action out!v is preceded by a

τ-move deallocating c′1. For our initial assumption to hold we need to show that at least one
of these configurations Γext ▹ N′ ◃ Q′ satisfies the property

Γext $ M ◃ Frn ∥ b!c2 ∥ Bck ∥ d!c2 "∼kbis N
′ ◃ Q′.

But by (6.9) we know that no such configuration exists, thereby contradicting our initial
assumption.

(2) Assume Γext $ M ◃ Frn ∥ b!c2 ∥ c1!(v, c2) ∥ Bck”(c1) "∼k+1bis N ◃ Q for some Q ∈ PrcA and
consider the transition
Γext ▹ M ◃ Frn ∥ b!c2 ∥ c1!(v, c2) ∥ Bck”(c1)

τ
−−→0 Γext ▹ M ◃ Frn ∥ b!c2 ∥ Bck”’(v, c2)

This transition can be matched by Γext ▹ N ◃ Q through either of the following moves:
(a) Γext ▹N ◃Q =⇒0 Γext ▹N ◃Q′ for some Q′ ∈ PrcA. However, from the previous clause,

i.e., clause (1) when n = k + 1, we know that this cannot be the matching move since
Γext $ M ◃ Frn ∥ b!c2 ∥ Bck”’(v, c2) ̸"∼k+1bis N ◃ Q′.

(b) Γext ▹ N ◃ Q =⇒−1 Γext ▹ N′ ◃ Q′ for some Q′ ∈ PrcB and N =
(

N′, c′1
)

. However, from
(6.10), we know that this cannot be the matching move since Γext $ M ◃ Frn ∥ b!c2 ∥
Bck”’(v, c2) ̸"∼kbis N′ ◃ Q′.

Thus, we obtain a contradiction.
(3) Assume Γext $ M ◃ Frn”’(c1, v) ∥ Bck”(c1) "∼k+2bis N ◃ Q, where Q ∈ PrcA, and consider the

transition:
Γext ▹ M ◃ Frn”’(c1, v) ∥ Bck”(c1)

τ
−−→+1 Γext ▹ M, c2 ◃ Frn ∥ b!c2 ∥ c1!(v, c2) ∥ Bck”(c1)

for some newly allocated channel c2. This can be matched by Γext ▹ N ◃ Q through either of
the following moves:
(a) Γext ▹N ◃Q =⇒0 Γext ▹N ◃Q′ for some Q′ ∈ PrcA. However, from the previous clause,

i.e., clause (2) when n = k + 1, we know that this cannot be the matching move since
Γext $ M, c2 ◃ Frn ∥ b!c2 ∥ c1!(v, c2) ∥ Bck”(c1) ̸"∼k+1bis N ◃ Q′.

(b) Γext ▹ N ◃ Q =⇒−1 Γext ▹ N′ ◃ Q′ for some Q′ ∈ PrcB and N =
(

N′, c′1
)

. However, from
(6.11), we know that this cannot be the matching move since Γext $ M ◃ Frn ∥ b!c2 ∥
c1!(v, c2)∥Bck”(c1) ̸"∼kbis N′ ◃ Q′.

Thus, we obtain a contradiction.
(4) Analogous to the proof for the previous clause and relies on (6.11) again.
(5) Assume Γext $ M ◃ Frn”’(c1, v) ∥ Bck”(c1) "∼k+1bis N ◃ Frn”’(c′1, v) ∥ eBk”(c

′
1) and consider the

transition
Γext ▹ M ◃ Frn”’(c1, v) ∥ Bck”(c1)

τ
−−→+1 Γext ▹ M, c2 ◃ Frn ∥ b!c2 ∥ c1!(v, c2) ∥ Bck”(c1)

for some newly allocated channel c2. This can be matched by the right-hand configuration
Γext ▹ N ◃ Frn”’(c′1, v) ∥ eBk”(c

′
1) through either of the following moves:

46 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

(a) Γext▹N◃Frn”’(c′1, v) ∥ eBk”(c
′
1) =⇒0 Γext▹N◃Frn”’(c′1, v) ∥ eBk”(c

′
1), i.e., no transitions.

However, from (6.12), this cannot be the matching move since Γext $ M ◃ Frn ∥ b!c2 ∥
c1!(v, c2)∥Bck”(c1) ̸"∼kbis N ◃ Frn”’(c′1, v) ∥ eBk”(c

′
1).

(b) Γext ▹ N ◃ Frn”’(c′1, v) ∥ eBk”(c
′
1)

τ
=⇒+1 Γext ▹ N, c′2 ◃ Q

′ for some Q′ ∈ PrcA and
c′2 ! N. However, from clause (2) when n = k + 1, this cannot be the matching move
since Γext $ M, c2 ◃ Frn ∥ b!c2 ∥ c1!(v, c2) ∥ Bck”(c1) ̸"∼k+1bis N, c′2 ◃ Q

′.
(c) Γext ▹ N ◃ Frn”’(c′1, v) ∥ eBk”(c

′
1)

τ
=⇒0 Γext ▹

(

N′, c′2
)

◃ Q′ for some Q′ ∈ PrcB,
N =

(

N′, c′1
)

and c′2 ! N. However, from (6.11), this cannot be the matching move
since Γext $ M ◃ Frn∥b!c2 ∥c1!(v, c2)∥Bck”(c1) ̸"∼kbis

(

N′, c′2
)

◃ Q′.

Theorem 6.3 (Strict Inefficiency). For all n ≥ 0 and appropriate M we have
Γext $ M ◃ Buff ̸"∼nbis M ◃ eBuff

Proof. Since:

Buff def
= Frn”(c1) ∥ Bck”(c1) eBuff def

= Frn”(c1) ∥ eBk”(c1)
we need to show that

Γext $ M ◃ Frn”(c1) ∥ Bck”(c1) ̸"∼nbis M ◃ Frn”(c1) ∥ eBk”(c1)
for any arbitrary n. By Lemma 6.2.3, Lemma 6.2.4 and Lemma 6.2.5 we know that for any n:

For any Q ∈ PrcA we have Γext $ M ◃ Frn”’(c1, v) ∥ Bck”(c1) ̸"∼n+1bis M ◃ Q (6.13)
For any Q ∈ PrcB we have Γext $ M ◃ Frn”’(c1, v) ∥ Bck”(c1) ̸"∼nbis M ◃ Q (6.14)
Γext $ M ◃ Frn”’(c1, v) ∥ Bck”(c1) ̸"∼nbis M ◃ Frn”’(c1, v) ∥ eBk”(c1) (6.15)

Since
(

Frn”(c1) ∥ eBk”(c1)
)

∈ PrcC, by Lemma 6.1.1, (6.13), (6.14) and (6.15) we conclude
Γext $ M ◃ Frn”(c1) ∥ Bck”(c1) ̸"∼nbis M ◃ Frn”(c1) ∥ eBk”(c1)

as required.

6.2. Proving Relative Efficiency. As opposed to Theorem 6.3, the proof for (6.4) requires us to
consider the entire state-space of Γext ▹ M ◃ Buff and Γext ▹ M ◃ eBuff. Fortunately, we can apply
the compositionality result of Theorem 4.23 to prove (6.1) and focus on a subset of this state-space.
More precisely, we recall from (6.5) that

Buff def
= Frn”(c1) ∥ Bck”(c1) eBuff def

= Frn”(c1) ∥ eBk”(c1)
where both buffer implementation share the common sub-process Frn”(c1). We also recall from
(3.3) that this common sub-process was typed wrt. the type environment

ΓFrn = in : [T]ω, b : [Trec]ω, c1 : [T,Trec]1.
Theorem 4.23 thus states that in order to prove (6.1), it suffices to abstract away from this common
code and prove Theorem 6.4

Theorem 6.4 (Relative Efficiency). (

Γext, ΓFrn
)

$ M ◃ eBk”(c1) "∼0bis M ◃ Bck”(c1)

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RESOURCE MANAGEMENT 47

Proof. We prove Γext, ΓFrn $ M◃eBk”(c1) "∼0bis M◃Bck”(c1) through the family of relations R defined
below, which includes the required quadruple ⟨(Γext, ΓFrn), 0,

(

M ◃ eBk”(c1)
)

,
(

M ◃ Bck”(c1)
)

⟩.

R
def
=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⟨
(

Γ,∆
)

, n,
(

M′ ◃ eBk”(c)
)

,
(

N′ ◃ Bck”(c)
)

⟩

⟨
(

Γ,∆
)

, n,
(

M′ ◃ eBk”’(c, v, c′)
)

,
(

N′ ◃ Bck”’(v, c′)
)

⟩
(

Γext, ΓFrn
)

≺ Γ

⟨
(

Γ,∆
)

, n,
(

M′′ ◃ eBk””(v, c′)
)

,
(

N′ ◃ Bck”’(v, c′)
)

⟩ n ≥ 0, M′ ⊆ N′
⟨
(

Γ,∆
)

, n,
(

M′′ ◃ eBk ∥ d!c′
)

,
(

N′ ◃ Bck ∥ d!c′
)

⟩ c ! M′′, M′′ ⊂ N′′, c ∈ N′′
⟨
(

Γ,∆
)

, n,
(

M′′ ◃ eBk’ ∥ d!c′
)

,
(

N′ ◃ Bck’ ∥ d!c′
)

⟩

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

Note that, in the quadruples of R our observer environment is not limited to derived environments
Γ obtained from restructurings of Γext, ΓFrn, but may include also additional entries, denoted by the
environment ∆; these originate from observer channel allocations and uses through the transition
rules lAllE and lStr from Figure 5. R observes the transfer property of Definition 4.9. We here go
over some key transitions:
• Consider a tuple from the first clause of the relation, for some Γ,∆, n and c i.e.,

(

Γ,∆
)

$
(

M′ ◃ eBk”(c)
)

Rn
(

N′ ◃ Bck”(c)
)

We recall from the macros introduced in Section 6 that
eBk”(c) = c?(y, z).free c.out!y.

(

eBk ∥ d!z
)

Bck”(c) = c?(y, z).out!y.
(

Bck ∥ d!z
)

Whenever
(

Γ,∆
)

allows it, the left hand configuration can perform an input transitions
(

Γ,∆
)

▹ M′ ◃ eBk”(c)
c?(v,c′)
−−−−−−→0

(

Γ′,∆′
)

▹ M′ ◃ eBk”’(c, v, c′)
where Γ = Γ′, c : [T,Trec]1 and ∆ = ∆′, v :T, c′ :Trec. This can be matched by the transition

(

Γ,∆
)

▹ N′ ◃ Bck”(c)
c?(v,c′)
−−−−−−→0

(

Γ′,∆′
)

▹ N′ ◃ Bck”’(v, c′)
where we have

(

Γ′,∆′
)

$
(

M′ ◃ eBk”’(c, v, c′)
)

Rn
(

N′ ◃Bck”’(v, c′)
)

from the second clause of R.
The matching move for an input action from the right-hand configuration is dual to this. Matching
moves for env, alloc and free c actions are analogous.
• Consider a tuple from the first clause of the relation, for some Γ,∆, n, c, v and c′ i.e.,

(

Γ,∆
)

$
(

M′ ◃ eBk”’(c, v, c′)
)

Rn
(

N′ ◃ Bck”’(v, c′)
)

Since eBk”’(c, v, c′) = free c.out!v.
(

eBk ∥ d!c′
)

, a possible transition by the left-hand configu-
ration is the deallocation of channel c:

(

Γ,∆
)

▹ M′ ◃ eBk”’(c, v, c′) τ
−−→−1

(

Γ,∆
)

▹ M′′ ◃ eBk””(v, c′)
where M′ = M′′, c. In this case, the matching move is the empty (weak) transition, since we have
(

Γ,∆
)

$
(

M′′ ◃ eBk””(v, c′)
)

Rn+1
(

N′ ◃ Bck”’(v, c′)
)

by the third clause of R. Dually, if
(

Γ,∆
)

allows it, the right hand configuration may perform an output action
(

Γ,∆
)

▹ N′ ◃ Bck”’(v, c′) out!v
−−−−−→0

(

Γ,∆, v :T
)

▹ N′ ◃ Bck ∥ d!c′

This can be matched by the weak output action
(

Γ,∆
)

▹ M′ ◃ eBk”’(c, v, c′)
out!v
=====⇒−1

(

Γ,∆, v :T
)

▹ M′′ ◃ eBk ∥ d!c′

where M′ = M′′, c; by the fourth clause of R, we know that this a matching move because
(

Γ,∆, v :T) $ (

M′′ ◃ eBk ∥ d!c′
)

Rn+1
(

N′ ◃ Bck ∥ d!c′
)

.

48 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

7. RelatedWork

A note on terminology: From a logical perspective, a linear assumption is one that cannot be weak-
ened nor contracted, while an affine assumption cannot be contracted but can be weakened. This
leads to a reading of linear as “used exactly once” and of affine as “used at most once”. However,
in the presence of divergence or deadlock, most linear type systems do not in fact guarantee that
a linear resource will be used exactly once. In the discussion below, we will classify such type
systems as affine instead.

Linear logic was introduced by Girard [14]; its use as a type system was pioneered by Wadler
[43]. Uniqueness typing was introduced by Barendsen and Smetsers [5]; the relation to linear logic
has since been discussed in a number of papers (see [17]).

Although there are many substructural (linear or affine) type systems for process calculi [1, 2, 3,
25, 32, 44, and others], some specifically for resources [33], the literature on behaviour of processes
typed under such type systems is much smaller.

Kobayashi et al. [31] introduce an affine type system for the π-calculus. Their channels have a
polarity (input, output, or input/output) as well as a multiplicity (unrestricted or affine), and an affine
input/output can be split as an affine input and an affine output channel. Communication on an affine
input/affine output channel is necessarily deterministic, like communication on an affine/unique-
after-1 channel in our calculus; however, both processes lose the right to use the channel after the
communication, limiting reuse. Although the paper gives a definition of reduction closed barbed
congruence, no compositional proof methods are presented.

Yoshida et al [45, 23] define a linear type system, which uses “action types” to rule out dead-
lock. The use of action types means that the type system can provide some guarantees that we
cannot; this is however an orthogonal aspect of the type system and it would be interesting to see
if similar techniques can be applied in our setting. Their type system does not have any type that
corresponds to uniqueness; instead, the calculus is based on πI to control dynamic sharing of names
syntactically, thereby limiting channel reuse. The authors give compositional proof techniques for
their behavioural equivalence, but give no complete characterization.

Teller [41] introduces a π-calculus variant with “finalizers”, processes that run when a resource
has been deallocated. The deallocation itself however is performed by a garbage collector. The
calculus comes with a type system that provides bounds on the resources that are used, although the
scope of channel reuse is limited in the absence of some sort of uniqueness information. Although
the paper defines a bisimulation relation, this relation does not take advantage of type information,
and no compositionality results or characterization is given.

Hoare and O’Hearn [22] give a trace semantics for a variant of CSP with point-to-point commu-
nication and explicit allocation and deallocation of channels, which relies on separation of permis-
sions. However, they do not consider any behavioural theories. Pym and Tofts [39] similarly give
a semantics for SCCS with a generic notion of resource, based on separation of permissions; they
do however consider behaviour. They define a bisimulation relation, and show that it can be char-
acterized by a modal logic. These approaches do not use a type system but opt for an operational
interpretation of permissions, where actions may block due to lack of permissions. Nevertheless,
our consistency requirements for configurations (Definition 4.1) can be seen as separation criteria
for permission environments. A detailed comparison between this untyped approach and our typed
approach would be worthwhile.

Apart from the Clean programming language [6], from where uniqueness types originated,
static analysis relating to uniqueness has recently been applied to (more mainstream) Object-Ori-
ented programming languages [15] as well. In such cases, it would be interesting to investigate

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RESOURCE MANAGEMENT 49

whether the techniques developed in this work can be applied to a behavioural setting such as that
in [26].

Our unique-after-i type is related to fractional permissions, introduced in [9] and used in set-
tings such as separation logic for shared-state concurrency [8]. A detailed survey of this field is
however beyond the scope of this paper.

The use of substitutions in our LTS (Definition 4.3) is reminiscent of the name-bijections carried
around in spi-calculus bisimulations [7]. In the spi-calculus however this substitution is carried
through the bisimulation, and must remain a bijection throughout. Since processes may lose the
permission to use channels in our calculus, this approach is too restrictive for us.

Finally, amortisation for coinductive reasoning was originally developed by Keihn et al., [30]
and Lüttgen et al. [34]. It is investigated further by Hennessy in [20], whereby a correspondence
with (an adaptation of) reduction-barbed congruences is established. However, neither work consid-
ers aspects of resource misuse nor the corresponding use of typed analysis in their behavioural and
coinductive equivalences.

8. Conclusion

We have presented a compositional behavioural theory for Rπ, a π-calculus variant with mechanisms
for explicit resource management; a preliminary version of the work appeared in [11]. The theory
allows us to compare the efficiency of concurrent channel-passing programs wrt. their resource
usage. We integrate the theory with a substructural type system so as to limit our comparisons to
safe programs. In particular, we interpret the type assertions of the type system as permissions, and
use this to model (explicit and implicit) permission transfer between the systems being compared
and the observer during compositional reasoning. Our contributions are as follows:
(1) We define a costed semantic theory that orders systems of safe Rπ programs, based on their

costed extensional behaviour when deployed in the context of larger systems; Definition 5.5.
Apart from cost, formulations relating to contextuality are different from those of typed congru-
ences such as [21], because of the kind of type system used i.e., substructural.

(2) We define a bisimulation-based proof technique that allows us to order Rπ programs coinduc-
tively, without the need to universally quantify over the possible contexts that these programs
may be deployed in; Definition 4.9. As far as we are aware, the combination of actions-in-
context and costed semantics, used in unison with implicit and explicit transfer of permissions
so as to limit the efficiency analysis to safe programs, is new.

(3) We prove a number of properties for our bisimulation preorder of Definition 4.9, facilitating
the proof constructions for related programs. Whereas Corollary 4.13 follows [30, 20], Theo-
rem 4.23 extends the property of compositionality for amortised bisimulations to a typed setting.
Lemma 4.14, together with the concept of bounded amortisation, appears to be novel altogether.

(4) We prove that the bisimulation preorder of Definition 4.9 is a sound and complete proof tech-
nique for the costed behavioural preorder of Definition 5.5; Theorem 5.10 and Theorem 5.18. In
order to obtain completeness, the LTS definitions employ non-standard mechanisms for explicit
renaming of channel names not known to the context. Also, the concept of (typed) action defin-
ability [21, 19] is different because it needs to take into consideration cost and typeability wrt.
a substructural type system; the latter aspect also complicated the respective Extrusion Lemma
— see Lemma 5.15.

(5) We demonstrate the utility of the semantic theory and its respective proof technique by applying
them to reason about the client-server systems outlined in the Introduction and a case study,
discussed in Section 3.

50 A. FRANCALANZA, E. DEVRIES, AND M. HENNESSY

Future Work. The extension of our framework to a higher-order and distributed setting seems
worthwhile. Also, the amalgamation of our uniqueness types with modalities for input and out-
put [38] would give scope for richer notions of subtyping involving covariance and contravariance,
affecting the respective behavioural theory; it would be interesting to explore how our notions of per-
mission transfer extend to such a setting. It is also worth pursuing the applicability of the techniques
developed in this work to nominal automata such as Variable Automata [16] and Finite-Memory Au-
tomata [29].

Acknowledgements. We would like to thank the referees for their incisive comments.

References

[1] Lucia Acciai and Michele Boreale. Type abstractions of name-passing processes. In FSEN’07, pages 302–317, 2007.
[2] Lucia Acciai and Michele Boreale. Responsiveness in process calculi. Theor. Comput. Sci., 409(1):59–93, 2008.
[3] Roberto M. Amadio, Gérard Boudol, and Cédric Lhoussaine. The receptive distributed π-calculus. ACM Trans.

Program. Lang. Syst., 25(5):549–577, 2003.
[4] S. Arun-Kumar and Matthew Hennessy. An efficiency preorder for processes. Acta Inf., 29(9):737–760, December

1992.
[5] Erik Barendsen and Sjaak Smetsers. Uniqueness typing for functional languages with graph rewriting semantics.

MSCS, 6:579–612, 1996.
[6] Erik Barendsen and Sjaak Smetsers. Uniqueness typing for functional languages with graph rewriting semantics.

Mathematical Structures in Computer Science, 6(6):579–612, 1996.
[7] Michele Boreale, Rocco De Nicola, and Rosario Pugliese. Proof techniques for cryptographic processes. SIAM J.

Comput., 31(3):947–986, 2001.
[8] Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew Parkinson. Permission accounting in separation

logic. SIGPLAN Not., 40(1):259–270, 2005.
[9] John Boyland. Checking interference with fractional permissions. In R. Cousot, editor, Static Analysis: 10th Inter-

national Symposium, volume 2694 of LNCS, pages 55–72. Springer, 2003.
[10] Dov Bulka and David Mayhew. Efficient C++: performance programming techniques. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 2000.
[11] Edsko DeVries, Adrian Francalanza, and Matthew Hennessy. Reasoning about explicit resource management (ex-

tended abstract). In PLACES, pages 15–21. ETAPS, April 2011. http://places11.di.fc.ul.pt/.
[12] Edsko DeVries, Adrian Francalanza, and Matthew Hennessy. Uniqueness typing for resource management in

message-passing concurrency. Journal of Logic and Computation, June 2012.
[13] Adrian Francalanza, Julian Rathke, and Vladimiro Sassone. Permission-based separation logic for message-passing

concurrency. Logical Methods in Computer Science, 7(3), 2011.
[14] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–102, 1987.
[15] Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Bromfield, and Joe Duffy. Uniqueness and Reference

Immutability for Safe Parallelism. In Proceedings of the 2012 ACM International Conference on Object Oriented
Programming, Systems, Languages, and Applications (OOPSLA’12), Tucson, AZ, USA, October 2012.

[16] Orna Grumberg, Orna Kupferman, and Sarai Sheinvald. Variable automata over infinite alphabets. In Adrian-Horia
Dediu, Henning Fernau, and Carlos Martn-Vide, editors, Language and Automata Theory and Applications, volume
6031 of LNCS, pages 561–572. Springer, 2010.

[17] Jurriaan Hage, Stefan Holdermans, and Arie Middelkoop. A generic usage analysis with subeffect qualifiers. In
Proceedings of the 12th ACM SIGPLAN International Conference on Functional Programming (ICFP), pages 235–
246. ACM, 2007.

[18] Dana Harrington. Uniqueness logic. Theoretical Computer Science, 354(1):24–41, 2006.
[19] Matthew Hennessy. A Distributed Picalculus. Cambridge University Proess, Cambridge, UK., 2008.
[20] Matthew Hennessy. A calculus for costed computations. Logical Methods in Computer Science, 7(1), 2011.
[21] Matthew Hennessy and Julian Rathke. Typed behavioural equivalences for processes in the presence of subtyping.

Mathematical Structures in Computer Science, 14:651–684, 2004.
[22] Tony Hoare and Peter O’Hearn. Separation logic semantics for communicating processes. ENTCS, 212:3–25, 2008.
[23] Kohei Honda. From process logic to program logic. In ICFP ’04, pages 163–174, 2004.

COMPOSITIONAL REASONING FOR CHANNEL-BASED CONCURRENT RESOURCE MANAGEMENT 51

[24] Kohei Honda and Mario Tokoro. On asynchronous communication semantics. In Mario Tokoro, Oscar Nierstrasz,
and Peter Wegner, editors, Proceedings of the ECOOP’91 Workshop on Object-Based Concurrent Computing, vol-
ume 612 of LNCS, pages 21–51. Springer-Verlag, 1992.

[25] Atsushi Igarashi and Naoki Kobayashi. A generic type system for the pi-calculus. Theor. Comput. Sci., 311(1-3):121–
163, 2004.

[26] Alan Jeffrey and Julian Rathke. Java Jr: Fully abstract trace semantics for a core java language. In Shmuel Sagiv,
editor, ESOP, volume 3444 of LNCS, pages 423–438. Springer, 2005.

[27] Richard Jones. Garbage Collection: Algorithms for Automatic Dynamic Memory Management. John Wiley and
Sons, July 1996. With a chapter on Distributed Garbage Collection by Rafael Lins. Reprinted 1997 (twice), 1999,
2000.

[28] Richard Jones, Anthony Hosking, and Eliot Moss. The Garbage Collection Handbook: The Art of Automatic Mem-
ory Management. Applied Algorithms and Data Structures. Chapman and Hall/CRC, 1 edition, 2011.

[29] Michael Kaminski and Nissim Francez. Finite-memory Automata. Theoretical Computer Science, 134(2):329 – 363,
1994.

[30] Astrid Kiehn and S. Arun-Kumar. Amortised bisimulations. In FORTE 2005, volume 3731 of LNCS, pages 320–334,
2005.

[31] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and the pi-calculus. ACM Trans. Program.
Lang. Syst., 21(5):914–947, 1999.

[32] Naoki Kobayashi and Davide Sangiorgi. A hybrid type system for lock-freedom of mobile processes. ACM Trans.
Program. Lang. Syst., 32(5):1–49, 2010.

[33] Naoki Kobayashi, Kohei Suenaga, and Lucian Wischik. Resource usage analysis for the pi-calculus. Logical Meth-
ods in Computer Science, 2(3), 2006.

[34] Gerald Lüttgen and Walter Vogler. Bisimulation on speed: A unified approach. Theor. Comput. Sci., 360(1-3):209–
227, 2006.

[35] R. Milner. Communicating and mobile systems: the π-calculus. Cambridge Univ., 1999.
[36] Benjamin C. Pierce. Types and programming languages. MIT Press, Cambridge, MA, USA, 2002.
[37] Benjamin C. Pierce. Advanced Topics in Types and Programming Languages. The MIT Press, Cambridge, MA,

USA, 2004.
[38] Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes. Mathematical Structures in

Computer Science, 6(5):409–453, 1996.
[39] David Pym and Chris Tofts. A calculus and logic of resources and processes. Form. Asp. Comput., 18(4):495–517,

2006.
[40] Frederick Smith, David Walker, and J. Gregory Morrisett. Alias types. In ESOP, volume 1782 of LNCS, pages

366–381. Springer, 2000.
[41] David Teller. Recollecting resources in the pi-calculus. In Proceedings of IFIP TCS 2004, pages 605–618. Kluwer

Academic Publishing, 2004.
[42] T. Terauchi and A. Aiken. A capability calculus for concurrency and determinism. TOPLAS, 30(5):1–30, 2008.
[43] Philip Wadler. Is there a use for linear logic? In PEPM, pages 255–273, 1991.
[44] Nobuko Yoshida. Channel dependent types for higher-order mobile processes. SIGPLAN Not., 39(1):147–160, 2004.
[45] Nobuko Yoshida, Kohei Honda, and Martin Berger. Linearity and bisimulation. Journal of Logic and Algebraic

Programming, 72(2):207 – 238, 2007.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a letter to
Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher
Strasse 2, 10777 Berlin, Germany

