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Abstract
We view channels as the main form of resources in a message-passing programming paradigm. These channels need to be
carefully managed in settings where resources are scarce. To study this problem, we extend the pi-calculus with primitives for
channel allocation and deallocation and allow channels to be reused to communicate values of different types. Inevitably, the
added expressiveness increases the possibilities for runtime errors. We define a substructural type system, which combines
uniqueness typing and affine typing to reject these ill-behaved programs.
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1 Introduction
Message-passing concurrency is a programming paradigm whereby shared memory is prohibited
and process interaction is limited to explicit message communication. This concurrency paradigm
forms the basis for a number of process calculi such as the pi-calculus [22] and has been adopted by
programming languages such as the actor-based language Erlang [3].

Message-passing concurrency often abstracts away from resource management and programs
written at this abstraction level exhibit poor resource awareness. In this article, we study ways of
improving this shortcoming. Specifically, we develop a statically typed extension of the pi-calculus in
which resources, i.e. channels, can be reused at varying types and resources can be safely deallocated
when they are no longer required.

Idiomatic pi-calculus processes are often characterized by wasteful use-once-throw-away channels
[21, 22]. Consider the following two pi-calculus process definitions

timeSrv(getTime)!recX .getTime?x.x!(hr,min).X

dateSrv(getDate)!recX .getDate?x.x!(year,mon,day).X

timeSrv defines a server that repeatedly waits on a channel named getTime to dynamically receive
a channel name, represented by the bound variable x, and then replies with the current time on x.
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2 Uniqueness typing for message-passing concurrency

dateSrv is a similar service which returns the current date.An idiomatic pi-calculus client definition is

client0 ! newret1.getTime1 !ret1 ‖getTime2 !ret1 ‖
ret1?(yhr,ymin).ret1?(y′

hr,y
′
min).newret2.getDate!ret2.ret2?(zyear,zmon,zday).P

client0 first sends a request to two separate time servers in order to obtain an accurate measurement.
It does not matter in which order the servers reply, but once they have both replied the client continues
to send a request to a date server before continuing as P. It uses two distinct channels ret1 and ret2
as return channels to query the time and date servers; these return channels are scoped (private) to
preclude interference from other clients concurrently querying the servers.

From a resource management perspective, it makes pragmatic sense to try and reduce the number
of channels used for the interactions between this client and the two servers. In particular, since the
servers use the reply channel once and do not keep any reference to this channel after use, the client
can economize on the resources required for these interactions and use one channel to communicate
sequentially with both the time servers and the date servers.

client1 ! newret.getTime1 !ret‖getTime2 !ret‖ret?(yhr,ymin).ret?(y′
hr,y

′
min).

getDate!ret.ret?(zyear,zmon,zday).P

From a typing perspective, this reuse of the same channel entails strong update on the channel: that
is, reuse of a channel to communicate values of different types. Strong update must be carefully
controlled; for instance, an attempt to use one channel to communicate with a time server and date
server in parallel is unsafe:

clienterr !newret.(getTime!ret.ret?(yhr,ymin).P1 ‖ getDate!ret.ret?(zyear,zmon,zday).P2)

Standard pi-calculus type systems accept only client0 and rule out both client1 and clienterr.
However, client1 is safe because, apart from the fact that the time servers use the return channel
once, the communication with the date server happens strictly after the communication with the time
servers.

Adequate resource management also requires precise descriptions of when resources are allocated
and existing ones are disposed. The standard scoping construct of the π -calculus newc.P is unfit for
this purpose as the extrusion rule means that, for instance, channel ret2 is allocated before or after the
communication with the time server in Client0. Moreover, the π -calculus does not offer an explicit
channel deallocation construct, so that the point of deallocation of channels (garbage collection)
is likewise unknown. We address this by introducing an explicit allocation construct allocx.P.
When the allocation is executed, a new channel c is created at runtime and the allocx.P changes to
newc.P{c/x}. Dually, we also extend the calculus with an explicit deallocation operator freec.P.
For example:

client2 !allocx.getTime!x.x?(yhr,ymin).getDate!x.x?(zyear,zmon,zday).freex.P

Inevitably, the added expressiveness of this extended pi-calculus increases the possibilities for
runtime errors such as in clienterr2 below. In this client, potential interleavings of the subprocesses
getTime!x.x?(yhr,ymin).P1 and getDate!x.x?(zyear,zmon,zday).freex.P2 can lead to both value
mismatch during communication (since the subprocesses are using channel x to communicate values
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Uniqueness typing for message-passing concurrency 3

Figure 1. Polyadic resource pi-calculus syntax.

of different types) and also to a premature deallocation of this channel by the second sub-process
while it is still in use by the first subprocess.

clienterr2 !allocx.(getTime!x.x?(yhr,ymin).P1 ‖ getDate!x.x?(zyear,zmon,zday).freex.P2)

We define a type system which rejects processes that are unsafe; the type system combines
uniqueness typing [5] and affine typing [21], while permitting value coercion across these modes
through subtyping. Uniqueness typing gives us global guarantees, simplifying local reasoning
when typing both strong updates and safe deallocations. Uniqueness typing can be seen as dual
to affine typing [15], and we make essential use of this duality to keep track of uniqueness across
channel-passing parallel processes.

The rest of the article is structured as follows. Section 2 introduces our message-passing language
with explicit channel allocation and deallocation. Section 3 describes our type system and outlines
how examples are typechecked. Section 4 then details the proof of soundness for our type system.
Finally, Section 5 discusses related work and Section 6 concludes with directions for future work.

2 The Resource Pi-Calculus
Figure 1 shows the syntax for the resource pi-calculus. The language is the standard pi-calculus
extended with primitives for explicit channel allocation and deallocation; moreover, channel scoping
records whether a channel is allocated (#) or deallocated (⊥). The syntax assumes two separate
denumerable sets of channel names c,d ∈Name and variables x,y∈Var, and lets identifiers u,v∈
Name∪Var range over both. The input and channel allocation constructs are binders for variables
'x and x respectively , whereas scoping is a binder for names (i.e. c). The syntax also assumes a
denumerable set of process variables X ,Y ∈PVar which are bound by the recursion construct.

Channels are stateful (allocated, #, or deallocated, ⊥) and process semantics is defined over
systems, 〈M ,P〉 where M ∈" :Chan⇀ {#,⊥} describes the state of the free channels in P, and
stateful scopingnewc:s.P describes the state of scoped channels.Atuple 〈M ,P〉 is a system whenever
fn(P)⊆dom(M ) and is denoted as M +P. We say that a system M +P is closed whenever P does not
have any free variables. An example system would be

c :#+(newd :#.c!d )

whereby, apart from the visible state relating to channel c, M =c :#, the system also describes
internal state through the stateful scoped channel in the process part P =newd :#.c!d

Figure 2 defines contexts over systems where C[M +P] denotes the application of a context C to a
system M +P. In the case where a context scopes a name c, the definition extracts the state relating
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4 Uniqueness typing for message-passing concurrency

Figure 2. Contexts, reduction rules and error predicates.

to c from M and associates it with the scoping of c. For example,

newc.[ (c :#,d :#)+d !c ]=d :#+(newc:#.d !c)

The reduction relation is defined as the least contextual relation over closed systems satisfying
the rules in Figure 2. It relies on a quasi-standard pi-calculus structural equivalence relation over
processes (≡) whereby the only notable difference is that redundant channel scoping can only be
discarded when it is deallocated (sNm); this allows us characterize ‘memory leakages’ during the
computation, which take the form of newc:#.nil. System communication (rCom) requires the
communicating channel to be allocated but does not place any constraint on the status of the channels
communicated. Allocation (rAll) creates a private allocated channel and substitutes it for the bound
variable of the allocation construct in the continuation; the condition c -∈dom(M ) ensures that c is
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Uniqueness typing for message-passing concurrency 5

fresh in P. Deallocation (rFree) is the only construct that changes the visible state of a system, M ;
through the scoping contextual rule we can then also express changes in the internal state of a system.
We can, therefore, express computations such as

M +allocx.(x!c.nil‖x?y.freex.P)→M +newd :#.(d !c.nil‖d?y.freec.P) x -∈ fv(P)

→M +newd :#.(freed .P{c/y})
→M +newd :⊥.(P{c/y}) ≡ M +P{c/y}

Figure 2 also defines error reductions as the least contextual relation satisfying the rules for
err−→.

These rules capture errors resulting from arity mismatch and attempts to communicate on deallocated
channels. In particular, arity mismatch can come from the unconstrained use of strong updates such
as in the case of clienterr in Section 1.

Example 2.1
For Q=timeSrv‖dateSrv, whenever M (getDate)=M (getTime)=# we have the following
successful reduction sequences:

M +client2 ‖Q →∗ M +P{hr, min/yhr,ymin}{year, mon, day/zyear,zmon,zday}‖Q

M +clienterr2 ‖Q→∗ M +P1{hr, min/yhr,ymin}‖P2{year, mon,day/zyear,zmon,zday}‖Q

However, in the case of clienterr2, we can also have premature deallocation errors—the second
subprocess getDate!x.x?(zyear,zmon,zday).freex.P2 may deallocate the shared allocated channel, c
below, while the right sub-process is still using it.

M +clienterr2 ‖Q→∗

M +newc:⊥.(c?(yhr,ymin).P1 ‖c!(hr,min).timeSrv‖P2{year, mon, day/zyear,zmon,zday})‖dateSrv
err−→

We can also have arity mismatch errors caused by communication interference on the shared allocated
channel c:

M +clienterr2 ‖Q→∗ M +newc:#.

(
c?(yhr,ymin).P1 ‖c!(year, mon, day).dateSrv
‖c?(zyear,zmon,zday).freec.P2 ‖c!(hr, min).timeSrv

)
err−→

Strong updates, as in the case of client2, should only be allowed when there is no other processes
still using the channel. "

Example 2.2
Client client3 demonstrates channel reuse across processes. Rather than allocating a new channel,
client3 requests a currently unused channel from a heap of channels and returns the channel to the
heap when it no longer needs it. A heap, in this case, is a designated channel heap.

client3 !heap?x.getTime!x.x?(yhr,ymin).getDate!x.x?(zyear,zmon,zday).heap!x.P

This allows us to have multiple replicas of the clients while keeping the cost of the server interactions
(in terms of additional channels required) constant. Of course, in the arrangement below, client–server
interactions are sequentialized for each client, depending on who currently has access to channel c
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6 Uniqueness typing for message-passing concurrency

held on heap. But this is necessary so as not to have any interference during the multiple reuses
of channel c.

M +client3 ‖client3 ‖ ...‖client3 ‖newc:#.(heap!c)‖timeSrv‖dateSrv (1)

It is instructive to run through an execution of this system and analyse how access to channel c
evolves throughout computation, as it turns out that exclusive access to such a channel is what enables
a process to safely performs operations such as deallocations and strong updates. For instance in (1),
after a client inputs on heap, it obtains access to c; as standard in the pi-calculus, this is denoted by
the scope extrusion of channel c to the client and the system in (1) reduces to

M +client3 ‖client3 ‖ ...‖newc:#.(client′
3)‖timeSrv‖dateSrv (2)

At that point, only client′
3 is in a position to interact with the servers, while the other clients are

blocked waiting for the next output on channel heap. After client′
3 queries timeSrv the scope of c

is extruded again, this time to timeSrv, and from (2) we obtain

M +client3 ‖client3 ‖ ...‖newc:#.(client′′
3 ‖timeSrv′)‖dateSrv (3)

After the interaction with timeSrv terminates the scope of c can be tightened again to

M +client3 ‖client3 ‖ ...‖newc:#.(client′′′
3 )‖timeSrv‖dateSrv (4)

In similar fashion the scope of c extrudes to dateSrv and then contracts back again to the client so
as to reach the following system from (4).

M +client3 ‖client3 ‖ ...‖newc:#.(heap!c.P′)‖timeSrv‖dateSrv (5)

At this point, the client heap!c.P′ explicitly transfers exclusive access to channel c to some other
client.

M +client3 ‖newc:#.(client′
3)‖ ...‖P′ ‖timeSrv‖dateSrv (6)

The following variants of client client′
3 are unsafe and lead to errors in the above computational

sequence:

clienterr1
3 !heap?x.getTime!x.x?yhr,ymin.getDate!x.x?zyear,zmon,zday.heap!x.x!.P

clienterr2
3 !heap?x.getTime!x.x?yhr,ymin.getDate!x.x?zyear,zmon,zday.freex.heap!x.P

The erroneous client clienterr1
3 highlights the fact that, for the above system to work as intended, it is

crucial that the client transfers exclusive access to channel c on heap. If, instead, the client attempts
to use this channel after transfer, it will lead to an interference that can result in a runtime error as
shown earlier in Example 2.1. Although the communication of deallocated channels is permitted in
resource pi-calculus, the second erroneous client clienterr2

3 shows how this can indirectly lead to a
premature deallocation when this deallocated channel is then transferred to other clients.
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Uniqueness typing for message-passing concurrency 7

3 Type system
We define a type system to statically approximate the class of safe resource pi-calculus systems.
The type-level concept that corresponds to ‘exclusive access’ is uniqueness: when a process is typed
in a typing environment in which a channel has a unique type, then that process is guaranteed to
have exclusive access to that channel. Strong update and deallocation are therefore safe for unique
channels.

The type system is an adaptation of uniqueness type systems for lambda calculi [5, 9], but unlike
the latter it allows uniqueness to be temporarily violated. As we saw in Example 2.1, a client might
have exclusive access to a channel, then use this channel to communicate with a server, and then
regain exclusive access to this channel, provided that the server does not use the channel anymore.

We must, therefore, generalize uniqueness typing to introduce a type that records that a channel
may not be unique now, but it will be after some number i of communication steps (‘unique-after-i’);
moreover, we need to combine uniqueness typing with affine types to limit how often a channel can
be used (for instance, we might limit the time server to use a channel at most once).

3.1 The type language

The core type of our system is the channel type, [−→T ]a, consisting of an n-ary tuple of types describing
the values carried over the channel, 'T, and an attribute a which can take one of three forms:

• A channel of type [−→T ]ω is an unrestricted channel: it can be used arbitrary often, and provides
no information on how many other processes have access to the channel. Such type assumptions
correspond to type assumptions of the form [−→T ] in standard (non-substructural) type systems.

• A channel of type [−→T ]1 is affine, and comes with an obligation: it can be used at most once.
• A channel of type [−→T ](•,i) is unique-after-i communication actions, comes with a guarantee:

a process typed using this assumption will have exclusive access to the channel after i
communication actions. We abbreviate the type [−→T ](•,0) of channels that are unique now
to [−→T ]• and refer to it as simply a unique channel.

We give a number of examples illustrating the use of these types with reference to the examples from
Section 2.

(1) Unrestricted channels can be used to describe channels such as getTime and getDate on which
replicated servers receive requests.

(2) Affine types can be used to limit how often servers can use a return channel sent to them by a
client. For instance, we can give the type [['T]1]ω to getTime and getDate.

(3) A channel which has just been allocated will have a unique type. We can also use uniqueness
to ensure that the heap really carries channels that are unused, by giving the heap channel the
type [['T]•]ω.

(4) A channel which is unique-after-1 can be used by the client to record that after it has
communicated with a server it will once again recover exclusive access to the channel.

3.2 Typing environments

Processes will be typed under a typing environment %, which is a multiset of pairs of identifiers and
types. Since the type system is substructural, typing assumptions can be used only once in a typing
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8 Uniqueness typing for message-passing concurrency

Figure 3. Type language and operations.

derivation. For instance, when typing two parallel processes under some environment %, assumptions
in % can be used to type the left process or the right, but never both.

However, we define a number of structural rules, shown in Figure 3, which allow to manipulate
typing environments. The simplest is weakening (tWeak), which allows to disregard typing
assumptions (the type system does not guarantee that a channel will be used). We discuss the other
rules separately, below.

3.2.1 Splitting and joining
Although typing assumptions can be used only once, typing assumptions can be split (logically,
contracted) under certain conditions (tCon). We write T=T1 ◦T2 if an assumption x :T can be split
as two assumptions x :T1 and x :T2.

For instance, after allocation client2 is allowed to split the unique assumption x : ['T]• as two
separate assumptions x : ['T](•,1) and x : ['T]1. This allows the client to send x to the server at type ['T]1

while retaining the assumption x : ['T](•,1) for its own use.
More generally, an assumption c : ['T](•,i) can be split as two assumptions c : ['T](•,i+1) and c : ['T]1.

Unrestricted assumptions can be split as two unrestricted channels, so that unrestricted channels can
be used arbitrary often. Finally, affine assumptions cannot be split at all, so that affine channels can
be used only once.

Joining (tJoin) is simply the dual of splitting; it is not strictly necessary to define the type system,
but makes the technical development a lot cleaner.
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Uniqueness typing for message-passing concurrency 9

3.2.2 Revision
After the client from Example 2.1 communicates with the time server over channel x, it regains
exclusive access to that channel. It is ‘therefore’ safe to the client to reuse the same channel to
communicate with the date server, even though the date server sends values of a different type. This
strong update is safe only for unique channels, and is embodied by rule tRev.

3.2.3 Subtyping
Since uniqueness is a guarantee that a channel c will be unique after a number of uses, it is
safe to weaken this guarantee: a channel at type ['T](•,u) can also be used at type ['T](•,u+1) or
even at ['T]ω. For example, after getting a unique channel from the heap a process might choose
to disregard the uniqueness information about this channel and use it in an unrestricted fashion
instead.

Conversely, affinity is an obligation forcing an upper bound on the number of uses. Thus, it is also
safe to regard a unique channel or an unrestricted channel as an affine channel. For instance, a client
might send an unrestricted channel to a server expecting an affine channel.

We therefore have the following subtyping chain (tSub):1

['T]• ≺s ['T](•,1) ≺s ['T](•,2) ≺s ···['T]ω ≺s ['T]1

Through a combination of subtyping and splitting, we can split a unique-after-i assumption into
two unrestricted assumptions, ['T](•,i) ≺s ['T]ω =['T]ω◦['T]ω, and an unrestricted assumption into an
unrestricted assumption and an affine assumption, ['T]ω =['T]ω◦(['T]ω ≺s ['T]1).

3.2.4 Consistency
The type systems allow for compositional reasoning with respect to uniqueness (we prove formally
in Section 4.2). For instance, the clients in Examples 2.1 and 2.2 can be shown to be to be safe using
only the typing assumptions assigned to them, and without requiring the full code relating to the
servers they interact with.

Such compositional reasoning is safe only if the total type assumptions used to analyse the entire
system are consistent among themselves. For example, an environment of the form

c : [T]•,c : [T]1

allows to type a system in which one process deallocates channel c while another, parallel, process
attempts to communicate on it. This is clearly unsound.

Clearly an environment with at most one assumption per channel (a partial function) must be
consistent, but we have already seen that we sometimes need to split assumptions. We define an
environment to be consistent if it can be obtained from a partial function by applying any of the
structural rules we just defined:

Definition 3.1 (Consistency)
A typing environment % is consistent if there exists a partial function %′ such that %′ 3%.

1Since we do not consider channel input/output-modalities in this article, channels are invariant with respect to their object
types, 'T.
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10 Uniqueness typing for message-passing concurrency

This definition is justified by the soundness theorem, which says that if a system can be typed under
a consistent environment, it will not produce any runtime errors. For now, observe that the structural
rules have been carefully defined so that if a consistent environment contains an assumption c : ['T](•,i)

then it cannot contain any unrestricted assumptions about c, and the number of affine assumptions
about c must be less than or equal to i (Lemma 4.1).

3.3 The typing relation

The typing relation over (open and closed) processes is the least relation defined by the rules
in Figure 4. It takes the usual shape, %4P, which reads as ‘P is well-typed under the typing
environment %’. It is extended to systems so that %4M +P is well-typed if % types P and % only
contains assumptions about channels that are allocated in M .

We do not a priori make the assumption that the type environment is consistent
(Section 3.5), but soundness of the type system will only be stated with respect to consistent
environments.

The rule for parallel (tPar) requires to divide the assumptions in the typing environment between
the left and right process. Restriction introduces a new typing assumption into the typing environment,
provided that the channel is allocated (tRst1, tRst2). As expected, allocation introduces unique
channels (tAll), and only unique channels can be deallocated (tFree). We discuss the remaining
rules separately, below.

3.3.1 Input and output
In the client–server example, after the client has communicated with the server over channel x, the
server is no longer allowed to use x, and the client is guaranteed that it once again has exclusive
access to the channel. From a typing perspective, the server had an affine permission x : ['T]1 and
lost that permission after the communication; the client had a permission x : ['T](•,1) which became
x : ['T]• after the communication.

This is expressed in the type system as an operation %,c : ['T]a−1 on typing environments (defined
in Figure 4); it computes the typing environment after a communication action on c: affine permission
are removed, unique-after-(i+1) permissions become unique-after-i and unrestricted permissions are
unaffected.

This operation is used in the rules for input and output (tOut and tIn). Moreover, tOut requires
separate typing assumptions for each of the channels that are sent. The attributes on these channels
are not decremented, because no communication action has been performed on them; instead,
the corresponding assumptions are handed over to the parallel process receiving the message. If
the sending process wants to use any of these channels in its continuation (P) it must split the
corresponding assumptions first.

3.3.2 Conditionals
As is standard in substructural (and standard) type systems, the rule for conditions rIf types both
branches under the same typing environment, as only one will be executed. It also requires that the
process must have a typing assumption for the two channels it is comparing.

We claimed that after a communication with the server over channel x the client regains exclusive
access to that channel. At the type level, the server looses its affine permission for x after the
communication, as we saw above. The side condition on the rule for conditionals implies that this
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Uniqueness typing for message-passing concurrency 11

Figure 4. Typing rules.

means that the server cannot even use x in a comparison anymore, thus guaranteeing the client true
exclusive access to the channel.

3.3.3 Recursion
Recursive processes must be typed in an environment that contains only unrestricted channels (tRec).
This is reasonable since recursion can be used to define processes with an unbounded number of
parallel uses of some channel. Nevertheless, it is not as serious a restriction as it may seem, as
recursive processes can still send, receive and allocate unique channels. For instance, the following
process models an ‘infinite heap’ that keeps allocating new channels and sends them across a channel
heap : [[T]•]ω:

infHeap!recX .allocx.heap!x.X

3.4 Examples

The systems clienti ‖timeSrv‖dateSrv for i∈{0,1,2} can all be typed in our type system, whereas
clienterr is rejected because type splitting enforces a common object type (cf. pUnr, pUnq in
Figure 4.) The derivation below outlines how client2 from the introduction is typed, where we recall
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12 Uniqueness typing for message-passing concurrency

that x is not free in P. It assumes an environment %=getTime : [[T1,T2]1]ω,getDate : [[T3,T4,T5]1]ω
and proceeds as follows:

...

%,x : [T3,T4,T5]•,yhr :T1,ymin :T2 4getDate!x.x?(zyear,zmon,zday).freex.P
tStr

%,x : [T1,T2]•,yhr :T1,ymin :T2 4getDate!x.x?(zyear,zmon,zday).freex.P
tIn

%,x : [T1,T2](•,1) 4x?(yhr,ymin).getDate!x.x?(zyear,zmon,zday).freex.P
tOut

%,x : [T1,T2](•,1),x : [T1,T2]14getTime!x.x?(yhr,ymin).getDate!x.x?(zyear,zmon,zday).freex.P
tStr

%,x : [T1,T2]• 4getTime!x.x?(yhr,ymin).getDate!x.x?(zyear,zmon,zday).freex.P
tAll

%4allocx.getTime!x.x?(yhr,ymin).getDate!x.x?(zyear,zmon,zday).freex.P

Rule tAll assigns the unique type [T1,T2]• to variable x. Using tStr with tCon, this unique
assumption is split in two using pUnq. Rule tOut uses the affine assumption for x for the output
argument and the unique-after-1 assumption to type the continuation. Rule tIn restores the uniqueness
of x for the continuation of the input after decrementing the uniqueness index, at which point tRev
is applied to the environment through tStr to change the object type of x from pairs of values (for
time) to triples (for dates). The pattern of applying tStr with tCon, tOut and tIn repeats, at which
point x is unique again and can be safely deallocated by tFree.

Through the type environment % below, we can type system (1) from Example 2.2 as well.

%=getTime : [[T1,T2]1]ω,getDate : [[T3,T4,T5]1]ω,heap : [['T]•]ω

Since the type for channel heap is unrestricted, we can split this assumption for every occurrence of
client3 in (1). When typechecking each instance of this client, we obtain a unique channel assumption
as soon as we apply tIn for the input on channel heap. The rest of the type derivation then proceeds
in similar fashion to that of client2 discussed above. It is, however, instructive to see why clienterr1

3
and clienterr2

3 , also from Example 2.2, cannot be typed. Through the application of tStr with tCon,
tOut and tIn we reach the two type judgements below for clienterr1

3 and clienterr2
3 , respectively:

%,x : [T3,T4,T5]•,yhr :T1,ymin :T2,zyear :T3,zmon :T4,zday :T5 4heap!x.x!.P (7)

%,x : [T3,T4,T5]•,yhr :T1,ymin :T2,zyear :T3,zmon :T4,zday :T5 4freex.heap!x.P (8)

In the case of type derivation (7), even though we can revise the object type of the type assumption
for x from T3,T4,T5 to 'T, so as to enable the typing of the output of x on channel heap, this would
leave us with no remaining type assumptions for channel x, precluding the typing of the remaining
process x!.P. Similarly, in the case of type derivation (8), typing the deallocation of x would consume
all the type assumptions relating to x, which rules out any possible typing for the remaining process
heap!x.P.

Finally, system (1) in Example 2.2 can be safely extended with processes such as client4 which
uses unique channels obtained from the heap in unrestricted fashion. Our type system accepts client4
by applying subtyping from unique to unrestricted on the channel x obtained from heap.

client4 !heap?x.recX .(getTime!x.x?(yhr,ymin).P ‖X )
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Uniqueness typing for message-passing concurrency 13

3.5 (In)consistency

Due to our substructural treatment of assumption, when two processes both need a typing assumption
relating to the same channel c, tPar from Figure 4 forces us to have two separate assumptions in the
typing environment. As we discussed already, these two assumptions need not be identical and can be
derived from a single assumption; for example, an assumption c : []• can be split as two assumptions

c : [](•,1),c : []1

As mentioned, soundness of the type system is stated only with respect to consistent environments.
However, in the definition of the typing relation we allow processes to be typed under arbitrary
(possibly inconsistent) environments. In this section, we explain why we cannot restrict the typing
relation to consistent environments.

It turns out that even if a process can be typed in a consistent environment, some of its subprocesses
might have to be typed in an inconsistent environment. As an example, consider the typing derivation

tOut
a : [[]1]ω,u : []1 4a!u

a : [[]1]ω,u : []•,x : []1 4freeu‖a!x
tIn

a : [[]1]ω,u : [](•,1),x : []1 4u?().freeu‖a!x
tIn

a : [[]1]ω,u : [](•,1) 4a?x.u?().freeu‖a!x
tPar

a : [[]1]ω,a : [[]1]ω,u : []1,u : [](•,1) 4a!u‖a?x.u?().freeu‖a!x
tStr (twice)

a : [[]1]ω,u : []• 4a!u‖a?x.u?().freeu‖a!x

This is a valid typing derivation, and moreover the typing environment used at every step is consistent.
But now consider what happens after this process takes a reduction step:

u : []•,u : []1 4freeu‖a!u
tIn

u : [](•,1),u : []1 4u?().freeu‖a!u
tCon

u : []• 4u?().freeu‖a!u

The continuation of this process looks suspicious as it attempts to free u while simultaneously
sending it on a. Indeed, freeu‖a!u can only be typed in an inconsistent environment u : []•,u : []1.
Nevertheless, the fact that this process is typeable is not a violation of type safety. The assumption
u : []• tells us that there are no processes that output on u so that the input on u is blocked: the
continuation of the process will never execute.

Thus, when an environment
%,c : ['T]a,c : ['T]a′

(e.g. u : [](•,1),u : []1) is consistent, it may be the case that

%,c : ['T]a−1,c : ['T]a′

(e.g. u : []•,u : []1) is inconsistent: this means that the tails of input or output processes may have
to be typed under inconsistent environments, even when the larger process is typed in a consistent
environment. However, communication in the pi-calculus provides synchronization points: when
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14 Uniqueness typing for message-passing concurrency

two processes communicate, both will start executing their continuations. It is an important property
of our typing environments that if %,c : ['T]a,c : ['T]a′

is consistent, then

%,c : ['T]a−1,c : ['T]a′−1

will also be consistent (Lemma 4.1). This is crucial when proving subject reduction, which says that if
a system is typeable in a consistent environment, it will remain typeable in a consistent environment.

Note that allowing for inconsistent environments during type checking is not unusual for these
kinds of type systems; for instance, in the session type system with subtyping of Gay and Hole a very
similar issue arises [13, Section 5.2] (they use the word ‘unbalanced’ instead of inconsistent).

4 Soundness
We show that our type system is sound: well-typed programs do not go wrong. The presentation
of this proof proceeds as follows: Section 4.1 outlines some preliminary properties of consistent
environments and the typing relation, and states the necessary substitution lemmas; Section 4.2
details the subterm typing lemma, which turns out to be the most involved aspect of the soundness
proof; Section 4.3 finally states and proves the standard safety and subject reduction theorems:
well-typed programs do not have runtime errors and remain well-typed when they reduce.

4.1 Preliminaries

We first state some properties of consistent environments.

Lemma 4.1 (Consistent environments)
Let % be a consistent environment. Then:

(1) If %=%′,c : ['T]a,c : ['T′]a′
then 'T= 'T′.

(2) If %=%′,c : [−→T ]• then c -∈dom(%′).
(3) If %3%′,c : [−→T ]• then ∃%′′ such that %=%′′,c : [−→T′ ]• and %′′ 3%′.
(4) If c∈dom(%) and %′ 3% then c∈dom(%′).
(5) If %=%1,%2 then both %1 and %2 are consistent.
(6) If % contains only unrestricted assumptions then %3%,%.
(7) If %=%′,u : ['T ]a1 ,u : ['T ]a2 then

%′,u : ['T ]a1 ,u : ['T ]a2 3%′,u : ['T ]a1−1,u : ['T ]a2−1

Proof. Properties (1)–(6) are easily verified. For the proof of (7), we do case analysis on a1 and a2.
If a1, a2 are affine or unrestricted, the lemma follows from weakening (unrestricted assumptions are
not affected by the decrement operation). The only interesting case is where a1 = (•,i) and a2 =1 (or
vice versa), in which case it follows from tJoin. "

One of the advantages of phrasing the structural rules of the type system using an auxiliary transitive
relation (3) is that we can conveniently state inversion principles. For example,

Lemma 4.2 (Inversion for output)
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Uniqueness typing for message-passing concurrency 15

If %4c!'d .P then

%3%′,u : ['T ]a,
−−→
d :T

and %′,u : ['T ]a−1 4P.

The inversion lemmas for the other constructs are similar.
As usual, we need two substitution lemmas; however, the typing rules have been set up in such a

way that these are easy to prove.

Lemma 4.3 (Process substitution)
If %1,X :proc4P and %ω

2 4Q then %1,%
ω
2 4P{Q/X }.

Proof. By induction on P followed by inversion on the typing relation. The only tricky case is the
case for parallel, where we might duplicate the process. However, since the process is typed under
an environment containing only unrestricted assumptions, this follows from Lemma 4.1(6). "
Lemma 4.4 (Identifier substitution)
If %,

−→
x :T 4P, where the 'x are pairwise disjoint and do not occur in the domain of %, then %,

−−→
u :T 4

Q{'u/'x}.

Proof. This is a simple renaming of variables throughout the typing derivation. "
Lemma 4.5 (Preservation of types under structural equivalence)
If %4P and P ≡P′ then %4P′.

Proof. Since the typing relation is not sensitive to the order of the assumptions in the typing
environment, reordering parallel processes and extrusion do not affect typing. Removing or adding
nil processes and adding or removing a restriction around the nil process do not affect typing
because nil can be typed in any environment. Finally, alpha-renaming bound names does not affect
typing because those bound names are not in the (original) typing environment. "

4.2 Subterm typing lemma

The preservation theorem (Section 4.3) states that if a system M +P is typed under some environment
%, and M +P takes a step to M ′ +P′, then this new system is typeable under some typing environment
%′ such that such that %3%′. An important case in the proof of this theorem is the case for contexts:
i.e. part of the system takes a step, while the rest of the system remains the same. This case is dealt
with by the subterm typing lemma, which we state and prove in this section. The subterm typing
lemma is important, because it shows that the type system is compositional: in particular, if P and Q
are two parallel processes in some system, and P deallocates a channel, then this will not affect Q.

Unfortunately, the subterm typing lemma is also a little technical to state and non-trivial to prove.
We will, therefore, give the proof in detail, after we first give a number of small definitions and
lemmas that we will require in the proof.

Definition 4.6 (Restriction of a typing environment to a resource environment)

%|M ={d :T |d :T∈%∧M (d )=#}

Definition 4.7 (Applying a context to a typing environment)
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16 Uniqueness typing for message-passing concurrency

We define an operation C(%) which removes all assumptions about channels that are restricted in C
from %:

[](%)=% (C ‖P)(%)=C(%)

(newc.C)(%)=C(%)\c (P ‖C)(%)=C(%)

Definition 4.8 (Subenvironment)
M ′ is a subenvironment of M with respect to a typing environment %, denoted as M 3% M ′, if

(1) dom(M ′)=dom(M );
(2) If M (c)=# and M ′(c)=⊥ then c : ['T]• ∈%.

Intuitively, M 3% M ′ if we might end up in state M ′ by running a process typed under % in state
M . This is formalized by the following lemma:

Lemma 4.9 (Subenvironments and Reduction)
%4M +P and M +P →M ′ +P′ then M 3% M ′

We will also require the following result which relates subenvironments and the operation on
typing environments that we defined above.

Lemma 4.10
Let M1 3% M2. Suppose C[M1 +P1]=M ′

1 +P′
1 and C[M2 +P2]=M ′

2 +P′
2 for some P1 and P2. Then

M ′
1 3C(%) M ′

2.

We can now state the subterm typing lemma:

Lemma 4.11 (Subterm typing)
Suppose %C

1 4C[M1 +P1] (%C
1 consistent). Then the following hold.

(1) There exist some %
p
1 such that %C

1 3C(%p
1) and %

p
1 4M1 +P1.

(2) For all systems M2 +P2 where M1 3%
p
1

M2 and for all environments %
p
2 where %

p
1 3%

p
2,

if %
p
2 4M2 +P2 then there exist a %C

2 such that %C
1 3%C

2 and %C
2 4C[M2 +P2].

In words: if a system M1 +P1 is placed in some context C, and the whole thing is typeable under
some environment %C

1 , then

(1) There is some environment %
p
1 which types M1 +P1; the assumptions in this environment come

from %C
1 , with the exception of the assumptions for channels restricted by C, and

(2) If we replace M1 +P1 by M2 +P2, typed under an environment%p
2 obtained by applying structural

rules to %
p
1, then—provided there are unique permissions in%

p
1 for the channels that are allocated

in M1 but deallocated in M2—the whole thing is typeable under an environment %C
2 , obtained

by applying structural rules to %C
1 .

Proof. By induction on C. The base case (C =[]) is trivial; remains to consider case for parallel and
the case for restriction.
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(1) Case C =C′ ‖ Q. Let C′[M1 +P1]=M ′
1 +P′

1. Then C[M1 +P1]=M ′
1 +P′

1 ‖Q. By inversion we get

%C
1

′ 4P′
1 %q 4Q

%C
1 3%C

1
′
,%q

%C
1 4P′

1 ‖Q dom(%C
1 )⊆alloc(M ′

1)

%C
1 4C[M1 +P1]=M ′

1 +P′
1 ‖Q

(9)

It is not hard to see that
%C

1
′ 4P′

1 dom(%C
1

′
)⊆alloc(M ′

1)

%C
1

′ 4C′[M1 +P1]=M ′
1 +P′

1

so that by the induction hypothesis there exist a
ih
%%

p
1 such that %C

1
′ 3C′(

ih
%%

p
1) and

ih
%%

p
1 4M1 +P1.

Choose %
p
1 =

ih
%%

p
1. Clearly %C

1 3%C
1

′ 3C′(%p
1)=C(%p

1).

Suppose we have a system M2 +P2 where M1 3%
p
1

M2 and an environment %
p
2 where %

p
1 3%

p
2,

such that %
p
2 4M2 +P2. By the induction hypothesis, there exist a

ih
%%C

2 such that %C
1

′ 3
ih
%%C

2 and
ih
%%C

2 4C′[M2 +P2].

Let C[M2 +P2]=M ′
2 +P′

2 ‖Q where C′[M2 +P2]=M ′
2 +P′

2. By inversion we have

ih
%%C

2 4P′
2 dom(

ih
%%C

2 )⊆alloc(M ′
2)

ih
%%C

2 4C′[M2 +P2]=M ′
2 +P′

2

(10)

By (9) we have %q =%q|M ′
1
, and by Lemma 4.10 we have M ′

1 3C(%p
1) M ′

2. Hence, channels

allocated in M ′
1 but deallocated in M ′

2 must have a unique permission in C(%p
1). Since %C

1
′ 3

C(%p
1) they must therefore have a unique permission in %C

1
′
. Finally, since %C

1 3 (%C
1

′
,%q) and

%C
1 is assumed consistent, this means that there cannot be any assumptions about these channels

in %q. Hence %q =%q|M ′
1
=%q|M ′

2
. Finally, we have

ih
%%C

2 =
ih
%%C

2 |M ′
2

by (10).

Choose %C
2 =%C

1 |M ′
2

(clearly %C
1 3%C

2 ). We have

%C
2 3 (%C

1
′
,%q)|M ′

2
3 (

ih
%%C

2 ,%q)|M ′
2
=

ih
%%C

2 ,%q

The proof is completed by

ih
%%C

2 4P′
2 %q 4Q

tPar
ih
%%C

2 ,%q 4P′
2 ‖Q

tStr
%C

2 4P′
2 ‖Q dom(%C

2 )⊆alloc(M ′
2)

tSys
%C

2 4C[M2 +P2]=M ′
2 +P′

2 ‖Q
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18 Uniqueness typing for message-passing concurrency

(2) Case C =newc.C′. Let C′[M1 +P1]=M ′
1,c :s1 +P′

1. Then C[M1 +P1]=M ′
1 +newc:s1.P′

1.
We take cases on s1.

(a) Case s1 =#. By inversion we get

%C
1

′
,c :T4P′

1
%C

1 3%C
1

′

%C
1 4newc:#.P′

1 dom(%C
1 )⊆alloc(M ′

1)

%C
1 4C[M1 +P1]=M ′

1 +newc:#.P′
1

(11)

where c /∈dom(%C
1 )⊇dom(%C

1
′
) by Barendregt. It is not hard to see that

%C
1

′
,c :T4P′

1 dom(%C
1

′
,c :T)⊆alloc(M ′

1,c :#)

%C
1

′
,c :T4C′[M1 +P1]=M ′

1,c :#+P′
1

so that by the induction hypothesis, there exist a
ih
%%

p
1 such that %C

1
′
,c :T3C′(

ih
%%

p
1) and

ih
%%

p
1 4

M1 +P1. Choose %
p
1 =

ih
%%

p
1. We have

%C
1 3

(
%C

1
′ = (%C

1
′
,c :T)\c

)
3

(
C′(%p

1)\c=C(%p
1)

)

Suppose we have a system M2 +P2 where M1 3%
p
1

M2 and an environment %
p
2 where %

p
1 3

%
p
2, such that %

p
2 4M2 +P2. By the induction hypothesis, there exist a

ih
%%C

2 such that (%C
1

′
,c :

T)3
ih
%%C

2 and
ih
%%C

2 4C′[M2 +P2].

Let C[M2 +P2]=M ′
2 +newc:s2.P′

2 where C′[M2 +P2]=M ′
2,c :s2 +P′

2. By inversion we
have

ih
%%C

2 4P′
2 dom(

ih
%%C

2 )⊆alloc(M ′
2,c :s2)

ih
%%C

2 4C′[M2 +P2]=M ′
2,c :s2 +P′

2

(12)

Choose %C
2 =%C

1 |M ′
2

(clearly %C
1 3%C

2 ). Note that since %C
1 3%C

1
′

by (11) we have %C
2 3

%C
1

′|M ′
2
, and moreover

ih
%%C

2 =
ih
%%C

2 |M ′
2,c:s2

by (12).
We take cases on s2.

(i) Case s2 =#. We have %C
2 ,c :T3

(
(%C

1
′|M ′

2
,c :T)= (%C

1
′
,c :T)|(M ′

2,c:#)

)
3

ih
%%C

2 .
The proof is completed by

ih
%%C

2 4P′
2

tStr
%C

2 ,c :T4P′
2

tRst1
%C

2 4newc:#.P′
2 dom(%C

2 )⊆alloc(M ′
2)

tSys
%C

2 4C[M2 +P2]=M ′
2 +newc:#.P′

2
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(ii) Case s2 =⊥. We have %C
2 3%C

1
′|M ′

2
3

ih
%%C

2 since we must have c /∈dom(
ih
%%C

2 ).
Hence, the proof can be completed as above using tRst2.

(b) Case s1 =⊥. By inversion we get

%C
1

′ 4P′
1

%C
1 3%C

1
′

%C
1 4newc:⊥.P′

1 dom(%C
1 )⊆alloc(M ′

1)

%C
1 4C[M1 +P1]=M ′

1 +newc:⊥.P′
1

(13)

where c /∈dom(%C
1 )⊇dom(%C

1
′
) by Barendregt. It is not hard to see that

%C
1

′ 4P′
1 dom(%C

1
′
)⊆alloc(M ′

1,c :⊥)

%C
1

′ 4C′[M1 +P1]=M ′
1,c :⊥+P′

1

so that by the induction hypothesis there exist a
ih
%%

p
1 such that %C

1
′ 3C′(

ih
%%

p
1) and

ih
%%

p
1 4M1 +P1.

Choose %
p
1 =

ih
%%

p
1. Since c /∈dom%C

1
′ ⊇domC′(

ih
%%

p
1) we have

%C
1 3%C

1
′ 3

(
C′(

ih
%%

p
1)=C′(

ih
%%

p
1)\c

)
3C(%p

1)

Suppose we have a system M2 +P2 where M1 3%
p
1

M2 and an environment %
p
2 where %

p
1 3

%
p
2, such that %p

2 4M2 +P2. By the induction hypothesis, there exist a
ih
%%C

2 such that %C
1

′ 3
ih
%%C

2

and
ih
%%C

2 4C′[M2 +P2].

Let C[M2 +P2]=M ′
2 +newc:s2.P′

2 where C′[M2 +P2]=M ′
2,c :s2 +P′

2. By inversion we
have

ih
%%C

2 4P′
2 dom(

ih
%%C

2 )⊆alloc(M ′
2,c :s2)

ih
%%C

2 4C′[M2 +P2]=M ′
2,c :s2 +P′

2

(14)

Choose %C
2 =%C

1 |M ′
2

(clearly %C
1 3%C

2 ). As above, since %C
1 3%C

1
′

by (13) we have %C
2 3

%C
1

′|M ′
2
, and moreover

ih
%%C

2 =
ih
%%C

2 |M ′
2,c:s2

by (14). In addition, we have c /∈dom(
ih
%%C

2 ) since

c /∈%C
1

′
. The proof therefore is completed as above.

"

4.3 Safety and preservation

We can now state and prove the main theorems of this article: type safety and safety reduction.

Theorem 4.12 (Type safety)
If %4M +P (% consistent) then M +P !err.
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Proof. By induction on P
err−→ followed by inversion on %4M +P. We do not show the entire proof

here as it is reasonably straightforward. The case for eAty relies on Lemma 4.1(1), the case for eStr
relies on Lemma 4.5, and the case for contexts relies on Lemma 4.11. "
Theorem 4.13 (Subject Reduction)
If %4M +P (% consistent) and M +P →M ′ +P′ then there exists an %′ such that %3%′ and %′ 4
M ′ +P′.

Proof. By induction on M +P →M ′ +P′. We show only a number of the cases; of the omitted cases,
rRec relies on the process substitution lemma, rThen and rElse are trivial, rStr follows from the
induction hypothesis and preservation of types under structural equivalence (Lemma 4.5), and the
case for contexts finally is dealt with by the subterm typing lemma (Section 4.2).

(1) Case
M (c)=#

rCom
M + c!'d .P ‖c?'x.Q→M +P ‖Q{'d/'x}

By inversion on the typing relation we get dom(%)⊆alloc(M ) and

%1,c : ['T]a1−1 4P
%p 3%1,c : ['T]a1 ,

−−→
d :T

%p 4c!'d .P

%2,c : ['T]a2−1,
−→
x :T 4Q

%q 3%2,c : ['T]a2

%q 4c?'x.Q
%3%p,%q

%4c!'d .P ‖c?'x.Q

where Lemma 4.1(1) allows us to conclude that the two assumptions c : ['T1]a1 and c : ['T2]a2 ,
used to type the left and right process, respectively, must refer to the same object type
'T1 = 'T= 'T2. By the identifier substitution lemma (Lemma 4.4), we have that

%2,c : ['T]a2−1,
−−→
d :T 4Q{'d/'x}

Pick %′ =%. Clearly dom(%′)⊆alloc(M ). We construct the required type derivation as follows:

%1,c : ['T]a1−1 4P %2,c : ['T]a2−1,
−−→
d :T 4Q{'d/'x}

tPar
(%1,c : ['T]a1−1),(%2,c : ['T]a2−1,

−−→
d :T )4P ‖Q{'d/'x} (∗)

tStr
%4P ‖Q{'d/'x}

where the side condition (∗) is

%3 (%1,c : ['T]a1−1),(%2,c : ['T]a2−1,
−−→
d :T )

and follows from Lemma 4.1(7), since environment are unordered.

(2) Case
c -∈dom(M )

rAll
M +allocx.P →M +newc:#.P{c/x}

By inversion we get dom(%)⊆alloc(M ) and

%1,x : [−→T ]• 4P
%3%1

%4allocx.P

We have c /∈dom(M )⊇alloc(M )⊇dom(%)⊇dom(%1) and hence c /∈ fn(P).
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Choose %′ =%. Clearly %3%′ and dom(%′)⊇alloc(M ). The proof is completed by

%1,c : [−→T ]• 4P{c/x} %′,c : [−→T ]• 3%1,c : [−→T ]•
tStr

%′,c : [−→T ]• 4P{c/x}
tRst1

%′ 4newc:#.P{c/x}

where the premise is established by the identifier substitution lemma (Lemma 4.4).

(3) Case rFree
M ,c :#+freec.P →M ,c:⊥+P

By inversion we get dom(%)⊆alloc(M ,c :#) and

%′
1 4P

%3%′
1,u : [−→T ]•

%4freeu.P

By Lemma 4.1(3) there exist an %1 such that %=%1,c : [−→T′ ]• and %1 3%′
1.

Choose %′ =%1. Clearly %3%′. Moreover dom(%′)⊆alloc(M ,c :⊥) since c /∈dom(%′) by
Lemma 4.1(2). The proof is completed by

%′
1 4P %′ 3%′

1
tStr

%′ 4P
"

5 Related work
The literature on using substructural logics to support destructive or strong updates is huge and we
can give but a brief overview here. More in-depth discussions can be found in [9, 24].

Resources and pi-calculus: resource usage in a pi-calculus extension is studied in [26] but it differs
from our work in many respects. For a start, their scoping construct assumes an allocation
semantics while we tease scoping and allocation apart as separate constructs. The resource
reclamation construct in [26] is at a higher level of abstraction than freec.P, and acts more
like a ‘resource finalizer’ leading to garbage collection. Resource reclamation is implicit in [26],
permitting different garbage collection policies for the same program, whereas in the resource
pi-calculus resource reclamation is explicit and fixed for every program. The main difference,
however, concerns the aim of the type systems: our type system ensures safe channel deallocation
and reuse; the type system in [26] statically determines an upper bound for the number of resources
used by a process and does not use substructural typing.

Linearity versus Uniqueness: in the absence of subtyping, affine typing and uniqueness typing
coincide but when subtyping is introduced they can be considered dual [15]. For linear typing, the
subtyping relation allows coercing non-linear assumptions into a linear assumptions, i.e. !U →U ,
but for uniqueness typing, the subtyping relation permits coercing unique assumptions into
non-unique assumptions. Correspondingly, the interpretation is different: linearity (respectively
affinity) is a local obligation that a channel must be used exactly (respectively at most) once,
while uniqueness is a global guarantee that no other processes have access to the channel.
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Combining both subtyping relations as we have done in this article appears to be novel. The
usefulness of the subtyping relation for affine or linear typing is well-known (e.g. see [19]);
subtyping for unique assumptions allows to ‘forget’ the uniqueness guarantee; client4 above
shows one scenario where this might be useful.

Linearity in functional programming: in pure functional programming languages, data structures are
always persistent and destructive updates are not supported: mapping a function f across a list
[x1,...,xn] yields a new list [f x1,...,f xn], leaving the old list intact. However, destructive updates
cannot always be avoided (e.g. when modelling system I/O [1]) and are sometimes required for
efficiency (e.g. updating arrays). Substructural type systems can be used to support destructive
update without losing referential transparency: destructive updates are only allowed on terms
that are not shared. Both uniqueness typing [5] and linear typing have been used for this purpose,
although even some proponents of linear typing agree that the match is not perfect [29, Section 3].
In functional languages with side effects, substructural type systems have been used to support
strong (type changing) updates. For instance, Ahmed et al. have applied a linear type system to
support ‘strong’(type changing) updates to ML-style references [2] in a setting with no subtyping.
It has been recognized early on that it is useful to allow the uniqueness of an object to be
temporarily violated. In functional languages, this typically takes the form of a sequential
construct that allows a unique object (such as an array) to be regarded as non-unique to
allow multiple non-destructive accesses (such as multiple reads) after which the uniqueness
is recovered again. Wadler’s let! construct [28] (or the equivalent Clean construct #!) and
observer types [23] both fall into this category, and this approach has also been adopted by some
non-functional languages where it is sometimes called borrowing [8]. It is, however, non-trivial
to extend this approach to a concurrent setting with a partial order over execution steps; our
approach can be regarded as one preliminary attempt to do so.

Strong update in the presence of sharing: there is substantial research on type systems that allow
strong update even in the presence of sharing; the work on alias types and Vault [11, 25, 31]
and on CQual [12] are notable examples of this. These type systems do explicit alias analysis
by reflecting memory locations at the type level through singleton types. This makes it possible
to track within the type system that a strong (type changing) update to one variable changes
the type of all its aliases. The interpretation of unique (or linear) in these systems is different: a
unique reference (typically called a capability in this context) does not mean that there is only a
single reference to the object, but rather that all its aliases are known. For non-unique reference
not all aliases are known and so strong update is disallowed.
These systems are developed for imperative languages. They are less useful for functional
languages because they cannot guarantee referential transparency, and they appear to be even
less useful for concurrent languages: even if we track the effect of a strong update on a shared
object on all its aliases, this is only useful if we know when the update happens. In an inherently
non-deterministic language such as the pi-calculus this is usually hard to know before execution.

Linearity in the pi-calculus: linear types for the pi-calculus were introduced by Kobayashi et al. [21]
but do not employ any subtyping. Moreover, their system cannot be used as a basis for strong
update or channel deallocation; although they split a bidirectional linear (‘unique’) channel into
a linear input channel and a linear output channel (cf. Definition 2.3.1 for the type combination
operator (+) ) these parts are never ‘collected’ or ‘counted’. The more refined type splitting
operation we use in this article, combined with the type decrement operation (which has no
equivalent in their system) is key to make uniqueness useful for strong updates and deallocation.
Our system can easily be extended to incorporate modalities but it does not rely on them; in our
case, channel modalities are an orthogonal issue.
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Fractional permissions and permission accounting: Boyland [7] was one of the first to consider
splitting permissions into fractional permissions, which allow linearity or uniqueness to be
temporarily violated. Thus, strong update is possible only with a full permission, whereas only
passive access is permitted with a ‘fraction’ of a permission. When all the fractions have been
reassembled into one whole permission, strong update is once again possible.
Boyland’s suggestion has been taken up by Bornat et al. [6], who introduce both fractional
permissions and ‘counting’ permissions to separation logic. Despite of the fact that their
model of concurrency is shared-memory, their mechanism of permission splitting and
counting is surprisingly similar to our treatment of unique assumptions. However, while
their resource reading of semaphores targets implicit ownership-transfer, uniqueness typing
allow us to reason about explicit ownership-transfer. Moreover, subtyping from unique
to unrestricted types provides the flexibility of not counting assumptions whenever this
is not required, simplifying reasoning for resources that are not deallocated or strongly
updated.

Session types: session types [16] and types with CCS-like usage annotations [19] are used to describe
channels which send objects of different types. However, these types give detailed prescriptions
on how channels can be used, constraining them to follow specific protocols determined at
compile-time; this makes modular typing difficult. For example, the heap channel used by
client3 cannot be given a type without knowing all the processes that use the heap. Moreover,
most session type systems describe the interaction between two parties, and cannot describe the
interaction of a client with two time servers, as in example client1; multi-party session types [17]
lift this restriction but at the expense of a significant increase of the complexity of the type system.

6 Conclusions and future work
We have extended ideas from process calculi, substructural logics and permission counting to define
a type system for the pi-calculus extended with primitives for channel allocation and deallocation,
where strong update and channel deallocation is safe for unique channels.

The purpose of our type system is not to ensure that every resource that is allocated will also be
deallocated (i.e. the absence of memory leaks). This is difficult to track in a type system. For instance,
consider

allocx.
(

c!d1.d1!.nil ‖ c!d2.nil ‖ c?y.y?.freex
)

Statically, it is hard to determine whether the third parallel process will eventually execute the freex
operation. This is due to the fact that it can non-deterministically react with either the first or second
parallel process and, should it react with the second process, it will block at d2?.freex. In order
to reject this process as ill-typed, the type-system needs to detect potential deadlocks. This can be
done [20], but requires a type system that is considerably more complicated than ours. We leave the
responsibility to deallocate to the user, but guarantee that resources once deallocated will no longer
be used.

One can envision various extensions of and variations on the type system we have presented. One
obvious generalization is to consider a pair of attributes 〈u,a〉 indicating when the channel will be
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unique (u) and how often the channel can be used (a). This leads to an infinite space of attributes of
the form:

〈ω,ω〉 ··· 〈2,ω〉 〈1,ω〉 〈0,ω〉

...
. . .

...

〈ω,2〉 . . .
...

〈ω,1〉 . . .
...

〈ω,0〉 ··· ··· ··· 〈0,0〉
The highlighted pairs are the pairs that we represent in our type system: 〈ω,ω〉 we denote simply as
ω (unrestricted), 〈u,ω〉 we represent as (•,u) or just • if u=0 (unique), and 〈ω,1〉 we represent as 1
(affine). We could have taken ω to be syntactic shorthand for (•,ω), which too would correspond to
〈ω,ω〉 in this matrix; although this would technically simplify the type language, we felt it would be
confusing to describe unrestricted channels as a special kind of unique channels (i.e. channels that
will be unique after an infinite number of steps).

Of the entries in the matrix that we do not represent, attributes of the form 〈ω,a〉 for other values
of a would certainly be of use and it should be straightforward to extend the type system to support
them. However, entries of the form 〈u,a〉 with u,a<ω are less useful. If a<u, we know the channel
will be unique after u steps but we are not allowed to take u steps, so we can consider the channel
to have attribute 〈ω,a〉 instead. Similarly, if u<a we will only be able to do a restricted number of
actions on the channel after it becomes unique, but (by definition of uniqueness) no other process
will benefit from this restriction, so we can consider the channel to have attribute 〈u,ω〉. Hence, the
natural space of attributes is one-dimensional:

〈ω,1〉 〈ω,2〉 ··· 〈ω,ω〉 ··· 〈2,ω〉 〈1,ω〉 〈0,ω〉

( 1 ω ··· (•,2) (•,1) • )

One useful extension would be that of input/output modalities, which blend easily with the
affine/unique duality. Presently, when a server process splits a channel c : [T]• into one channel
of type [T](•,2) and two channels of type [T]1 to be given to two clients, the clients can potentially
use this channel to communicate among themselves instead of the server. Modalities are a natural
mechanism to preclude this from happening. For instance, we could generalize the splitting rule so
that a unique channel c : [T]• can be split into two affine output channels of type [T]1out and an input

channel of type [T](•,2)
in which will be unique after two inputs.

One might even envision two usage attributes, one for input and one for output, so that we can have
a channels that can be limited to be used for x inputs and y outputs, or dually channels that can are
guaranteed to be unique after x inputs and y outputs. It is not clear at present whether this additional
expressivity would be useful, however; if one wants to be more precise about communication
protocols, session types [16] are probably a better choice.

We are currently investigating ways how uniqueness types can be used to refine existing equational
theories, so as to be able to equate processes such as client1 and client0.
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We have not designed a type checker for our type system. Type checking for substructural language
without subtyping is well-understood (for instance, see the textbook [30]). Type checking for a
substructural type system with subtyping is a less well-charted territory, but here too there is a lot of
work, especially for functional languages [4, 5, 14, 18, 27] but also for imperative languages [10]
and for the π -calculus [13].
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