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Abstract. In the standard testing theory of DeNicola-Hennessy one process is considered
to be a refinement of another if every test guaranteed by the former is also guaranteed by
the latter. In the domain of web services this has been recast, with processes viewed as
servers and tests as clients. In this way the standard refinement preorder between servers
is determined by their ability to satisfy clients.

But in this setting there is also a natural refinement preorder between clients, deter-
mined by their ability to be satisfied by servers. In more general settings where there is
no distinction between clients and servers, but all processes are peers, there is a further
refinement preorder based on the mutual satisfaction of peers.

We give a uniform account of these three preorders. In particular we give two charac-
terisations. The first is behavioural, in terms of traces and ready sets. The second, for
finite processes, is equational.

1. Introduction

The DeNicola-Hennessy theory of testing [NH84, DH87, Hen88] considers a process p to be
a refinement of process q if every test passed by p is also passed by q. Recently, in papers
such as [LP07, Bd10, CGP09, Pad10], this refinement preorder has been recast with a view
to providing theoretical foundations for web services. Here processes are viewed as servers
and tests viewed as clients. In this terminology the standard (must) testing preorder is a
refinement preorder between servers, which we denote by p @∼svr q; this is determined by
the ability of the servers p, q to satisfy clients. However in this framework there are many
other natural behavioural preorders between processes. In this paper we investigate two;
the first, p @∼clt q, is determined by the ability of the clients p, q to be satisfied by servers.
For the second we drop the distinction between clients and servers. Instead all processes
are viewed as peers of each other and the purpose of interaction between two peers is the
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mutual satisfaction of both. The resulting refinement preorder is denoted by p @∼p2p q. We

give a uniform behavioural characterisation of all three refinement preorders in terms of
traces and acceptances sets [NH84, Hen88]. We also give equational characterisations for a
finite process calculus for servers/clients/peers.

We use an infinitary version of CCS [Mil89] augmented by a success constant 1, to
describe processes, be they servers, clients or peers. Thus p = τ.a.(b.0 + c.0) + τ.a.c.0 is
a server which offers the action a followed by either b and c depending on how choices are
made, and then terminates, denoted by 0. On the other hand r = a.c.1 is a test or a client
which seeks a synchronisation on a followed by one on c; as usual [Mil89] communication
or cooperation consists of the simultaneous occurrence of an action a and its complement
a. Thus when the server p is executed in parallel with the client r, the latter will always be
satisfied, in that it is guaranteed to reach the successful state 1 regardless of how the various
choices are made. But if the client is executed with the alternative server q = τ.a.b.0 +
τ.a.c. 0 there is a possibility of the client remaining unhappy; for this reason p 6 @∼svr q.
However it turns out that q @∼svr p because every client satisfied by q will also be satisfied
by p.

The client preorder p @∼clt q compares the processes as clients, and their ability to be
satisfied by servers. This refinement preorder turns out to be incomparable with the server
preorder. For example a.1 + b.0 6 @∼svr a.1 because of the client b.1. But a.1 + b.0 @∼clt a.1
because every server satisfying the former also satisfies a.1; intuitively the extra component
of the client b.0 puts no further demands on servers, because the execution of b will never
lead to satisfaction. Conversely a.1 @∼svr a.0 because 1 plays no role for processes acting
a servers, while a.1 6 @∼clt a.0; a.1 as a client is satisfied by the server a.0 while a.0 can
never be satisfied as a client by any server. Behaviour relative to the client preorder @∼clt is
very sensitive to the presence of 1 and 0; for example 0 is a least element, that is 0 @∼clt r
for any process r.1 However in general the precise role these constants play is difficult to
discern; for example, rather surprisingly we have a.(b.0 + c.1) + a.(b.1 + c.0) @∼clt 0.

If we ignore the distinction between servers and clients then every process plays an
independent role as a peer to all other processes in its environment. This point of view
leads to another behavioural preorder. Intuitively, we say that the process p satisfies its
peer q if whenever they are executed in parallel both are guaranteed to be satisfied; in some
sense both peers test their partner. Then p1 @∼p2p p2 means that every peer satisfied by p1
is also satisfied by p2.

This third refinement preorder is different from the server and client preorders. In fact
we will show that p1 @∼p2p p2 implies p1 @∼clt p2; but the converse is not true in general. For

example 1 + b.0 @∼clt 1 but 1 + b.0 6 @∼p2p 1 because of the peer b.1. In our formulation

1 + b.0 and b.1 mutually satisfy each other, whereas the peers 1 and b.1 do not.
The aim of the paper is to show that the theory of the standard (must) testing preorder

[NH84, Hen88], here formulated as the server refinement preorder @∼svr, can be extended to
both the client and the peer refinement preorders.

It is well-known that the behaviour of processes relative to @∼svr can be characterised
in terms of the traces they can perform followed by ready or acceptance sets; intuitively
each ready set A after a trace s captures a possibility for the process to deadlock when
interacting with a client. For example the process q = τ.a.b. 0 + τ.a.c.0 has the ready set

1Note in passing that this is not the case for the server preorder; 0 as a server guarantees the client
b. 0 + τ. 1 but the server b. 0 does not.



MUTUALLY TESTING PROCESSES 3

{ b } after the (weak) sequence of actions a; this represents the possibility of q deadlocking if
servicing a client which requests an action a but then is not subsequently interested in the
action b. The process p = a.(b.0 + c.0) + a.c.0, also discussed above, has no comparable
ready set and for this reason p 6@∼svr q.

The first main result of the paper is a similar behavioural characterisation of both
the client and the peer refinement preorders, in terms of certain kinds of traces and ready
sets. However the details are intricate. It turns out that unsuccessful traces, those which
can be performed without reaching a successful state, play an essential role. We also need
to parametrise these concepts, relative to usable actions and usable processes; the exact
meaning of usable will depend on the particular refinement preorder being considered.

It is also well-known that the standard testing preorders over finite processes can be
characterised by a collection of (in-)equations over the process operators, [NH84, Hen88].
The second main result of the paper is a similar characterisation of the new refinement
preorders. In fact there is a complication here, as these preorders are not in general preserved
by the external operator +. A similar complication occurred in Section 7.2 of [Mil89] in
the axiomatisation of weak bisimulation equivalence, and in the axiomatisations of the must
testing preorder in [NH84], and we adopt the same solution. We give sound and complete (in-
)equational theories for the largest pre-congruences @∼

c
clt,

@∼
c
p2p contained in the refinement

preorders @∼clt, @∼p2p respectively, over a finite version of CCS. The presence of the success

constant 1 in this language complicates the axiomatisations considerably, as the behaviour
of clients and peers is very dependent on their ability to immediately report success. For this
reason we reformulate the axiomatisation of must testing preorder from [NH84], which in
this paper coincides with the server preorder @∼

c
svr, as a two-sorted equational theory. The

characterisation of the client and server preorders, @∼
c
clt,

@∼
c
svr respectively, requires extra

equations to capture the behaviour of the special processes 1 and 0. For example one of
the inequations required by the client preorder is x ≤ 1, while those for the peer preorder
include µ.(1 +x) ≤ 1 + µ.x.

The remainder of the paper is organised as follows. Section 2 is devoted to definitions
and notation. We introduce a language for describing processes, an infinitary version of
the CCS used in [Mil89], and give the standard intensional interpretation of it as a labelled
transition system, LTS. For the remainder of the paper, processes will then be considered
to be states in the resulting LTS. We also formally define the three different refinement
preorders discussed informally in the Introduction, by generalising the standard notion
from [NH84] of applying tests to processes.

We begin Section 3 by recalling the well-known characterisation of the must preorder
(Theorem 3.1) for finite branching LTSs from [NH84] in terms of traces and ready sets. To
adapt this for the client preorder we need some extra technical notation. This is motivated
by a series of examples, until we finally obtain a statement of the characterisation theo-
rem(Theorem 3.12). The proof of this result is delegated to a separate subsequent section,
Section 4. Meanwhile Section 3 continues by showing how the notation used in this charac-
terisation of the client preorder can be modified in a uniform manner to give an analogous
characterisation of the server preorder, (Theorem 3.14), which applies even in LTSs which
are not finite-branching. Finally by combining these we get an analogous characterisation
(Theorem 3.19) for the peer preorder.

Section 4, which contains the details of the behavioural characterisation theorem for
clients, is divided into three sub-sections. The first is devoted to some technical results
concerning the relations used in the characterisation. The soundness of the characterisation
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is the topic of the next sub-section, Section 4.2, while the converse completeness is covered
in the final sub-section.

Section 5 is similar in structure, but deals with the behavioural characterisation of the
peer preorder.

In Section 6 we restrict our attention to a finite sub-language CCSf and address the
question of equational characterisations. We first show why the client and peer refinement
preorders are not preserved by the external choice operator +, and give a simple behavioural
characterisation of the associated pre-congruences @∼

c
svr,

@∼
c
clt and @∼

c
p2p; this simply involves

taking into account the initial behaviour of processes. We then explain the equations which
need to be added to the standard set in order to obtain an equational characterisation of
the client and peer pre-congruences; These are stated in Theorem 6.7 and Theorem 6.9
respectively. The proof of the soundness of the equations is straightforward and is left to
the reader. But the completeness is considerably more complex and the details are self-
contained in a separate section, Section 7. This again is divided into three sub-sections.
The first is devoted to the exposition of normal-forms which are crucial to the completeness
proofs. This is followed by two sub-sections, dealing with the client preorder first, followed
by the peer preorder.

The paper ends with Section 8, where we present a summary of our results, a comparison
with the existing work, and a series of open questions.

The main results in sections 3, 5, and 6 were originally reported in the extended abstract
[BH13], but there the proofs were omitted. This work extends [BH13], for it contains all
the technical results (even the auxiliary ones), their proofs, more examples, and detailed
discussions of the material.

2. Testing processes

Let Act be a set of actions, ranged over by a, b, c, . . . and let τ, X be two distinct actions
not in Act; the first will denote internal unobservable activity while the second will be used
to report the success of an experiment. To emphasise their distinctness we use Actτ to
denote the set Act ∪ { τ }, and similarly for Actτ X; we use µ to range over the former and
λ to range over the latter. We assume Act has an idempotent complementation function,
with a being the complement to a. A labelled transition system, LTS, consists of a triple
〈P, Actτ X, −→〉, where P is a set of processes and −→⊆ P × Actτ X × P is a transition
relation between processes decorated with labels drawn from the set Actτ X. We use the

infix notation p
λ−→ q in place of (p, λ, q) ∈−→. An LTS is finite-branching if for all p ∈ P

and for all λ ∈ Actτ X, the set { q | p λ−→ q } is finite. Single transitions p
λ−→ q are

extended to sequences of transitions p
t−→ q, where t ∈ (Actτ X)?, in the standard manner.

For s ∈ (ActX)? we also have the standard weak transitions, p
s

=⇒ q, defined by ignoring

the occurrences of τs. Somewhat nonstandard is the use of infinite weak transitions, p
u

=⇒,
for u ∈ (Act)∞.

It will be convenient to have a notation for describing LTSs; we use an infinitary version
of CCS, [Mil89], augmented with a success operator, 1. The syntax of the language is
depicted in Figure 1. We use 0 to denote the empty external sum

∑
i∈∅ pi and p1 + p2

for the binary sum
∑

i∈{ 1,2 } pi. If I is a non-empty set, we use
⊕

i∈I pi to denote the sum∑
i∈I τ.pi. For the remainder of the paper we use the LTS whose states are the terms in

CCS and where the relations p
λ−→ q are the least ones determined by the (standard) rules
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p, q, r ::= 1 | A | µ.p |
∑
i∈I

pi

where I is a countable index set, and A ranges over a set of definitional constants each of

which has an associated definition A
def
= pA.

Figure 1: Syntax of infinitary CCS.

1 X−→ 0
(a-Ok)

µ.p
µ−→ p

(a-Pre)

p
λ−→ p′

p + q
λ−→ p′

(r-Ext-l)
q

λ−→ q′

p + q
λ−→ q′

(r-Ext-r)

p
λ−→ p′

A
λ−→ p′

A
def
= p; (r-Const)

Figure 2: The operational semantics of CCS

q
λ−→ q′

q || p λ−→ q′ || p
(p-Left)

p
λ−→ p′

q || p λ−→ q || p′
(p-Right)

q
a−→ q′ p

a−→ p′

q || p τ−→ q′ || p′
(p-Synch)

Figure 3: The operational semantics of contract composition

in Figure 2. We use finite branching CCS to refer to the LTS which consists only of terms
from CCS which generate finite branching structures.

To model the interactions that take place between the server and the client contracts,
we introduce a binary composition of contracts, r || p, whose operational semantics is in
Figure (3).

A computation consists of series of τ actions of the form

p || r = p0 || r0
τ−→ p1 || r1

τ−→ . . .
τ−→ pk || rk

τ−→ . . . (2.1)

It is maximal if it is infinite, or whenever pn || rn is the last state then pn || rn
τ
6−→. A

computation may be viewed as two processes p, r, one a server and the other a client, co-
operating to achieve individual goals, which may or may not be independent. We say (2.1)

is client-successful if there exists some k ≥ 0 such that rk
X−→. It is successful if it is client-

successful and there exists an l ≥ 0 such that pl
X−→. In a client-successful computation the

client can report success while in a successful one both the client and the server can report
success; note however that they are not required to do so at the same time.
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Definition 2.1 ( Passing tests ). We write p must r if every maximal computation from

p || r is client-successful. We write p mustp2p r if every such computation is successful.

Intuitively, p must r means that the client r is satisfied by the server p, as r always
reaches a state where it can report success. On the other hand, p mustp2p r means that
p passes r and r also passes p; so p and r have to collaborate in order to pass each other.
Thus, when using the testing relation mustp2p we think of p and r as two peers rather than
a server and a client.

Definition 2.2 ( Testing preorders ). In an arbitrary LTS we write

(1) p1 @∼svr p2 if for every r, p1 must r implies p2 must r
(2) r1 @∼clt r2 if for every p, p must r1 implies p must r2
(3) p @∼p2p q if for every r, p mustp2p r implies q mustp2p r.

We use the obvious notation for the kernel of these preorders; for instance p1 hp2p p2 means

that p1 @∼p2p p2 and p2 @∼p2p p1.

The preorder @∼svr is meant to compare servers, as p1 @∼svr p2 ensures that all the clients
passed (wrt must) by p1 are passed also by p2. The preorder @∼clt relates processes seen
as clients, because r1 @∼clt r2 means that all the servers that satisfy r1 satisfy also r2.
The third preorder, @∼p2p, relates processes seen as peers; this follows from the fact that

p mustp2p r is true only if p and r mutually satisfy each other.

3. Semantic characterisations

The standard (must) testing preorder from [NH84, Hen88] has been characterised for finite-
branching LTSs using two behavioural predicates. The first, p ⇓s, says that p can never
come across a divergent residual while executing the sequence of actions s ∈ Act?. We use

the notation p ⇓ , p converges, to mean that there is no infinite sequence p
τ−→ p1

τ−→
. . .

τ−→ pk
τ−→ . . .. Then the general convergence predicate is defined inductively as follows:

(a) p ⇓ε whenever p ⇓
(b) p ⇓a.s whenever p ⇓ and p

a
=⇒ implies

⊕
(p after a) ⇓s

where (p after s) denotes the set { p′ | p s
=⇒ p′ }. Note that p

a
=⇒ ensures that (p after a)

is non-empty; thus
⊕

(p after a) represents a (well-formed) process consisting of the choice
between the elements of the non-empty set (p after a), which may in general be infinite.
The second predicate codifies the possible deadlocks which may occur when a process p
attempts to execute the trace of actions s ∈ Act?:

Acc(p, s) = {S(q) | p s
=⇒ q

τ
6−→} (3.1)

where S(q) = { a ∈ Act | q a−→}. The sets S(q) are called ready sets, while we say that
Acc(p, s) is the acceptance set of p after a trace s. Ready sets are essentially the complements
of the refusal sets used in [Hoa85]. The sets in Acc(p, s) describe the interactions that can
lead p out of a possible deadlock, reached by executing the trace s of external actions.

Theorem 3.1. [DH87, Hen88] In finite branching CCS, p @∼svr q if and only if, for every
s ∈ Act?, if p ⇓s then (i) q ⇓s, (ii) for every B ∈ Acc(q, s) there exists some A ∈ Acc(p, s)

such that A ⊆ B, and (iii) if q
s

=⇒ then p
s

=⇒.
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As might be expected, this behavioural characterisation does not work for @∼clt:

Example 3.2. One can prove that b.a.1 @∼clt q, where q denotes b.(c.0 + 1). However
their acceptance sets are not related as required by Theorem 3.1. Calculations show that
Acc(b.a.1, b) = { { a } }. But { c } ∈ Acc(q, b) and so there is no set B in Acc(b.a.1, b)
satisfying B ⊆ { c }.

In Example 3.2 we should not require the ready set { c } ∈ Acc(q, b) to be matched
by one in Acc(b.a.1, b) because q can report success immediately after performing b. We

formalise this intuition. For every s ∈ Act? let p
s

=⇒6Xq be the least relation satisfying

(1) p
X
6−→ implies p

ε
=⇒6Xp

(2) if p′
s

=⇒6Xq and p
X
6−→ then

• p a−→ p′ implies p
as

=⇒6Xq
• p τ−→ p′ implies p

s
=⇒6Xq

Intuitively, p
s

=⇒ 6Xq means that p can perform the sequence of external actions s ending
up in state q without passing through any state which can report success; in particular
neither p nor q can report success. This notation is extended to infinite traces, u ∈ Act∞,

by letting p
u

=⇒ 6X whenever there exists a t ∈ (Actτ )∞ such that t = µ1µ2 . . ., (a) p =

p0
µ1−→ p1

µ2−→ p2
µ3−→ . . . implies that pi

X
6−→ for every pi, and (b) for every n ∈ N and some

k ∈ N, un = 〈tk〉\τ ; where 〈t〉\τ removes the τs from the string t.

Definition 3.3. For every process p and trace s ∈ Act?, let

Acc 6X(p, s) = {S(q) | p s
=⇒6Xq

τ
6−→}

We call the set Acc 6X(p, s) the unsuccessful acceptance set of p after s.

We can now try to adapt the characterisation for servers in Theorem 3.1 to clients as
follows:

Definition 3.4. Let r1 4bad r2 if for every s ∈ Act?, if r1 ⇓s then (i) r2 ⇓s, and (ii) for
every B ∈ Acc6X(r2, s), there exists some A ∈ Acc 6X(r1, s) such that A ⊆ B.

Example 3.5. One can show that r @∼clt c.a.1 where r denotes the client c.(a.1 +b.0).
However they are not related by the proposed 4bad in Definition 3.4. Obviously r ⇓c and
{ a } ∈ Acc 6X(c.a.1, c). But there is no B ∈ Acc6X(r, c) such that B ⊆ { a }; this is because
Acc 6X(r, c) = { { a, b } }. The problem is the presence of b in the ready set of a.1 + b.0.

Intuitively, the action b is unusable for r after having performed the unsuccessful trace
c; this is because performing b leads to a client, 0, which is unusable, in the sense that it
can never be satisfied by any server. When comparing ready sets after unsuccessful traces
in Definition 3.4 we should ignore occurrences of unusable actions.

Let Uclt = { r | p must r, for some server p }. The set Uclt contains the usable clients,
those satisfied by at least one server. We also need to consider the residuals of a client r
only after unsuccessful traces: for any process r and s ∈ Act? let

(r after 6X s) = { q | r s
=⇒6Xq } (3.2)

The usability of a client, then, is parametrised over traces: for every s ∈ Act?, the client
usability along an unsuccessful trace s, denoted usbl6X s, is defined by induction on s:
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• r usbl6X ε if r ∈ Uclt
• r usbl6X a.s if r ∈ Uclt, and if r

a
=⇒6X then

⊕
(r after 6X a) usbl6X s

It is extended to infinite traces u ∈ Act∞ in the obvious manner. Intuitively r usbl6X s
means that any state reachable from r by performing any subsequence of s is usable. Note
that only unsuccessful traces have to be taken into the account.

Now the set of usable actions for a client after s can be defined as

uaclt(r, s) = { a ∈ Act | r sa
=⇒6X implies r usbl6X sa } (3.3)

Example 3.6. We revisit Example 3.5. Although r can perform the sequence cb, b is not
in uaclt(r, c) because (r after 6X cb) is the singleton set containing 0, which is not in Uclt.
Instead we have uaclt(r, c) = { a }.

If we amend Definition 3.4 by replacing the set inclusion A ⊆ B with the more relaxed
condition A ∩ uaclt(r1, s) ⊆ B, it follows that r 4bad c.a.1; thereby correctly reflecting the
fact that r @∼clt c.a.1.

Example 3.7. In the definition of usbl6X above we must consider only the unsuccessful
traces rather than all the traces. Consider the client r = b.(τ.(1 + a.0) + τ.a.τ.1). First
note that b.a.0 must r while b.a.0 6must b.0 and therefore r 6@∼clt b.0.

Now consider the consequences of using =⇒ and after rather than =⇒ 6X and after 6X
in the definition of the usability along traces. The amendment to the definition of 4bad

suggested in Example 3.6 would no longer be sound, as r 4bad b.0 would be true.
This is because (r after ba) is the set {0,1 } and so

⊕
(r after ba) is the client τ.0 +

τ.1 , which is not in Uclt. This leads to uaclt(r, b) containing only actions not performed
by r after b, from which r 4bad b.0 would follow. The incorrect reasoning involves the
unsuccessful acceptance sets after the trace b. Acc 6X(b.0, b) = { ∅ } and the unique ready set
it contains, ∅, can be matched by A∩ uaclt(r, b) for some A ∈ Acc 6X(r, b), namely A = { a }.
This is because A ∩ uaclt(r, b) = ∅.

However with the correct definition of usbl6X this reasoning no longer works as uaclt(r, b) =
{ a }.

Unfortunately the amendment to Definition 3.4 suggested in Example 3.6 is still not
sufficient to obtain a complete characterisation of the client preorder.

Example 3.8. Consider the clients r1 = a.(b.d.0 +b.1) and r2 = a.c.d.1. As r1 is not
usable r1 @∼clt r2, although r1 64bad r2, even when 4bad is amended as suggested in Exam-
ple 3.6. To see this first note { d } ∈ Acc6X(r2, ac), and r1 ⇓ac, although r1 can not actually
perform the sequence of actions ac; r1 ⇓ac merely says that if r1 can perform any prefix of
the sequence ac to reach r′ then r′ must converge. Consequently Acc 6X(r1, ac) is empty and
thus no ready set B can be found to match the ready set { d }.

To fix this problem we need to reconsider when ready sets are to be matched. In
Definition 3.4 this matching is moderated by the predicate ⇓ s; for example a.(τ∞ +
b.1) 4bad a.c.d.1, where τ∞ denotes some process which does not converge. This is be-
cause a.(τ∞ + b.1) ⇓a is false and therefore the ready set { c } ∈ Acc 6X(a.c.d.1, a) does not
have to be matched by a.(τ∞ + b.1). However the client preorder is largely impervious to
convergence/divergence. For example 1 hclt (1 +τ∞).

It turns out that we have to moderate the matching of ready sets, not via the conver-
gence predicate, but instead via usability.

One can show that if r1 @∼clt r2 and r1 usbl6X s then r2 usbl6X s. In fact this predicate
describes precisely when we expect ready sets of clients to be compared.
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q

q2q1q0 q3 . . .

a
a

a
a

a

a

Figure 4: Infinite traces

Definition 3.9 ( Semantic client-preorder ). In any LTS, let r1 -clt r2 if (1) for every
s ∈ Act? such that r1 usbl6X s, (a) r2 usbl6X s, and (b) for every B ∈ Acc6X(r2, s) there exists
some A ∈ Acc 6X(r1, s) such that

A ∩ uaclt(r1, s) ⊆ B

(2) for w ∈ Act? ∪ Act∞ such that r1 usbl6X w, r2
w

=⇒6X implies r1
w

=⇒6X.

Example 3.10. Let us revisit the clients r1, r2, in Example 3.8. The client b.d.0 +b.1 is not
usable; that is b.d.0 +b.1 6∈ Uclt because it cannot be satisfied by any server. Consequently
r1 usbl6X ac does not hold, and therefore when checking whether r1 -clt r2 holds the ready
set { d } ∈ Acc6X(r2, ac) does not have to be matched by r1.

Indeed it is now straightforward to check that r1 -clt r2; the only s ∈ Act? for which
Acc 6X(r2, s) is non-empty and r1 usbl6X s is the empty sequence ε.

In general, and in particular in LTSs which are not finite branching, the condition on
the existence of infinite computations in (2) does not follow from the condition on finite
computations.

Example 3.11. Consider the process q from Figure 4, where qk denotes a process which
performs a sequence of k a actions followed by 1. Let p be a similar process, but without the
self loop. Then p usbl6X s and q usbl6X s for every s, and the pair (p, q) satisfies condition
(1) of -clt, and condition (2) on finite ws. However condition (2) on infinite ws is not

satisfied: if u denotes the infinite sequence of as then q
u

=⇒6X but p
u
6=⇒6X.

In fact p 6@∼clt q. For consider the process A
def
= a.A. When p is run as a test on A, or as

a client using the server A, every computation is finite and successful; A must p. However
when q is run as a test, there is the possibility of an infinite computation, the indefinite
synchronisation on a, which is not successful; A 6must q.

Theorem 3.12. In CCS, r1 @∼clt r2 if and only if r1 -clt r2.

Proof. It follows from Theorem (4.10) of Section 4.

The server-preorder @∼svr can be characterised behaviourally in manner dual to that of
Definition 3.9, using the set of usable servers Usvr = { p | p must r, for some client r }, the
usable actions

uasvr(p, s) = { a ∈ Act | p s
=⇒ implies p usbl sa }

and the server convergence predicate p ⇓svr s, defined as the conjunction of p ⇓ s and a
server usability predicate p usbl s. This latter predicate is defined inductively in a manner
similar to usbl6X s, but over all traces s, rather than simply the unsuccessful ones.
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Definition 3.13 ( Semantic server-preorder ). In any LTS, let p -svr q if (1) for every
s ∈ Act? such that p ⇓svr s, (a) q ⇓svr s, and (b) for every B ∈ Acc(q, s) there exists some
A ∈ Acc(p, s) such that

A ∩ uasvr(p, s) ⊆ B
(2) for every w ∈ Act? ∪ Act∞ such that p ⇓svr w, q

w
=⇒ implies p

u
=⇒.

Theorem 3.14. In CCS, p @∼svr q if and only if p -svr q.

Proof. The standard argument of [Hen88] suffices, but for the condition on infinite traces,
which we prove here.

Let u = a1a2a3 . . ., and Cn
def
= τ.1 + an.Cn+1 for every n ∈ N. No Cn is successful,

so the infinite computation of C0 || p2 due to the trace u proves that p2 6must C0. The

hypothesis p1 @∼svr p2 implies that p1 6must C0. For a contradiction, suppose that p1
u
6=⇒.

The assumption p1 ⇓svr u implies p1 ⇓u, which in turn lets us prove that all the maximal
computations of C0 || p1 are client-successful. But this is not possible, as p1 6must C0. It

follows that p1
u

=⇒.

This can be seen to be a generalisation of Theorem 3.1, as the server usability predicate
Usvr is degenerate; it holds for every process, since any process used as a server trivially
satisfies the degenerate client 1.

Let us now consider the peer preorder. The following result is hopeful:

Proposition 3.15. In CCS, r1 @∼p2p r2 implies r1 @∼clt r2.

Proof. First note that using Theorem (3.14) one can prove that 1 + p @∼svr p and that
p @∼svr 1 + p.

Now suppose that p must r1; it follows that 1 + p must r1, and so 1 + p mustp2p r1
because 1 + p is trivially satisfied. The hypothesis imply that 1 + p mustp2p r2, thus
1 + p must r2. In turn this ensures that p must r2.

Unfortunately, the peer preorder is not contained in the server preorder:

Example 3.16. It is easy to see that a.0 @∼p2p b.0. This is true because a.0 can never

be satisfied, for it offers no X at all. However, a.0 6@∼svr b.0, as the client a.1 is satisfied
by a.0, whereas b.0 6must a.1.

Intuitively, the reason why @∼p2p 6⊆ @∼svr is that the server preorder does not take into

account the requirement that servers should now act as peers; they should also be satisfied
by their interactions with clients. To take this into account we introduce the usability of
peers and amend the definition of -svr accordingly. In principle we should introduce the set

of usable peers, Up2p = { p | p mustp2p r for some peer r }. However, since Up2p turns out
to coincide with Uclt, instead we define the peer convergence predicate by using the usability
predicate of clients. For every w ∈ Act?∪Act∞, let p ⇓p2p w whenever p ⇓w and p usbl6X w.

Definition 3.17. Let p -usvr q whenever (1) for every s ∈ Act?, if p ⇓p2p s then (a) q ⇓s,
and (b) for every B ∈ Acc(q, s) there exists some A ∈ Acc(p, s) such that

A ∩ uaclt(p, s) ⊆ B

(2) for every w ∈ Act? ∪ Act∞, if p ⇓p2p w, and q
w

=⇒, then p
w

=⇒.

Definition 3.18 ( Semantic peer-preorder ). Let p -p2p q if p -clt q and p -usvr q.
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Note that the definition of p -p2p q is not simply the conjunction of the client and server
preorders from Definition 3.9 and Definition 3.13. It is essential that the usable set of peers
Up2p be employed.

Theorem 3.19. In CCS, p @∼p2p q if and only if p -p2p q.

Proof. See Section 5.

4. Characterising the client behaviour

This section is devoted to the proof of behavioural characterisation of the client preorder,
Theorem 3.12. For convenience it is divided into three subsections. The first gathers some
preliminary technical properties of the various predicates used in the characterisation; the
second is devoted to soundness and the final one to completeness.

4.1. Preliminaries. Here we collect some technical results on the interplay between the
testing predicate p must r and the client and action usability predicates. The two corollaries
below are the main results of the section.

Lemma 4.1. Suppose p must r where p
s

=⇒ q. Then r
s

=⇒6Xr′ implies q must r′.

Proof. Straightforward as any maximal computation from q || r′ can be prefixed by an
unsuccessful sequence of reduction steps to obtain a maximal computation from p || r.

Corollary 4.2. Suppose p must r where p
s

=⇒ q. Then r usbl6X s.

Proof. By induction on s. If s is the empty sequence ε then the result is immediate, as

p must r ensures that r ∈ Uclt. So assume s has the form b.t and r
b

=⇒6X. We have to show
that

⊕
(r after 6X a) usbl6X t.

Let p
b

=⇒ pb
t

=⇒ q. By the lemma we know pb must r′ whenever r
b

=⇒6Xr′. This in turn
means that pa must

⊕
(r after 6X a). Now apply induction.

Proposition 4.3. Suppose p must r and p
s.a

=⇒ q. Then r
s

=⇒6Xr′
a−→ r′′ implies q must r′′.

Proof. Suppose that p
s.a

=⇒ q and that r
s

=⇒6X
a−→ r′′. We prove q 6must r′′ implies p 6must r.

Since q 6must r′′ there must exist a maximal unsuccessful computation from

q′′ || r′′ = q0 || r′′0
τ−→ q1 || r′′1

τ−→ q1 || r′′1 . . . (4.1)

such that r′′k
X
6−→ for every k ≥ 0. In particular r′′

X
6−→.

The two derivations p
s.a

=⇒ q and can be zipped together r
s

=⇒6Xr′
a−→ r′′ to obtain a

computation

p || r = p0 || r0
τ−→ p1 || r1

τ−→ . . . pn || rn = q || r′′ (4.2)

Moreover here ri
X
6−→ for every 0 ≤ i ≤ n.

Now the computation in (4.2) can be continued using the one in (4.1), leading to a
maximal computation from p || r which is unsuccessful. It follows that p 6must r.
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Corollary 4.4. Suppose p must r where p
s.a

=⇒ q and r
s

=⇒ r′
a−→ r′′. Then a ∈ uaclt(r, s).

Proof. If r
sa
6=⇒6X, then by definition (3.3) a ∈ uaclt(r, s). If r

sa
=⇒6X, then we have to prove

r usbl6X sa; the argument relies on the previous proposition and induction on s.
If s is empty then

⊕
(r after 6X a) usbl6X ε because of the previous proposition.

If s = b.t, then p
b

=⇒ p′
t.a

=⇒ q. An application of the previous proposition to p
b

=⇒ p′

ensures that p′ must r′′ for every r′′ ∈ (r after 6X b), so p′ must
⊕

(r after 6X b). As p′
ta

=⇒,
induction implies that

⊕
(r after 6X b) usbl6X ta.

Usability ensures that even when a client diverges, it can report success.

Lemma 4.5. If r ∈ Uclt and r ⇑, then for every infinite reduction sequence r = r0
τ−→

r1
τ−→ r2

τ−→ r3
τ−→ . . ., there exists an n ∈ N such that rn

X−→.

Proof. As r ∈ Uclt there exists a server p such that p must r. Fix a divergent computation
of r, and zip it with p,

p || r = p || r0
τ−→ p || r1

τ−→ p || r2
τ−→ . . .

The computation must be client-successful, so rn
X−→ for some n ∈ N.

4.2. Soundness. Here we prove that the behavioural preorder in Definition 3.9 provides a
sufficient set of conditions to capture the client-preorder. It is difficult to break the proof
into a series of manageable independent results; instead we have one long monolithic proof.

Theorem 4.6 (Soundness client preorder). r1 -clt r2 implies r1 @∼clt r2.

Proof. Fix a pair r1 -clt r2, and let p must r1; we have to show that all the maximal com-
putations of the composition r2 || p are client-successful. The argument is by contradiction,
in that we show that if a maximal computation of p || r2 is not client successful, then also
p || r1 performs a non client successful computation, so p 6must r1.

Fix a maximal computation from p || r2,

p || r2 = p0 || r02
τ−→ p1 || r12

τ−→ p3 || r32
τ−→ p4 || r42

τ−→ . . . (4.3)

The computation in (4.3) is finite or infinite. We discuss the two cases separately.
Suppose that the computation is finite, and unzip it; the resulting contributions of p

and r2 are

r2
s

=⇒ rk2 , p
s

=⇒ pk

for some s ∈ Act?, and stable rk2 || pk. The hypothesis p must r1, p
s

=⇒, and Corol-
lary 4.2 imply that r1 usbl6X s. Suppose that the computation in (4.3) is not client suc-

cessful, so no state in the contribution of r2 reports success. It follows r2
s

=⇒ 6Xrk2 , and

as rk2
τ
6−→, S(rk2) ∈ Acc 6X(r2, s); so part (1b) of Definition 3.9 implies that A ∈ Acc6X(r1, s),

for some A such that A ∩ uaclt(r1, s) ⊆ S(rk2). Definition 3.3 implies that there exists a r′1

such that S(r′1) = A and r1
s

=⇒6Xr′1
X
6−→. Zip together the contributions along s of p and r1,

the resulting computation reaches the state r′1 || pk; if this state is stable, then the compu-
tation is maximal and not client-successful, so p 6must r1. This contradicts our assumption
that p must r1.
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So it remains to show that r′1 || pk is stable. Suppose, for a contradiction, that pk
c−→

and r′1
c−→, that is c ∈ A, for some action c. This situation matches the assumptions in

Corollary 4.4 exactly, which gives that c ∈ uaclt(r1, s). Since A ∩ uaclt(r1, s) ⊆ S(rk2) this in

turn means that rk2
c−→, which contradicts the assumption that p || rk2 is stable.

We have discussed when the computation in (4.3) above is finite. Now let us suppose
that it is infinite. As before unzip it.

Either p and r2 perform infinite traces, or they perform finite traces and then (at least)
one of them diverge.

If we are in the first case, then

r2
u

=⇒, p
u

=⇒

The assumption p must r1, the fact that p
u

=⇒, and Corollary 4.2 applied to every prefix

of u, imply that r1 usbl6X u. The proof that there is a successful term in r2
u

=⇒ is by

contradiction; for suppose that r2
u

=⇒6X; then part (2) of Definition 3.9 implies that r1
u

=⇒6X.

By zipping r1
u

=⇒6X with p
u

=⇒ we obtain a maximal computation of r1 || p which is not
client-successful; this implies that p 6must r1, which contradicts our original assumption
on p.

Suppose now that p and r2 engage in a finite trace and then there is a divergence; by
unzipping the computation in (4.3) we get the contributions

r2
s

=⇒ rk2 , p
s

=⇒ pk

The assumption p must r1, the fact that p
s

=⇒, and Corollary 4.2 imply that r1 usbl6X s.

Either pk diverges or rk2 diverges, or both diverge.
Suppose that pk diverges. To prove that the computation in (4.3) is client-successful

we reason by contradiction: suppose that there is no successful state among r2, . . . , r
k
2 ; this

implies that r2 performs the trace s unsuccessfully,

r2
s

=⇒6X
Part (2) of Definition 3.9 ensures that r1

s
=⇒ 6Xr′1. We zip the contribution of p with the

unsuccessful transition of r1; as pk diverges the resulting computation is maximal,

p || r1 =⇒ pk || r′1 =⇒ pk || r′1 =⇒ . . . (4.4)

All the derivatives of r1 in the maximal computation above are in r1
s

=⇒6Xr′1, so they are
not successful. It follows that the computation in (4.4) is not client-successful. However
this contradicts the assumption p must r1.

Finally suppose that rk2 diverges. If there is a successful state in r2
s

=⇒ rk2 then the
maximal computation we unzipped is client-successful. Therefore suppose that there is no

successful state in the contribution of r2, that is r2
s

=⇒ 6Xrk2 . As r1 usbl6X s, part (1a) of

Definition 3.9 implies that r2 usbl6X s. Now one can show that this implies that rk2 usbl6X ε.
So an application of Lemma 4.5 ensures that the unzipped computation is client-successful.
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4.3. Completeness. Here we show the converse of Theorem 4.6, which involves showing
that the testing preorder r1 @∼clt r2 implies the collection of properties gathered together
in Definition 3.9. These in turn are quantified over all sequences s ∈ Act?; we handle this
quantification using induction over the length of s. First a technical lemma.

Lemma 4.7. Suppose r ∈ Uclt. Then 0 6must r if and only if r
ε

=⇒6Xr′
τ
6−→ for some client

r′.

Proof. One direction is straightforward. For the converse suppose 0 6must r; we have to

show that there exists some r′ satisfying r
ε

=⇒6Xr′
τ
6−→.

Since 0 6must r there must exist some unsuccessful maximal computation

0 || r = 0 || ro
τ−→ . . .

τ−→ 0 || rk
τ−→ . . . (4.5)

Suppose this is infinite. Then p must r can not be true for any server p, as 0 can be
replaced in (4.5) by any p, to obtain an unsuccessful maximal computation from p || r. This
contracts the assumption that r ∈ Uclt.

So (4.5) has to be finite, with terminal element 0 || rn. The required r′ is rn.

Proposition 4.8. Suppose r1 @∼clt r2 where r1 ∈ Uclt.
(1) r2

a
=⇒6X implies r1

a
=⇒6X

(2) For every B ∈ Acc 6X(r2, ε) there exists some A ∈ Acc 6X(r1, ε) such that A∩uaclt(r1, ε) ⊆
B

(3) If r2
a

=⇒6X then
⊕

(r1 after 6X a) @∼clt
⊕

(r2 after 6X)

Proof. Throughout let p1 be a server such that p1 must r1.

(1) Let p = p1 + a.τ∞. As p diverges after the interaction on a, and r2 performs a without
reaching successful states, p 6must r2. The hypothesis imply p 6must r1. In turn this

ensures that r1
a

=⇒6X, for otherwise the assumption on p1 would imply that p must r1.
(2) Let Acc 6X(r1, ε) be denoted by {Ai | i ∈ I }; note that the index set I may be empty,

or indeed infinite. For convenience we use U to denote the set uaclt(r1, ε). Suppose,
for a contradiction, that there exists some B ∈ Acc6X(r2, ε) such that for every i ∈ I
there is some action ai ∈ (Ai ∩ U)\B. From the preceding lemma we therefore know

that the index set I is non-empty. Let Di denote the set { r′ | r1
ε

=⇒6X
ai−→ r′ }, which

we know to be non-empty because ai ∈ U . We also know, because ai ∈ U , that there
is some server pi satisfying pi must r′ for every r′ ∈ Di. This is true because either

r′
X−→ for every r′ ∈ Di, or Definition (3.3) ensures that there exists a pi such that

pi must
⊕
{ r′ ∈ Di | r′

X
6−→}. Plainly pi must r′ for every r′ ∈ Di such that r′

X−→, so
the server pi indeed satisfies all the clients in Di.

Let J = { i ∈ I | r1
ai
6=⇒ 6X }; this set contains the indexes of the actions that r1

performs passing through a successful state. Now let p denote the server
∑

i∈I\J ai.pi +∑
j∈J aj .0.

(a) p 6must r2. A finite unsuccessful maximal computation is ensured by the existence
of B in Acc 6X(r2, ε).

(b) But p must r1, which contradicts (a). To prove that p must r1 is a little delicate.
But consider a maximal computation

p || r1 = p0 || r0 τ−→ . . . pk || rk . . . (4.6)
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If the server p remains untouched then the same sequence of clients can be used
to construct a maximal computation from p1 || r1; so some rk must report success.
On the other hand suppose p is touched. For example pk is p while pk+1 is 0 or
pi for some i ∈ I. If no rj , for j ≤ k, reports success then rk+1 ∈ Di, from which
pi must rk+1 follows, and pk+1 indeed equals pi. This means again that (4.6) above
is successful.

(3) For convenience let r̂i denote
⊕

(ri after 6X a), for i = 1, 2. Suppose p must r̂1. Then one
can argue that p1 + a.p must r1. Since r1 @∼clt r2 this ensures that p1 + a.p must r2.
From this it is easy to see that p must r′ for every r′ in the non-empty set r2 after 6X a.
Now the required result, p must r̂2, follows.

The first part in the proposition above depends on the possibility of servers diverging. If
divergence is not admitted, then one can prove that a.1 @∼clt a.τ.1 (see Example 4.2.26 in
[Ber13]). In absence of divergence, this would provide a counter example to part (1) above,

for a.τ.1 a
=⇒6X, whereas a.1

a
6=⇒6X.

Unfortunately one property in Definition 3.9, that involving infinite sequences, requires
special treatment.

Lemma 4.9. Suppose r1 @∼clt r2. If r1 usbl6X u and r2
u

=⇒ 6X, where u ∈ Act∞, then

r1
u

=⇒6X.

Proof. Let u = a1a2a3 . . .. To show that r1
u

=⇒6X we have to exhibit a t ∈ Act∞τ such that
t = µ1µ2µ3 . . . and

• r1 = r01
µ1−→ r11

µ2−→ r21
µ3−→ . . .

• for every n ∈ N, un = 〈tk〉\τ for some k ∈ N

• for every n ∈ N, rn1
X
6−→

The hypothesis r1 usbl6X u ensures that for every uk there is a pk such that pk must⊕
(r1 after 6X uk). For every k ∈ N, let Ak

def
= pk + ak+1.Ak+1.

By zipping r2
u

=⇒6X with A0
u

=⇒ one sees that A0 6must r2, for the client r2 does not
report success. In turn A0 6must r1, so there exists a maximal computation of r1 || A0 which
is not client-successful. Given the construction of the A’s and the Pk’s, this is possible only

if the computation is due to the infinite trace u. So r1
u

=⇒ , which ensures the first two

properties above. As the computation is unsuccessful, ri1
X
6−→ for every i ∈ N.

We have now gathered sufficient material to give the proof of completeness.

Theorem 4.10 (Completeness). r1 @∼clt r2 implies r1 -clt r2.

Proof. We have to infer all the properties used in Definition 3.9. The property (2) for
w ∈ Act∞ follows directly from the preceding lemma. All other properties are parametrised
on s ∈ Act?; they can be inferred using induction on the length of s, and Proposition 4.8.
Here we give one example, and the remaining ones can be established in a similar manner.

We show that r1 usbl6X s implies r2 usbl6X s. If s is the empty string this follows
immediately. So suppose it has the form bt and r1 usbl6X b.t ; we have to prove that
r2 usbl6X b.t follows. This requires establishing (a) r2 ∈ Uclt, which is a consequence of r1

being in Uclt and (b) if r2
b

=⇒6X then
⊕

(r2 after 6X b) usbl6X t. So suppose r2
b

=⇒6X. But
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by part (3) of Proposition 4.8 we know that
⊕

(r1 after 6X b) @∼clt
⊕

(r2 after 6X b). Moreover
unravelling the assumption r1 usbl6X s gives that

⊕
(r1 after 6X b) usbl6X t. The required

result,
⊕

(r2 after 6X b) usbl6X t, now follows by induction.

5. Characterising the peer behaviour

In this section we are concerned with the behavioural characterisation of the peer preorder,
Theorem (3.19). The material is organised in three subsections, where we respectively
gather ancillary results, we prove the soundness of the characterisation, and then prove its
completeness.

5.1. Preliminaries.

Corollary 5.1. For every process p, p hsvr p +
∑

i ∈I 1.

Proof. This follows from Theorem 3.14 and the fact that adding 1 to the terms has no
impact on their traces and acceptance sets.

Lemma 5.2. If r ∈ Uclt, then there exists a p such that p must r, p
X
6−→ and p

τ
6−→.

Proof. We prove that if r ∈ Uclt then there exists a process p such that p
X
6−→. The

assumption that r ∈ Uclt implies that there exists a p such that p must r. If p
X
6−→ there

is nothing more to prove. If p
X−→, then p = p′ +

∑
i∈I 1 for some non empty set I and p′

such that p′
X
6−→. Corollary 5.1 implies that p′ hsvr p, so p′ must r.

Now we prove that there exists a process p such that p must r and p
τ
6−→. The

assumption that r ∈ Uclt implies that there exists a p such that p must r. If p
τ
6−→,

then there is nothing more to prove. If p
τ−→, then either p diverges or p converges. If p

diverges, then p must r implies that r
X−→. It follows that 0 must r; as 0

τ
6−→, the process

0 suits our aims.
If p converges then there exists a stable p′ such that all the maximal computation of

r || p′ are extensions of the computation r || p =⇒ r || p′. Since p must r, it follows that all
the maximal computations of r || p′ are client-successful, and so p′ must r.

The next lemma tells what it means for a process r to be usable along an unsuccessful
trace s.

Lemma 5.3. For every process r and trace s, if r usbl s then for every s′ prefix of s if

r
s′

=⇒6X there exists a server p such that p must
⊕

(r after 6X s′).

Proof. As r usbl s, p must r for some p.
We reason by induction on s. In the base case (s = ε) observe that p must

⊕
(r after ε).

In the inductive case s = a.s′. Fix a prefix s′ of s such that r
s′

=⇒ 6X; we have to
show a server p which must pass

⊕
(r after 6X s′). If s′ is empty we reason as in the base

case. Suppose s′ = a.s′′. As r
s′

=⇒ 6X, the term r̂ =
⊕

(r after 6X a) is well-defined, and
the hypothesis r usbl s ensures that r̂ usbl s′′. The inductive hypothesis ensures that for

every ŝ prefix of s′′, if r̂
ŝ

=⇒6X then there exists a server p such that p must
⊕

(r̂ after ŝ).
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The equality
⊕

(r̂ after s′′) =
⊕

(r after 6X s′) implies that there exists a p such that
p must

⊕
(r after 6X s′).

The next result gives a proof method for the predicate ⇓. This proof method is based
on the convergence of the residuals of processes after traces.

Lemma 5.4. If for every s′ prefix of s, p
s′

=⇒ p′ implies p′ ⇓, then p ⇓s.

Proof. Let us assume that for every s′ prefix of s, p
s′

=⇒ p′ implies p′ ⇓. The string ε is a

prefix of every string s, so the assumption and p
ε

=⇒ p imply that p ⇓.
We proceed by induction. As p ⇓ the base case is true. In the inductive case s = a.s′

and either p
a
6=⇒ or p

a
=⇒. In the first case p ⇓ a.s′ follows, while in the second case⊕

(p after a)
s′

=⇒. Induction on s′ implies that
⊕

(p after a) ⇓s′, and so p ⇓a.s′.

5.2. Soundness. Our aim in this section is to prove that the peer preorder contains the
behavioural preorder of Definition 3.18. Roughly speaking, the proof is a combination
of the standard arguments that show the soundness of the server preorder [Hen88], with
the arguments on usability that we used to prove the soundness of the client preorder,
Theorem 4.6. Much in the same style of Section 4.2, the proof is monolithic.

Theorem 5.5 (Soundness peer). p -p2p q implies p @∼p2p q.

Proof. Fix two processes p and q such that p -svr q. We are required to show that p @∼p2p q,
that is p mustp2p r implies q mustp2p r for every process r. Fix a process r such that
p mustp2p r; we explain why all the maximal computations of q || r are successful.

The definition of -p2p ensures that p -clt q, so Theorem 4.6 implies that p @∼clt q.
The assumption p mustp2p r ensures that r must p, thus r must q. It follows that all the
maximal computations of q || r are client-successful, that is q reach a successful state.

What is left to prove is that the maximal computations of q || r contain a state q′ || r′

wherein r′
X−→.

Fix a maximal computation of q || r,

q || r = q0 || r0
τ−→ q1 || r1

τ−→ q2 || r2
τ−→ . . . (5.1)

Unzip the computation above. We obtain the contributions

q
w

=⇒, r
w

=⇒
for some possibly infinite w.

The argument now depends on p. Either p 6⇓w or p ⇓w.
In the first case p performs a prefix of w, say s, and reaches a state p′ that diverges:

p
s

=⇒ p′
τ−→ p′

τ−→ . . .. Zip this diverging trace of p with a prefix of the trace r
s

=⇒, and
let p′ diverge. The result is an infinite (i.e. maximal) computation of p || r that contains a

successful derivative of r, because p mustp2p r. The successful derivative of r appears also
in (5.1) above.

Suppose now that p ⇓w.
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The computation in (5.1) above is either finite or infinite. Suppose it is finite. Then
the contributions are

q
s

=⇒ qk, r
s

=⇒ rk

where qk || rk
τ
6−→ and s = w. The last fact ensures that p ⇓ s. Since r

s
=⇒ rk, and

p mustp2p r implies r must p, Corollary 4.2 guarantees that p usbl6X s.

Note that q
s

=⇒ qk
X
6−→ ensures S(qk) ∈ Acc(q, s). As p usbl6X s and p ⇓s, we know

p ⇓p2p s, so part (1b) of Definition 3.17 implies that there exists a set A ∈ Acc(p, s) such that
A∩ uaclt(p, s) ⊆ S(qk). In turn this means that there exists a stable p′ such that S(p′) = A

and p
s

=⇒ p′. Consider the computation p || r =⇒ p′ || rk. If the state p′ || rk is stable,

then the computation is maximal, thus p mustp2p r ensures that one of the derivatives of r
is successful. This derivative appears also in (5.1) above.

We have to prove that p′ || rk
τ
6−→. The reasoning here is analogous to the one used in

Theorem 4.6 to show that the state r′1 || pk is stable, and relies on Corollary 4.2.
Thus far we have proven that if (5.1) above is finite, then r reaches a successful state.

This is the case also if the computation is infinite. Let us see why.
Either q and r engage in infinite traces, or (at least) one of them diverge.
Suppose that the contributions obtained by by unzipping the computation in (5.1) are

infinite
q

u
=⇒, r

u
=⇒ (5.2)

with u = w. We have to show that one of the derivatives of r is successful.
As r

u
=⇒ and p mustp2p r, Corollary 4.2 applied to every finite prefix of u implies that

p usbl6X u. As p ⇓u it follows that p ⇓p2p u. Since q
u

=⇒, part (2) of Definition 3.17 implies

that p
u

=⇒. Zip this infinite trace of p with r
u

=⇒. The resulting computation of p || r is

infinite as well, so the assumption p mustp2p r ensures that r reaches a successful state.
This state appears in (5.1) above.

Now we discuss the case of (5.1) being due to finite traces and divergence of q or r. To
unzip (5.1) gives the following contributions,

q
s

=⇒ qk, r
s

=⇒ rk

with w = s. Note that p ⇓s. The fact that r
s

=⇒ rk implies p usbl6X s, so p ⇓p2p s. Part
(1a) of Definition 3.17 implies that q ⇓s, so the divergent process must be rk.

Part (2) of Definition 3.17, q
s

=⇒, and p ⇓p2p s imply that p
s

=⇒. Zipping this trace of

p with the trace r
s

=⇒ rk, and let rk diverge. The resulting computation of p || r is infinite,
so one of the derivatives of r in it is successful; this is true because of the assumption
p mustp2p r. This successful derivative of r appears also in (5.1) above.

5.3. Completeness. This section contains the proof that the behavioural characterisation
given in Definition 3.18 is complete with respect to the peer preorder. This result is the
converse inclusion of Theorem 5.5.

In view of Proposition 3.15, the bulk of the work is to prove that the peer preorder is
contained in the behavioural preorder -usvr, Proposition 5.11.

In Section 4 we have proven a similar result for the client preorder and its characteri-
sation, Theorem 3.12. Our reasoning there is inductive, and relies on the property proven
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in part (3) of Proposition 4.8. That property is not true for the peer preorder and traces,
so here we will reason using techniques analogous to the standard ones of [Hen88].

Example 5.6. It is not true that if p @∼p2p q and q
a

=⇒ for some action a, then
⊕

(p after

a) @∼p2p
⊕

(q after a). An example are the peers p = a.1 and q = 1 + a.0. First,

the inequality p @∼p2p q is true, because the peers p and q engage exactly in the same

interactions, and the latter is trivially satisfied (i.e. q
X−→). Second,

⊕
(p after a) = τ.1

and
⊕

(q after a) = τ.0. A peer that witnesses τ.1 6@∼p2p τ.0 is 1, for τ.1 mustp2p 1, while

τ.0 6mustp2p 1.

The remaining part of the section essentially shows what properties typical of server
behaviours are enjoyed by peers. During unsuccessful execution of traces, peers behave at
the same time as clients and servers, whereas after reporting success they behave only as
servers. The tests that we will use in the oncoming proofs witness this intuition, for they
are a combination of the tests used to reason on the client and on the server behaviours.

Lemma 5.7. if p @∼p2p q , p ⇓p2p s, and q
s

=⇒ q′, then q′ ⇓.

Proof. It is enough to show a peer C such that q mustp2p C and C
s

=⇒ 6XĈ, for some Ĉ.

These facts imply that if q
s

=⇒ q′ then q′ ⇓. This is true for otherwise there exists a maximal
computation of q || C which is not successful, namely

q || C =⇒ q′ || Ĉ τ−→ q1 || Ĉ τ−→ q2 || Ĉ τ−→ . . .

As q mustp2p C follows from p mustp2p C, we define C and prove the latter fact. Let

s = a1a2 . . . an and let s′ be the longest prefix of s such that p
s′

=⇒6X. The precise definition
of C depends on the existence of s′, so we treat the two cases separately.

s′ does not exist. In this case p
X−→. For every 0 ≤ k ≤ n, let

Ck
def
=

{
( τ.1 ) + ak+1.Ck+1 if 0 ≤ k < n

τ.1 if k = n+ 1

The reason why p must C0, is that p ⇓s. This follows from p ⇓p2p s, and ensures that

all the maximal computations of C0 || p contain a stable state C ′ || p′. As C0
s′

=⇒ C ′ for

some s′ is a prefix of s, the definition of the Ci’s ensures that C ′
X−→.

Since p
X−→ we also know that C must p, and so p mustp2p C. The hypothesis p @∼p2p q

implies that q mustp2p C.

s′ exists. In this case p
s′

=⇒6X for some s′; let s′ = a1a2 . . . am, with m ≤ n. For every 0 ≤
j ≤ m the assumption p

s′
=⇒ 6X ensures that p

sj
=⇒ 6X. Lemma 5.3 ensures that for every

0 ≤ j ≤ m there exists a r̂j such that

r̂j must
⊕

(p after 6X sj) (5.3)
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For every 0 ≤ k ≤ n+ 1 let

Ck
def
=


( τ.(r̂k + 1) ) + ak+1.Ck+1 if 0 ≤ k ≤ m
( τ.1 ) + ak+1.Ck+1 if m < k ≤ n
τ.(r̂n + 1) if k = n+ 1, m = n

τ.1 if k = n+ 1, m < n

We prove that p mustp2p C0. Fix a maximal computation of p || C0,

p || C0 = p0 || C0
0

τ−→ p1 || C1
0

τ−→ p2 || C2
0

τ−→ . . . (5.4)

Intuitively, if one of the r̂k + 1’s appears in the computation, then there is a state pk || Ck0
with Ck0 = r̂i + 1. The peer C0 reaches a successful state (namely Ck0 itself). As for p,

either pj
X−→ for some j ≤ k, or (5.3) above ensures that in the computation of pk || Ck0 the

peer pk reaches a successful state.
If no r̂k + 1 appears in the computation then the convergence of p, p ⇓s, ensures that

C0 reaches 1. Moreover the construction of the Ck’s and the r̂k’s imply that p reaches a
successful state in the computation.

Corollary 5.8. if p @∼p2p q and p ⇓p2p s, then q ⇓s.

Proof. For every s′ prefix of s, the hypothesis imply that p ⇓p2p s′ and that q
s′

=⇒ q′, so
Lemma 5.7 ensures that q′ ⇓. Lemma 5.4 implies that q ⇓s.

Lemma 5.9. Let p @∼p2p q. For every s ∈ Act?, if p ⇓p2p s and q
s

=⇒, then p
s

=⇒.

Proof. It suffices to define a peer C such that p 6must C, C
s

=⇒ 6XĈ
τ
6−→, and for every

s′ proper prefix of s, C
s′

=⇒ 6XC ′ implies C ′
τ−→ X−→. These three conditions and p ⇓ s

ensure that p
s

=⇒, for otherwise all the maximal computations of p || C would be client-
successful, thereby contradicting p 6must C. To prove that p 6must C, it suffices to show
that q 6mustp2p C and C must p. We show the first fact. The hypothesis imply that there

exists a q′ such that q
s

=⇒ q′. If q′ diverges we infer the maximal computation

C0 || q =⇒ Ĉ || q′ τ−→ Ĉ || q1 τ−→ Ĉ || q2 τ−→ . . .

If q′ does not diverge, then there exists a q′′ such that q′
ε

=⇒ q′′
τ
6−→, and we infer the

maximal computation C0 || q =⇒ Ĉ || q′′
τ
6−→. In both cases we have shown non client-

successful computation of C0 || q, so we have proven that q 6must C0. This ensures q 6mustp2p

C0.
Now we define a suitable C, and prove that C must p. Let n be the length of s,

s = a1a2 . . . an, and let s′ be the longest prefix of s such that p
s′

=⇒6X. The construction of
C depends on the existence of s′, and so rest of the proof is divided in two parts.
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s′ does not exist. In this case p
X−→. Let for every 0 ≤ i ≤ n+ 1,

Ci
def
=

{
( τ.1 ) + ai+1.Ci+1 if 0 ≤ i < n

0 if i = n+ 1

We prove that q 6must C0. The hypothesis imply that there exists a q′ such that q
s

=⇒ q′.
If q′ diverges we infer the maximal computation

C0 || q =⇒ 0 || q′ τ−→ 0 || q1 τ−→ 0 || q2 τ−→ . . .

If q′ does not diverge, then there exists a q′′ such that q′
ε

=⇒ q′′
τ
6−→, and we infer the

maximal computation C0 || q =⇒ 0 || q′′
τ
6−→. In both cases we have shown non client-

successful computation of C0 || q, so we have proven that q 6must C0. This ensures q 6mustp2p

C0. Since p
X−→, it is clear that C must p.

s′ exists. Let s′ = a0a1 . . . am, with m ≤ n. For every 0 ≤ k ≤ m, the assumption p
s

=⇒6X
ensures that p

sk=⇒6X, and so Lemma 5.3 and Lemma 5.2 implies that there exists a r̂k such

that r̂k must
⊕

(p after 6X sk), r̂k
τ
6−→ and r̂k

X
6−→. For every 0 ≤ i ≤ n+ 1, let

Ci
def
=


(τ.(r̂i + 1)) + ai.Ci+1 if 0 ≤ i ≤ m
(τ.1) + ai+1.Ci+1 if m < i < n

r̂n if i = n+ 1, m = n

0 if i = n+ 1, m < n

We prove that C0 must p. Fix a maximal computation

C0 || p
τ−→ C1

0 || p1
τ−→ C2

0 || p2
τ−→ C3

0 || p3
τ−→ . . .

Either one of the r̂i + 1 (or r̂n) appears in the computation, or none does. Suppose
Ck0 = r̂i + 1 or Ck0 = r̂n for some state Ck0 || pk. If some pj with j ≤ k is successful the
computation is client-successful. If no pj is successful, then the part of the computation
starting at Ck0 || pk is client-successful, for r̂i must pk. If neither an r̂i + 1 nor r̂n appear
in the computation then there must a state Ck0 || pk with Ck0 = Cn+1, and Ck0 ∈ { 0,1 },
because neither r̂n not r̂i + 1 appear. This and the construction of C ensure that p reaches
a successful state in the computation above, for otherwise Ck0 = r̂n or Ck0 = r̂i + 1 for some
i.

Lemma 5.10. If p @∼p2p q and p ⇓p2p s, then for every B ∈ Acc(q, s) there exists a set A

such that A ∈ Acc(p, s) and A ∩ uaclt(p, s) ⊆ B.

Proof. Let s = b1b2 . . . bn. We reason by contradiction. Suppose that there exists a A ∈
Acc(p, s) such that A ∩ uaclt(p, s) 6⊆ B. We use this assumption to define a peer C such

that p mustp2p C and that q 6mustp2p C, thereby proving that p 6@∼p2p q.
In particular, we build a C such that C

s
=⇒ 6XC ′, where C ′ is similar to the external

sum we used to prove part (2) of Proposition 4.8. This allows us to prove that q 6mustp2p C.
Let I be the index set of Acc(p, s), let J be the subset of I which ranges over the ready

sets of p after successful executions of s, and let ai an action in Ai ∩ uaclt(p, s).
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The construction of C depends on the longest s′ prefix of s that is performed unsuc-
cessfully by p.

s′ does not exist. In this case for every 0 ≤ k ≤ n+ 1 we let

Ck
def
=

{
( τ.1 ) + bk+1.Ck+1 if 0 ≤ k ≤ n∑

j∈J aj .1 if k = n+ 1

All the maximal computations of p || C0 are successful. This is true because the

assumption that s′ does not exist implies that p
X−→, and because the hypothesis p ⇓p2p s

ensures that p ⇓s. In turn this let us prove that C0 reaches a successful state in the maximal
computations of p || C0. We have proven that p mustp2p C0

To obtain an unsuccessful maximal computation of q || C0 zip together C0
s

=⇒ Cn with
the execution of s that leads q to the state q′ with ready set B. The state q′ || C ′ is stable,

so in the computation C0 does not report success. This shows that q 6mustp2p C0, in turn
leading to the mentioned contradiction, p 6@∼p2p q.

s′ exists. Let s′ = a0a1 . . . am, with m ≤ n. The construction of C in this case is more

involved then the previous case. For every 0 ≤ k ≤ m, p
sk=⇒6X so the hypothesis p ⇓p2p s

implies that there exists a r̂k such that r̂k must
⊕

(p after 6X sk). For every 0 ≤ k ≤ n + 1
we let

Ck
def
=


( τ.(r̂k + 1) ) + bk.Ck+1 if 0 ≤ i ≤ m
( τ.1 ) + bk+1.Ck+1 if m < k < n∑

i∈I\J ai.pi +
∑

j∈J aj .0 if k = n+ 1, m = n∑
j∈J aj .0 if k = n+ 1, m < n

To prove that p mustp2p C0 we show that C0 must p and that p must C0. The reason
why C0 must p is same we used in Lemma 5.9. The symmetric statement, p must C0, follows
from the convergence of p, which is ensures by the hypothesis p ⇓p2p s, and the fact that
the stable states reached by C0 are successful, except Cn. This state, though, can interact
with the derivative of p at hand, and reduce to a successful state.

To prove that q 6mustp2p C0 we proceed as we did in the case that s′ does not exist.

Proposition 5.11. p @∼p2p q implies p -usvr q.

Proof. It is a consequence of Corollary 5.8, Lemma 5.10, Lemma 5.9 and of a fourth property
of @∼p2p that we prove here.

We have to show that p @∼p2p q, p ⇓p2p u and q
u

=⇒, then p
u

=⇒. Fix a pair p @∼p2p q

that satisfies the first three conditions. p ⇓u is true because p ⇓p2p u. If p
X−→, then the

argument is the same we used in Theorem 3.14. If p
X
6−→, then either p

u
=⇒6X or p

u
6=⇒6X. In

the first case p
u

=⇒ follows immediately. In the second case, thanks to p
X
6−→ there exists

the greatest m ∈ N such that p
um=⇒6X. The hypothesis p ⇓p2p u ensures that p usbl6X u, so

for every 0 ≤ i ≤ m there exists a process ri such that ri must
⊕

(p after ui). For every
n ∈ N let

Ck
def
=

{
τ.(rk + 1) + ak.Ck+1 if i ≤ m
τ.1 + ak.Ck+1 otherwise
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(S1a) µ.x6X + µ.y = µ.(τ.x6X + τ.y)
(S1b) τ.x ≤ τ.τ.x
(S2) x6X + τ.y = τ.(x6X + y) + τ.y

(S3) µ.x+ τ.(µ.y + z) = τ.(µ.x+ µ.y + z)
(S4) τ.x+ τ.y ≤ x
(S5) Ω ≤ x

Figure 5: Standard inequations

The remaining part of the proof is analogous to the one of Theorem 3.14, and relies on the
fact that p ⇓u and that rk + 1 must (p after 6X uk).

Now the proof of completeness is straightforward.

Theorem 5.12 (Completeness peer). p @∼p2p q implies p -p2p q.

Proof. Fix a pair p @∼p2p q. We have to show that p -clt q and p -usvr q. The first fact

follows from Proposition 3.15 and Theorem 3.12. The second fact is Proposition 5.11.

6. Equational characterisation

We use CCSf to denote the finite sub-language of CCS; this consists of all finite words
constructed from the operators 0, 1,+, µ.− for each µ ∈ Actτ , together with the special
operator Ω; this last denotes the term τ∞ from CCS and its inclusion enables us to consider
the algebraic properties of divergent processes. Our intention is to use equations, or more
generally inequations, to characterise the three behavioural preorders p @∼? q over this finite
algebra, where ? ranges over svr, clt and p2p. For a given set of inequations E we will use
p vE q denote the fact that the inequation p ≤ q can be derived from E using standard
equational reasoning, while t =E u means that both t vE u and u vE t can be derived.

There are two immediate obstacles. The first is that none of these preorders are pre-
congruences for the language CCSf; specifically they are not preserved by the choice operator
+.

Example 6.1. Using the behavioural characterisation it is easy to check that 0 @∼p2p b.0;

in fact this is trivial because 0 6∈ Up2p. However a.1 + 0 6@∼p2p a.1 +b.0 because a.1 +

b.0 mustp2p a.1 + 0 while a.1 + b.0 6mustp2p a.1 + b.0; the latter follows because of the
possible communication on b.

A similar example shows that the client preorder is not preserved by parallel composition.
The same counter-example also shows the other preorders are also not preserved.

So in order to discuss equational reasoning we focus on the largest CCSf pre-congruence
contained in @∼? which we denote by @∼

c
?; by definition this is preserved by all the operators.

But it is convenient to have an alternative more amenable characterisation. To this end we
let p @∼

+
? q to mean that f.1 + p @∼? f.1 + q for some fresh action f.

Proposition 6.2. In an arbitrary LTS, p @∼
c
? q if and only if p @∼

+
? q.

Proof. One direction is immediate, namely p @∼
c
? q implies p @∼

+
? q. To prove the converse it

is sufficient to prove that each preorder @∼
+
? is preserved by the two operators − + − and

µ.−. The details are straightforward, and left to the reader.
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Note that this is similar to the characterisation of observation-congruence in Section 7.2 of
[Mil89]; the same technique is also used in [NH84].

Lemma 6.2 gives a convenient characterisation of the behavioural precongruences p @∼
c
? q

which we will use in the sequel. One useful property of this characterisation is the following:

Lemma 6.3. Suppose p
τ−→. Then p @∼? q implies p @∼

+
? q.

Proof. Suppose p
τ−→. Then for any client r, f.1 + p must r if and only if p must r. This

is sufficient to prove that p @∼svr q implies f.1 + p @∼svr f.1 + q.
Minor variations on this argument will show that the result also holds for the client

and peer preorders.

The second obstacle to the equational characterisation of the behavioural preorders is
that they are very sensitive to the ability of processes to immediately report success, with
the result that many of the expected equations are not in general valid. For example the
innocuous

a.τ.x = a.x, (6.1)

valid in the theories of [Mil89, NH84], is not in general satisfied by two of our behavioural

theories. For example a.1 6@∼
+
p2p a.τ.1 because of the peer a.(1 + τ∞).

Accordingly in order to have a more elegant presentation of the inequational theory we
will use two sorts of variables, the standard x, y, . . . which may be instantiated with any
process from CCSf, and x6X, y6X, . . . which may only be instantiated by a process p satisfying

p 6 X−→; in CCSf such processes p in fact have a simple syntactic characterisation. With
this convention in mind consider the five standard inequations given in Figure 5,which are
satisfied by all three behavioural orders @∼

+
? . We also assume the standard equations for

(CCSf,+,0) being a commutative monoid. Let SVR denote the set of inequations obtained
by adding

1 = 0 (SVR1)

Intuitively 1 has no significance for server behaviour; this extra equation captures this
intuition and is sufficient to characterise the server preorder:

Theorem 6.4 (Soundness and completeness for server-testing). In CCSf, p @∼
c
svr q if and

only p vSVR q.

Outline. The equation (SVR) means that every term can be reduced to one which does not
contain any occurrence of the unit 1. This means that all terms can now match the special
variables x6X, y6X, . . . and therefore the equations (S1) - (S5) can be rewritten with them
replaced with the standard variables x, y, . . .. The resulting inequational theory coincides
with that from [NH84] which characterises the must testing preorder over finite terms;2 this
we know coincides with our server preorder @∼

c
svr.

2This is referred to as v2 in [NH84].
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All the standard inequations in Figure 5 are also valid for the client and peer pre-
congruences. Indeed the reason for introducing the two sorts of variables was to ensure that
they remain valid for these new pre-congruences.

Example 6.5 (The need for two sorted inequations). We have already seen why (S1a)
would no longer hold, for the client and peer pre-congruences, if the meta-variable x6X were
replaced by the standard variable x. The innocuous equation (6.1) above would be a derived
equation from this altered version of (S1a), because of the idempotency of +.

Let r1, r2 denote the clients 1 + τ.a.1 and τ.(1 + a.1) + τ.a.1 respectively. Then
(1 + τ∞) must r1 whereas (1 + τ∞) 6must r2, and thus r1 6@∼clt r2. This shows the need for
the meta-variable x6X in (S2), for otherwise r1 = r2 would be an instantiation.

The same example can be used to show that this restriction is also necessary for the
peer pre-congruence.

Despite the use of two sorts of variables, much of the standard equational reasoning, for
example from [NH84] remains valid. Here is a typical example, where we use ST to denote
the inequational theory generated by the standard inequations.

Lemma 6.6. In the equational theory ST, τ.x + τ.y =ST τ.(τ.x + τ.y) is a derived
equation.

Proof. Note that this is a generalisation of the standard equation (S1a) with µ set to τ ,
which requires that at least one of the meta-variables be 6X. But let us give a more general
proof.

Using (S1b) and (S4), together with the idempotency of +, we have the derived equa-
tion τ.τ.x = τ.x. Then applying this twice we obtain:

τ.x + τ.y =ST τ.τ.x + τ.y =ST τ.(τ.τ.x + τ.y) (S1a)

=ST τ.(τ.x + τ.y)

The equation (SVR) is obviously not satisfied by either the client or the peer pre-
congruence. In order to characterise them we to replace it with inequations which capture
the significance of the operators 1 and 0 for client and peers respectively. First we consider
the client case. It is easy to see that 1 is a maximal element for the preorder @∼clt, and also
for the contextual preorder @∼

c
clt: p must f.1 + 1 for every server p, from which r @∼

c
clt 1

follows for every client r. We also have that r + 1 hclt 1 for every client r; intuitively once
a client can report success immediately then it does not matter what other behaviour it
has. This client behaviour of 1 is adequately captured by the two inequations (CLT1a)
and (CLT1b) in Figure 7.

Another property of 1 stems from the fact that for every client r,

r @∼clt r + µ.1

for every µ ∈ Actτ ; adding the capability µ.1 to a client does not decrease its ability to
satisfy servers. This property is captured by the inequation (CLT1c). In a dual manner,
adding the capability µ.0 to a client does not increase its ability to satisfy; for every client
r

r + µ.0 @∼clt r

This is captured by (Zb).



26 GIOVANNI BERNARDI AND MATTHEW HENNESSY

(Za) τ.0 ≤ Ω

(CLT1a) x ≤ 1
(CLT1b) 1 ≤ x+ 1
(CLT1c) 0 ≤ µ.1

(Zb) µ.0 ≤ 0

(P2P1) 0 ≤ 1
(P2P2) µ.(1 +x) ≤ 1 + µ.x
(P2P3) µ.(1 +x) + µ.(1 +y) ≤ µ.(1 +τ.x+ τ.y)

Figure 6: Client and peer inequations

Let us now look in more detail at the zero 0. Since p must 0 for no server p it follows
that 0 @∼clt r for every client r. But 0 @∼

c
clt r does not not in general hold. For example

f.0 + b.0 must f.1 + 0 but f.0 + b.0 6must f.1 + b.0. In the latter, the synchronisation
on b leads to the possibility of the client not being satisfied. It follows that 0 6@∼

c
clt b.0.

However p must f.1 + τ.0 for no server p, with the result that τ.0 @∼
c
clt r for every

client r; it follows that τ.0 is a minimal element in the client theory. Recall that Ω is also
a minimal element, and therefore to capture this property of 0 it is sufficient to add the
inequation (Za).

Note that an application of (S1a), together with the idempotency of +, gives the derived
equation µ.x6X = µ.τ.x6X; this combined with (Za), (S5) gives the useful derived inequation

µ.0 ≤ µ.x (DZ1)

which we will use extensively in the sequel; intuitively this means that 0 acts like a zero
underneath a prefix.

Let CLT denote the set of inequations obtained by adding to the standard one, the
client inequations we have just discussed, (Za), (Zb) and (CLT1a) - (CLT1c).

Theorem 6.7 (Soundness and Completeness for client-testing). In CCSf, p @∼
c
clt q if and

only p vCLT q.

Proof. To prove soundness, again it is sufficient to show that @∼
+
clt satisfies of the the in-

equations concerned. Completeness requires the development of normal forms for clients.
This is the topic of Section 7.2, and the result is actually proved in Theorem 7.12.

Both the inequations (Za) and (Zb) remain valid for the peer preorder, but none of
the unit inequations (CLT1a) - (CLT1c).

Example 6.8. First consider (CLT1a). It is easy to see that a.1 must f.1 + a.1 as both

peers always evolve to success states. However a.1 6mustp2p f.1 + 1, because the peer 1 can
not help the partner a.1 achieve success. It follows that a.1 6@∼

+
p2p 1.

Moving to (CLT1b), 1 6mustp2p τ.0 + 1 because the activation of the internal action
can preempt one of the peers achieving success. However trivially 1 must 1, with the result
that 1 6@∼

+
p2p τ.0 + 1; this is a counterexample to (CLT1b) for the peer pre-congruence.

For the final counter-example note that a.0 + f.1 must f.1 + 0 because the co-action a

is never activated. However a.0 + f.1 6mustp2p f.1 + a.1 because the here it is activated,
and the activation prevents one of the peers from achieving success. Thus (CLT1c) does

not hold for the pre-congruence @∼
+
p2p for any external µ; a minor variation demonstrates

that it also does not hold when µ is τ .
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They need to be replaced by unit inequations appropriate to peer. There are various
possibilities we could add; we justify our particular3 choice by considering properties we
would like of the inequational theory; in total we add three new inequations.

In both the server and the client theory we know that for every action µ and processes
p, q there is another process r satisfying

µ.p + µ.q = µ.r (6.2)

Indeed this is one of the most important laws which delineates behavioural theories based
on testing, rather than say bisimulation equivalence [Mil89]. It is derivable in the theory of
servers, where r can be taken to be τ.p + τ.q. it is also derivable in the theory of clients,
although the form r takes depends on whether both p, q can immediately report success.
If at least one of p, q can not report success immediately this is an instance of (S1a) in
Figure 5. If this is not the case then (S1a) can not be employed. But it turns out that in
the algebraic theory of clients (6.2) still remains derivable, taking the required r to be 1.

We also require (6.2) to be derivable in the algebraic theory of peers. Again if either
p or q can not immediately report success then this will be an instance of (S1a). One can
also check that

µ.(1 +p) + µ.(1 +q) h+
p2p µ.(1 +τ.p+ τ.p)

for all p, q. In order to make these derivable in the algebraic theory it is sufficient to add
the inequation (P2P3), given in Figure 6. From (P2P3) and (S4) one then obtains the
derived equation

µ.(1 +x) + µ.(1 +y) = µ.(1 +τ.x+ τ.y) (6.3)

Another intrinsic property of extensional behavioural theories is the ability to abstract from
internal activity. One equation capturing this is have already been discussed in (6.1) above.
This is valid in the server theory, and enables us to forget about the intermediate internal
action τ . We have also seen that it does not hold in the client theory; nor does it hold in
the peer theory. However we are still able to abstract from intermediate internal actions in
certain circumstances. For example

µ.τ.x6X = µ.x6X

is easily derivable from (S1a). Other circumstances, the presence of 1, are summed up by

µ.(1 + τ.x) h+
p2p µ.(1 + x) (6.4)

This is easily seen to be derivable from (6.3) above.
Our other two additions are motivated by the requirement for both peers to always

report success. So adding this possibility to a peer does not affect its overall behaviour.
This is summed up be the identity

p h+
p2p p + 1

for every peer p. This is captured as a derived equation if we add the inequation (P2P1)
in Figure 7 to the theory.

Success does not have to be reported simultaneously by interacting pairs of peers; in
particular the ability of a peer is not damaged by bringing forward the reporting of success.

3current
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(D1)
∑

1≤i≤n τ.xi = τ.(
∑

1≤i≤n τ.xi)
(D2) x6X + τ.(x6X + y) = τ.(x6X + y)
(D3) µ.x+ Ω = Ω

(DP1) 1 + µ.x = 1 + µ.(x + 1)
(DP2) τ.(1 +

∑
1≤i≤n τ.xi) =

∑
1≤i≤n τ.(1 + xi)

(DP3) µ.x ≤ µ.(1 + τ.x)

(D4a) τ.x6X + τ.y = τ.x6X + τ.y + τ.(x6X + y)
(D4b) τ.(x6X + 1) + τ.(y6X + 1) = τ.(x6X + 1) + τ.(y6X + 1) + τ.(x6X + y6X + 1)

(D5a) τ.x + τ.(x + y6X + z) = τ.x + τ.(x + y6X) + τ.(x + y6X + z)
(D5b) τ.x + τ.(x + (y6X + 1) + z) = τ.x + τ.(x + (y6X + 1)) + τ.(x + (y6X + 1) + z)

Figure 7: Some derived equations

This motivates the use of (P2P2) in Figure 7. As we will see an interesting consequence is
the derived equation:

1 + µ.x = 1 + µ.(x + 1) (DP1)

As we will see this is a derived equation in our inequational theory for peers. This is
taken to consist of the standard inequations from Figure 5, together with (Za), (Za) and
(P2P1) - (P2P3).

Theorem 6.9 (Soundness and Completeness for peer-testing). In CCSfwτ , p @∼
c
p2p q if and

only p vP2P q.

Proof. Again to prove soundness it is sufficient to show that all of the inequations are valid
for the preorder @∼

+
p2p. Completeness is proved in Theorem 7.16.

7. Completeness proofs

In this section we use a number of derived inequations, gathered in Figure 7. These are
justified in Appendix A.

7.1. Normal forms. It will be notationally convenient to consider 1 as a prefix term, say
X.0, thus including X as a possible prefix action. We also use pX to denote that p can

perform the success action, p
X−→, and p 6X for the converse.

The normal forms we use are an extension of those in [NH84]; considerable complications
arise because of the presence of the unit operator 1. The central idea is that of saturated
collections of sets. Let A be a collection of finite subsets of ActX. It is said to be saturated
if whenever X, Y ∈ A,

(i) X ∪ Y ∈ A
(ii) Z ∈ A whenever X ⊆ Z ⊆ Y
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Lemma 7.1. For every collection A of finite subsets of ActX there exists a least collection
cl(A) containing A which is saturated.

Proof. Straightforward. The existence of cl(A) can be shown from general principles, but
we can also give a constructive definition. Let

B ={Z | X ⊆ Z ⊆ ∪A, for some X ∈ A}
By definition A ⊆ B and one can check that B is saturated, that is it satisfies (i), (ii) above.

Now let C be any other saturated set containing B. Since it is closed under set theoretic
union it must contain the set ∪A. Therefore, since it satisfies (ii) above it must also contain
all sets in B; that is B ⊆ C. So we can set cl(A) to be B.

Definition 7.2 (Peer-normal forms, pnfs). (1) Ω {+ 1 } is a pnf.
(2) n = (

∑
a∈A a.na) {+ 1 }, for A ⊆ Act, is a pnf, provided nX implies naX

(3) Let A be a non-empty saturated set of non-empty finite subsets of ActX. Suppose that
for each λ ∈ ∪A, nλ is a pnf. Then

∑
A∈A τ.nA {+ 1 } is a pnf, where nA denotes the

term
∑

λ∈A nλ, provided nX implies naX.

Here we use the notation p {+ 1 } to indicate that the presence of + 1 is optional. Thus
by (1), both Ω and Ω + 1 are pnfs; by (2) 0 is a pnf, as are a.0 + 1 and a.0.4

Before showing that all finite terms can be transformed into normal forms we need to
develop some syntactic machinery for manipulating terms. We continue to use the notation
introduced in Definition 7.2, using nA, where A ⊆ ActX to denote the term

∑
λ∈A nλ, for

some (assumed) collection of terms nλ and nA for the term
∑

A∈A nA.

Proposition 7.3 (Saturation). Let B = cl(A). Then nA =P2P nB.

Proof. This relies on two auxiliary results. Suppose A, B, C ⊆ ActX, where A ⊆ C ⊆ B.
Then

τ.nA + τ.nB =P2P τ.nA + τ.nB + τ.nA∪B (Union)

τ.nA + τ.nB =P2P τ.nA + τ.nC + τ.nB (Sub)

By systematically employing both equalities, from left to right, we can transform nA into
nB. So we concentrate on proving these properties.

First we consider (Union). Suppose X 6∈ A. Then the equality follows from an applica-
tion of the derived equation (D4a) in Figure 7. This can also be applied if X 6∈ B. Finally
if X ∈ A ∩B then we can use (D4b).

The proof of (Sub) above is similar, depending on whether X ∈ C. If it is (D5b) can
be used, and otherwise (D5a) above.

The next property has already been alluded to in (6.2).

Proposition 7.4 (Uniqueness of derivatives). For all p, q ∈ CCSf and all actions µ ∈ Actτ ,
there exists some term r such that µ.p + µ.q =P2P µ.r.

Proof. If p 6X, or q 6X then we can apply (S1a) directly, obtaining r = τ.p + τ.q. Otherwise
we have both pX and qX and the required r is 1 + τ.p + τ.q. In one direction this is
an application of (P2P3). The reverse follows from two applications of τ.x ≤ x, which is
derivable from (S4).

4unfortunately so is 0 + 1; this will be treated as 1.
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We now show how to transform all terms into pnfs. The main work is done in the
following two lemmas.

Lemma 7.5. If n1, n2 are pnfs then there exists a pnf m such that τ.n1 + τ.n2 =P2P m.

Proof. By induction on the combined size of n1, n2 and an analysis of their structure. There
are many cases to consider. We omit the cases when either take the form Ω {+ 1 } as the
result follows from the derived rule (D3).

(a) Suppose n1 =
∑

A∈A τ.nA and n2 =
∑

B∈B τ.mB. An application of the derived rule
(D1) from Figure 7 gives

τ.n1 + τ.n2 =P2P

∑
A∈A

τ.nA +
∑
B∈B

τ.mB

Now suppose there exists some external action c ∈ A∩B, where A ∈ A and B ∈ B such
that nc 6= mc. We isolate the subterm τ.nA + τ.mB so as to unify the c-derivatives.
This subterm has the form τ.(p + c.nc) + τ.(q + c.mc) which can be rewritten to

=P2P c.nc + τ.(p + c.nc) + c.mc + τ.(q + c.mc) by (D2)

=P2P τ.(p + c.nc + c.mc) + τ.(q + c.nc + c.mc) by (S3)

Now suppose at least one of nc, mc satisfies 6X. Then we can use (S1a) to proceed thus:

=P2P τ.(p + c.(τ.nc + τ.mc) + τ.(q + c.(τ.nc + τ.mc)

By induction there exists a normal form oc =P2P τ.nc + τ.mc and so we may transform
the subterm to

=P2P τ.(p + c.oc) + τ.(q + c.oc)

On the other hand if both ncX and mcX, we can imitate the above sequence of steps,
this time using (P2P3), or rather its derived version (6.3) above, to obtain

=P2P τ.(1 + p + c.(1 + oc)) + τ.(1 + p + c.(1 + oc))

By systematically applying the derivative unification transformation we can now
assume that τ.n1 + τ.n2 has the form

∑
C∈C τ.sC , where each sc is a pnf. Moreover by

Proposition 7.3 this can be transformed into
∑

D∈D τ.sD where D is saturated; this is
the required pnf.

(b) Suppose n1 = 1 +
∑

A∈A τ.nA and n2 =
∑

B∈B τ.mB.
Applying the derived equation (DP2) we can rewrite τ.n1 to the form

∑
A∈A τ.(1 +

nA) which by (D1) can be transformed into τ.
∑

A∈A τ.(1 + nA). We can now proceed
as in the previous case. The same holds if m has 1 as a summand.

(c) Suppose n1 =
∑

a∈A a.na {+ 1 } and n2 is as in the previous case. Then τ.n1 =P2P

τ.(τ.(
∑

A∈{A } nA {+ 1 }) by (D1) and we can proceed as in case (a).

Finally if n2 contains 1 as a summand we can proceed in much the same way, but
using case (b).
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Lemma 7.6. If n1, n2 are pnfs then there exists a pnf m such that n1 + n2 =P2P m.

Proof. Again the proof proceeds by induction on the combined sizes of n1, n2 and a case
analysis of their form.

(a) Suppose n1 =
∑

a∈A a.na and n2 =
∑

B∈B τ.mB; this is the central case.
We know that B is not empty. So using (D1),(S2) we have n1 + n2 =P2P τ.(n1 +

mB1) + τ.n2, for some B1 ∈ B. By induction n1 + mB1 has a pnf. The required result
now follows from the previous lemma.

(b) Suppose n1 = 1 + n′1, where n′1 =
∑

a∈A a.na and n2 is as in the previous case. Then
we can construct, as in case (a), a pnf for n′1 + n2, which takes the form

∑
D∈D τ.oD.

Then the required pnf is

1 +
∑
D∈D

τ.(1 +
∑
d∈D

d.(1 + od)

This requires the repeated application of the derived rule (DP1).
The case where n2 has 1 as an additional summand is handled in a similar manner.

(c) Suppose n1 =
∑

A∈A a.nA and n2 =
∑

B∈B τ.mB. Using (D1) we have n1 + n2 =
τ.n1 + τ.n2 and the result now follows by the previous lemma.

If either n1 or n2, or both, have 1 as an additional summand we can proceed in the
same manner. We may then have to apply (DP1) to ensure that the resulting pnf
1 +

∑
D∈D od is such that odX for every d ∈ ∪D.

(d) Suppose n1 =
∑

a∈A a.na {+ 1 } and n2 =
∑

b∈B b.mb {+ 1 }. Then using Proposi-
tion 7.4 and induction we can construct a pnf of the form

∑
d∈A∪B d.od {+ 1 }.

(e) The final possibility, when either n1 or n2 is Ω is straightforward, using the derived
equation (D3).

Theorem 7.7 (Peer normal forms). For every p ∈ CCSf there exists a pnf n such that
p =P2P n.

Proof. By structural induction on p. The main case is covered by Lemma 7.6.

One consequence of the completeness theorem will be that p vP2P 0, whenever p 6∈
Up2p, because for such p we know p @∼

+
p2p 0.5 However it is useful to already have this result

when proving completeness. A direct proof of this fact is not obvious. For example consider
p = a.(b.0 + c.1) + a.(b.1 + c.0) which we know not to be in Up2p. The derivation of
p vP2P 0 is not straightforward. But it becomes so if we first convert p to a pnf. This turns
out to be

np = a.
∑
A∈A

nA where A = { { b }, { c }, { b, c } } and nb = nc = τ.1 + τ.0

Now (S4) gives nb = nc vP2P 0 and np v 0 then follows by applications of the rule (Zb).
This technique is quite general, and powerful.

Lemma 7.8. Suppose p 6∈ Up2p. Then

(1) p @∼
+
p2p q implies p vP2P q

(2) p vP2P 0.

5In general 0 @∼
+

p2p p is not true, even if p 6∈ Up2p.
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Proof. Part (2) is an immediate consequence of part (1) and the observation that p 6∈ Up2p
implies p @∼

+
p2p 0. So we concentrate on the part (1), and we may assume that p is a pnf.

We now proceed by induction on it’s size and a case analysis of its form. However we know
that p 6X because otherwise we would have 1 must p; this eliminates many of possible forms.
Also if p is Ω then the result is immediate, since Ω is a least element. So in effect we are
left with two possibilities.

(a) Suppose p has the form
∑

a∈A a.na for some A ⊆ Act.
If na ∈ Up2p for some a ∈ A then it would follow that p ∈ Up2p for p must a.qa for

any qa satisfying na must qa. So by induction we have na vP2P 0 for every a ∈ A.
Because p @∼

+
p2p q we also know that q has essentially only one possible form, namely

mB {+ 1 } for some B ⊆ Act. Moreover since f.1 + p must f.1 + c.0 for any c ∈ Act\A
we have that B ⊆ A. We can now reason as follows:∑

a∈A
a.na vP2P

∑
a∈A

a.0 Induction

vP2P

∑
b∈B

b.0 (Zb)

vP2P

∑
b∈B

b.mb (DZ1)

Finally suppose q has the summand 1. If A is empty we can use (P2P1). Otherwise
the extra summand 1 can be added by an initial application of the derived equation
(DP3).

(b) Suppose p has the form
∑

A∈A τ.nA for some saturated set A.
Now suppose the empty set is in A, that is τ.0 is a summand. Then using (S4) we

obtain p vP2P τ.0 and the required result now follows since τ.0 is a least element.
So we can assume ∅ 6∈ A. As a preliminary argument suppose that for all A ∈ A,

either 1 ∈ A or there exists some aA ∈ A such that naA ∈ Up2p. Then let p′ denote the
peer

1 +
∑

A∈A,1 6∈A
a.p′aA

where p′aA is chosen so that p′aA must naA . Then one can check that p′ must p, contra-
dicting the fact that p 6∈ Up2p.

So we can assume that there is some A0 ∈ A such that 1 6∈ A0 and na 6∈ Up2p for
every a ∈ A0. By induction na vP2P 0 and by (Zb), a.na vP2P 0 for every a ∈ A0. As
a result nA0 vP2P 0. Now an application of (S4) allows us to conclude p vP2P τ.0,
from which again the required result follows.

Client normal forms are simplifications of their peer counterparts. Note that the three
extra peer inequations (P2P1) - (P2P3) are easily derivable from the two client inequations
(CLT1a) and (CLT1b). So any inequation derived in the peer theory is also available in
the client theory.

Definition 7.9 (Client normal forms, cnfs). (1) Both Ω, 1 and τ.1 are cnfs.
(2) For any A ⊆ Act the sum

∑
a∈A a.na is a cnf, provided each na is a cnf.
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(3) Let A be a non-empty saturated set of non-empty subsets of Act. Suppose that for each
a ∈ ∪A, na is a cnf. Then n = (

∑
A∈A τ.nA) {+ τ.1 } is a cnf.

Theorem 7.10 (Client normal forms). For every p ∈ CCSf there exists a cnf n such that
p =CLT n.

Proof. First recall that the usability sets Uclt and Up2p are identical. Using Theorem 7.7,
we can assume that p can be transformed in to a pnf m, that is p =CLT m. Then by
induction, and a systematic application of the derived unit equation x+ 1 = 1, m can then
be transformed into a cnf. For example if m has the form 1 +m′ then the resulting cnf is
1. Suppose it has the form (

∑
A∈A τ.mA), where A is a saturated set of non-empty subsets

of Actτ . Let B = {A ∈ A | 1 6∈ A }; B is still saturated. If it is empty the required cnf is
τ.1. Otherwise it is ∑

B∈B
τ.m′B {+ τ.1 if 1 ∈ ∪A}

where for each b ∈ ∪B, m′b is the cnf obtained from mb by induction. Here again the derived
equation x+ 1 = 1 is used to transform τ.mA into τ.1 for any A containing X.

7.2. Completeness for clients. We first tackle the more straightforward case, the client
preorder. For convenience we isolate a particularly significant case in the following lemma.

Lemma 7.11 (Stable state). Suppose n = (
∑

A∈A τ.nA) {+ τ.1 } and mB are both cnfs
such that n @∼clt mB, and n ∈ Uclt. Let N = { a ∈ ∪A | na ∈ Uclt } and B0 = { b ∈ B |
mb is different from 1 }. Then

(1) there exists some A ∈ A such that B0 ⊆ A and A ∩N ⊆ B
(2) τ.nb @∼clt mb, for every b ∈ B ∩ ∪A.
(3) nbX implies mbX for every b ∈ B ∩ ∪A.

Proof. (1) Since n ∈ Uclt we know that there exists some server pn such that pn must n.
Now suppose there is some b ∈ B0\(∪A). Then pn + b.τ∞ must n, from which pn +
b.τ∞ must m follows. But mb is a cnf which is different from 1. By examining the
other possibilities for mb we see that τ∞ must mb is not possible, which contradicts
pn + b.τ∞ must m. So we can conclude that B0 ⊆ ∪A.

Now suppose, for another contradiction, that for every A ∈ A there exists some
aA ∈ (A∩N)\B. Let p denote the server

∑
A∈A aA.pa, where the servers pa are chosen

so that pa must na. Then because A is not empty p must n. This would imply
p must mB, which is clearly not possible. What this means is that there is some A1 ∈ A
such that (A1 ∩ N) ⊆ B. Let A = A1 ∪ B0. Then since B0 ⊆ ∪A and A is saturated
we know A ∈ A, and by construction it has the required properties.

(2) Suppose p must τ.nb, where b ∈ B; we have to show that p must mb follows. Let
pn be the server used in part (1); it satisfies pn must n. Then one can show that
pn + b.p must n, from which pn + b.p must m follows. But this is only possible if
p must mb.

(3) Let b ∈ B∩∪A be such that nbX. Then pn+b.τ∞ must n from which pn+b.τ∞ must mB

follows. But this will only be possible if mbX.
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Theorem 7.12 (Completeness: clients). In CCSf, p @∼
+
clt q implies p vC q.

Proof. Let n, m be the cnfs for p, q respectively; we know that n @∼
+
clt m. The proof

proceeds by induction on the combined size of n, m, and an exhaustive analysis of their
possible structure, dictated by Definition 7.9. Note that because of Lemma 7.8 we can
assume n ∈ Uclt.
(a) If n is Ω the result is obvious, since Ω is a least element in the client equational theory.

If it is 1, the argument is is also straightforward. We have 1 + τ∞ must m, since this
server is guaranteed by n = 1. But this is only possible if mX; looking at the possible
forms of cnfs in Definition 7.9 we see that m also has to be 1.

A similar argument, using the server 0, gives the result when n is τ.0.
(b) Now suppose n has the form nA. Let us first look at the possible forms for the cnf m.

Because f.1 + nA @∼clt f.1 + m where f is fresh, m can not perform a τ action. So the
only remaining possibility is that m = mB for some set of actions B.

Now suppose that there exists some b ∈ B\A. Then since f.0 + b.τ∞ must f.1 +nA
we must have that τ∞ must mb, for this is the only way to ensure that f.0 + b.τ∞ must
f.1 +mB. But mb is a cnf and so it must be precisely 1.

If A is the empty set then the result now is immediate, since then n = 0, and we can
apply (CLT1c) repeatedly to obtain 0 vC mB.

At this stage we can use information available from Lemma 7.11 because
∑

A∈{A } τ.nA vC

nA @∼
+
clt mB. Part (1) gives that B0 ⊆ A, and N ⊆ B where B0 and N are as defined

in the statement of the lemma. So from part (2) we have that τ.na @∼clt ma for every

a ∈ A ∩ B. From Lemma 6.3 this gives τ.na @∼
+
clt ma; now using induction, which

recall is on the combined size of the terms, we can assume τ.na vC ma, and therefore
a.τ.na vC a.ma. If na 6X an application of the standard equation (S1a), and the idem-
potence of + we obtain a.na vC a.ma. On the other hand if naX then from part (3)
of Lemma 7.11 we also have maX. But both are cnfs and therefore both must coincide
with 1. So for every a ∈ A ∩B we have established a.na vC a.ma.

The argument is now completed as follows:

nA =
∑
a∈N

a.na +
∑

a∈A\N

a.na

vC

∑
a∈N

a.ma +
∑

a∈A\N

a.na as argued above

vC

∑
a∈N

a.ma +
∑

a∈(A\N)∩B

a.na +
∑

a∈(A\N)\B)

a.na

vC

∑
a∈N

a.ma +
∑

a∈(A\N)∩B

a.na Lemma 7.8, (Zb)

vC

∑
a∈N

a.ma +
∑

a∈(A\N)∩B

a.ma Lemma 7.8, (DZ1)

vC

∑
a∈N

a.ma +
∑
a∈w

a.ma +
∑
b∈B\A

b.1 (CLT1c)

=
∑
b∈B

b.mb
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The last line follows because
• B can be decomposed into the three disjoint sets N, (A\N) ∩B and B\A
• if b ∈ B\A then mb is 1; this follows because B0 ⊆ A.

(c) There is one remaining case for the structure of n, namely (
∑

A∈A τ.nA) {+ τ.1 }. Here
again we have to look at the possible structure of m. There are only two interesting
cases.

The first is when m has the form mB for some set B ⊆ Act. This case fits the
statement of Lemma 7.11 precisely. There must be some A ∈ A such that B0 ⊆ A and
A ∩N ⊆ B, where again B0 and N are as defined in the lemma.

Now using the fact that

A = (A ∩N) ·∪ (A\N) ∩B ·∪ (A\N)\B
we can proceed as in case (b) to show

nA vC

∑
a∈A∩N

a.ma +
∑

a∈(A\N)∩B

a.ma (7.1)

The set B can also be decomposed as

B = (A ∩N) ·∪ (A\N) ∩B ·∪ B ∩ (N\A)

Moreover since B0 ⊆ A for every b ∈ B ∩ (N\A) the residual mb must be 1. Therefore
using applications of (CLT1c) to (7.1) we can obtain nA vC nB. The required result,
n vC mB now follows by (S4).

The other interesting case is when m has the form (
∑

B∈B τ.mB) {+ τ.1 }. Here

m @∼
+
clt mB for every B ∈ B, from which n @∼

+
clt mB follows. Again we can proceed as

in (b) to show n vC mB.
To complete we use the fact that n =CLT

∑
B∈B τ.n. This follows from the derived

law (D1) and the idempotency of +.

7.3. Completeness for peers. The completeness result for peers follows the same struc-
ture as that for clients. But it is complicated by the more intricate form of pnfs; in particular
pnfs of the form 1 + n, where n is non-trivial. We need a generalisation of Lemma 7.11 for
peers, which in turn requires a preliminary result.

Lemma 7.13. Suppose p ∈ Up2p and p 6X. Then there exists some q such that q 6X and
q must p.

Proof. We may assume that p is a pnf. If it has the form
∑

a∈A a.na there must exist some
a ∈ A such that na ∈ Up2p. From this we get some qa satisfying qa must na, and the
required q is a.qa.

Otherwise p must have the form
∑

A∈A τ.nA. From the analysis carried out in the proof
of Lemma 7.8 we know that for every A ∈ A either 1 ∈ A or there exists some aA ∈ A such
that na ∈ Up2p. The required q is then τ.1 +

∑
A∈A,1/∈A a.qaA , where the peer qaA is chosen

so that na must qaA .
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Lemma 7.14 (Stable state). Suppose n = (
∑

A∈A τ.nA) {+ 1 } and mB, where B ⊆ ActX,
are both pnfs such that n @∼p2p mB and n ∈ Uclt. Let N = { a ∈ ∪A | na ∈ Up2p } and

B0 = B\X. Then

(1) there exists some A ∈ A such that B0 ⊆ A and A ∩N ⊆ B0

(2) τ.nb @∼p2p mb, for all b ∈ B ∩ ∪A
(3) nbX implies mbX, for all b ∈ B ∩ ∪A.

Proof. Let pn be any peer satisfying pn must n. We know at least one exists and because
of the previous lemma we may assume that pn 6X.

(1) This is similar to the proof of part (1) of Lemma 7.11 although here we are dealing
with peers rather than clients. Suppose there is some b ∈ B such that b 6∈ ∪A. Then
pn + b.0 must n. This contradicts the fact that n @∼p2p mB since mB can not guarantee

the success of the peer pn + b.0. So we have established B0 ⊆ ∪A.
We can continue as in part (1) of Lemma 7.11 to show that there exists some A1 ∈ A

such that A1 ∩N ⊆ B0. The required A can now be taken to be A1 ∪B0.
(2) Suppose p must τ.nb. This means that pn + b.p must n, from which pn + b.p must mB

follows. By construction pn 6X and so if X 6∈ B this implies that p must mb. On the
other hand if X ∈ B we can only deduce that mb must p. But by the construction of
pnfs, if X ∈ B then we also know that mbX. The required p must mb now follows.

(3) For an arbitrary b ∈ B ∩ ∪A suppose nbX. Then pn + b.(1 + τ∞) must n, and so this
must also be true of mB. But, since pn 6X, this is only possible if mbX.

Before embarking on the main proof of completeness it is convenient to isolate one
particular case.

Lemma 7.15. n @∼
+
p2p 1 implies n vP2P 1.

Proof. We may assume that n is a pnf, and we use a case analysis on its structure. When
it has the form Ω {+ 1 } the result is obvious.

(1) So consider the case when it has the form
∑

a∈A a.na {+ 1 } for some A ⊆ Act. Now
suppose there is some a ∈ A such that na ∈ Up2p; so there is a peer pa such that
pa must na. This means that a.pa must n. But this would imply that a.pa must 1,
which is impossible since 1 6must a.pa. So what we have shown is that na 6∈ Up2p for
every a in Act and therefore

∑
a∈A na 6∈ Up2p. The result now follows from Lemma 7.8.

(2) The only other possibility is that it has the form
∑

A∈A τ.nA {+ 1 }. For a contradiction
suppose that for all A ∈ A there exists some aA ∈ A such that pA must naA . This
means that n must p, where p is the peer

∑
A∈A aA.pa. But this contradicts the fact

that n @∼p2p 1 since 1 6must p; the peer 1 cannot induce p into a successful state.

So we have established that there is some A ∈ A such that na 6∈ Up2p for every
a ∈ A. Using Lemma 7.8 and (DZ1) we can derive nA vP2P 0 {+ 1 }, from which the
result follows, since n vP2P τ.nA.

Theorem 7.16 (Completeness: peers). In CCSf, p @∼
+
p2p q implies p vP2P q.

Proof. The proof follows the same structure as that of Theorem 7.12, but there are more
details to be considered. Here let n, m be the pnfs for p, q respectively; the proof proceeds
by induction on the combined size of n, m, and an analysis of their possible structure, as
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given in Definition 7.2. Because of Lemma 7.8 we may also assume that n ∈ Up2p. We also
leave the uninteresting case when it has the form Ω {+ 1 } to the reader.

(a) n = (
∑

A∈A τ.nA) {+ 1 } and m = mB for some B ⊆ ActX. This is precisely the case
to which Lemma 7.14 applies. Let A ∈ A, N and B0 be as given in the statement of
the lemma; because of Lemma 7.15 we can assume that B0 is not empty. Let A0 be
A\{ X }. Our aim is to show

nAo vP2P mB0 (7.2)

from which the required result will follow. This is a consequence of the following:
• if 1 is a summand of n then it must also be a summand of mB; to see this consider

the peer 1 + τ∞.
• mB0 vP2P mB; for if X ∈ B then by condition (2)(ii) of Definition 7.2 mb must

be of the form 1 + m′b for every b ∈ B0, and because B0 is not empty we can apply
an instance of (P2P2) to one summand b.mb of mB0 , to obtain mB0 vP2P mB.

So let us concentrate on establishing (7.2). This relies on the following set decomposi-
tions:

A0 = (A0 ∩N) ·∪ (A0\N) ∩B0 ·∪ (A0\N)\B0

B0 = (A0 ∩N) ·∪ (A0\N) ∩B0

The argument now proceeds in much the same way as in the corresponding case, (b),
of Theorem 7.12:

nA0 =
∑

a∈(A0∩N)

a.na +
∑

a∈(A0\N)∩B0

a.na +
∑

a∈A0\N\B0

a.na

vP2P

∑
a∈(A0∩N)

a.ma +
∑

a∈(A0\N)∩B0

a.na +
∑

a∈A0\N\B0

a.na (?)

vP2P

∑
a∈(A0∩N)

a.ma +
∑

a∈(A0\N)∩B0

a.na Lemma 7.8, (Zb)

vP2P

∑
a∈(A0∩N)

a.ma +
∑

a∈(A0\N)∩B0

a.ma Lemma 7.8, (DZ1)

= mB0

The step (?) is uses induction. From part (2) of Lemma 7.14 we know τ.na @∼p2p ma

for every a ∈ A0 ∩ N . Lemma 6.3 and induction gives τ.na vP2P ma. There are now
two cases. If na 6X then an application of (S1a) gives a.na vP2P a.ma. However if naX
this equation can not be used. However we can achieve the same conclusion as follows:

a.na vP2P a.(1 + τ.na) (DP3)

vP2P a.(1 + ma) Induction

= a.ma

The last line follows from part (3) of Lemma 7.14.
(b) Suppose n is as in the previous case but that m is (

∑
B∈B τ.mB) {+ 1 }. Here we

proceed as in case (c) of Theorem 7.12. Regardless of the presence or absence of the
optional units, one can show that n @∼p2p mB for every B ∈ B. Therefore by part (a)

we have n vP2P mB.
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Now suppose n 6X, that is n does not contain 1 as a summand. Then using the derived
D1 we have

n = τ.n =
∑
B∈B

τ.n vP2P

∑
B∈B

τ.mB (7.3)

If m also does not contain the summand 1 we are finished. But if it does, we know
that B is non-empty and that each B ∈ B contains X. Pick one such B0, and applying
(P2P) we obtain τ.mB0 vP2P τ.mB0 + 1. Using this in (7.3) above we obtain the
required n vP2P

∑
B∈BmB + 1.

Finally if both n and m have 1 as a summand a simple variation on the argument
(7.3) above suffices.

(c) Now suppose that n has the form nA for some A ⊆ ActX. Reasoning as in the cor-
responding case of Theorem 7.12 we see that the only possible form for m is mB for
some B ⊆ ActX. Now we use the fact that

∑
A∈{A } τ.nA

@∼
+
p2p nA

@∼p2p mB to apply

Lemma 7.14. This gives that B0 ⊆ A, A∩N ⊆ B0, where B0, N are as described in that
lemma. Now we can repeat the argument used in case (b) to show that nA0 vP2P mB0

where again A0 denotes A\{ X }. Again a simple case analysis on whether X is in
either of A, B, as used also in case (b), will allow us to conclude that nA vP2P mB.

8. Conclusions

Much of the recent work on behavioural preorders for processes has been carried out using
formalisms for contracts for web-services, proposed first in [CCLP06]. Spurred on by the
recasting of the standard must preorder from [NH84] as a server-preorder between contracts,
these ideas have been developed further in [LP07, CGP09, Bd10, Pad10].

In these publications the standard refinements are referred to as subcontracts or sub-
server relations and [LP07, CGP09, Pad10, Bd10] contain a range of alternative charac-
terisations. For example in [LP07, CGP09] the characterisations are coinductive and es-
sentially rely on traces and ready sets; in [Bd10] the characterisation is coinductive and
syntax-oriented.

To the best of our knowledge, the first paper to use a preorder for clients is [Bd10]. But
their setting is much more restricted; they use so-called session behaviours which correspond
to a much smaller class of processes than our language CCS. As there are fewer contexts,
their sub-server preorder differs from our server preorder: a1.1 �s a1.1 + a2.1, whereas
a1.1 6@∼svr a1.1 + a2.1.

The refinements in the papers mentioned above depend on a compliance relation, rather
than must testing; this is also why in [Bd10] the peer preorder �: coincides with the inter-
section of the client and the server preorders; this is not the case for the must preorders
(Example 3.16 can be tailored to the setting of session behaviours). Moreover, in a general
infinite branching and non-deterministic LTS the refinements in the above papers differ
from the preorder @∼svr. The subcontract relation of [LP07] turns out to be not comparable
with @∼svr, whereas the strong subcontract v of [Pad10] is strictly contained in @∼svr, as the
LTS there is convergent and finite branching. The comparison of @∼svr with the refinement
preorder of [CGP09] is complicated by their use of a non-standard LTS.

In [BMPR09] a symmetric refinement due to the compliance, vds, is studied; it differs
from our peer preorder (@∼p2p 6⊆ vds), and its characterisation does not mention usability.
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This is because of the restrictions of the LTS in [BMPR09]. In more general settings the
usability of contracts/services is crucial; [Pad11] talks of viability, while [MSV10] talks of
controllability, both similar to our notion of usability.

Also subcontracts/subtyping for peers inspired by the should/fair-testing of [RV07] have
been proposed in [BZ09, BMPR09, Pad11]. In [BZ09] the fair-testing preorder is used as
proof method for relating contracts, but no characterisation of their refinement preorder is
given. A sound but incomplete characterisation is given in [BMPR09]. The focus of [Pad11]
is on multi-party session types which, roughly speaking, cannot express all the behaviours
of our language CCS. In view of the restricted form of session types, they can give a syntax-
oriented characterisation of their subtyping relation, 6; this is in general incomparable with
our @∼p2p.

Future work: The most obvious open question about our two new refinement preorders @∼clt
and @∼p2p is the development of algorithms for finite-state systems. The ability to check

efficiently whether a process is usable will play an important role.
Another interesting question would be to characterise in some equational manner the

refinement preorders @∼clt, @∼p2p themselves rather than their associated pre-congruences

@∼
+
clt and @∼

+
p2p. In the resulting equational theory we would have to restrict in some way

the form of reasoning allowed under the external choice operator − + −, but the extra
inequations needed in such a proof system might be simpler.

A further interesting question is the possible use of the parallel operator between clients
and peers, either by allowing multi-party interactions as in [BZ09, BMPR09], or by deciding
on how a parallel combination of clients should report success.

We have also confined our attention to refinement preorders based on must testing. But
one can also define client and peer preorders based on the standard may testing of [NH84].
We believe that these refinement preorders can be completely characterised using a modified
notion of trace, which takes into account the usability of residuals. Other variations on client
and peer preorders are worth investigating: a “synchronous” formulation of @∼p2p where a

computation is successful only if the peers report success at the same time; the client
preorders for fair settings [Pad11, BZ09], or the ones based on the compliance of [Pad10].

Acknowledgements. The authors would like to acknowledge Vasileios Koutavas, for his help
in unravelling the client preorder.

Appendix A. Justifying the derived equations

(D1): The proof is by induction on n. For i = 1, the result follows by (S1b) and (S4).
Assume it is true for k; that is τ.z = z, where z abbreviates

∑
1≤i≤k τ.xi. Then

τ.z + τ.xk+1 = τ.(τ.z + τ.xk+1) (S1a)

= τ.(z + τ.xk+1) Induction

(D2):

x6X + τ.(x6X + y) = τ.(x6X + x6X + y) + τ.(x6X + y) (S2)

= τ.(x6X + y) Idempotency
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(D3): One direction is immediate from (S5). Here is the converse:

µ.x + Ω ≤ µ.x + τ.Ω (S5)

≤ τ.(µ.x + Ω) + τ.Ω (S2)

≤ Ω (S4)

(DP1): One direction is straightforward from (P2P2). Conversely:

x ≤ x + 1 (P2P1)

1 + µ.x ≤ 1 + µ.(x + 1) Pre-congruence

≤ 1 + µ.(τ.x + 1) (P2P3, Idempotency

≤ 1 + µ.(τ.x + 1) (S4), Idempotency

(DP2): This is a generalisation of (6.3) above. It is proved by induction on n. The case
when n = 1 has already been discussed in (6.4) above. For the inductive case let r denote∑

1≤i≤k τ.xi. By (D1) r = τ.τ.r can be derived. Then

τ.(1 + τ.xk+1 + r) = τ.(1 + τ.xk+1 + τ.(τ.r))

= τ(1 + x(k+1)) + τ(1 + τ.z) (6.3) above

= τ(1 + x(k+1)) +
∑
1≤k

τ.(1 + xi) Induction

(DP3):

µ.x ≤ µ.(1 + x) P2P1, Pre-congruence

≤ µ.(1 + τ.x) P2P3, Idempotency
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