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Abstract. We propose a process calculus to model high level wireless systems, where the topology
of a network is described by a digraph. The calculus enjoys features which are proper of wireless
networks, namely broadcast communication and probabilistic behaviour.

We first focus on the problem of composing wireless networks, then we present a compositional
theory based on a probabilistic generalisation of the well known may-testing and must-testing pre-
orders. Also, we define an extensional semantics for our calculus, which will be used to define both
simulation and deadlock simulation preorders for wireless networks. We prove that our simulation
preorder is sound with respect to the may-testing preorder; similarly, the deadlock simulation pre-
order is sound with respect to the must-testing preorder, for a large class of networks.
We also provide a counterexample showing that completeness of the simulation preorder, with respect
to the may testing one, does not hold. We conclude the paper with an application of our theory to
probabilistic routing protocols.

1. Introduction

Wireless networks have spread worldwide in the last decades; nowadays they are used in many
areas, from domestic appliances to mobile phone networks, to the newer sensor infrastructures.
One of the main problems of wireless networks is that of defining and implementing protocols for
providing to users the services for which the network has been designed; also, because of their
distributed nature, a more challenging problem is that of ensuring in a rigorous, mathematical way,
the correct behaviour of a network with respect to some specification.

This problem becomes even more difficult to tackle if we consider that often wireless networks
run protocols whose behaviour is probabilistic. Such protocols are indeed very useful for improving
the performance of wireless networks, examples being the use of probabilistic routing protocols
[6] or probabilistic protocols for collision avoidance at the MAC-sublayer of the TCP/IP reference
model [20]. Further, problems for which there is no solution in a deterministic setting can be solved
(in unbounded time) by introducing probabilistic behaviour in wireless networks [1].

Many different formal frameworks have been developed in the literature for defining and
analysing the behaviour of wireless networks [25, 16, 13, 21, 32, 23, 11, 33, 36]; these differ in
many details, the most important being the level of abstraction used to represent a wireless network,
the computational power of stations of wireless networks and the mathematical structure used to
represent the topology of wireless networks. However, each of these calculi have the following fea-
tures in common: wireless networks are represented as a collection of stations (also called nodes,
or locations) running code, and local broadcast is used as the only way of communication. Roughly
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speaking in local broadcast communication, whenever a node broadcasts a message only the nodes
in its range of transmission are affected.

In this paper we propose another process calculus for modelling probabilistic wireless net-
works; the main concepts underlying our calculus can be summarised as follows:

(i) The topology of a wireless network is static, that is mobility is not considered in our model.
This restriction has been done to allow a more clear presentation of the topics treated in this
paper; however, we could have used the approach described in [10] to introduce node mobility.
The network topology is described by a digraph Γ; intuitively vertices in this graph represent
network locations, while an edge from a node to another is used for expressing that the latter
is in the range of transmission of the former.

(ii) A probabilistic process calculus is defined for assigning code to locations. The basic constructs
allowed in our calculus are messages’ broadcast and reception, internal actions, matching and
process definitions; further, we allow a special clause ω whose role will be presented shortly.
The mapping that assigns code to locations is partial, meaning that locations can have no
code assigned. At least informally, such nodes, which will be called external, can be seen as
terminals at which users can place code to test the behaviour of the network.

(iii) Communication between nodes is reliable; a message broadcast by a node along a channel c
will be received by all the nodes in the sender’s range of transmission, provided that they are
waiting to receive a message along such a channel. In other words, our calculus is designed
for describing wireless networks at the network layer of the TCP/IP reference model; reliable
communication is not ensured at lower levels, where issues such as the possibility of collisions
[20] and synchronisation between nodes [29] arise.

One of the main goals of the paper is that of defining a compositional behavioural theory of
wireless networks; given two wireless networksM and N , we want to establish whether they can
be distinguished by an external user. To accomplish this task, we need to address several different
topics. First, it is necessary to define how two wireless networks can be composed together. This
topic has already been addressed, for different process calculi, in [23, 11, 5, 2, 33]. Here we define
an asymmetric operator ‖> which can be used to extend one network with another. Despite being
asymmetric, we show that the choice of the operator ‖> is driven by some natural requirements we
require in general from a composition operator between networks. We remark that our theory of
composition is restricted to a particular class of networks, which we call well-formed.

Once we have chosen a suitable composition operator ‖>, we can define a compositional theory
for wireless networks. In this paper we have chosen to focus on a probabilistic generalisation of the
well-known De Nicola and Hennessy’s testing preorders, whose theory has been defined in [7] for
a probabilistic version of CSP.

Informally speaking, we can test a wireless networkM via another wireless network T which
can be composed with the former (with respect to the operator ‖>); that is, the network (M ‖> T )
is defined. Intuitively, the networkM ‖> T can be considered as an experiment in which the role
of the testing component T is that of determining whetherM satisfies some property for which the
test has been designed for. The success of an experiment is denoted by the special construct of our
calculus ω mentioned above.

Having this in mind, each computation of the network (M ‖> T ) induces a success outcome,
denoting the probability of reaching a configuration in which the special clause ω is enabled in such
a computation. This induces a set of success outcomes for the network (M ‖> T ) by quantifying
over all the possible computations for such a network.

Knowing how to associate a set of success outcomes to a network, we can compare two net-
worksM,N by quantifying over all possible tests T , and comparing the sets of success outcomes
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of the experiments (M ‖> T ) and (N ‖> T ), provided that they are both defined. This leads
to the definition of two testing preorders, the may-testing preorder vmay and must-testing preorder
vmust, according to the way in which the sets of success outcomes for the two experiments above
are compared.

It is important to note that determining directly whether the statementM vmay N (M vmust N)
is true is not easy, due to the quantification over all tests. Therefore there is the need to define a
proof methodology for establishing if two networks can be related via the vmay (vmust) preorder.
This is the main topic of our paper. To this end, we define an extensional semantics for our calculus
of wireless networks; the actions in this semantics correspond to activities that can be observed by
the external nodes. The main idea here is that of defining sound coinductive proof methods for the
testing preorders, based on the extensional behaviour of networks.

Since our calculus is equipped with local broadcast communication, we need to take care of
some issues in the development of such proof methods; roughly speaking, the broadcast of a mes-
sage to a set of external nodes can be simulated by a multicast of the same message which can be
detected by the same set of external nodes. This leads to a non-standard definition of weak ex-
tensional actions, which will be used to define two coinductive relations between networks. The
first one is the well-known simulation preorder [7]; the second one is a novel preorder, called the
deadlock simulation preorder, which is obtained from the previous one by adding sensitivity to
deadlock configurations. The main results of the papers are that, for a large class of networks, the
simulation preorder is sound with respect to the may-testing preorder, while the inverse of the dead-
lock simulation preorder is sound with respect to the must-testing preorder. However, we provide a
counterexample that shows that such proof methods fail to be complete.

The rest of the paper is organised as follows: in Section 2 we recall the mathematical tools
needed for the development of our theory.

In Section 3 we define the syntax and intensional semantics of our calculus of wireless net-
works, and we prove some basic properties of our calculus.

In Section 4 we give the formal definition of the behavioural preorders between networks. This
depends on how tests are applied to networks or more generally how networks are composed to
form larger networks. So we first define our composition operator ‖>, which is asymmetric, in Sec-
tion 4.1 and then use it to develop the behavioural preorders vmay and vmust between networks. In
Section 4.4 we return to our choice of composition operator ‖>, justifying it as the largest one which
satisfies three natural requirements. In addition, somewhat surprisingly, we show that any sym-
metric composition operator satisfying the natural requirements generates a degenerate behavioural
theory.

In Section 5 we define the extensional semantics of our calculus of wireless networks; here we
also give the non-standard definition of weak extensional actions and we prove composition and
decomposition results for them, with respect to the composition operator ‖>.

In Section 6 we define the notions of simulation and deadlock simulation preorders and we
prove the main results of the paper, namely that the simulation preorder is sound with respect to the
may-testing preorder, and the inverse of the deadlock simulation preorder is sound with respect to
the must-testing preorder. Much of the technical development underlying these soundness results is
relegated to the separate Section 7; this may be safely skipped by the uninterested reader.

In Section 8 we show that our proof methods fail to be complete; we also show the impossibility
of defining a coinductive relation based on our notion of extensional actions, which characterises
the may-testing relation.

In Section 9 we consider an application of our theory by analysing a simple probabilistic,
connectionless routing protocol, showing that it is behaviourally equivalent to a formal specification.
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We conclude our paper by summarising the topics we have covered and by illustrating the
related work in Section 10. The topics covered in this paper were also the subject of an extended
abstract [4].

2. Background

In this Section we summarise the mathematical concepts, taken from [7], that will be needed
throughout the paper. First we introduce some basic concepts from probability theory; then we
show how these can be used to model concurrent systems which exhibit both probabilistic and non-
deterministic behaviour.

Let S be a set; a function ∆ : S → [0, 1] is called a (probability) sub-distribution over S
if

∑
s∈S ∆(s) ≤ 1. This quantity,

∑
s∈S ∆(s), is called the mass of the sub-distribution, denoted as

|∆|. If |∆| = 1, then we say that ∆ is a (full) distribution. The support of a sub-distribution ∆,
denoted d∆e, is the subset of S consisting of all those elements which contribute to its mass, namely
d∆e = {s ∈ S | ∆(s) > 0}.

For any set S , the empty sub-distribution ε ∈ Dsub(S ) is the only sub-distribution with empty
support, that is dεe = ∅. For each s ∈ S , the point distribution s is defined to be the distribution
which takes value 1 at s, and 0 elsewhere. The set of sub-distributions and distributions over a set S
are denoted byDsub(S ) andD(S ), respectively.

Given a family of sub-distributions {∆k}k∈K ,
(∑

k∈K ∆k
)

is the partial real-valued function in
S → R defined by

(∑
k∈K ∆k

)
(s) :=

∑
k∈K ∆k(s). This is a partial operation because for a given

s ∈ S this sum might not exist; it is also a partial operation on sub-distributions because even if the
sum does exist it may be greater than 1.

Similarly, if p ≤ 1 and ∆ is a sub-distribution , then p · ∆ is the sub-distribution over S such
that (p · ∆)(s) = p · ∆(s).

It is not difficult to show that if {pk}k∈K is a sequence of positive real numbers such that∑
k∈K pk ≤ 1, and {∆k}k∈K is a family of sub-distributions over a set S , then

(∑
k∈K pk · ∆k

)
al-

ways defines a sub-distribution over S . Further, if
∑

k∈K pk = 1 and each ∆k is a distribution, then(∑
k∈K pk · ∆k

)
is a distribution.

Finally, if f : X → Y and ∆ is a sub-distribution over X then we use f (∆) to be the sub-
distribution over Y defined by:

f (∆)(y) =
∑
x∈X

{∆(x) | f (x) = y }. (2.1)

This definition can be generalised to two arguments functions; if f : X1 × X2 → Y is a function, and
∆,Θ are two sub-distributions respectively over X1 and X2, then f (∆,Θ) denotes the sub-distribution
over Y defined as

f (∆,Θ)(y) =
∑

x1∈X1,x2∈X2

{∆(x1) · Θ(x2) | f (x1, x2) = y }. (2.2)

Now we turn our attention to probabilistic concurrent systems. The formal model we use to
represent them is a generalisation to a probabilistic setting of Labelled Transition Systems (LTSs)
[24].

Definition 2.1. A probabilistic labelled transition system (pLTS) is a 4-tuple 〈S ,Actτ,→, ω〉, where
(i) S is a set of states,

(ii) Actτ is a set of transition labels with a distinguished label τ,
(iii) the relation→ is a subset of S × Actτ ×D(S ),
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(iv) ω : S 7→ { true , false } is a (success) predicate over the states S .

As usual, we will write s
µ
−→ ∆ in lieu of (s, α,∆) ∈ −→.

Before discussing pLTSs, some definitions first: a pLTS whose state space is finite is said to be
finite state; further, we say that a pLTS 〈S ,Actτ,→, ω〉 is finite branching if, for every s ∈ S , the set
{∆ | s

µ
−→ ∆ for some µ ∈ Actτ } is finite. Finally, a finitary pLTS is one which is both finite state

and finite branching.
We have included in the definition of a pLTS a success predicate ω over states, which will be

used when testing processes. Apart from this, the only difference between LTSs and pLTSs is given
by the definition of the transition relation; in the latter this is defined to be a relation (parametric in
some action µ) between states and distributions of states, thus capturing the concept of probabilistic
behaviour.

However, this modification introduces some difficulties when sequences of transitions per-
formed by a given pLTS have to be considered, as the domain and the image of the transition
relation do not coincide. To avoid this problem, we will focus only on distributions of states by
defining transitions for them. The following Definition serves to this purpose:

Definition 2.2 (Lifted Relations). Let R ⊆ S ×Dsub(S ) be a relation from states to sub-distributions.
Then R ⊆ Dsub(S ) ×Dsub(S ) is the smallest relation which satisfies

• sR∆ implies s R ∆

• If I is a finite index set and ∆i R Θi for each i ∈ I then (
∑

i∈I pi ·∆i) R (
∑

i∈I pi ·Θi) whenever(∑
i∈I pi

)
≤ 1.

Lifting can also be defined for relations from states to probability distributions, by simply requiring∑
i∈I pi = 1 in the last constraint of the definition above.

Sometimes it will be convenient to consider also the lifting of relations of the form R ⊆ S × S ;
this is defined by first lifting the relation R to Re ⊆ S × Dsub(S ), by letting s Re Θ iff Θ = t for
some t ∈ S such that s R t. Then we obtain the relation Re by applying Definition 2.2 to Re.

In a pLTS 〈S ,Actτ,→, ω〉, each transition relation
µ
−→ ⊆ S × D(S ) can be lifted to (

µ
−→) ⊆

D(S ) ×D(S ). With an abuse of notation, the latter will still be denoted as
µ
−→.

Lifted transition relations allow us to reason about the behaviour of pLTSs in terms of sequences
of transitions; here we are mainly interested in the behaviour of a pLTS in the long run; that is, given
a pLTS 〈S ,Actτ,→, ω〉 and a sub-distribution ∆ ⊆ Dsub(S ), we are interested in the sub-distributions
Θ ⊆ Dsub(S ) which can be reached from ∆ after an unbounded number of transitions.

For the moment we will focus only on internal actions of a pLTS, in which case the behaviour
of a pLTS in the long run is captured by the concept of hyper-derivation:

Definition 2.3. [Hyper-derivations] In a pLTS a hyper-derivation consists of a collection of sub-
distributions ∆,∆→k ,∆

×
k , for k ≥ 0, with the following properties:

∆ = ∆→0 + ∆×0
∆→0

τ
−→ ∆→1 + ∆×1
...

∆→k
τ
−→ ∆→k+1 + ∆×k+1
...
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If ω(s) = false for each s ∈ d∆→k e and k ≥ 0 we call ∆′ =
∑∞

k=0 ∆×k a hyper-derivative of ∆, and
write ∆ =⇒ ∆′.

We will often write s =⇒ ∆ in lieu of s =⇒ ∆.

Example 2.4. Let us illustrate how hyper-derivations can be inferred in a pLTS via a simple exam-
ple. A central role in hyper-derivations will be played by the empty sub-distribution ε. Note that, in
any pLTS 〈S ,Actτ,→, ω〉, for any action α ∈ Actτ we have that ε

α
−→ ε.

Let us consider a pLTS whose state space is given by the set {h, t}, with the only transition
s

τ
−→1/2 ·h+1/2 · t and with ω(t) = true. This pLTS models a probabilistic experiment in which we

continuously toss a fair coin until we obtain the outcome tail (represented by the state t), in which
case we decree that the experiment succeeded; this last constraint is represented by letting ω(t) =

true. It is well-known, from elementary probability arguments, that the probability of obtaining a
success before the coin has been tossed k times is 2k−1

2k , while in the long run the experiment will
succeed with probability 1. This behaviour can be inferred by using hyper-derivations. For example,
for any k ≥ 0 we can consider the infinite sequence of transitions

∆→0 = h
τ
−→

1
2
· h +

1
2
· t

∆→1 =
1
2
· h

τ
−→

1
22 · h +

1
22 · t

...
τ
−→

...
...

∆→k−2 =
1

2k−2 · h
τ
−→

1
2k−1 · h +

1
2k−1 · t

∆→k−1 =
1

2k−1 h
τ
−→ ε +

1
2k · h +

1
2k · t

∆→k = ε
τ
−→ ε + ε

...
τ
−→

...
...

∆→k+n = ε
τ
−→ ε + ε

...
τ
−→

...
...

Note that the sequence of transitions above models a situation in which the experiment is stopped
after the coin has been tossed k times. This is done by letting ∆→k = ε; at least informally this means
that the computation proceeds with probability 0 after the k-th τ-transition has been performed. The
sequence of transitions above leads to the hyper-derivation

h =⇒

k−1∑
i=1

1
2i · t

 +

(
1
2k h +

1
2k t

)
+

 ∞∑
i=k+1

ε

 =

=
1
2k · h +

 k∑
i=1

1
2i · t

 =

=
1
2k · h +

2k − 1
2k · t

That is, after k transitions have been performed the probability of having successfully terminated
the experiment is (2k − 1)/2k.
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Further, note that we can use hyper-derivations to describe the limiting behaviour of the exper-
iment. In fact, we can consider the infinite sequence of transitions

h
τ
−→

1
2
· h +

1
2
· t

1
2
· h

τ
−→

1
22 · h +

1
22 · t

...
τ
−→

...
...

1
2k · h

τ
−→

1
2k+1 · h +

1
2k+1 · t

...
τ
−→

...
...

which leads to the hyper-derivation

h =⇒

 ∞∑
i=1

1
2i · t

 = t

�

Hyper-derivations can be seen as the probabilistic counterpart of the weak
τ

=⇒ action in LTSs;
see [7] for a detailed discussion. Intuitively speaking, they represent fragments of computations
obtained by performing only internal actions. The last constraint in Definition 2.3 is needed since
we introduced a success predicate in our model; as we see pLTSs as nondeterministic, probabilistic
experiments, we require that a computation stops when the experiment succeeds, that is when a
state s such that ω(s) = true has been reached. States in which the predicate ω(·) is true are called
ω-successful.

Further, we are mainly interested in maximal computations of distributions. That is, we require
a computation to proceed as long as some internal activity can be performed. To this end, we say
that ∆ =⇒� ∆′ if

• ∆ =⇒ ∆′,
• for every s ∈ d∆′e, s

τ
−→ implies ω(s) = true.

This is a mild generalisation of the notion of extreme derivative from [7]. Note that the last constraint
models exactly the requirement of performing some internal activity whenever it is possible; In other
words extreme derivatives correspond to a probabilistic version of maximal computations.

Example 2.5. Consider again the pLTS of Example 2.4. Here we have that the hyper-derivation
h =⇒ Θ = 1

2k · h + 2k−1
2k · t, where k ≥ 0, is not an extreme derivation, since ω(h) = false and h

τ
−→.

On the other hand, the hyper-derivation h =⇒ t is also an extreme derivation, since ω(t) = true;
therefore h =⇒� t. �

Theorem 2.6. In an arbitrary pLTS
(1) =⇒ is reflexive and transitive,
(2) if ∆ =⇒ ∆′ and ∆′ =⇒� ∆′′, then ∆ =⇒� ∆′′; this is a direct consequence of the previous

statement, and the definition of extreme derivatives,
(3) suppose ∆ =

(∑
i∈I pi · ∆i

)
, where I is an index set and

∑
i∈I pi ≤ 1. If for any i ∈ I,∆i =⇒Θi for

some Θi, then ∆ =⇒ Θ, where Θ =
(∑

i∈I pi · Θi
)
,

(4) for all sub-distributions ∆, there exists a sub-distribution Θ such that ∆ =⇒� Θ.
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Proof. See [7] for detailed proofs.

The last definition we need is that of convergent pLTSs. Intuitively these are pLTSs whose
infinite computations have a negligible probability.

Definition 2.7. [Convergence] A pLTS 〈S ,Actτ,−→, ω〉 is said to be convergent if s =⇒ ε for no
state s ∈ S .

At least informally, s =⇒ ε means that there exists a computation rooted in s which contains only
probability sub-distributions which can always perform a τ-action. See [7], Section 6 for a detailed
discussion on divergence in pLTSs. The main property we will require from convergent pLTSs is
the following:

Proposition 2.8. Let ∆ be a distribution in a convergent pLTS. If ∆ =⇒ Θ then |Θ| = 1.

Proof. This is an immediate consequence of Distillation of Divergence, Theorem 6.20 of [7].

3. The calculus

In this Section we introduce our calculus for modelling wireless networks. In this calculus, a
wireless network is modelled as a pair of the form (Γ B M), where Γ is a digraph representing the
topology of a wireless network and M is a term which assigns code to nodes.

The syntax of our calculus is presented in Section 3.1; here we also give some basic examples of
wireless networks. In Section 3.2 we formalise how networks evolve by introducing an intensional
semantics for our calculus; finally we prove some basic properties of our calculus in Section 3.3.

3.1. Syntax. The calculus we present is designed to model broadcast systems, particularly wireless
networks, at a high level. We do not deal with low level issues, such as collisions of broadcast
messages or multiplexing mechanisms [35]; instead, we assume that network nodes use protocols
at the MAC level [20] to achieve a reliable communication between nodes.

Basically, the language will contain both primitives for sending and receiving messages and
will enjoy the following features:

(i) communication can be obtained through the use of different channels; although the physical
medium for exchanging messages in wireless networks is unique, it is reasonable to assume
that network nodes use some multiple access technique, such as TDMA or FDMA [35], to
setup and communicate through virtual channels,

(ii) communication is broadcast; whenever a node in a given network sends a message, it can be
detected by all nodes in its range of transmission,

(iii) communication is reliable; whenever a node broadcasts a message and a neighbouring node
(that is, a node in the sender’s range of transmission) is waiting to receive a message on the
same channel, then the message will be delivered to the receiver. This is not ensured if low
level issues are considered, as problems such as message collisions [20] and nodes synchroni-
sation [29] arise .

The language for system terms, ranged over by M, N, · · · is given in Figure 1. Basically a sys-
tem consists of a collection of named nodes at each of which there is some running code. The syntax
for this code is a fairly straightforward instance of a standard process calculus, augmented by a prob-
abilistic choice; code descriptions have the usual constructs for channel based communication, with
input c?(x) .p being the unique binder. This gives rise to the standard notions of alpha-conversion,
free and bound occurrences of variables in system terms and closed system terms.
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M, N ::= Systems
n~s� Nodes
M | N Composition
0 Identity

p, q ::= (probabilistic) Processes
s
p p⊕ q probabilistic choice

s, t ::= States
c!〈e〉 .p broadcast
c?(x) .p receive
ω. 0 test
s + t choice
if b then s else t branch
τ.p preemption
A(x̃) definitions
0 terminate

Figure 1: Syntax

We only consider the sub-language of well-formed system terms in which all node names have
at most one occurrence. We use sSys to range over all closed well-formed terms. A (well-formed)
system term can be viewed as a mapping that assigns to node names the code they are executing.
A sub-term n~s� appearing in a system term M represents node n running code s. In the following
we make use of standard conventions; we omit trailing occurrences of 0 and we use

∏n
i=1 mi~si� to

denote the system term m1~s1� | · · · | mn~sn�.
Additional information such as the connectivity between nodes of a network is needed to

formalise communications between nodes. Network connectivity is represented by a graph Γ =

〈ΓV , ΓE 〉; here ΓV is a finite set of nodes and ΓE ⊆ (ΓV × ΓV ) is an irreflexive relation between
nodes in ΓV . Intuitively, (m, n) ∈ ΓE models the possibility for node n to detect broadcasts fired by
m.

We use the more graphic notation Γ ` v to mean v ∈ ΓV and Γ ` m → n for (m, n) ∈ ΓE .
Similarly we use Γ ` n← m to denote Γ ` m→ n. Sometimes we also use the notations Γ ` m↔ n
for {(n,m), (m, n)} ⊆ ΓE and Γ ` m� n to denote either Γ ` m→ n or Γ ` m← n.

A network consists of a pair (ΓBM), representing the system M, from sSys, executing relative
to the connectivity graph Γ. All nodes occurring in M, nodes(M), will appear in Γ and the effect of
running the code at n ∈ nodes(M) will depend on the connectivity of n in Γ. But in general there
will be nodes in Γ which do not occur in M; let Intf(Γ B M) = ΓV \ nodes(M); we call this set the
interface of the network Γ B M, and its elements are called external nodes. Intuitively these are
nodes which may be used to compose the network Γ B M with other networks, or to place code for
testing the behaviour of M.

In the following we use the meta-variablesM,N , · · · to range over networks. Also, the notation
introduced for system terms and connectivity graphs is extended to networks in the obvious way; for
example, ifM = (Γ B M), nodes(M) = nodes(M),MV = ΓV andM ` m→ n denotes Γ ` m→ n.
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m

n

i

e

o1

o2

m

n

i

e

k

o1

o2

M = ΓM B n~An� | i~Ai� | m~Am� N = ΓN B n~An� | i~Ai� | m~Ak� | k~Am�

Figure 2: Example networks

Example 3.1. ConsiderM described in Figure 2. There are six nodes, three occupied by code n, i
and m, and three in the interface Intf(M) , e, o1 and o2. Here, and in future examples, we differentiate
between the interface and the occupied (internal) nodes using shading. Suppose the code at nodes
is given by

An ⇐ c?(x) .d!〈x〉 . 0 Ai ⇐ d?(x) .d!〈 f (x)〉 . 0 Am ⇐ d?(x) .(d!〈x〉 . 0 0.8⊕ 0)

ThenM can receive input from node e at its interface along the channel c; this is passed on to the
internal node i using channel d, where it is transformed in some way, described by the function f 1,
and then forwarded to node m, where 80% of the time it is broadcast to the external nodes o1 and
o2. The remainder of the time the message is lost.

The network N has the same interface asM, but has an extra internal node k connected to o2,
and m is only connected to one interface node o1 and the internal node k. The nodes i and n have
the same code running as inM, while nodes m and k will run the code

Ak ⇐ d?(x) .(d!〈x〉 . 0 0.9⊕ 0)

Intuitively, the behaviour of N is more complex than that ofM; indeed, there is the possibility
for a computation of N to deliver a value only to one between the external nodes o1 and o2, while
this is not possible in N . However, 81% of the times this message will be delivered to both these
nodes, and thus it is more reliable thanM. Suppose now that we change the code at the intermediate
node m inM,

M1 = ΓM B . . . | m~Bm� where Bm ⇐ d?(x) .(τ.(d!〈x〉 . 0 0.5⊕ 0) + τ.d!〈x〉 . 0)

InM1 the behaviour at the node m is non-deterministic; it may act like a perfect forwarder, or one
which is only 50% reliable. Optimistically it could be more reliable than M, or pessimistically it
could be less reliable than the latter. Further, there is no possibility for the networkM1 to forward
the message to only one of the external nodes o1, o2, so that its behaviour is somewhat less complex
than that of N .

As a further variation letM2 be the result of replacing the code at m with

Cm ⇐ d?(x) .D
D⇐ τ.(d!〈x〉 . 0 0.5⊕ τ.D)

1For example, if we assume the set of closed values to be Z, f could be the mapping f : z 7→ z2.
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(s-Snd)

c!〈e〉 .p
c!~e�
−→ P(p)

(s-Rcv)

c?(x) .p
c?v
−→ P(p{v/x})

(s-τ)

τ.p
τ
−→ P(p)

(s-Suml)

s
α
−→ ∆

s + t
α
−→ ∆

(s-SumR)

t
α
−→ ∆

s + t
α
−→ ∆

(s-then)

s
α
−→ ∆

if b then s else t
α
−→ ∆

~b� = true

(s-else)

t
α
−→ ∆

if b then s else t
α
−→ ∆

~b� = false

(s-Call)

s{ẽ/x̃}
µ
−→ ∆

A(̃e)
µ
−→ ∆

A(x̃)⇐ s

Figure 3: Pre-semantics of states

Here the behaviour is once more deterministic, with the probability that the message will be even-
tually transmitted successfully through node k approaching 1 in the limit. Thus, this network is as
reliable asM1, when the latter is viewed optimistically. �

3.2. Intensional Semantics. We now turn our attention on the operational semantics of networks.
Following [7], processes will be interpreted as probability distributions of states; such an interpre-
tation is encoded by the function P(·) defined below:

P(s) = s
P(p1 p⊕ p2) = p · P(p1) +(1 − p) · P(p2) .

Sometimes we will need to consider the probability distribution associated to system terms; this is
done by letting

P(0) = 0
P(n~p�) = n~P(p)�

P(M1 | M2) = P(M1) |P(M2)

where n~P(p)� represents a distribution over sSys, obtained by a direct application of Equation
(2.1) to the function n~·� which maps states into system terms. Similarly, P(M1 | M2) is obtained by
applying Equation (2.2) to the function (· | ·) : sSys × sSys→ sSys.

The intensional semantics of networks is defined incrementally. We first define a pre-semantics
for states, which is then used for giving the judgements of (state based) networks.

The pre-semantics for states takes the form

s
α
−→ ∆
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(b-broad)

s
c!v
−→ ∆

Γ B n~s�
n.c!v
−→ n~∆�

(b-rec)

s
c?v
−→ ∆

Γ B n~s�
m.c?v
−→ n~∆�

Γ ` m→ n

(b-deaf)

s 6
c?v
−−→

Γ B n~s�
m.c?v
−→ n~s�

(b-disc)

Γ B n~s�
m.c?v
−→ n~s�

Γ ` m9 n

(b- 0)

0
m.c?v
−→ 0

(b-τ)

s
τ
−→ p

Γ B n~s�
n.τ
−→ n~∆�

P(p) = ∆

(b-τ.prop)

Γ B M
n.τ
−→ ∆

Γ B M | N
n.τ
−→ ∆ | N

(b-prop)

Γ B M
m.c?v
−→ ∆, Γ B N

m.c?v
−→ Θ

Γ B M | N
m.c?v
−→ ∆ | Θ

(b-sync)

Γ B M
m.c!v
−→ ∆, Γ B N

m.c?v
−→ Θ

Γ B M | N
m.c!v
−→ ∆ | Θ

Figure 4: Intensional semantics of networks

where s is a closed state, that is containing no free occurrences of a variable, ∆ is a distribution
of states and µ can take one of the forms c!v, c?v or τ. The deductive rules for inferring these
judgements are given in Figure 3 and should be self-explanatory. It assumes some mechanism for
evaluating closed data-expressions e to values ~e�. Note that we assume that definitions have the
form A(x̃) ⇐ s, where s is a state; this is because actions for definitions are inherited by the state
that is associated to them, and judgements are not defined for (probabilistic) processes. Also, note
that we have a special state ω for which no rule has been defined. The role of this construct will
become clear in Section 4.

Judgements in the intensional semantics of networks take the form

Γ B M
µ
−→ ∆

where Γ is a network connectivity, M is a system from sSys, and ∆ is a distribution over sSys;
intuitively this means that relative to the connectivity Γ the system M can perform the action µ, and
with probability ∆(N) be transformed into the system N, for every N ∈ d∆e. The action labels can
take the form

(i) receive, n.c?v, meaning that the value v is detected on channel c by all nodes in nodes(M)
which are reachable from n in Γ,

(ii) broadcast, n.c!v: meaning the node n (occurring in nodes(M), and therefore in Γ) broadcasts
the value v on channel c to all nodes directly connected to n in Γ

(iii) internal activity, n.τ, meaning some internal activity performed by node n.
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The rules for inferring judgements are given in Figure 4. Here we have omitted the symmetric
counterparts of rules (b-Sync) and (b-TauProp). Rule (b-broad) models the capability for
a node to broadcast a value v through channel c, assuming the code running there is capable of
broadcasting along c. Here the distribution ∆ is in turn obtained from the residual of the state s after
the broadcast action.

Example 3.2. Consider the simple network ΓB n~s� where Γ is an arbitrary connectivity graph and
the code s has the form c!〈v〉 .(s1 1/4⊕ s2).

The pre-semantics of states determines that s
c!v
−→ P(s1 1/4⊕ s2) = 1/4 · s1 + 3/4 · s2, using Rule

(b-Snd) Thus according to the rule (b-broad) we have the judgement

Γ B n~s�
n.c!v
−→

1
4
· n~s1� +

3
4
· n~s2�

�

Rules (b-rec), (b-deaf) and (b-disc) express how a node reacts when a message is broadcast;
the first essentially models the capability of a node which is listening to a channel c, and which
appears in the sender’s range of transmission, to receive the message correctly. The other two rules
model situations in which a node is not listening to the channel used to broadcast a message, or it is
not in the range of transmission of the sender; In both cases this node cannot detect the transmission
at all.

The rules (b-τ) and (b-τ.prop) model internal activities performed by some node of a system
term; the latter (together with its symmetric counterpart) expresses the inability for a node which
performs an internal activity to affect other nodes in a system term. Here again, ∆ |Θ is a distribution
over sSys, this time obtained by instantiating Equation (2.2) to the function (· | ·) : sSys × sSys→
sSys.

Finally, rules (b-sync) and (b-prop) describe how communication between nodes of a net-
work is handled; here the result of a synchronisation between an output and an input is again an
output, thus modelling broadcast communication [28].

3.3. Properties of the Calculus. We conclude this section by summarising the main properties
enjoyed by the intensional semantics of our calculus.

Here (and in the rest of the paper) it will be convenient to identify networks and distributions
of networks up to a structural congruence relation ≡. This is first defined for states as the smallest
equivalence relation which is a commutative monoid with respect to + and 0, and which satisfies
the equations if b then s else t ≡ s if ~b� = true, if b then s else t ≡ t if ~b� = false and
A(ẽ) ≡ s{ẽ/x̃} if A(x̃) ⇐ s. For system terms, we let ≡ be the smallest equivalence relation which
is a commutative monoid with respect to (· | ·) and 0, and which satisfies the equation s ≡ t implies
m~s� ≡ m~t� for any node m. Finally, we let (ΓMBM) ≡ (ΓNBN) iff Γ1 = Γ2 and M ≡ N. Structural
congruence is also defined for distributions of networks via the lifted relation ≡e. With an abuse of
notation, the latter is still denoted as ≡.

The properties that we prove in this section give an explicit form to the structure of a network
(ΓBM) and a distribution ∆ in the case that an action (ΓBM)

µ
−→∆ can be inferred in the intensional

semantics presented in Section 3.2.

Proposition 3.3 (Tau-actions). Let Γ B M be a network; then Γ B M
m.τ
−→ ∆ if and only if

(i) M ≡ m~(τ.p) + s� | N,
(ii) ∆ ≡ P(m~p�) |N
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Outline of the Proof. We first need to prove a similar statement for states. Let t be a state; then
t

τ
−→ Θ if and only if t ≡ τ.p + s for some p, s such that P(p) = Θ. The two implications of this

statement are proved separately.
To prove Proposition 3.3 suppose first that Γ B M

m.τ
−→ ∆ for some distribution ∆. We show that

M ≡ m~τ.p + s� | N, ∆ ≡ P(m~p�) |N by structural induction on the proof of the derivation above.
If the last rule applied is (b-τ), then M = m~t� for some t such that t

τ
−→ Θ , ∆ = m~Θ�.

Since t
τ
−→ Θ then t ≡ τ.p + s for some process p such that P(p) = Θ, which also gives

∆ = P(m~p�). By definition of structural congruence M ≡ m~τ.p + s� ≡ m~τ.p + s� | 0. Further,
∆ ≡ P(m~p�) |0, and there is nothing left to prove.

If the last rule applied is (b-τ.prop), then M ≡ N | L for some N, L such that N
m.τ
−→∆N ; further,

∆ = ∆N | L. By inductive hypothesis we have that N ≡ m~τ.p + s� | N′ and ∆N ≡ P(m~p�) |N′.
By performing some simple calculations we find that M ≡ N | L ≡ m~τ.p + s� | (N′ | L) and
∆ ≡ ∆N | L ≡ P(m~p�) |(N′ | L) ≡ P(m~p�) |(N′ | L).

Conversely, suppose that M ≡ m~τ.p + s� |N; in this case it suffices to perform a rule induction
on the proof of the equivalence above to show that Γ B M

m.τ
−→ ∆, where ∆ ≡ P(m~p�) |N.

Proposition 3.4 (Input). For any network Γ B M we have that Γ B M
m.c?v
−→ ∆ iff

(i) m < nodes(M),
(ii) M ≡

∏
i∈I ni~(c?(x) .pi) + si� |

∏
j∈J n j~s j�,

(iii) for any i ∈ I, Γ ` m→ ni,

(iv) for any j ∈ J, either Γ ` m9 n j or s j
c?v
−→6 ,

(v) ∆ ≡ P(
∏

i∈I ni~pi{v/x}�) |
∏

j∈J n j~s j�. �

Proposition 3.5 (Broadcast). Let Γ B M be a network; then Γ B M
m.c!v
−→ ∆ for some ∆ iff

(i) M ≡ m~(c!〈e〉 .p + s)� | N, where ~e� = v,

(ii) Γ B N
m.c?v
−→ Θ,

(iii) ∆ ≡ P(m~p�) |Θ. �

An immediate consequence of the results above is that actions in the intensional semantics are
preserved by structurally congruent networks.

Corollary 3.6. LetM,N be two networks such thatM ≡ N . IfM
µ
−→∆ thenN

µ
−→Θ for some Θ

such that ∆ ≡ Θ. �

Another trivial consequence that follows from the results above is that the intensional semantics
does not change the structure of a network.

Definition 3.7 (Stable distributions). A (node)-stable sub-distribution ∆ ∈ Dsub(sSys) is one for
which whenever M,N ∈ d∆e it follows that nodes(M) = nodes(N). A distribution over networks is
said to be (node)-stable if it has the form Γ B ∆, and ∆ is a stable sub-distribution inDsub(sSys).

Corollary 3.8. Whenever Γ BM
µ
−→ ∆ then ∆ is node-stable; further, for any N ∈ d∆e we have that

nodes(M) = nodes(N).
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m

o1

o2

m

o1

o2

M = ΓM B m~c!〈v〉� N = ΓN B m~c!〈v〉�

Figure 5: A well-formed and an ill-formed network

4. Compositional Reasoning for Networks

The aim of this Section is to develop preorders of the form

M @∼behav N (4.1)

Intuitively this means that the networkM can be replaced byN , as a part of a larger overall network,
without any loss of behaviour. The intention is that the internal structure of the networks M, N
should play no role in this comparison; the names used to identify their internal stations and the
their communication topology should not be important. Intuitively the only behaviour to be taken
into account in this extensional comparison is the reception of values at the their interface, the values
subsequently broadcast at the interface.

To formalise this concept we need to say how networks are composed to form larger networks.
In Section 4.1 we propose a specific composition operator, ‖> for this purpose, and briefly discuss its
properties. We then use this operator in Section 4.2 to say how network behaviour is determined. In
Section 4.3, we give the formal definition of the behavioural preorders, in a relatively standard man-
ner following [27]; this section also treats some examples. The nature of these preorders depends
on our particular choice of composition operator ‖>. In Section 4.4 we return to this point and offer
a justification for our choice; this section may be safely ignored by the reader who is uninterested
in this subtlety.

However first let us reconsider the informal requirements of the proposed behavioural preorder
(4.1) above. We have already mentioned that it should not depend on the internal structure of
N ,M. But equally well N ,M should not be able to make any assumptions about the topology of
their external environment.

Example 4.1. Consider the networks M and N depicted in Figure 5. At least intuitively the ex-
tensional behaviour of these two networks is the same: a broadcast of value v along channel c can
be detected by the external nodes o1 and o2. However N makes an assumption about the external
environment, namely that there is a connection between the external nodes o1 and o2. This slight
difference can be exploited to distinguish between them behaviourally. Suppose that we place the
code c?(x) .c!〈w〉 at node o1 and the code c?(x) .c?(y) .ω at node o2 to test the behaviour of both
networks. In practice, let T = o1~c?(x) .c!〈w〉� | o2~c?(x) .c?(y) .ω�, and consider the networks
M′ = ΓM B m~c!〈v〉� | T and N ′ = ΓN B m~c!〈v〉� | T . In the first network the node o2 can detect
both the broadcast fired by node m and node o1, leading to a state in which the special action ω is
enabled. However, the same is not possible inN ′, since there is no connection between the external
nodes o1 and o2. That is, node o2 can only detect the broadcast fired by node m, ending in a state in
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which the special action ω remains guarded by an input. As we will see later, the clause ω plays a
crucial role in distinguishing networks. �

The problem in Example 4.1 is caused by the presence of a connection between the two ex-
ternal nodes in the network N of Figure 5; intuitively this represents an assumption of N about its
external environment. To avoid this problem, we focus on a specific class of networks in which
connections between external nodes are not allowed. Also, we require external nodes to have at
least a connection with some internal node.

Definition 4.2. [Well-Formed Networks] A networkM is well-formed iff
(i) wheneverM ` m� n then either m ∈ nodes(M) or n ∈ nodes(M),

(ii) wheneverM ` m andM ` m� n for no n ∈ (M)V , then m ∈ nodes(M). �

Henceforth we will only focus on well-formed networks, unless stated otherwise. We denote the set
of well-formed networks as Nets.

Finally let us provide some definitions which will be useful in the sequel. LetM be a (well-
formed) network. We say that a node i ∈ Intf(M) is an input node if M ` m ← i for some m2;
conversely, if a node o ∈ Intf(M) is such that Γ ` m → o we say that o is an output node. If we
let In(M) = {i | i is an input node inM} and Out(M) = {o | o is an output node inM} it is easy to
check that Intf(M) = In(M) ∪ Out(M).

4.1. Composing Networks. One use of composition operators is to enable compositional reason-
ing. For example the task of establishing

N1 @∼behav N2 (4.2)

can be simplified if we can discover a common component, that is someN such thatN1 =M1 9N
and N2 =M2 9N for some composition operator 9; then (4.2) can be reduced to establishing

M1 @∼behav M2,

assuming that the behavioural preorder in question, @∼behav, is preserved by the composition operator
9.

However another use of a composition operator is in the definition of the behavioural preorder
@
∼behav itself. Intuitively we can define

N1 @∼behav N2 (4.3)

to be true if for every component T which can be composed with both N1 and N2, the external
observable behaviour of the composite networksN1 9T andN2 9T are related in some appropriate
way. T is a testing network which is probingN1 andN2 for behavioural differences, along the lines
used informally in Example 4.1. Intuitively this should be black-box testing, in which the tester,
namely T , should have no access to the internal stations of the networks being tested, namely N1
and N2. All it can do is place code at their external interfaces, to transmit values and examine the
subsequent effects, as seen again at the interfaces.

Definition 4.3. [Composing networks] For any two networks M = ΓM B M and P = ΓP B P let
M ‖> P be given by:

(ΓM B M) ‖> (ΓP B P) =

(ΓM ∪ ΓP) B (M | P), if nodes(M) ∩ (P)V = ∅

undefined, otherwise

2Note that by well-formedness this implies m ∈ nodes(M).
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M N (M ‖> N)

Figure 6: Network composition via ‖>

The composed connectivity graph ΓM ∪ ΓP is defined by letting (ΓM ∪ ΓP)V = (ΓM)V ∪ (ΓP)V and
(ΓM ∪ ΓN)E = (ΓM)E ∪ (ΓP)E . �

The intuition here is that the composed network M ‖> P is constructed by extending the network
under test,M, allowing code to be placed at its interface, and allowing completely fresh stations to
be added. These fresh stations can be used by the tester to compute the results of probes made on
M.

Proposition 4.4. SupposeM,N ,P ∈ Nets. Then
(1) M ‖> P ∈ Nets, whenever it is defined
(2) (M ‖> N) ‖> P =M ‖> (N ‖> P), whenever both are defined

Proof. The two statements are proved separately. The proofs are given in a separate appendix,
Appendix A; see pages 58 and 59.

There is an inherent asymmetry in the definition of our composition operator; in M ‖> P we
allow P to place code at the interface nodes ofM but not the converse. As a result the operator is
not in general symmetric, as can be seen from Example 4.5.

Example 4.5. [‖> is asymmetric] LetM,N be the networks depicted in Figure 6. Here the network
M ‖> N is well-defined and depicted on the right of Figure 6. Intuitively, this is the network
obtained by extending M with the information provided by N ; these include the code running at
nodes o1, o2, a connection between such nodes, and a connection from o1, o2, respectively, to a fresh
node e, whose running code is left unspecified. The networkM ‖> N is well-defined because none
of the connections specified in N involve the node m ∈ nodes(M); that is, when extendingM with
N it is ensured that the latter can interact with the node m only via the nodes o1, o2.

On the other hand, the composition N ‖> M is not defined. Intuitively, in N nodes o1 and o2
can interact with the external environment only via the external node e. This is in contrast with the
definition ofM, where node m can be used to broadcast messages to such nodes. �

One might wonder if a symmetric composition operator could be used in place of our ‖>; this
point is discussed at length in Section 4.4. Nevertheless ‖> is a natural operator, and the next result
shows that it can be used to construct all non-degenerate networks starting from single nodes. Let G
be the collection of networks which contain exactly one occupied node, that is G = {(Γ BG) | G ≡
m~s� for some s,m}.
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Proposition 4.6. Suppose M ∈ Nets is a network such that nodes(M) is not empty. Then
M ≡ N ‖> G for someN ∈ Nets and G ∈ G.

Proof. See Appendix A, Page 59.

We use the term generating networks to refer to elements of G. The import of Proposition 4.6 is that
all non-trivial well-formed networks can be constructed from basic generating networks, using ‖>.

4.2. Testing Structures. The introduction of the composition operator ‖> allows the development
of a behavioural theory based on a probabilistic generalisation of the De Nicola and Hennessy
testing preorders [27]. In order to develop such a framework, we will exploit the mathematical tools
introduced in Section 2; our aim is to be able to relate networks with different connection topologies.

In our framework, as has already been indicated, testing can be summarised as follows: the net-
work to be tested is composed with another one, usually called a testing network. The composition
of these two networks is then isolated from the external environment, in the sense that no external
agent (in our case nodes in the interface of the composed network) can interfere with its behaviour;
we will shortly present how such a task can be accomplished. The composition of the two networks
isolated from the external environment takes the name of experiment.

Once these two operations (composition with a test and isolation from the external environ-
ment) have been performed, the behaviour of the resulting experiment is analysed to check whether
there exists a computation that yields a state which is successful. This task can be accomplished by
relying on testing structures, which will be presented shortly.

At an informal level, successful states in our language coincide with those associated with net-
works where at least the code running at one node has the special action ω enabled. Since networks
have probabilistic behaviour, each computation will be associated with the probability of reaching
a successful state; thus, every experiment will be associated with a set of success probabilities, by
quantifying over all its computation.

Let us now look at how the procedure explained above can be formalised; the topic of compos-
ing networks has already been addressed in detail in Section 4.1, in which we defined the operator
‖> and proved basic properties for it. To model experiments and their behaviour, we rely on the
following mathematical structure.

Definition 4.7. A Testing Structure (TS) is a triple 〈S ,_, ω〉 where
(i) S is a set of states,

(ii) the relation _ is a subset of S ×D(S ),
(iii) ω is a success predicate over S , that is ω : S → {true, false}.

Testing structures can be seen as (degenerate) pLTSs where the only possible action corresponds
to the internal activity τ, and the transition

τ
−→ is defined to coincide with the reduction relation

_. Conversely every pLTS automatically determines a testing structure, by concentrating on the
relation

τ
−→.

Our goal is to turn a network into a testing structure. This amounts to defining, for networks,
a reduction relation and the success predicate ω. As we have mentioned in the beginning of this
section, when converting a network into a testing structure, we want to make it isolated from the
external environment.

When considering simpler process languages, like CCS or CSP (and, more generally, their
probabilistic counterparts), processes are converted into testing structures by identifying the reduc-
tion relation with the internal activity τ; that is, processes are not allowed to synchronise with some
external agent via a visible action.
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Networks, however, are more complicated objects; here the nature of broadcast is non-blocking,
meaning that a broadcast can be fired by a node in a network without requiring any synchronisa-
tion with a (possibly external) node. Thus we expect broadcast actions to induce reductions when
converting a network into a testing structure.

On the other hand, input actions always originate from non-internal nodes. Hence they can be
seen as external activities which can influence the behaviour of a network. Therefore, input actions
should not be included in the definition of the reduction relation for networks.

Finally, the success predicate ω is defined to be true for exactly those networks in which the
success clause ω is enabled in at least one node.

Example 4.8. The main example of a TS is given by

〈Nets,_, ω〉

where
(i) (Γ B M) _ (Γ B ∆) whenever

(a) Γ B M
m.τ
−→ ∆ for some m ∈ nodes(M)

(b) or, Γ B M
m.c!v
−→ ∆ for some value v, node name m and channel c

(ii)

ω(M) =

true, if M ≡ M′ | n~ω + s�, for some s, n,M′

false, otherwise

If ω(M) = true for some system term M, we say that a network Γ B M, where Γ is an arbitrary
connectivity graph, is ω-successful, or simply successful. Note that when recording an ω-success
we do not take into account the node involved. �

As TSs can be seen as pLTSs, we can use in an arbitrary TS the various constructions introduced
in Section 2. Thus the reduction relation _ can be lifted to Dsub(sSys) × Dsub(sSys) and we can
make use of the concepts of hyper-derivatives and extreme-derivatives, introduced in Section 2, to
model fragments of executions and maximal executions of a testing structure, respectively. Hyper-
derivations in testing structures are denoted with the symbol ===B, while we use the symbol ===B�
for extreme derivations.

Below we provide two simple examples that show how to reason about the behaviour of the
testing structures presented in Example 4.8.

Example 4.9. Consider the testing structure associated with the network N in the center of Figure
11, where the code q is given by the definition q⇐ q 0.5⊕ c!〈v〉 . 0. We can show that, in the long run,
this network will broadcast message v to the external location o by exhibiting a hyper derivation for
it which terminates in the point distribution ΓN B k~c!〈v〉 . 0�. If we let N1 denote the configuration
ΓN B k~c!〈v〉 . 0�, we have the following hyper-derivation:

N = 1
2 · N + 1

2 · N1
1
2 · N _ 1

22 · N + 1
22 · N1

...
1
2n · N _ 1

2n+1 · N + 1
2n+1 · N1

...

Let ∆′ =
∑∞

n=1
1
2n · N1. It is straightforward to check that ∆′ = N1 and therefore we have the

hyper-derivation N ===B N1. �
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An arbitrary network N can be tested by another (testing) network T provided N ‖> T is well-
defined. Executions of the resulting testing structure will then be checked to establish whether the
networkM satisfies a property the test was designed for; in such a case, the testing component of
an experiment will reach a ω-successful state.

Executions, or maximal computations, correspond to extreme derivatives in the testing structure
associated with (N ‖> T ), as defined in Section 2. Since the framework is probabilistic, each
execution (that is extreme derivative) will be associated with a probability value, representing the
probability that it will lead to an ω-successful state. Since the framework is also nondeterministic
the possible results of this test application is given by a non-empty set of probability values.

Definition 4.10. [Tabulating results] The value of a sub-distribution in a TS is given by the function
V : Dsub(S ) → [0, 1], defined byV(∆) =

∑
{∆(s) | ω(s) = true }. Then the set of possible results

from a sub-distribution ∆ is defined by O(∆) = {V(∆′) | ∆ ===B� ∆′ }.

Example 4.11. Let N be the network from Example 4.9 and consider the testing network T given
in Figure 11, where the code is determined by t ⇐ c?(x) .ω. 0. It is easy to check that N ‖> T is
well-defined and is equal to Γ B k~q� | o~t�, where Γ is the connectivity graph containing the three
nodes k, o, l and having the connections from Γ ` k → o and Γ ` o ← t. So consider the testing
structure associated with it; recall that we have the definition q ⇐ q 0.5⊕ c!〈v〉 . 0. For convenience
let N1 = ΓN B k~c!〈v〉 . 0� as in the previous example, N2 = ΓN B k~0� and Tω = ΓT B o~ω. 0�.
Then we have the following hyper-derivation for N ‖> T :

N ‖> T _ ( 1
2 · N ‖> T + 1

2 · N1 ‖> T ) + ε
1
2 · N ‖> T + 1

2 · N1 ‖> T _ ( 1
22 · N ‖> T + 1

22 · N1 ‖> T ) + 1
2 · N2 ‖> Tω

...
...

...
1
2n · N ‖> T + 1

2n · N1 ‖> T _ ( 1
2n+1 · N ‖> T + 1

2n+1 · N1 ‖> T ) + 1
2n · N2 ‖> Tω

...
...

...

were we recall that ε denotes the empty sub-distribution, that is the one with dεe = ∅. We have
therefore the hyper-derivation

N ‖> T ===B ε +

∞∑
n=1

1
2nN2 ‖> Tω = N2 ‖> Tω.

Further, the above hyper-derivation satisfies the constraints required by ===B� , defined in Section 2,
and therefore we have the extreme derivative N ‖> T ===B� N2 ‖> Tω. Since V(N2 ‖> Tω) = 1 we
can therefore deduce that 1 ∈ O(N ‖> T ). �

4.3. The behavioural preorders. We now combine the concepts of the previous two sections to
obtain our behavioural preorders. We have seen how to associate a non-empty set of probabilities,
tabulating the possible outcomes from applying the test T to the network N . As explained in [7]
there are two natural ways to compare such sets, optimistically or pessimistically.

Definition 4.12. [Relating sets of outcomes] Let O1, O2 be two sets of values in [0, 1].
(i) The Hoare’s Preorder is defined by letting O1 vH O2 whenever for any p1 ∈ O1 there exists

p2 ∈ O2 such that p1 ≤ p2.
(ii) The Smith’s Preorder is defined by letting O1 vS O2 if for any p2 ∈ O2 there exists p1 ∈ O1

such that p1 ≤ p2.
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o1

o2e

o

Figure 7: A test

Given two networksM,N we can relate their behaviour, when extended with a testing network
T , by comparing the success outcomes ofM ‖> T and N ‖> T (provided both these networks are
defined) via Definition 4.12. We can go further and consider what is the relationship between such
sets of outcomes with respect to all possible tests T which can be used to extend the networks
M,N .

Definition 4.13. [Testing networks] ForM1, M2 ∈ Nets such that In(M1) = In(M2), Out(M1) =

Out(M2), we write
(1) M1 vmay M2 iff for every (testing) network T ∈ Nets such that bothM1 ‖> T andM2 ‖> T

are defined, O(M1 ‖> T ) vH O(M2 ‖> T ) .
(2) M1 vmust M2 iff for every (testing network) T ∈ Nets such that bothM1 ‖> T andM2 ‖> T

are defined, O(M1 ‖> T ) vS O(M2 ‖> T )
We useM1 =may M2 as an abbreviation forM1 vmay M2 andM2 vmay M1. The relation =must
is defined similarly. Finally, we say thatM1 v M2 iff bothM1 vmay M2 andM1 vmust M2 hold,
andM1 ' M2 iffM1 v M2 andM2 v M1.

Some explanation is necessary for the requirement on the interface of networks we have placed
in Definition 4.13. This constraint establishes that two networksM andN are always distinguished
if the sets of their input or output nodes differ. As we already mentioned, external nodes can be seen
as terminals that can be accessed by the external environment to interact with the network. Roughly
speaking, the constraint we have placed corresponds to the intuition that the external environment
can distinguish two networksM andN by simply looking at the terminals that it can use to interact
with these two networks.

Example 4.14. Consider the testing network

T = ΓT B e~c!〈0〉� | o1~d?(x) .c!〈x〉� | o2~d?(x) .c!〈x〉� | o~c?(x) .c?(y) .ω�

where the connectivity is described in Figure 7. This can be used to test the networksM,N from
Example 3.1 in the testing structure of Example 4.8.

Intuitively the test sends the value 0 along the channel c at the node e, awaits for results along
the channel d at the nodes o1 and o2. These results are processed at node o, where success might be
announced.

The combined network (M ‖> T ) is deterministic in this TS, although probabilistic, and so has
only one extreme derivative; O(M ‖> T ) = {0.8}.

A similar calculation shows that O(N ‖> T ) = {0.81}; it therefore follows that N 6vmay M and
M 6vmust N .

Consider now the networksM1,M2 from Example 3.1. Here (M1 ‖> T ) is both probabilistic
and nondeterministic, and O(M1 ‖> T ) = { p | 0.5 ≤ p ≤ 1 }. Moreover we have O(M ‖> T ) vH
O(M1 ‖> T ) .
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M = ΓM B m~c!〈v〉 . 0� | n~c!〈v〉 . 0� N = ΓN B m~c!〈v〉�

Figure 8: Broadcast vs Multicast

The combined network (M2 ‖> T ) is also deterministic, although it has limiting behaviour;
O(M2 ‖> T ) = {1}. Thus, in this case we have both O(M ‖> T ) vH O(M2 ‖> T ) and O(M1 ‖> T ) vH
O(M2 ‖> T ). Further, we have that O(M1 ‖> T ) vS O(M2 ‖> T ), but O(M2 ‖> T ) @S O(M1 ‖> T ).
�

Example 4.15. [Broadcast vs Multicast] Consider the networksM andN in Figure 8. Intuitively in
N the value v is (simultaneously) broadcast to both nodes o1 and o2 while inM there is a multicast.
More specifically o1 receives v from mode m while in an independent broadcast o2 receives it from
n.

This difference in behaviour can be detected (when we compare the networks optimistically)
by the testing network

T = ΓT B o1~c?(x) .c!〈w〉 . 0� | o2~c?(x) .c?(y) .if y = 0 then 0 else ω�

assuming v is different than w; here we assume ΓT is the simple network which connects o1 to o2.
BothM ‖> T and N ‖> T are well-formed and note that they are both non-probabilistic.

BecauseN simultaneously broadcasts to o1 and o2 the second value received by o2 is always w
and therefore the test never succeeds; O(N ‖> T ) = {0}. On the other-hand there is a possibility for
the test succeeding when applied toM, 1 ∈ O(M ‖> T ). This is because inM node m might first
transmit v to o1 after which n transmits w to o2; now node n might transmit the value v to o2 and
assuming it is different than w we reach a success state. It follows thatM 6vmay N .

Note that we can slightly modify the test T to show that we also have N 6vmust N . To this end,
let

T ′ = ΓT B o1~c?(x) .c!〈0〉 . 0� | o2~c?(x) .c?(y) .if y = 0 then ω else 0�
In this case we have thatO(M ‖> T ′) = {0, 1}, whileO(N ‖> T ′) = {1}, and by definitionO(N ‖> T ′) @S
O(M ‖> T ′).

One might also think it possible to use the difference between broadcast and multicast to design
a test T ′′ for which O(N ‖> T ′′) @H O(M ‖> T ′′) and O(M ‖> T ′′) @S O(N ‖> T ′′).

For example, if we let T ′′ = T ′ we obtain that 1 ∈ O(N ‖> T ′). This is because because inN ‖>
T ′ the second value received by o2 is always w. However we also have that 1 ∈ O(M ‖> T ′), since
the simultaneous broadcast inN can be simulated by a multicast inM, by node m first broadcasting
to o1 followed by n broadcasting to o2. As this line of reasoning is independent from the test T ′, it
also applies to all those networks that can be used to test the behaviour ofM and N ; this leads to
the intuition that N vmay M, which will be proved formally later as a consequence of Example 6.4
and Theorem 6.2. Similarly, Theorem 6.14 shows thatM vmust N .
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M = ΓM B m~Am� | n~An� | k~Ak� N = ΓN B m~Bm� | k~Ak�

Figure 9: Two networks with a common sub-network
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M1 = Γ1 B m~Am� | n~An� N1 = Γ2 B m~Bm� K = ΓK B k~Ak�

Figure 10: Decomposition of the networksM and N

�

One pleasing property of the behavioural preorders is that they allow compositional reasoning
over networks.

Proposition 4.16 (Compositionality). LetM1,M2 be two networks such thatM1 vmay M2 (M1 vmust
M2), and let N be another network such that both (M1 ‖> N) and (M2 ‖> N) are defined. Then
(M1 ‖> N) vmay (M2 ‖> N) ((M1 ‖> N) vmust (M2 ‖> N)).

Proof. A direct consequence of ‖> being both associative and interface preserving.

We end this section with an application of this compositionality result.

Example 4.17. Consider the networksM and N in Figure 9, where the codes at the various nodes
are given by

Am ⇐ c!〈v〉 . 0
An ⇐ c?(x) .d!〈w〉 . 0
Ak ⇐ c?(x) .d?(y) .e!〈u〉 . 0
Bm ⇐ c!〈v〉 .d!〈w〉 . 0

It is possible to write both of them respectively as M1 ‖> K and N1 ‖> K , where the networks
M1,N1 and K are depicted in Figure 10. In order to prove that M vmay N (N vmust M), it
is therefore sufficient to focus on their respective sub-networks M1 and N1, and prove M1 vmay
N1 (N1 vmust M1). The equivalence of the two original networks will then follow from a direct
application of Proposition 4.16. �
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l o k o o l

M = ΓM B l~p� N = ΓN B k~q� T = ΓT B o~t�

Figure 11: A problem with the composition operator

4.4. Justifying the operator ‖>. Here we revisit Definition 4.3 and in particular investigate the
possibility of using alternative composition operators. The remainder of the paper is independent of
this section and so it may be safely skipped by the uninterested reader.

Here we take a more general approach to composition; rather than give a particular operator
we discuss natural properties we would expect of such operators. Let us just presuppose a consis-
tency predicate P on pairs of networks determining when their composition should be defined. The
only requirement onMPN is that whenever it is defined the resulting composite network is well-
formed. Since the composite network should be determined by that of its components this amounts
to requiring that

P(M,N) implies nodes(M) ∩ nodes(N) = ∅ for anyM,N ∈ Nets (4.4)

Given a consistency predicate satisfying (4.4) we can now generalise Definition 4.3 to give a
range of different composition operators.

Definition 4.18. [General composition of networks] Let P be a consistency predicate on networks
in Nets satisfying (4.4). Then we define the associated partial composition relation by:

(ΓM B M) 9P (ΓN B N) =

(ΓM ∪ ΓN) B (M | N), if P((ΓM B M), (ΓN B N))
undefined, otherwise

The connectivity graph ΓM ∪ ΓN is defined as in Definition 4.3. �

Example 4.19. Let Ps be the partial binary predicate defined by letting Ps(M,N) whenever

• nodes(M) ∩ nodes(N) = ∅

• M ` m→ n if and only if N ` m→ n, for every m ∈ nodes(M) and n ∈ nodes(N),

• M ` m← n if and only if N ` m← n, for every m ∈ nodes(M) and n ∈ nodes(N),

By definition this satisfies the requirement (4.4) above, and intuitively it only allows the com-
position whenever the two individual networks agree on the interconnections between internal and
external nodes.

For notational convenience we denote the operator 9Ps with ‖. It is easy to check that this
operator is both associative and commutative. �

Thus a priori this composition operator ‖ could equally well be used to develop the testing
theory in Section 4.3. Unfortunately the resulting theory would be degenerate.

Example 4.20. [Example 4.19 continued] Consider the networks M,N in Figure 11, where we
choose p = c!〈v〉 and q = c!〈w〉 for two different values v,w. Then intuitivelyM andN should have
different observable behaviour, observable by placing a test at the node o. However if the operator
‖ is used to combine a test with the network being observed they are indistinguishable.
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This is because if there is a network T such thatM ‖ T andN ‖ T are well-defined then o can
not be in nodes(T ). For if o were in nodes(T ), then sinceM ` l → o the definition of the operator
implies that T ` l→ o. This in turn implies that N ` l→ o, which is not true.

Now since no testing network which can be applied to bothM and N can place any code at o,
no difference can be discovered between them. �

The question now naturally arises about which consistency predicate P lead to reasonable com-
position operators 9Ps , in the sense that at least the resulting testing theories are not degenerate.
We want to be able to compare networks with different connectivity graphs, and possibly different
nodes, such as M and N in Figure 11. We also should not be able to change the connectivity of
the internal nodes of a network when we test it; we wish to implement black-box testing, where the
nodes containing running code cannot be accessed directly.

These informal requirements can be formulated as natural requirements on composition opera-
tors. The first says that the composed network is completely determined by the components:

(I) Merge: the operator 9 should be determined by some predicate P using Definition 4.3.
Intuitively the interface of a network is how their external behaviour is to be observed. Since our

aim is to enable compositional reasoning over networks, we would expect composition to preserve
interfaces:

(II) Interface preservation: If In(M) = In(N), Out(M) = Out(N) and T can be composed
with both, that is bothM 9 T and N 9 T are well-defined, then In(M 9 T ) = In(N 9 T ),
Out(M 9 T ) = Out(N 9 T ).

The final requirement captures the intuitive idea that reorganising the internal structure of a
network should not affect the ability to perform a test; in fact the reorganisation is simply a renaming
of nodes. Let σ be a permutation of node names. We use (Γ B M)σ to denote the result of applying
σ to the node names in M and in the connectivity graph Γ.

(III) Renaming: SupposeM 9 T is defined. ThenMσ 9 T is also defined, provided σ is a
node permutation which satisfies

• σ(e) = e for every e ∈ Intf(M)

• no n ∈ nodes(T ) appears in the range of σ; that is n ∈ nodes(T ) implies σ(n) = n.

Example 4.21. The operator ‖ does not satisfy (III), as can be seen using the simple networks in
Figure 11;M ‖ T is obviously well-defined. However, consider the renaming σ which swaps node
names l to k, which is valid with respect to T ; the networkMσ ‖ T is not defined, as ΓT 0 k → o.
A slight modification will demonstrate that interfaces are also not preserved by this operator. �

Proposition 4.22. Suppose 9 satisfies the conditions (I) - (III) above. Then nodes(M)∩ Intf(N) = ∅

wheneverM 9N is defined.

Proof. By contradiction; letM = ΓM B M and N = ΓN B N. Assume that m is a node included in
nodes(M)∩ Intf(N), and thatM9N is defined. Finally, let σ be an arbitrary permutation such that
Mσ 9N is defined. Note that the following statements are true:

(1) m < nodes(N),
(2) N ` m,
(3) Intf(M) = Intf(Mσ).
(4) m < Intf(M 9N).

For proving the last statement just note that m ∈ nodes(M) by hypothesis, hence m ∈ nodes(M9N).
By definition of interface it follows that m < Intf(M 9N).
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Let l be a node which is not contained in ΓM, nor in ΓN . Consider the permutation σ which
swaps nodes m and l; that is σ(m) = l, σ(l) = m and σ(k) = k for all k , m, l. SinceM 0 l we also
have that l < nodes(M), so that σ(l) = m < nodes(Mσ). Further, the permutation σ is consistent
with condition (III), renaming, when applied to networksM and N ; thereforeMσ 9N is defined.

Since m < nodes(Mσ), by (1) above it follows that m < nodes(Mσ 9 N); by (2), we obtain
that (ΓM)σ ∪ ΓN ` m. These two statements ensure that m ∈ Intf(Mσ 9N).
As a direct consequence of (3) and condition (II), interface preservation, we also have that m ∈
Intf(M 9N), but this contradicts (4).

Corollary 4.23. Let 9 be any symmetric composition operator which satisfies the conditions (I) -
(III). Suppose M1 9M2 is well-defined, and of the form Γ B M. Then Γ ` m1 6� m2 whenever
mi ∈ nodes(Mi).

Proof. A simple consequence of the previous result.

What this means is that if we use such a symmetric operator when applying a test to a network, as in
Definition 4.7, then the resulting testing preorder will be degenerate; it will not distinguish between
any pair of nets. In some sense this result is unsurprising. For T to testM inM 9 T it must have
code running at the interface ofM. But, as we have seen, condition (III) more or less forbids T to
have code running at the interface ofM.

Thus we have ruled out the possibility of basing our testing theory on a symmetric composition
operator. The question now remains what composition operator is the most appropriate? We have al-
ready stated that conditions (I)-(III) are natural, and since there are no further obvious requirements
we could choose the operator with greatest expressive power among those that satisfy conditions
(I)-(III). Here an operator 9P1 is more expressive than another 9P2 if, wheneverM9P1N is defined
for any two arbitrary networksM,N , then so isM 9P2 N , and the result of the two compositions
above is the same. The next Lemma shows that the operator which we are looking for is exactly ‖>.

Lemma 4.24. Let P be any consistency predicate satisfying (4.4) above. Then ifM9PN is defined
so isM ‖> N and moreoverM 9P N = M ‖> N .

Proof. Obvious from the definition of ‖> in Definition 4.3.

5. Extensional Semantics

As explained in papers such as [30, 18], contextual equivalences and preorders are determined
by so-called extensional actions, which consist of the observable activities which a system can
have with its external environment. We present an extensional Semantics for probabilistic wireless
networks in Section 5.1. The final two sections develop technical properties of these actions, which
will be used in the later soundness proofs. They may be safely skipped at first reading. Section 5.2 is
devoted to basic decomposition and composition results for extensional actions, while in Section 5.3
we relate the extensional actions we introduced with the reduction relation of the testing structures
associated with networks.
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5.1. Extensional Actions. Here we design a pLTS whose set of actions can be detected (hence
tested) by the external environment. The intensional semantics in Section 3 already provides a
pLTS and it is instructive to see why this is not appropriate.

Consider M and N from Figure 11, and suppose further that the code p and q, running at l
and k respectively, is identical, c!〈v〉. Then we would expectM andN to be behaviourally indistin-
guishable. HoweverM will have an output action, labelled l.c!v, which is not possible for N . So
output actions cannot record their source node. What turns out to be important is the set of target
nodes. For example if in M we added a new output node m to the interface, with a connection
from l then we would be able to distinguishM from N ; the required test would simply place some
appropriate testing code at the new node m.

Now we present an extensional semantics for networks; here the visible actions consist of
activities which can be detected (hence tested) by placing code at the interface of a network. In this
semantics we have internal, input and output actions.

Definition 5.1. [Extensional actions] The actions of the extensional semantics are defined as fol-
lows:
(1) internal, (Γ B M)

τ
7−−−→ (Γ B ∆); some internal activity reduces the system M, relative to the

connectivity Γ, to some system N, where N ∈ d∆e. Here the internal activity of a network
coincides either with some node performing a silent move m.τ or broadcasting a value which
cannot be detected by any node in the interface of the network itself.

Formally, (Γ B M)
τ
7−−−→ (Γ B ∆) whenever M . m~ω + s� | N and

(a) Γ B M
m.τ
−→ ∆

(b) or Γ B M
n.c!v
−→ ∆ for some value v, channel c and node name n satisfying Γ ` n→ m implies

m ∈ nodes(M)
Note that we are using the notation given in Section 3 for defining distributions. Here ∆ is a

distribution over sSys and so (Γ B ∆) is a distribution over networks; however all networks in
its support use the same network connectivity Γ.

(2) input, (Γ B M)
n.c?v
7−−−−−−→ (Γ B ∆); an observer placed at node n can send the value v along the

channel c to the network (Γ B M). For the observer to be able to place the code at node n we
must have n ∈ In(Γ B M).

Formally (Γ B M)
n.c?v
7−−−−−−→ (Γ B ∆) whenever M . m~ω + s� | N and

(a) Γ B M
n.c?v
−→ ∆

(b) n ∈ In(Γ B M)

(3) output, (Γ B M)
c!vBη
7−−−−−−→ (Γ B ∆), where η is a non-empty set of nodes; an observer placed at

any node n ∈ η can receive the value v along the channel c. For this to happen each node n ∈ η
must be in Out(Γ B M), and there must be some code running at some node in M which can
broadcast along channel c to each such n.

Formally, (Γ B M)
c!vBη
7−−−−−−→ (Γ B ∆) whenever M . m~ω + s� | N

(i) (Γ B M)
m.c!v
−→ ∆ for some node m

(ii) η = { n ∈ Out(Γ B M) | Γ ` m→ n } , ∅. �

In the following we will use the metavariable λ to range over extensional actions. These actions
endow the set of networks with the structure of a pLTS. Thus the terminology used for pLTSs is
extended to networks, so that in the following we will use terms such as finitary networks or finite
branching networks; we use the symbol |===⇒ to denote hyper-derivations in the extensional pLTS
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of networks, and |==⇒� to denote extreme derivations. Also note that we allow an extensional actions
to be performed only in the case that a network is not ω-successful. As we have already stated, we
see pLTSs as non-deterministic probabilistic experiments whose success is obtained by reaching an
ω-successful state. When an ω-successful state is reached, we require the experiment to terminate.

A trivial application of Corollary 3.6 ensures that extensional actions are preserved by struc-
turally congruent networks. Further, they do not change the topological structure of a network.

Proposition 5.2. Suppose that Γ B M
λ
7−−−→ ∆, ∆ ∈ D(Nets). Then ∆ = Γ B Θ, and Θ ∈ D(sSys) is

node stable. Further, for any N ∈ d∆e we have that nodes(N) = nodes(M).

Proof. The definition of extensional actions ensures that whenever Γ B M
λ
7−−−→ ∆ then ∆ = Γ B Θ

for some Θ ∈ D(sSys). The fact that for any N ∈ dΘe we have that nodes(M) = nodes(N) follows
from Corollary 3.8.

Note that, if two distributions ∆,Θ ∈ D(Nets) are node-stable, ifM ‖> N is defined for some
M ∈ d∆e,N ∈ dΘe, thenM′ ‖> N ′ is defined for anyM′ ∈ d∆e,M′ ∈ dΘe. Thus, for node-stable
distributions of networks it makes sense to lift the operator ‖> to distributions of networks, defined
directly via an application of Equation 2.2. A similar argument holds for the symmetric operator ‖.

In the following we will need weak versions of extensional actions, which abstract from internal
activity, provided by the relation

τ
7−−−→. Internal activity can be modelled by the hyper-derivation

relation |===⇒, which is a probabilistic generalisation of the more standard weak internal relation
τ
7−−−→

∗

.

Definition 5.3. [Weak extensional actions]

(1) LetM
τ
|===⇒ ∆ whenever we have the hyper-derivationM |===⇒ ∆

(2) M
n.c?v
|======⇒ ∆ wheneverM |===⇒

n.c?v
7−−−−−−→|===⇒ ∆

(3) LetM
c!vBη
|======⇒ ∆ be the least relation satisfying:

(a) M |===⇒
c!vBη
7−−−−−−→|===⇒ ∆ impliesM

c!vBη
|======⇒ ∆

(b) M
c!vBη1

|=======⇒ ∆′, ∆′
c!vBη2

|=======⇒ ∆, where η1 ∩ η2 = ∅, impliesM
c!vB(η1∪η2)
|===========⇒ ∆ �

These weak actions endow the set of networks Nets with the structure of another pLTS, called the
extensional pLTS and denoted by pLTSNets.

Some explanation is necessary for the non-standard definition of output actions in Definition
5.3(3). Informally speaking, the definition of weak extensional output actions expresses the capa-
bility of simulating broadcast through multicast, which has already been observed in Example 4.15.
A single (weak) broadcast action detected by a set of nodes η can be matched by a sequence of weak
broadcast actions , detected respectively by η1, · · · , ηi ⊆ η, provided that the collection {η1, · · · , ηi}

is a partition of η. This constraint is needed to ensure that
(i) every node in η will detect the transmitted value and

(ii) no node in η will detect the value more than once.
As we will see in Section 6, the ability of a multicast to simulate a broadcast is captured by the
testing preorders. Roughly speaking, in a generic networkM a broadcast can be converted into a
multicast3 leading to a network N such thatM vmay N . Conversely, in the must-testing setting a

3 Note that this operation would require a change in the internal topology ofM.
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M = ΓM B m~c!〈v〉� N = ΓN B o~c?(x) . 0�

Figure 12: A problem with decomposition of actions with respect to ‖>

multicast in a networkM can be replaced by a broadcast leading to a networkN such thatM vmust
N .

5.2. Composition and Decomposition Results. In this Section we prove decomposition and com-
position results for the extensional actions introduced in the previous section. In its most general
form, the results we want to develop can be summarised as follows: given a networkM ‖> N ,

Strong Decomposition: for actions of the form (M ‖> N)
λ
7−−−→ Λ we want to determine two

actions of the formM
λ1
7−−−−→ ∆ and N

λ2
7−−−−→ Θ, where (∆ ‖> Θ) = Λ,

Weak Composition: conversely, given two actions of the formM
λ1
|====⇒ ∆ and N

λ2
|====⇒ Θ,

we want to determine an action of the form (∆ ‖> Θ)
λ
|===⇒ (∆ 9 Θ).

Unfortunately, the following example shows that this task cannot be achieved by relying solely
on the extensional semantics.

Example 5.4. Consider the networksM,N of Figure 12. It is straightforward to note thatM ‖> N

is defined; further, (M ‖> N)
τ
|===⇒ (M′ ‖> N ′), whereM′ = (ΓM B m~0�), N ′ = (ΓN B o~0�).

One could wish to be able to infer this action from the broadcast action of the formM
c!vB{o}
7−−−−−−−→

M′ and an input action of the formN
m.c?v
7−−−−−−→ N ′. Unfortunately, this last action cannot be inferred,

since in N node o cannot detect the broadcasts performed by node m. �

The problem of Example 5.4 arises because the connection between from node m to node
n, which is present in M ‖> N , is not present in the right hand side of the composition N . As

a consequence, the action N
m.c?v
7−−−−−−→ N ′ cannot be derived. However, note that we could still

decompose the transitionM ‖> N
τ
7−−−→ M′ ‖> N ′ if we were to focus on the code run by node o in

N , rather than on the network N itself.

Example 5.5. Consider again the networksM,N of Figure 12, and recall thatN = ΓNBo~c?(x) . 0�.
Given the action M ‖> N

τ
7−−−→ M′ ‖> N ′, where we recall that N ′ = o~0�, we can now infer the

extensional transitionM
c!vB{o}
7−−−−−−−→M′ and the process transition c?(x) . 0

c?v
−→ 0.

The first transitions says that some node inM performs a broadcast which affects node o, while
the second one says that how the code which node o is running reacts to a broadcast. Therefore,

it is not surprising to note that the two transitions M
c!vB{o}
7−−−−−−−→ M′ and P

c?v
−→ 0 can be combined

together to obtain the original transitionM ‖> N
τ
7−−−→ M′ ‖> N ′. �

Example 5.5 leads us to the intuition that composition and decomposition results of extensional
actions can be developed if we focus on composed networks of the form M ‖> G, where G ∈ G.
Intuitively, such results can be obtained by reasoning on the extensional transitions of M and the
process transitions performed by the only internal node in G.
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Proposition 5.6. [Strong decomposition in pLTSNets ] LetM ∈ Nets,G ∈ G be two networks such

thatM ‖> G is defined. Further, let ΓN , n, s be such that G = (ΓN B n~s�); SupposeM ‖> G
λ
7−−−→ Λ,

Λ ∈ D(Nets). Then Λ = ∆ ‖> (ΓN B n~Θ� for some ∆,Θ ∈ D(Nets) such that
(1) if λ = τ then either

(i) M
τ
7−−−→ ∆, Θ = s, or

(ii) ∆ =M and s
τ
−→ Θ, or

(iii) M
c!vB{n}
7−−−−−−−→ ∆, s

c?v
−→ Θ, or

(iv) M
c!vB{n}
7−−−−−−−→ ∆, s 6

c?v
−−→ and Θ = s, or

(v) Out(G) = ∅,M
n.c?v
7−−−−−−→ ∆, s

c!v
−→ Θ, or

(vi) Out(G) = ∅, n < In(M), ∆ =M and s
c!v
−→ Θ.

(2) if λ = c!v B η then either

(i) M
c!vBη
7−−−−−−→ ∆, n < η and Θ = s, or

(ii) M
c!vBη∪{n}
7−−−−−−−−−→ ∆, n < η and s

c?v
−→ Θ, or

(iii) M
c!vBη∪{n}
7−−−−−−−−−→ ∆, n < η, s 6

c?v
−−→ and Θ = s, or

(iv) M
n.c?v
7−−−−−−→ ∆, s

c!v
−→ Θ and η = Out(G), or

(v) n < In(M), ∆ =M, s
c!v
−→ Θ and η = Out(G),

(3) if λ = m.c?v, where m , n, then either

(i) M
m.c?v
7−−−−−−→ ∆, Θ = s and m < In(G), or

(ii) ∆ =M, m < In(M), s
c?v
−→ Θ, or

(iii) ∆ =M, m < In(M), s 6
c?v
−−→ and Θ = s, or

(iv) M
m.c?v
7−−−−−−→ ∆, s

c?v
−→ Θ and m ∈ In(G), or

(v) M
m.c?v
7−−−−−−→ ∆, s 6

c?v
−−→ and Θ = s.

Proof. The proof of this Proposition is quite technical, and it is therefore relegated to Appendix B,
Page 61.

Next we consider how the weak actions performed by a stable sub-distribution of the form
∆ ‖> (ΓN Bn~s�), can be inferred by a weak action performed by the node-stable distribution ∆ and a
process transition performed by the state s, respectively. For our purposes it will suffice to combine
a weak extensional transition with a strong process transition.

Proposition 5.7. [Weak/Strong composition in pLTSNets ] Let ∆ ∈ Dsub(Nets) be a node-stable sub-
distributions of networks. Let also ΓN , n, s be such that ∆ ‖> (ΓN B n~s�) is well-defined. Further,
let G ∈ dΓN B n~s�e; here note that the sets Out(G) and In(G) are completely determined by the
connectivity graph ΓN .
(1) Composition resulting in internal activity:

(i) ∆
τ
|===⇒ ∆′ implies ∆ ‖> (ΓN B n~s�)

τ
|===⇒ ∆′ ‖> (ΓN B n~s�),

(ii) s
τ
−→ Θ implies ∆ ‖> (ΓN B n~s�)

τ
|===⇒ ∆ ‖> (ΓN B n~Θ�),

(iii) ∆
c!vB{n}
|=======⇒ ∆′ and s

c?v
−→ Θ implies ∆ ‖> (ΓN B n~s�)

τ
|===⇒ ∆′ ‖> (ΓN B n~Θ′�),

(iv) ∆
c!vB{n}
|=======⇒ ∆′ and s 6

c?v
−−→ implies ∆ ‖> (ΓN B n~s�)

τ
|===⇒ ∆′ ‖> (ΓN B n~s�),

(v) ∆
n.c?v
|======⇒ ∆′, Out(G) = ∅ and s

c!v
−→Θ, then , then ∆ ‖> (ΓN Bn~s�)

τ
|===⇒ ∆′ ‖> (ΓN Bn~Θ�),
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Figure 13: Relating reductions with extensional actions.

(vi) for anyM ∈ d∆e, n < In(M), Out(G) = ∅ and s
c!v
−→ Θ implies ∆ ‖> (ΓN B n~s�)

τ
|===⇒ ∆ ‖>

(ΓN B n~Θ�).
(2) Composition resulting in an extensional output:

(i) ∆
c!vBη
|======⇒ ∆′, n < η implies ∆ ‖> (ΓN B n~s�)

c!vBη
|======⇒ ∆′ ‖> (ΓN B n~s�),

(ii) ∆
c!vBη
|======⇒ ∆′, {n} ⊂ η and s

c?v
−→Θ implies ∆ ‖> (ΓN B n~s�)

c!vBη\{n}
|=========⇒ ∆′ ‖> (ΓN B n~Θ�),

(iii) ∆
c!vBη
|======⇒ ∆′, {n} ⊂ η and s 6

c?v
−−→ implies ∆ ‖> (ΓN B n~s�)

c!vBη\{n}
|=========⇒ ∆′ ‖> (ΓN B n~s�),

(iv) s
c!v
−→ Θ, Out(G) , ∅, ∆

n.c?v
|======⇒ ∆′ implies that ∆ ‖> (ΓN B n~s�)

c!vBOut(G)
|==========⇒ ∆′ ‖>

(ΓN B n~Θ�),

(v) n < In(M) for anyM ∈ d∆e and s
c!v
−→Θ′, Out(G) , ∅ implies that ∆ ‖> (ΓNBn~s�)

c!vBOut(G)
|==========⇒

∆ ‖> (ΓN B n~Θ�).
(3) Composition resulting in an input:

(i) ∆
m.c?v
|======⇒ ∆′ and m < In(G) implies ∆ ‖> (ΓN B n~s�)

m.c?v
|======⇒ ∆′ ‖> (ΓN B n~s�,

(ii) m < In(M) forM ∈ d∆e, m ∈ In(G) and s
c?v
−→ Θ implies ∆ ‖> (ΓN B n~s�)

m.c?v
|======⇒ ∆ ‖>

(ΓN B n~Θ�,

(iii) m < In(M) forM ∈ d∆e, m ∈ In(G) and s 6
c?v
−−→ implies ∆ ‖> (ΓN B n~s�)

m.c?v
|======⇒ ∆ ‖>

(ΓN B n~s�,

(iv) ∆
m.c?v
|======⇒ ∆′, m ∈ In(G) and s

c?v
−→ Θ implies ∆ ‖> (ΓN B n~s�)

m.c?v
|======⇒ ∆′ ‖> (ΓN B n~Θ�,

(v) ∆
m.c?v
|======⇒ ∆′, m ∈ In(G) and s 6

c?v
−−→ implies ∆ ‖> (ΓN B n~s�)

m.c?v
|======⇒ ∆′ ‖> (ΓN B n~Θ�.

Proof. See Appendix B, Page 63.

5.3. Relating Extensional Actions and Reductions. In this section we investigate the relationship
between extensional actions and reductions, defined in Section 4.2.

It follows immediately, from the definition of the reduction relation _, that for any networkM

we haveM _ ∆ if and only if eitherM
τ
7−−−→ ∆ orM

c!vBη
7−−−−−−→ ∆. However, this result is not true

anymore if we focus on the extensional transitions performed by a distribution of networks.

Example 5.8. [Reductions and Extensional Actions] Consider the network distribution ΓB∆, where
Γ is depicted in Figure 13 and

∆ = 1/2 · m~τ. 0� + 1/2 · m~c!〈v〉 . 0�.

Note that we have the reductions ΓBm~τ. 0�_ Γ B m~0�, and ΓBm~c!〈v〉 . 0�_ Γ B m~0�. These
two reductions can be combined together to infer Γ B ∆ _ Γ B m~0�.

However, there exists no extensional action of the form Γ B ∆
λ
7−−−→ Γ B m~0�; in fact, the

only possibility for the network Γ Bm~τ. 0� is to perform a τ-extensional action, while the network
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Γ Bm~c!〈v〉 . 0� can only perform an output action of the form c!v B {o}. In order to infer the action

Γ B ∆
λ
7−−−→ Γ B m~0� we require that every network in dΓ B ∆e performs the same action λ; but as

we have just noted, this is not true for Γ B ∆. �

The problem in Example 5.8 arises because reductions have been identified with two different
activities of networks; internal actions and broadcasts of messages. However, it is possible to avoid
this problem if we modify a networkM by removing the nodes in its interface. As a consequence,
the only activities allowed for such a network would be internal actions of the form τ.

Definition 5.9. [Closure of a Network] LetM be a network; we define its closure cl(M) =M′ by
letting

(M′)V = MV \ Intf(M)
M′ ` m, n,M ` m→ n implies M′ ` m→ n

Obviously the operator cl(·) preserves well-formed networks.
The actions of a network of the form cl(M) are completely determined by those performed by

M, as the following result shows.

Proposition 5.10. Suppose thatM
λ
7−−−→ ∆, where either λ = τ or λ = c!vBη; then cl(M)

τ
7−−−→ cl(∆).

Conversely, if cl(M)
λ
7−−−→ Θ, then λ = τ and either

(i) M
τ
7−−−→ ∆ and Θ = cl(∆),

(ii) M
c!vBη
7−−−−−−→ ∆ and Θ = cl(∆).

Proof. Let M = Γ B M. Suppose that Γ B M
c!vBη
7−−−−−−→ Γ B ∆ for some Γ,M and ∆ ∈ D(sSys).

By definition of extensional actions there exists a node m ∈ nodes(M) such that Γ B M
m.c!v
−→ ∆, and

{o | Γ ` m → o} = η. By Proposition 3.5 it follows that M ≡ m~c!e.p + q� | N, with ~e� = v.
By definition of the operator cl(·), cl(Γ B M) = Γ′ B M, where Γ′ ` m → n whenever Γ ` m → n

and m, n ∈ nodes(M). By an application of propositions 3.5 and 3.4 we obtain that Γ′ B M
m.c!v
−→ ∆4.

By Definition 5.1(1) we get that Γ′ B M
τ
7−−−→ Γ′ B ∆. But Γ′ B ∆ is exactly cl(Γ B ∆). The case

Γ B M
τ
7−−−→ Γ B ∆ is treated similarly.

Conversely, suppose that Γ′BM
λ
7−−−→ Γ′BΘ. Since Intf(Γ′BM) = ∅, it follows that it cannot be

λ = m.c?v, nor λ = c!v B η. Therefore the only possibility is that Γ′ BM
τ
7−−−→ Γ′ BΘ. By Definition

5.1(1) there are two possible cases.

(1) Γ′ BM
m.τ
−→Θ. In this case we have that M ≡ m~τ.p + q� |N and Θ ≡ P(m~p�) |N. It follows

that Γ ` M
m.τ
−→ Θ, hence Γ B M

m.τ
7−−−−→ Γ B Θ.

(2) Γ′ B M
m.c!v
−→ Θ; in this case we have that Γ B M

m.c!v
−→ Θ, since whenever Γ′ ` m → n it

also follows that Γ ` m → n. Let η = {o ∈ Out(Γ B M) | Γ ` m → o}. If η = ∅, by
Definition 5.1(1) we obtain that Γ B M

τ
7−−−→ Γ BΘ, otherwise Definition 5.1(2) ensures that

Γ B M
c!vBη
7−−−−−−→ Γ B Θ.

4In reality these propositions ensure that Γ′ B M
m.c!v
−→ ∆′, where ∆′ ≡ ∆. However, since the system term M is not

changed when performing the operation cl(Γ B M), it can be proved that ∆ = ∆′.
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Thus only τ-actions are allowed in networks of the form cl(M), and the extensional outputs
performed by M are converted in τ-actions in cl(M). This relationship can be used to relate the
reductions performed by the networkM with the extensional actions of the network cl(M)

Proposition 5.11. Let Γ′ B M = cl(Γ B M); then Γ B M _ Γ B ∆ if and only if Γ′ B M _ Γ′ B ∆.

Proof. Follows immediately from Proposition 5.10 and the definition of reductions.

Corollary 5.12. Let Γ′ B M = cl(Γ B M); then Γ B M ===B Γ B ∆ if and only if Γ′ B M ===B Γ′ B ∆.
Further, Γ B M ===B� Γ B ∆ if and only if Γ′ B M ===B� Γ B ∆.

An important consequence of Corollary 5.12 is that the operator cl(·) does not affect the set of
outcomes of a network.

Corollary 5.13. For any networkM, O(M) = O(cl(M)).

Proof. LetM = Γ B M, cl(M) = Γ′ B M. Suppose that p ∈ O(M). Then Γ B M ===B� Γ B ∆, and∑
N∈d∆eV(∆) = p. By Corollary 5.12 we have that Γ′ B M ===B� Γ′ B ∆, hence p =

∑
N∈d∆eV(∆) ∈

O(Γ′ B M).
The converse implication is proved analogously.

Thus the operator cl(·) allows to relate weak extensional actions and reductions without affect-
ing the set of outcomes of a network. As we will see in Section 6, this operator is very helpful when
exhibiting sound proof methods for the testing preorders.

6. A Sound ProofMethod for the Testing Preorders

In this Section we present the main results of the paper. Following [7] we introduce the notion
of simulation between networksM Csim N , and we prove that it is a sound proof technique for the
may-testing preorder. This topic is addressed in Section 6.1.

In Section 6.2 we give a similar result for the must testing relation. We introduce the con-
cepts deadlocked network and terminal distributions. These will be used to define a novel coin-
ductive relation for sub-distribution of networks, the deadlock simulation vDS. We prove that the
inverse of this relation is sound with respect to the must-testing preorder vmust. Here the use of
sub-distributions is necessary, since the must-testing preorder is sensitive to divergence.

Finally, in Section 6.3 we focus on convergent networks; We show that for such networks a
slight variation of deadlock simulations can be used as a sound proof method for both the may and
must testing preorders.

6.1. The May Case. We begin this section by reviewing the standard definition of simulations for
probabilistic systems, applied to our calculus of probabilistic networks.

Definition 6.1. [Simulation preorder] In pLTSNets we let Csim denote the largest relation in Nets ×
Nets such that ifM Csim N then:

• In(M) = In(N), Out(M) = Out(N),
• if ω(M) = true, then N

τ
=⇒ Θ′ such that for every L ∈ dΘ′e, ω(L) = true,

• otherwise, whenever M
λ
|===⇒ ∆, for λ ∈ Actτ, then there is a Θ ∈ D(Nets) such that

N
λ
|===⇒ Θ and ∆ (Csim)e Θ.
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Figure 14: Ensuring soundness

This is a mild generalisation of the corresponding definition in [7] where we factor in the presence
of the success predicate ω( ) and we compare only networks with the same input and output nodes.

Our aim in this Section is to prove the following theorem:

Theorem 6.2. [Soundness for May-testing] Suppose N1, N2 are finitary networks. Then N1 Csim
N2 in pLTSNets implies N1 vmay N2.

Before proving Theorem 6.2, let us review, this time with formal arguments, why our definition
of weak extensional actions had to be so complicated, and why we decided to focus on well-formed
networks.

Example 6.3. [On Well-formed Networks] Consider again the networks M,N of Example 4.1.
Here we recall that N is not well-formed, as it has a connection between the two external nodes
o1, o2.

Let (Csim)′ be the largest relation over (possibly non well-formed) networks which satisfies the
requirements of Definition 6.1. It is immediate to show thatM(Csim)′N , However, M 6vmay N In
fact, it suffices to consider the test T = ΓT Bo1~c?(x) .c!〈w〉� |o2~c?(x) .c?(y) .ω�, where ΓT ` o1, o2
and ΓT ` o1 9 o2 to distinguish these two networks. Specifically O(M ‖> T ) = {0}, O(N ‖> T ) =

{1}, and {0} @H {1}. Therefore, Theorem 6.2 cannot be extended to non well-formed networks. �

Example 6.4. Consider the networksM and N in Figure 8, discussed already in Example 4.15. It

is easy to show that both of them can perform the weak extensional action
c!vB{o1,o2}

|==========⇒. However,
the inference of the action is different for the individual networks; while in network N it is implied
by the execution of a single broadcast action, detected by both nodes o1 and o2 simultaneously, in

M this is implied by a sequence of weak extensional actionsM
c!vB{o1}

|========⇒
c!vB{o2}

|========⇒.
It is therefore possible to exhibit a simulation betweenN andM, thus showing thatN Csim M;

Theorem 6.2 shows that this implies N vmay M. �

Example 6.5. Soundness requires that the extensional output actions records the set of target nodes,
rather than single nodes. Consider the networksM,N depicted in Figure 14, where M = m~c!〈v〉+
c?(x) . 0� | n~c!〈v〉 + c?(x) . 0� and N = m~c!〈v〉�. Intuitively, networkM can broadcast value v to
either node l1 or node l2, but it cannot broadcast the message to both nodes. On the other hand, in
N node m can broadcast value v simultaneously to both nodes l1 and l2.



MODELLING PROBABILISTIC WIRELESS NETWORKS 35

Note that N 6vmay M because of the test T given in Figure 14, where T = l1~c?(x) .c!〈x〉� |
l2~c?(x) .c!〈x〉�|o~c?(x) .c?(y) .ω�. In fact, in (N ‖> T ) both nodes l1 and l2 will receive the broadcast
of value v along channel c performed by node m; each of these nodes will forward the received value
to node o. Therefore, node o will receive two values, one from node l1 and one from node l2, after
which it will reach a successful state. That is, 1 ∈ O(N ‖> T ).

On the other hand, none of the computations of (M ‖> T ) leads to a successful configuration.
There are in fact two possibilities; either node m broadcasts value v to nodes n and l1, or node n
broadcasts value v to nodes m and l2. Note that one of the effects of node m (respectively n) broad-
casting value v is that of preventing node n (respectively m) from performing a second broadcast.
As a consequence, only one among nodes l1, l2 will receive value v along channel c. When node
l1 (respectively l2) receives value v, it will forward it to node o. After this broadcast has been per-
formed the network reaches a configuration in which node o is still waiting to receive a value along
channel c before entering a successful state; further, the computation of the network cannot proceed
anymore, since none of its nodes can perform a broadcast. There are no other possible behaviours
ofM ‖> T , therefore we obtain O(M ‖> T ) = {0}.

Since 1 ∈ O(N ‖> T ), but 1 < O(M ‖> T ), it follows that N 6vmay M.
We also have N 6Csim M because N can perform the output action labelled c!v B {l1, l2}, which

can not be matched byM.
However suppose we were to restrict η in the definition of extensional output actions, part (3) of

Definition 5.1, to be singleton sets of node names. Then in the resulting pLTS it is easy to check that
M can simulate N . The broadcast of value v in network N , which can be detected by both nodes
l1 and l2, can be matched by either the broadcast performed by node m (which can be detected by
node l1) or by the broadcast performed by node n (which can be detected by node l2) in M. In
other words, with the proposed simplification the resulting simulations would not be sound; that is,
Theorem 6.2 would no longer hold. �

Let us now turn to the proof of Theorem 6.2; it relies on the following two technical results,
whose proofs are developed in Section 7.

Theorem 6.6. [Compositionality] LetM,N be finitary networks such that In(M) = In(N), Out(M) =

Out(N). Also, suppose L is a network such that both M ‖> L and N ‖> L are defined. Then
M Csim N implies (M ‖> L) Csim (N ‖> L).

Proof. See Corollary 7.4 in Section 7.1

Theorem 6.7. [Outcome preservation] In pLTSNets, ∆ Csim Θ implies O(∆) vH O(Θ).

Proof. See Corollary 7.11 in Section 7.3.

Proof of Theorem 6.2: This is now a straightforward application of Compositionality and
Theorem 6.7.

Let us assume that N1 Csim N2. To prove the conclusion, N1 vmay N2, we must show that
O(N1 ‖> T ) vH O(N2 ‖> T ) for an arbitrary testing network T such that both N1 ‖> T and N2 ‖> T
are defined. For such a T Compositionality entails (N1 ‖> T ) Csim (N2 ‖> T ), and now we can apply
Theorem 6.7.

6.2. The Must Case. In this Section we give a sound proof method for the must-testing preorder. It
has already been observed that, for standard probabilistic process calculi such as pCSP [7], the must-
testing can be characterised by looking at the set of actions which are not enabled in processes. This
is because outputs in such a calculus are blocking actions; in order for an action to be performed, a
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synchronisation (either within the process or with the external environment) must occur. This leads
to the notion of failure simulations.

This is not true for broadcast systems, where the nature of the broadcast action is non-blocking.
It has been observed in [9] that, if broadcast communication is assumed, then the must-testing
relation can be used to observe only if a computation of a process cannot proceed (that is, no
internal actions nor broadcasts are possible).

Following this intuition, we readapt the notion of failure simulation given in [7].

Definition 6.8 (Deadlocked Networks, Terminal Distributions). The predicate δ : Nets→ {true, false}
is defined by letting δ(M) = true whenever the following conditions are met:

(i) ω(M) = false,
(ii) M

τ
7−−−→6 ,

(iii) M
c!vBη
7−−−−−−→6 for any c, v, η.

Networks for which the predicate δ is true are called deadlock networks, or deadlocked. Note that
the term deadlock network makes sense only in the reduction semantics. Deadlock networks are
those whose computation cannot proceed autonomously; however, it could be the case that an input
from the external environment makes the network evolve in a distribution where the computation
can proceed, thus resolving the deadlock.

A distribution ∆ is said to be terminal if any network in its support is either deadlocked or
successful.

Next we present a notion of simulation which is sensitive to deadlocked networks:

Definition 6.9 (Deadlock Simulations). The relation vDS⊆ Nets×Dsub(Nets) is the largest relation
such that wheneverM vDS Θ

(i) if δ(M) = true then Θ
τ
|===⇒ Θ′ for some Θ′ such that δ(N) = true for any N ∈ dΘ′e,

(ii) ifM
λ
|===⇒ ∆ for some ∆ ∈ Dsub(Nets) then Θ

λ
|===⇒ Θ′ for some Θ′ such that ∆ vDS Θ′.

We use the notation Θ wDS M for M vDS Θ. Note that deadlock simulations are sensitive to

divergence. That is, wheneverM vDS Θ andM
τ
|===⇒ ε, then Θ

τ
|===⇒ ε. To prove this, note first that

for any relation R ⊆ Nets×Dsub(Nets) then whenever ∆ R Θ we have that |∆| ≥ |Θ|; this follows at

once from Definition 2.2. Thus ifM vDS Θ andM
τ
|===⇒ ε, by definition it follows that Θ

τ
|===⇒ Θ′

for some Θ′ such that ε vDS Θ′; but this means that 0 = |ε| ≥ |Θ′|, or equivalently Θ′ = ε.
Before discussing the soundness of deadlock simulations for must testing let us discuss briefly

the definition of deadlock simulations. First, note that the deadlock simulation relation vDS is lifted
to a relation between sub-distributions, rather than to a relation between (full) distributions. This is
needed, since the Must-testing preorder is sensitive to divergence.

Example 6.10. [Divergence] Let M = Γ B m~0�, N = Γ B m~Div�, where Γ is the connectivity
graph containing the sole node m and no connections and Div⇐ τ.Div.

It is immediate to show thatM 6wDS N , since the move N
τ
|===⇒ ε cannot be matched byM.

Even more, it is straightforward to note thatM 6vmust N . Consider in fact the test T = ΓT B

n~τ.ω�, where ΓT is the connectivity graph consisting of the sole node n. Note that, sinceN
τ
|===⇒ ε

we also have N ‖> T
τ
|===⇒ ε, and therefore 0 ∈ O(N ‖> T ). Intuitively the last hyper-derivation

can be inferred by always letting process Div perform a τ-action in N ‖> T . On the other hand
we have that O(M ‖> T ) = {1}, since the only possible transition for M ‖> T is (M ‖> T )

τ
7−−−→
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M ‖> (ΓT B n~ω�), and the latter is ω-successful. Since 0 ∈ O(N ‖> T ), but 0 < O(N ‖> T ), it
follows thatM 6vmust N .

However, suppose that Definition 6.9 is changed by only considering hyper-derivations of the

formM
λ
|===⇒ ∆, where ∆ is a distribution. In this case we would have that the only possible (weak)

move for the network N above is N
τ
|===⇒ N , which can be matched byM

τ
|===⇒M. Therefore we

would have thatM wDS N , and since we already proved thatM 6vmust N Theorem 6.14 would no
longer hold. �

Also, deadlock simulation is defined as a relation between networks and sub-distributions of
states, rather than a relation between networks. This is in contrast with the definition of simula-
tion given in Section 6.1, which has been defined as a relation between networks. In fact, since
deadlock simulation also considers sub-distributions the latter approach would have led to a less
discriminating relation.

Remark 6.11. Note that, for any sub-distribution ∆ we have that ∆ vDS ε; in fact, it is straight-

forward to show that ε
λ
|===⇒ ε for any extensional action λ, and since dεe = ∅ we also have that

δ(N) = true for any N ∈ dεe.
Now suppose that deadlock simulation had been defined as a relation between networks, by

lettingM v′DS N be the largest relation such that

(i) if δ(M) = true then N
τ
|===⇒ Θ for some Θ such that δ(L) = true for any L ∈ dΘe,

(ii) wheneverM
λ
|===⇒ ∆ then N

λ
|===⇒ Θ with ∆ (v′DS)e Θ.

While Theorem 6.14 would still hold with this definition of deadlock simulations, it is straightfor-
ward to show that if ∆ (v′DS)e Θ then |∆| = |Θ|. As a consequence, whenever ∆ (v′DS)e ε it would
follow that ∆ = ε.

Therefore we have that, for any non-empty sub-distribution ∆, ∆ vDS ε, but not ∆ (v′DS)e ε; that
is, the definition of deadlock simulation proposed above is less discriminating than the one given in
Definition 6.9.

The proof of soundness of deadlock simulations follows the same structure as the corresponding
proof for simulations in Section 6.1. It relies on the following two technical results.

Theorem 6.12. [Outcome preservation] If ∆ vDS Θ then O(∆) vS O(Θ).

Proof. See Corollary 7.14 in Section 7.3.

Theorem 6.13 (Compositionality). Let M be a network and Θ be a stable sub-distribution such
thatM vDS Θ. Then, for any network N such that bothM ‖> N and Θ ‖> N are defined it follows
that (M ‖> N) vDS (Θ ‖> N).

Proof. See Corollary 7.8 in Section 7.2

Theorem 6.14. [Soundness for Must-testing] LetM,N be two finitary networks such that In(M) =

In(N), Out(M) = Out(N). IfM wDS N thenM vmust N .

Proof. Suppose thatM wDS N , and suppose that In(M) = In(N), Out(M) = Out(N). Note also
thatM is a stable distribution.

Let T be a network such that bothM ‖> T andN ‖> T are defined. Compositionality, Corollary
7.8 gives that (M ‖> T ) wDS (N ‖> T ), while Theorem 6.12 states that O(M ‖> T ) vS O(N ‖> T ).
Since the testing network T has been chosen arbitrarily, it follows thatM vmust N .
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6.3. Proof Methods for Convergent Networks. One of the main drawbacks of deadlock simula-
tions is that they require the use of probability sub-distributions. As we have seen in example 6.10,
using sub-distributions is necessary for ensuring the validity of Theorem 6.14. We have also em-
phasised that this constraint is necessary since the must-testing preorder is sensitive to divergence.

However, sub-distributions are no longer needed if we focus on convergent networks, that this
those whose generated pLTS (with respect to the strong extensional semantics) does not contain a

stateM for whichM
τ
|===⇒ ε holds.

Definition 6.15. [Divergence-free Deadlock Simulations] The relation Cds⊆ Nets×Nets is defined
as the largest relation such that wheneverM Cds N

(i) if δ(M) = true then N
τ
|===⇒ Θ for some Θ such that δ(L) = true whenever L ∈ dΘe,

(ii) ifM
λ
|===⇒ ∆ then N

λ
|===⇒ Θ for some Θ such that ∆ Cds

e Θ.

We write N Bds M forM Cds N .

Theorem 6.16. [Soundness for Convergent Networks, Must-testing] LetM,N be two convergent
networks such that In(M) = In(N) and Out(M) = Out(N); ifM Bds N thenM vmust N .

Proof. It suffices to show that Cds is included in vDS. To this end, note that ifM
λ
|===⇒ ∆ andM is

a convergent network, then |∆| = 1, by Proposition 2.8.

Having a simpler sound proof technique is not the only advantage that we gain by focusing
on convergent networks. In fact, if we make a further restriction and we compare networks whose
codes running at nodes do not contain the success clause ω, it follows that the relation Cds is also
included in the may-testing preorder vmay. This restriction is justified since in general we require
the tests applied to a network, rather than the networks to be tested, to contain the clause ω to denote
the success of an experiment.

Theorem 6.17. [Soundness for Convergent Networks, May-testing] A network Γ B M is proper if
the term M does not contain any occurrence of the special clause ω.

Let M,N be convergent, proper networks such that In(M) = In(N), Out(M) = Out(N). If
M Cds N thenM vmay N .

Proof. It is trivial to note that the relation Cds is included in Csim when restricted to convergent,
proper networks. The result follows then from Theorem 6.2.

7. Technical development

In this section we collect the proofs of some technical results underlying our soundness results;
it may safely be skipped by the uninterested reader. The first to results concern the compositionality
of the simulation preorders. The last outlines the proofs about Outcome preservation.

7.1. Compositionality for simulations. This section is devoted to the proof of Theorem 6.6, namely
that the simulation preorder is preserved by the extension operator ‖>. In general such composition-
ality results depends on decomposition and (re-)composition results for the actions used in the def-
inition of simulations. Definition 6.1 uses weak extensional actions, and providing decomposition
results for these would be a difficult undertaking. Instead we first give an alternative characteri-
sation of the simulation preorder, for which decomposition results for strong actions is sufficient.
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These (strong) decomposition results, and (re)-composition results for weak actions have already
been given in Section 5.2.

Definition 7.1. [Simple simulations] In pLTSNets we let Cs denote the largest relation in Nets×Nets
such that ifM Cs N then:

• In(M) = In(N),Out(M) = Out(N),

• if ω(M) = true then N
τ
|===⇒ Θ such that ω(L) = true for any L ∈ dθe,

• otherwise,

(i) wheneverM
λ
7−−−→ ∆ there is a Θ ∈ D(Nets) with N

λ
|===⇒ Θ and ∆ (Cs)e Θ.

Theorem 7.2. [Alternative characterisation] In pLTSNets, M Csim N if and only if M Cs N ,
provided thatM and N are finitary networks.

Proof. (Outline) The proof is similar in style to the one of Theorem 7.20 of [7]; however, there are
some extra complications, mainly because of the more complicated definition of weak extensional
actions. Here we report a detailed outline of the proof; we first prove that Csim is included in Cs,
then we show that, for finitary networks, the converse inclusion also holds.

Showing that the relation Csim is included in Cs is straightforward. We only need to show that
Csim satisfies the constraints of Definition 7.1. Suppose thatM Csim N . Then this hypothesis ensures
that

• In(M) = In(N),Out(M) = Out(N) and

• if ω(M) = true then N
τ
|===⇒ Θ such that ω(L) = true for any L ∈ dΘe.

Suppose however that ω(M) = false andM
λ
7−−−→ ∆ for some ∆. Then we also have thatM

λ
|===⇒ ∆,

from which it follows from the hypothesisM Csim N that there exists Θ such that N
τ
|===⇒ Θ and

∆ (Csim)e Θ, which is exactly what we wanted to show.
It remains to show that, for finitary networks, the relation Cs is included in Csim. Here the

main difficulty consists in showing that, whenever M Cs N , ω(M) = false and M
λ
|===⇒ ∆, then

N
λ
|===⇒ Θ for some Θ such that ∆ (Cs)e Θ. The proof of this statement is performed by a case

analysis on the action λ;
(1) First suppose that λ = τ. This case can be proved in the analogous way of Theorem 7.20

of [7]. Note that we require networks to be finitary in this case, since the proof requires
properties of hyper-derivations which in general are not satisfied by infinitary plTSs; see
Lemma 6.12 of [7].

(2) Now suppose that λ = i.c?v for some i, c, v; thenM
i.c?v
|=====⇒ ∆ implies that there exist ∆′,∆′′

such that M
τ
|===⇒ ∆′

i.c?v
7−−−−−→ ∆′′

τ
|===⇒. Since M Cs N and M

τ
|===⇒ ∆′, by the previous

case N
τ
|===⇒ Θ′ for some Θ′ such that ∆′ (Cs)e Θ′. Since ∆′

i.c?v
7−−−−−→ ∆′′, we can conclude

that Θ′
i.c?v
|=====⇒ Θ′′ for some Θ′′ such that ∆′′ (Cs)e Θ′′. Finally, since ∆′′

τ
|===⇒ ∆, by

the previous case5 we obtain that Θ′′
τ
|===⇒ Θ for some Θ such that ∆ (Cs)e Θ. Therefore

we have shown that N
τ
|===⇒ Θ′

i.c?v
|=====⇒ Θ′′

τ
|===⇒ Θ, or equivalently N

i.c?v
|=====⇒ Θ, and

∆ (Cs)e Θ, which is exactly what we needed to prove.

5Note that here it is necessary to decompose ∆′′ as a sum of state-based networks, each of which can perform a weak
τ-action.
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(3) Finally, suppose that λ = c!v B η for some c, v and non-empty set of nodes η. We perform

an inner induction on the proof of the derivationM
c!vBη
|======⇒ ∆;

• M
c!vBη
|======⇒ ∆ because M

τ
|===⇒

c!vBη
7−−−−−−→

τ
|===⇒ ∆. This case is identical to the one λ =

i.c?v,

• M
c!vBη
|======⇒ ∆ becauseM

c!vBη1

|=======⇒ ∆′
c!vBη2

|=======⇒ ∆, where η1 ∪ η2 = η, η1 ∩ η2 = ∅.

Since M Cs N , by the (inner) inductive hypothesis we have that N
c!vBη1

|=======⇒ Θ′ for
some Θ′ such that ∆′ (Cs)e Θ′. A second application of the inductive hypothesis to the

last statement gives that Θ′
c!vBη2

|=======⇒ Θ for some Θ such that ∆ (Cs)e Θ. Therefore we

have shown that N
c!vBη1

|=======⇒ Θ′
c!vBη2

|=======⇒ Θ, or equivalently N
c!vBη
|======⇒ Θ (recall that

η1 ∪ η2 = η and η1 ∩ η2 = ∅), and ∆ (Cs)e Θ, as we wanted to prove.

Theorem 7.2 enables us to exploit the results developed in Section 5.2 for proving the compo-
sitionality of Csim with respect to the extension operator ‖>. Since such results are valid only in the
case that a networkM is composed with a generating network G, we first focus on compositionality
with respect to a generating network.

Theorem 7.3. Suppose In(M) = In(N), Out(M) = Out(N) and both M ‖> G and N ‖> G are
defined. ThenM Cs N impliesM ‖> G Cs N ‖> G.

Proof. It suffices to show that the relation

S = {((M ‖> G), (N ‖> G) | M Cs N)}

satisfies the requirements of Definition 7.1. We denote the network G with ΓG B n~s�.

Suppose that M ‖> G
c!vBη
7−−−−−−→ ∆; note that the definition of extensional output ensures that

η , ∅. We need to show that N ‖> G
c!vBη
|======⇒ Θ, and ∆ Se Θ. By Proposition 5.6 we know that

∆ = ∆M ‖> (ΓG B n~Θn�), where ∆M, Θn are determined according to six different cases, which are
considered below.

(i) M
c!vBη
7−−−−−−→ ∆M, n < η and Θn = s; since M Cs N it follows that N

c!vBη
|======⇒ ΘN for

some ΘN such that ∆M (Cs)e ΘN . Since n < η, By Proposition 5.7 it follows that N ‖>

(ΓG B n~s�)
c!vBη
|======⇒ ΘN ‖> (ΓG B n~s�). Now it suffices to note that (∆M ‖> ΓG B n~s�) (S)e

(∆N ‖> ΓG B n~s�), as we wanted to prove

(ii) M
c!vBη∪{n}
7−−−−−−−−−→ ∆M, n < η and s

c?v
−→ Θn. Since M Cs N it follows that N

c!vBη∪{n}
|=========⇒ ΘN ,

where ∆M (Cs)e ΘN . Since η , ∅, that is {n} ⊂ (η ∪ {n}), we can apply Proposition 5.7(2)(ii)

to the weak extensional transition N
c!vBη∪{n}
|=========⇒ ΘN and the process transition s

c?v
−→ Θn to

infer N ‖> (ΓG B n~s�)
c!vB(η∪{n})\{n}
|=============⇒ ΘN ‖> (ΓG B n~Θn�); since we are assuming that n < η,

the latter can be rewritten as N ‖> (ΓG B n~s�
c!vBη
|======⇒ ΘN ‖> (ΓG B n~Θn�); again, since

∆M (Cs)e ΘN , we have that (∆M ‖> ΓG B n~Θn�) Se ΘN ‖> (ΓG B n~Θn�)

(iii) M
c!vBη∪{n}
7−−−−−−−−−→ ∆M, s 6

c?v
−−→ and Θn = s. This case is similar to the previous one, this time

employing Proposition 5.7(2)(iii)
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(iv) M
m.c?v
7−−−−−−→ ∆M, s

c!v
−→Θn and η = Out((ΓGBn~s�)). SinceM Cs N we have thatN

m.c?v
|======⇒ ΘN

for some ΘN such that ∆M (Cs)e ΘN . It follows from Proposition 5.7(2)(iv) that N ‖> (ΓG B

n~s�)
c!vBη
|======⇒ ΘN ‖> (ΓGBn~Θn�). Now note that (∆M ‖> ΓGBn~Θn�) (S)e (ΘN ‖> ΓGBn~Θn�)

(v) m < In(M),∆ = M and s
c!v
−→ Θn. Since M Csim N it follows that m < In(N), hence by

Proposition 5.7 we have thatN ‖> (ΓGBn~s�)
m.c?v
|======⇒ N ‖> (ΓGBn~Θn�). Now the hypothesis

M Cs N ensures thatM ‖> (ΓG B n~Θn�)li f t(S)eN ‖> (ΓG B n~Θn�).

The cases (M ‖> G)
τ
7−−−→ and (M ‖> G)

i.c?v
7−−−−−→ are treated similarly, and are therefore left as an

exercise for the reader.

However, since generating networks can be used to generate all the networks in Nets, Proposi-
tion 4.6, we can easily generalise Theorem 7.3 to arbitrary networks.

Corollary 7.4. [Compositionality: Theorem 6.6] LetM,N be finitary networks such that In(M) =

In(N), Out(M) = Out(N). Also, suppose L is a network such that both M ‖> L and N ‖> L are
defined. ThenM Csim N implies (M ‖> L) Csim (N ‖> L).

Proof. First note that the only elements used to define simulations are network interfaces, the set of
outcomes of networks and the extensional transitions that networks can perform. These definitions
are preserved by the structural congruence between networks defined on page 13. As a consequence,
simulations are identified up-to structural congruence; if M ≡ M′, M′ Csim N

′ and N ′ ≡ N , it
follows thatM Csim N .

Suppose then thatM Csim N , and let L be a network such that both (M ‖> L) and (N ‖> L) are
defined. We show that (M ‖> L) Csim (N ‖> L) by induction on nodes(L).

• nodes(L) = 0. In this case we have that

(M ‖> L) ≡ M Csim N ≡ (N ‖> L),

• nodes(L) > 0. By Proposition 4.6 there exist two networks L′ and G such that L ≡ (L′ ‖>
G). In particular (M ‖> L) ≡ M ‖> (L′ ‖> G) = (M ‖> L′) ‖> G, where we have used the
associativity of the operator ‖>, Proposition 4.4. Note that nodes(L′) < nodes(L), hence
by the inductive hypothesis it follows that (M ‖> L′) Csim (N ‖> L′). By Theorem 7.2
we obtain that (M ‖> L′) Cs (N ‖> L′), and Theorem 7.3 gives that ((M ‖> L′) ‖> G) Cs

(N ‖> L′) ‖> G). Another application of 7.2 and the associativity of the operator ‖> lead to
(M ‖> (L′ ‖> G)) Csim N ‖> (L′ ‖> G). Therefore we have that

(M ‖> L) ≡ (M ‖> (L′ ‖> G)) Csim N ‖> (L′ ‖> G) ≡ (N ‖> L)

as we wanted to prove.

7.2. Compositionality for deadlock simulations. As we have already done in Section 7.1, here
we also rely on an alternative characterisation of the vDS preorder, which is more amenable to
decomposition/composition results.

Definition 7.5 (Simple Deadlock Simulation). Let vs
DS⊆ Nets × Dsub(Nets) be the largest relation

such that wheneverM vs
DS Θ then In(M) = In(N), Out(M) = Out(N) for any N ∈ dΘe; further

• ifM |==⇒ ε then N |==⇒ ε,
• otherwise,
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(i) if δ(M) = true then Θ |==⇒ Θ′ such that δ(N) = true for any N ∈ dΘ′e,

(ii) ifM
λ
7−−−→ ∆′, then Θ

λ
|===⇒ Θ′ and ∆′ vs

DS Θ′.

Theorem 7.6. [Alternative Characterisation of Deadlock Simulations] If M is a finitary network
and Θ is a finitary sub-distribution of networks thenM vDS Θ if and only ifM vs

DS Θ.

Proof. The proof is identical to that of Theorem 7.2.

Theorem 7.7. [Single Node Compositionality for Deadlock Simulations] LetM be a network and
Θ be a stable sub-distribution such thatM vs

DS Θ. Then, for any network G such thatM ‖> G and
Θ ‖> G are well-defined it follows that (M ‖> G) vDS (Θ ‖> G).

Proof. The proof is analogous to that of Theorem 7.3. There are, however, some extra statements
that we need to check.

• If M ‖> G
τ
|===⇒ ε then N ‖> G

τ
|===⇒ ε. This can be proved by rewriting by inspecting

the infinite sequence of τ-moves which constitute the hyper-derivation M ‖> G
τ
|===⇒ ε to

build an hyper-derivation of the form M ‖> G
τ
|===⇒ ε. This step requires employing the

composition and decomposition results developed in Section 5.2.
• For anyM ∈ Nets,G ∈ G such thatM ‖> G is defined, δ(M ‖> G) = true implies δ(M) =

true and δ(G) = true,

• For any stable sub-distribution ∆ and network G ∈ G, suppose that ∆
τ
|===⇒ ∆′, where ∆′ is

such that δ(M) = true for anyM ∈ d∆e′; further, suppose that G
τ
|===⇒ Θ for some Θ such

that δ(N) = true for any N ∈ dΘe. Then ∆ ‖> G
τ
|===⇒ Λ, and δ(L) = true for any N ∈ dΛe.

The validity of the two statements above can be easily proved using the results developed in Section
5.2.

Corollary 7.8. [Theorem 6.13] Let M be a network and Θ be a stable sub-distribution such that
M vDS Θ. Then, for any network N such that bothM ‖> N and Θ ‖> N are defined it follows that
(M ‖> N) vDS (Θ ‖> N).

Proof. By induction on the number of nodes contained in nodes(N), using Theorem 7.6. The proof
is analogous to that of Corollary 7.4.

7.3. Outcome preservation. The aim of this section is to prove Theorem 6.7 and Theorem 6.12,
namely that simulations preserve, in the sense of Definition 4.12, the outcomes generated by net-
works. To this end, we first need two technical results.

Lemma 7.9. IfM Csim N , then cl(M) Csim cl(N).

Proof. It suffices to show that the relation

S = {(cl(M), cl(N)) | M Csim N}

satisfies the requirements of Definition 6.1. LetM,N such thatM Csim N , Since the only possi-
bility for networks of the form cl(M), cl(N) is that of performing τ-extensional actions, we only

have to check that if ω(cl(M)) = true then cl(N)
τ
|===⇒ Θ for some Θ such that ω(L) = true for any

L ∈ dΘe.
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Suppose then that ω(cl(M)) = true. It follows immediately that ω(M) = true, and since

by hypothesis M Csim N , we have that N
τ
|===⇒ Θ′ for some Θ′ such that ω(L′) = true for any

L′ ∈ dΘ′e. Therefore we have that cl(N)
τ
|===⇒ cl(Θ′). It follows that dcl(Θ′)e = {cl(L′) | L′ ∈ dΘ′e},

hence any network L ∈ dcl(Θ′)e satisfies the predicate ω.

Lemma 7.10. Let ∆,Θ be stable distributions in pLTSNets such that ∆ (Csim)e Θ; then Θ ===B� Θ′

such thatV(∆) ≤ V(Θ′).

Proof. Note that in the statement of Lemma 7.10 we use the extreme derivative associated with the
reduction relation _ defined for the testing structures associated with networks. We have seen in
Section 5.3 that such extreme derivatives do not coincide with weak τ-actions in the extensional
semantics, except in the case of closed distributions.

Therefore, let us first prove the statement for closed distributions, that is those whose networks
in the support have an empty interface. Let then ∆,Θ be such that Intf(∆) = Intf(Θ) = ∅.

We have two different cases.
(i) First suppose ∆ is a point distributionM. If the predicate ω(M) is equal to false,V(M) = 0.

In this case, we recall that Theorem 2.6 (4) ensures that there exists at least one extreme
derivation Θ ===B� Θ′, for which 0 ≤ V(Θ′) trivially holds.

Otherwise the predicate ω(M) is satisfied and V(M) has to be 1. Since M Csim Θ we
know Θ |===⇒ Θ′, such that for all N ∈ Θ′, ω(N) = true. Also, since Θ is closed, the hyper-
derivation above can be rewritten as Θ ===B Θ′. This means that V(Θ′) = 1; moreover, as
every state in dΘ′e is a successful state, we also have that Θ ===B� Θ′.

(ii) Otherwise Θ can be written as
∑
M∈d∆e ∆(M) · ΘM where M(Csim

e)ΘM for each M in the
support of ∆. By part (i) each ΘM ===B� Θ′

M
such that V(M) ≤ V(Θ′

M
). As an extreme

derivative is also a hyper-derivative, we can combine these to obtain a hyper derivation for Θ,
using Theorem 2.6 (3). This leads to

Θ =
∑
M∈d∆e

∆(M) · ΘM =⇒
∑
M∈d∆e

Θ′
M

= Θ′

As for every M ∈ d∆e, N ∈ dΘ′se we have that N _ implies ωN = true, this condition
is respected also by all states in dΘ′e. Thus, the hyper derivation Θ ===B Θ′ is also an ex-
treme derivation. Finally, the quantity V(∆) =

∑
{∆(M) | ω(M) = true} can be rewritten as∑

M∈d∆eV(M), leading to

V(∆) =
∑
M∈d∆e

V(M) ≤
∑
M∈d∆e

V(Θ′
M

) = V(Θ′) .

For more general distributions ∆,Θ it suffices to note that if ∆ (Csim)e Θ then cl(∆) (Csim
e) cl(Θ).

For such (closed) distributions of networks we have that cl(Θ) ===B� Θ′′, and V(cl(∆)) ≤ V(Θ′′).
Now Corollary 5.12 ensures that Θ′′ = cl(Θ′) for some Θ′ such that Θ ===B� Θ′. Finally, by
Corollary 5.13 we obtain that

V(∆) = V(cl(∆)) ≤ V(cl(Θ′)) = V(Θ′)

which concludes the proof.
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Corollary 7.11 (Theorem 6.7). In pLTSNets, ∆ Csim Θ implies O(∆) vH O(Θ).

Proof. We first prove the result for closed distributions ∆,Θ. Suppose ∆ ===B� ∆′. We have to
find a derivation Θ ===B� Θ′ such that V(∆′) ≤ V(Θ′). Since we are assuming that ∆ is closed,

then ∆ ===B� ∆′ implies ∆ |==⇒� ∆′, Corollary 5.12, which in turn gives ∆
τ
|===⇒ ∆′. We can use

the definition of Csim to find a derivation Θ
τ
|===⇒ Θ′′ such that ∆′ Csim

e Θ′′. Applying the previous
lemma we obtain Θ′′ |==⇒� Θ′ such that V(∆′) ≤ V(Θ′). By Theorem 2.6 we have that Θ |==⇒� Θ′,
and Corollary 5.12 gives Θ ===B� Θ′.

Suppose now that ∆,Θ are not closed distributions. In this case Corollary 5.13 ensures that

O(∆) = O(cl(∆)) vH O(cl(Θ)) = O(Θ)

and there is nothing left to prove.

We now repeat the above argument to show that outcomes are also preserved by deadlock
simulations; the details are quite similar.

Lemma 7.12. WheneverM vDS Θ it follows that cl(M) vDS cl(Θ).

Proof. If suffices to note that, for any network M, δ(M) = true if and only if δ(cl(M)) = true.
Using this fact the result can be proved as in Lemma 7.9.

The main use of Lemma 7.12 is that of showing that whenever ∆ vDS Θ then the sets of
outcomes of ∆ and Θ are related in some appropriate manner.

Lemma 7.13. Suppose that ∆ vDS Θ for some terminal distribution ∆. Then Θ ===B� Θ′ for some
Θ′ such thatV(Θ′) ≤ V(∆).

Proof. First suppose that ∆ is a closed distribution, that is for any networkM ∈ d∆e we have that
Intf(∆) = ∅.

(1) if ∆ =M we have two possible cases:
(i) δ(M) = false; since we are assuming thatM is a terminal distribution then it has to

be ωM = true, which impliesV(M) = 1. In this case we are ensured that Θ ===B� Θ′

for some Θ′, andV(Θ′) ≤ 1, trivially holds.
(ii) δ(M) = true; in this case ω(M) = false, hence V(M) = 0. Therefore we have to

show that Θ ===B� Θ′ for some Θ′ such thatV(Θ′) = 0. SinceM vDS Θ, we have that
Θ |==⇒ Θ′ for some Θ′ such that δ(N) = true for any N ∈ dΘ′e, which is equivalent to

V(Θ′) = 0. Further, Θ |==⇒ Θ′ implies Θ ===B Θ′. Since N
τ
7−−−→6 , N

c!vBη
7−−−−−−→6 for any

N ∈ dΘ′e, which is equivalent to N 6_ for any N ∈ dΘ′e, we also have Θ ===B� Θ′.
(2) otherwise, ∆ =

∑
i∈I pi · Mi, Θ =

∑
i∈I pi · Θi with

∑
i∈I pi ≤ 1 andMi vDS Θi for any i ∈ I.

This part of the Lemma can be proved as in Lemma 7.10.
Now let ∆ be a general distribution, not necessarily closed. By Lemma 7.12 it follows that cl(∆) vDS
cl(Θ), therefore there exists a sub-distribution Θ′ such that cl(Θ) ===B� cl(Θ′), and V(cl(Θ′)) ≤
V(cl(∆)). This in turn implies that Θ ===B� Θ′, and

V(Θ′) = V(cl(Θ′)) ≤ V(cl(∆)) = V(∆) .
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Corollary 7.14 (Theorem 6.12). If ∆ vDS Θ then O(∆) vS O(Θ).

Proof. First suppose that ∆ is a closed sub-distribution; let ∆′ be a sub-distribution such that ∆ ===B�
∆′; we have to show that Θ ===B� Θ′ for some Θ′ such that V(Θ′) ≤ V(∆′). Note that, since ∆ is
closed, this is equivalent to ∆ |==⇒� ∆′. Further, it is straightforward to note that ∆′ is terminal. Since
∆ vDS Θ it follows that Θ |==⇒ Θ′′ for some Θ′′ (which also implies Θ ===B Θ′′) such that ∆′ vDS
Θ′′. Since ∆′ is terminal, by Lemma 7.13 we also have that Θ′′ ===B� Θ′ andV(Θ′) ≤ V(∆′). Now
we just need to combine the reductions Θ ===B Θ′′ and Θ′′ ===B� Θ′ to obtain Θ ===B� Θ′.

If ∆ is not a closed sub-distribution, we have that cl(∆) vDS cl(Θ); since cl(∆) is closed it
follows that O(∆) = O(cl(∆)) vS O(cl(Θ)) = O(Θ).

8. Failure of Completeness

Although the simulation preorder Csim provides a proof methodology for establishing that two
networks are be related via the testing preorder vmay, it is not complete.

That is, it is possible to find two networks M,N such that M vmay N holds, but M cannot
be simulated by N . Similarly, for the must-testing preorder, we have that it is possible to exhibit
two networks M,N such that M vmust N , but M 6wDS N . This results are quite surprising,
as simulation preorder has been already proved to provide a characterisation of the may-testing
preorder for more standard process calculi such as pCSP, while the must-testing preorder has been
proved to be characterised by failure simulations [7]. Here, for simplicity, we discuss the failure of
completeness for the sole vmay preorder; however, the examples discussed here can be used to show
that the relation vmust is also incomplete.

The main problem that arises in our setting is that the mathematical basis of simulation pre-
orders rely on (full) probability distributions, which are a suitable tool in a framework where a weak
action from a process term has to be matched with the same action performed by a distribution of
processes.

This is not true in our calculus; we have already shown that, due to the presence of local
broadcast communication, it is possible to match a weak broadcast action with a sequence of outputs
whose sets of target nodes are pairwise disjoint. This behaviour has been formalised by giving a
non-standard definition of weak extensional actions in Definition 5.3.

Such a definition captures the possibility of simulating a broadcast through a multicast only
when the former action is performed with probability 1.

However, when comparing distributions of networks we have to also match actions which are
performed with probabilities less than 1, at least informally; here the simulation of broadcast using
multicast runs into problems, as the following example shows.

Example 8.1. Consider the two networks ΓM B M, ΓN B N depicted in Figure 15; let

M = m~τ.(c!〈v〉 0.9⊕ 0�
N = m~c!〈v〉� | n~c?(x) .(c!〈x〉 0.9⊕ 0)�

In ΓM BM a message is broadcast to nodes o1, o2 with probability 0.9, while in ΓN BN two different
broadcasts happen in sequence. The first broadcast, which can be detected by node o1, happens
with probability 1. The second broadcast, detectable by node o2 happens with probability 0.9. As a
result, the overall probability of message v to be detected by both nodes o1, o2 is again 0.9.

We first show that ΓM B M vmay ΓN B N, then we prove that ΓM B M 6Csim ΓN B N.
For the first statement, we only supply informal details, as a complete proof would be rather long
and technical. Consider a test ΓT B T , such that both (ΓM B M) ‖> (ΓT B T ) and ΓN B N ‖> (ΓT B T )
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M = ΓM B m~τ.(c!〈v〉 0.9⊕ 0)� N = ΓN B m~c!〈v〉� | n~c?(x) .(c!〈v〉 0.9⊕ 0)�

Figure 15: Two testing related networks

are defined. Without loss of generality, suppose that both o1, o2 ∈ nodes(ΓT B T ), that is T ≡
o1~t1� | o2~t2� | T ′. We consider only the most interesting case, that is when the testing component
reaches (with some probability p) an ω-successful configuration after network ΓM B M broadcasts
the message v. In this case, a computation fragment of (ΓM B M) ‖> (ΓT B T ) can be summarised as
follows:

(1) The testing component ΓT B T performs some internal activity, thus leading to ΓT B T
τ
|===⇒

ΓT B o1~Λ1� | o2~Λ2� | ΛT ,
(2) At this point, the network ΓMBM performs a τ-extensional action, specifically ΓMBM

τ
7−−−→

ΓM B ∆, where

∆ = 0.9 · M1 + 0.1 · M2

M1 = m~c!〈v〉�
M2 = m~0�

(3) The distribution ΓT B o1~Λ1� | o2~Λ2� | ΛT performs some other internal activity, that is

ΓT B o1~Λ1� | o2~Λ2� | ΛT
τ
|===⇒ ΓT B o1~Λ

′
1� | o2~Λ

′
2� | Λ

′
T

(4) At this point, the distribution ΓM B∆ broadcasts the message v with probability 0.9, causing
the testing component to evolve in ΓT B o1~Λ

′′
1 � | o2~Λ

′′
2 � |Λ

′
T ; note that only nodes o1 and

o2 are affected by the broadcast performed by node m. After performing the broadcast, the
tested network becomes deadlocked.

Consider now the network (ΓN B N) ‖> ΓT B T . For such a network, a matching computation
will proceed as follows:

(1) The testing component ΓT B T performs the two sequences of internal activities as before,
ending up in the distribution ΓT B o1~Λ

′
1� | o2~Λ

′
2� | Λ

′
T .

(2) At this point, the network ΓN B N performs a broadcast, ΓN B N
τ
7−−−→ ΓN B Θ, where

Θ = 0.9 · N1 + ·N2

N1 = m~0� | n~c!〈v〉�
N2 = m~0� | n~0�

Here note that, since the broadcast of message v fired by the network ΓMBM can be detected
by the sole node o1, only the code running at this node is affected in the test. Further, the
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resulting distribution at this node is again Λ′′1 ; the test component after the broadcast of
message v to node o1 is then in the distribution ΓT B o1~Λ

′′
1 � | o2~Λ

′
2� | Λ

′
T .

(3) Before allowing the testing component to perform any activity, we require the distribution
ΓN BΘ to perform the second broadcast, which will be heard by node o2; this happens with
probability 0.9. Further, such a broadcasts affects the probability distribution of processes
running at the sole node o2. Thus, after the second message has been broadcast by the
tested network, the testing component will have the form ΓT Bo1~Λ

′′
1 � |o2~Λ

′′
2 � |Λ

′
T . This is

exactly the same configuration obtained in the first experiment, after ΓM B M has broadcast
the message to both nodes o1, o2. Further, note that the overall probability ΓNBN delivering
the message to both the external nodes is again 0.9. Finally, after the broadcast has been
fired, the tested network reaches a deadlocked configuration.

We have shown that, whenever the broadcast of message v by ΓMBM affects the testing network
ΓT B T in some way, then ΓN BN is able to multicast the message to both o1 and o2, causing ΓT B T
to behave in the same way. Note also that In(ΓM B M) = In(ΓN B N) = ∅, so that the behaviour of
the testing component ΓT B T does not affect that of the tested networks. Now the reader should be
convinced that ΓM B M vmay ΓN B N.

Next we show that it is the case that ΓM B M cannot be simulated by ΓN B N. The proof is
obtained by contradiction. Suppose that ΓM BM Csim ΓN B N. Since ΓM BM

τ
7−−−→ ΓM B∆, we have

that ΓN BN
τ
|===⇒ ΓN BΘ′ for some distribution Θ′ such that ∆ Csim

e Θ′. It is straightforward to note

that whenever ΓN B N
τ
|===⇒ ΓN B Θ′ then Θ′ = N .

Recall that ∆ = 0.9·M1+0.1·M2. Since ΓMB∆ Csim
e ΓNBN, the decomposition property of lifted

relations, Definition 2.2 ensures that we can rewrite N as 0.9 ·N + 0.1 ·N, and ΓM BM1 Csim ΓN BN,
Let us focus on the network ΓM BM1. This network is equipped with the extensional transition

ΓMBM
c!vB{o1,o2}
7−−−−−−−−−−→ ΓM B m~c!〈v〉�. Since ΓMBM1 Csim ΓNBN, it follows that ΓNBN

c!vB{o1,o2}

|==========⇒

ΓN B Θ′′ for some distribution Θ′′. We show that this is not possible.

This is because the only action that can be performed by ΓN B N is ΓN B N
c!vB{o1}
7−−−−−−−−→ ΓN B Θ;

in order for ΓN B N to be able to perform the weak action
c!vB{o1,o2}

|==========⇒ we require the distribution
ΓN B Θ to perform a weak broadcast to node o2. However, this is possible if every network in
dΓN B Θe can perform such an action; this is not true, since N2 ∈ dΘe, and the network ΓN B N2 is
deadlocked.

We have shown that ΓM B M1 6Csim ΓN B N, which in turn gives ΓM B ∆ Csim
e6 ΓM B N.

Since ΓM B M
τ
7−−−→ ΓM B ∆, and ΓN B N is the only hyper-derivative of ΓN B N, we conclude that

ΓM B M 6Csim ΓN B N. �

Note that the example above can be readapted to show that deadlock simulations are incomplete
with respect to the must-testing relations. In fact, for the networks ΓM BM, ΓN B N of Example 8.1
it is easy to show that (ΓN B N) vmust (ΓM B M), but (ΓN B N) 6wDS (ΓM B M).

Example 8.1 has more serious consequences than just showing that simulation preorder is not
complete with respect to the may testing preorder. One could in fact expect that the notion of sim-
ulation can be modified, leading to a less discriminating preorder for networks which characterises
the vmay preorder. We show that this is not the case.

Definition 8.2 (τ-Simulations). A relation R ⊆ Nets×D(Nets) is a τ-simulation if wheneverMRN

then In(M) = In(N), Out(M) = Out(N) and whenever M
τ
7−−−→ ∆ it follows that N

τ
|===⇒ Θ for

some Θ such that ∆ R Θ. �
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Note that the definition of τ-simulations is very general, since the only constraints that we have
placed on them, apart from the standard checks on the input and output nodes in the interface of
networks, is that a strong τ-action has to be matched with a weak one. It follows at once that Csim is
a τ-simulation.

Theorem 8.3. There exists no τ-simulation R ⊆ Nets ×D(Nets) such thatM vmay N iffMRN .

Proof. The proof is carried out by contradiction. Suppose R ⊆ Nets × D(Nets) is a τ-simulation
such that MRN if and only if M vmay N , and consider the networks ΓM B M,ΓN B N from
Example 8.1. We have already proved that ΓM B M vmay ΓN B N and so by the hypothesis we have
ΓM B MRΓN B N. Note that ΓM B M

τ
7−−−→ ΓM B ∆, where ∆ = 0.9 · M1 + 0.1 · M2, where M1,M2

have been already defined in Example 8.1.
Since R is a τ-simulation, the τ-action performed by ΓM B M has to be matched by a hyper-

derivation in ΓN B N; we have already noted that the only possible hyper-derivation for such a net-

work is given by ΓNBN
τ
|===⇒ ΓN B N. Therefore we have that ΓMB∆ R ΓN B N. The decomposition

property of lifted relations, Definition 2.2 ensures that we can rewrite ΓN B N as 0.9 ·Θ1 + 0.1 ·Θ2,
and ΓM BMiRΓN BΘi, i = 1, 2. It is trivial to note that here the only possibility is that Θ1 = Θ2 = N.
Therefore ΓM B M1RΓN B N, and by hypothesis this implies that ΓM B M1 vmay ΓN B N.

However, this is not possible. We show that there is a test that distinguishes the network ΓMBM1
from ΓN B N. Consider the test ΓT B T , where ΓT is the connectivity graph consisting of the
sole node o2 with no connections, while T = o2~c?(x) .ω�. It is straightforward to note that 1 ∈
O((ΓM B M1) ‖> (ΓT B T )). However, for any p ∈ O((ΓN B N) ‖> (ΓT B T )) we have that p ≤ 0.9. If
follows that O((ΓM B M1) ‖> (ΓT B T )) @H O((ΓN B N) ‖> (ΓT B T )). That is, ΓM BM1 6vmay ΓN BN.
Contradiction.

9. Case Study: Probabilistic Routing

While our proof methods for relating probabilistic networks via the testing preorders are not
complete, they are still useful for comparing practical examples of wireless networks. Even more,
they can be used to perform a model-based verification of network protocols, showing that their
behaviour is consistent with respect to some formal specification. In this section we show how
this can be done by proving the correct behaviour of a simple probabilistic routing protocol. For
the sake of simplicity, we focus on an abstract implementation of a geographic routing protocol, in
which much of the details are left unspecified. However, it is worth mentioning that the proposed
implementation can be refined, leading to a concrete representation of the SAMPLE probabilistic
routing protocol [6].

By formal specification we mean a network M, while by network protocol we mean a set of
networks N whose elements share the same input and output nodes. Proving that the behaviour of
a protocol N is sound with respect to a formal verificationM consists then in showing that for any
network N ∈ N it has to beM ' N .

Let us now turn our attention on how this task can be achieved for a probabilistic (connection-
less) routing protocol. At least intuitively, the routing policy states that messages broadcast by a
location in a network, called source, are eventually delivered to a desired node, called destination.
For the sake of simplicity, here we consider a situation in which the source and the destination of a
routing policy are two fixed external nodes, i and o respectively.

Designing a specification for the routing policy is easy; however, there are some details that
need to be taken into account. First, we need to introduce some mathematical tools that will enable
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Figure 16: The specification ΓM B M for the routing policy.

us to equip a node in a network with some sort internal memory; this is necessary, since in a routing
protocol nodes have to store the values they have received and which they have not yet forwarded
to another node.

This can be done by relying on multisets. Roughly speaking, a multiset A is a set which can
contain more than one copy of the same element. Formally, a multiset A from a set universe U is a
function A : U → N which assigns to each element u ∈ U the number of copies of u contained in
A. For our purpose the universe U consists of the set of (closed) message values, and we only deal
with finite multisets, that is those for which

(∑
v∈U A(v)

)
< ∞.

We denote with ∅ the empty multiset, that is the multiset such that ∅(v) = 0 for any value v,
and we say that A ⊆ B if A(v) ≤ B(v) for any value v. We say that v ∈ A if A(v) > 0. Given a
finite collection of multisets A1, · · · ,An, the multiset (

⋃n
i=1Ai) is defined by letting (

⋃n
i=1Ai)(v) =∑n

i=1Ai(v).
Finally, for any multisetA and a value v, we denote withA+v the multiset such that (A+v)(v) =

A(v) + 1 and (A + v)(w) = A(w) for any w , v. Similarly, the multiset A − v is defined by letting
(A − v)(v) = A(v) − 1 if A(v) > 0, (A − v)(v) = 0 if A(v) = 0 and (A − v)(w) = A(w) for any w , v.

The second problem we need to tackle is that of ensuring that the specification we define for
the routing policy is a finitary network. This is necessary because our proof techniques are valid
only for such networks. As we will see, this can be accomplished by considering a more restricted
routing policy, in which only a finite amount of messages will be routed from the source to the
destination.

Let k ≥ 0; the specification we propose for the connection-less routing policy of k values is
given by the networkM = ΓM B Mk

∅
, where ΓM is the connectivity graph depicted in Figure 16 and

Mk
A

is a system term (parametrised by a multiset A and an integer k ≥ 0) defined as

Mk
A = m~Pk

A�

P0
A ⇐

∑
v∈A

c!〈v〉 .P0
A−v

Pk+1
A ⇐

∑
v∈A

c!〈v〉 .Pk+1
A−v

 +
(
c?(x) .Pk

A+x

)
Let us discuss the intuitive behaviour of a network of the form Mk

A
; at any given point, the

internal node m can either receive a message from node i, provided that there are still messages to
be routed, or it can forward one of the messages in the multiset A to the output node o, if any. Note
that we require the use of multisets since any value v can be broadcast more than once by the input
node i.

Formally, the behaviour of a networkMk
A

can be described as follows.

Proposition 9.1. For any k ≥ 0 and finite multiset A
(1) Mk

A
is convergent and finitary,

(2) δ(Mk
A

) = true if and only if A = ∅,
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Figure 17: The connectivity graph of the networks in the protocol N.

(3) if k > 0 then vMk
A

i.c?v
7−−−−−→ ∆ if and only if ∆ =Mk−1

A+v,

(4) if k = 0 thenMk
A

i.c?v
7−−−−−→ ∆ if and only if ∆ =Mk

A
,

(5) Mk
A

c!vB{o}
7−−−−−−−→ ∆ if and only if v ∈ A and ∆ =Mk

A−v.

Let us now define a protocol which is consistent with the specification Mk
∅
. As we already

mentioned, a protocol is a collection of networks. We consider only the set of networks of the form
Nk
A

= ΓN B Nk
A

which satisfy the following conditions.

(1) In(Nk
A

) = {i},Out(Nk
A

) = {o},
(2) nodes(Nk

A
) = {n1, n2, · · · , n j} for some j ≥ 2,

(3) ΓN ` i→ m if and only if m = n1,
(4) ΓN ` m→ o if and only if m = n2,
(5) ΓN ` nh 9 n1 for any h = 1, · · · , j,
(6) for any node h = 1, · · · , j there exists a path from nh to n2 in ΓN ,
(7) for any node nh, there exists a probability distribution Λh ∈ D({1, · · · , j}) such that dΛhe =

{h′ | ΓN ` nh → nh′},
(8) we assume a set of distinct channels c1, · · · , c j such that ch , c for any h = 1, · · · , j,
(9) The system term Nk

A
is in the support of a distribution ∆k

A
, defined as

∆k
A = P(n1~Qk

A1
� | n2~RA2� |

j∏
h=3

nh~S h
Ah
�)
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where
(⋃ j

h=1Ah
)

= A and

Q0
A ⇐

j⊕
h=1

Λ1( j) ·

∑
v∈A

ch!〈v〉 .Q0
A−v


Qk+1
A ⇐

j⊕
h=1

Λ1(h) ·

c?(x) .Qk
A+x +

∑
v∈A

ch!〈v〉 .Qk+1
A−v




RA ⇐ c2?(x) .RA+x +

∑
v∈A

c!〈v〉 .RA−v


S h
A ⇐

j⊕
h′=1

Λh(h′) ·

ch?(x) .S h
A+x +

∑
v∈A

ch′!〈v〉 .S h
A−v




Here we use
⊕

i=1n pi · si to denote the process such that

P(
n⊕

i=1

pi · si) =
∑
i=1n

pi · si

We denote with Nk
A

the set of networks Nk
A

described above. The connectivity graph of such net-
works is depicted in Figure 17

Remark 9.2. Note that we committed an abuse of notation in defining the distribution ∆k
A

, by
associating a process definition with a (probabilistic) process, rather than to a state. However, a
process definition of the form A⇐

⊕n
i=1 pi · si can be seen as the probabilistic process

⊕n
i=1 pi ·Ai,

where Ai ⇐ s′i and s′i is obtained from si by replacing each occurrence of A with
⊕n

i=1 pi · Ai.

Our aim is to show that for any N ∈ Nk
∅

we have thatMk
∅
' N .

Before supplying the details of the proof of the statement above, let us describe informally the
behaviour of a distribution ∆ ∈ D(Nk

A
); we also discuss the requirements that we have placed on

the structure of the connectivity graph ΓN . In a distribution ∆ ∈ D(Nk
A

) a network is waiting to
receive exactly k messages from node i, and whose multiset of received messages which have been
received but have not yet been forwarded to the external node o is A. Note that we have placed
many requirements in the definition of the connectivity graph of such networks; first we require that
i is their only input node, while o is their only output node. This requirement is necessary, since to
show that such networks are testing equivalent to the specification we have to ensure that they share
with the latter the same sets of input and output nodes.

We require the connectivity graph of the networks in ∆ to have a path from nh to n2 for every
h = 1, · · · , j. This condition is needed to ensure that messages detected by node n1 (which in turn
have been broadcast by i) can flow through the network until reaching node n2, which in turn can
broadcast the message to the output node o. As we will see this always happens with probability 1.

The other constraints that we placed on the connectivity graph ofN ∈ d∆e are purely technical;
we require that the only node connected to i is n1, while the only node connected to o is n2. As
we will see when discussing the code running at Nk

A
, nodes n1 and n2 have the role of handling

the values broadcast by i, and which have to be forwarded to o, respectively. We also require that
ΓN ` nh 9 n1 for any h = 1, · · · , j. This constraint ensures that all the messages received by n1
have been broadcast by the input node i; note in fact that, in general, a node cannot detect the name
of the node that fired a broadcast.
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Let us now turn our attention to the code defined for the distribution ∆k
A

. Here we assume a set
of channels c1, · · · , c j; each node nh, h , 1 can only detect messages broadcast along the channel
ch. Intuitively, when a message is broadcast along channel ch by a node nh′ , then it will be delivered
to node nh. In other words, node nh′ has selected nh as the next hop in a routing path.

We also assume a set of probability distributions Λ1, · · · ,Λ j. When a node nh, h , 2 wishes to
select the next hop in a routing path, it selects it according to the probability distribution Λh. Note
that we require that h′ ∈ dΛhe if and only if Nk

A
` nh → nh′ , that is a node can be selected as the

next hop in a routing path by nh if and only if it is in the range of transmission of nh. Further, any
neighbour of nh can be selected as the next hop in a routing path. As we will see, this constraint
ensures that, in unbounded time, a message stored in node nh will reach the node n2 with probability
1.

Any network distribution ∆ ∈ D(Nk
∅
) can be seen as a probability distribution of networks

running a (connection-less) routing algorithm of k messages. Such an algorithm is designed by
letting any node nh, with the exception of n2, to select the next hop in a routing path probabilistically
among its neighbours. For node n2, the message is broadcast along channel c with probability 1,
thus forwarding it to the only output node o. Also, the message to be forwarded to a next-hop in a
routing path by node nh is selected non-deterministically among those stored in such a node, that is
the nodes in the multiset Ah.

Roughly speaking, the behaviour of a network ∆ ∈ D(Nk
A

) can be described as follows:
(1) node n1 can receive a message v broadcast by node i along channel c, provided k ≥ 0. Then

it stores it in the multiset associated to it,
(2) At any given point, any node nh, h , 2 can select the next hop in a routing path among its

neighbours. Then it selects the message to be forwarded non-deterministically among those
stored in its internal multiset

(3) At any given point, node n2 can broadcast one of the messages stored in its multiset along
channel c. This broadcast is detected by the output node o.

The behaviour of a network N ∈ Nk
∅

is similar, with the only exception that the first time each
node receives a message, the next-hop of a routing path it chooses is fixed.

Let us now turn our attention to the extensional transitions performed by a network N ∈ Nk
A

,
and more generally by a distribution ∆ ∈ D(Nk

A
). To this end it is useful to introduce some notation.

First we define the (state based) processes

q0,h
A

=
∑
v∈A

ch!〈v〉 .Q0
A−v

qk+1,h
A

= c?(x) .Qk
A+x +

∑
v∈A

c j!〈v〉 .Qk+1
A−v


sh,h′
A

= ch?(x) .S h
A+x +

∑
v∈A

ch′!〈v〉 .S h
A−v


and we note that any network N ∈ Nk

A
has the form

N = ΓN B |~q
k,h
A1
�|~RA2�

j∏
h=3

nh~s
h,h′
Ah
�

where (
⋃ j

h=1Ah) = A. For such networks, we define ValuesN (h) = Ah. Intuitively, this function
returns the multiset of values stored at node nh in the network N .
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Finally, let (Nk
A

)x be the unique network such that Values(Nk
A

)x(2) = A. This is the network
where all the nodes that have to be routed are stored in the node n2; therefore they are ready to be
forwarded to the destination o.

We are now ready to characterise the set of strong extensional transitions performed by any
network N ∈ Nk

A
.

Proposition 9.3. For any network N ∈ Nk
A

,

(1) (i) N
τ
7−−−→6 iff N = (Nk

A
)x,

(ii) otherwise N
τ
7−−−→ ∆ for some ∆ ∈ D(Nk

A
),

(2) conversely, whenever N
τ
7−−−→ ∆ then ∆ ∈ D(Nk

A
),

(3) if k > 0 then

(i) N
i.c?v
7−−−−−→ ∆ for some ∆ ∈ D(Nk−1

A+v),

(ii) conversely, whenever N
i.c?v
7−−−−−→ ∆ then ∆ ∈ D(Nk−1

A+v),

(4) if k = 0 then N
i.c?v
7−−−−−→ ∆ iff ∆ = N ,

(5) for any v ∈ ValuesN (2) then N
c!vB{o}
7−−−−−−−→ ∆ for some ∆ ∈ D(Nk

A−v),

(6) conversely, whenever N
c!vB{o}
7−−−−−−−→ ∆ then v ∈ ValuesN (2) and ∆ ∈ D(Nk

A−v).

However, in order to show that the specificationMk
∅

is testing equivalent to any network in Nk
∅

we have to characterise also the set of weak extensional actions performed by such networks. To
this end, we first analyse the structure of any τ-extensional transition performed by any distribution
∆ ∈ D(Nk

A
).

Proposition 9.4. Let k ≥ 0, A be a finite multiset and suppose ∆ ∈ D(Nk
A

).

(1) ∆
τ
|===⇒ (Nk

A
)x,

(2) whenever ∆
τ
|===⇒ ∆′, then ∆′

τ
|===⇒ (Nk

A
)x.

Outline of the Proof. First note that, for any ∆ ∈ D(Nk
A

) Proposition 9.3 ensures that ∆
τ
|===⇒ ∆′

implies ∆′ ∈ Dsub(Nk
A

).
Let us focus on the proof of the first statement. Let ∆ ∈ D(Nk

A
) for some k ≥ 0 and finite

multiset A. We actually prove a stronger statement than (1), that is that ∆ |==⇒� (Nk
A

)x. First note
that Theorem 2.6 (4) ensures that there exists a sub-distribution Θ such that ∆ |==⇒� Θ. Such a
distribution Θ has to be an element of the set Dsub(Nk

A
); further, any state in its support should not

be able to perform an extensional τ-action. It follows from Proposition 9.3 that the only possibility
is that dΘe ⊇ {(Nk

A
)x}, or equivalently that Θ = p · (Nk

A
)x for some 0 ≤ p ≤ 1. It remains to prove

that p = 1.
This follows because the probability distribution used by any node nh, h , 2, to select the next-

hop in a routing path is defined so that any neighbour of nh can be chosen with probability strictly
greater than 0; in particular, since we are assuming that there exists a path from node nh to node
n2, a node nh′ whose distance to n2 is less than the distance between nh and n2 can be selected with
non-negligible probability. As a consequence, in the long run the average distance between the node
where a message v ∈ A is stored and the node n2 decreases to 0; that is, with probability 1 message
v is stored in the node n2. Since this line of reasoning is independent from the value v, we also have
that in the long run any message inAwill be stored in n2 with probability 1; formally, Θ = 1 ·(Nk

A
)x.
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Now statement (2) follows trivially. Whenever ∆
τ
|===⇒ ∆′ we have that ∆′ ∈ D(Nk

A
), and by (1)

above it follows that ∆′ |==⇒� Nk
A

.

Corollary 9.5. Any ∆ ∈ D(Nk
A

) is convergent.

Proof. Suppose ∆
τ
|===⇒ ∆′ for some ∆′; then ∆′

τ
|===⇒ (Nk

A
)

x
; it follows that |∆′| ≥ 1, hence |∆′| = 1.

As a consequence, for no network N ∈ d∆e we have N |==⇒ ε.

The last step that we need to take is that of characterising the set of (weak) input and output
transitions for any distribution ∆ ∈ D(Nk

A
). This can be done by using both propositions 9.3 and

9.4.

Proposition 9.6. Let k ≥ 0 and A be a multiset. Then for any distribution ∆ ∈ D(Nk
A

),

(i) ∆
τ
|===⇒ ∆′ with δ(N) = true for any N ∈ d∆′e if and only if A = ∅,

(ii) if k > 0 then

(i) ∆
i.c?v
|=====⇒ ∆′ for some ∆′ for some ∆′ ∈ D(Nk−1

A+v),

(ii) conversely, whenever ∆
i.c?v
|=====⇒ ∆′ then ∆′D(Nk−1

A+v),
(iii) if k = 0 then

(i) ∆
i.c?v
|=====⇒ ∆′ for some ∆′ ∈ D(N0

A
),

(ii) whenever ∆
i.c?v
|=====⇒ ∆′ then ∆′ ∈ D(N0

A
),

(iv) if A , ∅,

(a) ∆
c!vB{o}
|=======⇒ ∆′ for some ∆′ ∈ D(Nk

A−v),

(b) conversely, whenever ∆
c!vB{o}
|=======⇒ ∆′ it follows that ∆′ ∈ D(Nk

A−v).

We are now ready to show that the protocol Nk
A

satisfies the specificationMk
A

.

Theorem 9.7. For any k ≥ 0 and N ∈ Nk
∅

we have thatMk
∅
' Nk

∅
.

Proof. Let k ≥ 0 and A be a finite multiset. We have already noted that the networkMk
A

is finitary.
Further, it is easy to show that any network N ∈ Nk

A
is finite state, and by Corollary 9.5 it follows

that it is also finitary.
Therefore, it suffices to show that for any N ∈ Nk

∅
we have both Mk

∅
Cds N and N Cds M

k
∅
.

Theorem 6.16 gives thatMk
∅

=must N , while Theorem 6.17 ensures thatMk
∅

=may N .
In fact we prove a stronger statement. For any k ≥ 0, finite multiset A and networkN ∈ Nk

A
we

have thatMk
A
Cds N , and conversely N Cds N

k
A

. Theorem 9.7 follows by letting A = ∅.
To this end, consider the relation

S = {(Mk
A,N

′) | N ∈ Nk
A}

We show that this relation satisfies the requirements of Definition 6.15. First suppose that δ(Mk
A

) =

true. Then A = ∅ by Proposition 9.1, and Proposition 9.6 ensures that Nk
∅

τ
|===⇒ Θ for some Θ such

that for any N ′ ∈ dΘe we have that δ(N ′) = true.

Now, suppose thatMk
A

i.c?v
7−−−−−→ ∆. By Proposition 9.1 we have two possible cases:

(1) k = 0; in this case ∆ = Mk
A

; by Proposition 9.6 we have that N
i.c?v
|=====⇒ Θ for some

Θ ∈ D(Nk
A

), and triviallyMk
A
Se Θ.
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(2) k ≥ 0; here ∆ = Mk−1
A

. The action Mk
A

i.c?v
7−−−−−→ Mk−1

A+v can be matched by N
i.c?v
|=====⇒ Θ,

where Θ ∈ D(Nk−1
A+v), again using Proposition 9.6.

The last case we need to check isM
c!vB{o}
7−−−−−−−→ ∆. This case is handled in the same way of the

previous ones, again using Propositions 9.1 and 9.6.
For the opposite implication, N Cds M

k, it is sufficient to consider the converse relation S−1,
showing that it satisfies the requirements of Definition 6.15. The proof is similar to the one above,

this time by using Proposition 9.3 to infer the structure of an extensional action of the form N
λ
7−−−→

Θ, and by matching it with an action performed by Mk
A

according to Proposition 9.1. Here it is

important to note that every action of the formMk
A

λ
7−−−→ ∆ is also a weak action, that isMk

A

λ
|===⇒ ∆,

and that a strong τ-extensional action of the form N
τ
7−−−→ Θ can be matched by the weak action

Mk
A

τ
|===⇒Mk

A
.

10. Conclusions

In this paper we have developed a calculus for wireless systems, which enjoys both proba-
bilistic behaviour and local broadcast communication. We have developed a theory based on the
probabilistic testing preorders, and provided sound proof methods for finitary networks to prove
that they can be related via our behavioural preorders. We have applied our proof techniques to
check that a probabilistic routing protocol is consistent with a given specification.

While testing theories have been analysed for process algebras [9] with broadcast communica-
tion over a flat topology, we believe that this is the first work that considers testing theories for a
calculus which enjoys local broadcast communication.

In the past the development of formal tools for wireless networks has focused either on other
forms of behavioural theories (such as variants of weak bisimulation) and the analysis of protocols.
Here we give a brief review of the main works which have inspired our calculus.

To the best of our knowledge, the first paper describing a process calculus for broadcasting
systems, CBS, is [28]. In this paper the author presents a simple process calculus in which a syn-
chronisation between a sender and a receiver is modelled as an output action, rather than an internal
activity as in standard process calculi such as CCS. This allows multiple receivers to detect a mes-
sage sent by a sender, thus implementing broadcast communication. In [17] different notions of
barbed congruence for a variant of CBS are introduced; these correspond to strong barbed congru-
ence and weak barbed congruence. For each of them, a characterisation result in terms of strong
and weak bisimulation, respectively, is proved.

Another calculus to model broadcast systems, known as the bπ-calculus and inspired by both
CBS and the π-calculus [31], is introduced in [8]; as the author points out, broadcast communication
is modelled in the same style of CBS. In this paper the authors define three different behavioural
equivalences, corresponding to barbed congruence, step equivalence and labelled bisimilarity. The
author proves that such behavioural equivalences coincide.

In [9] the authors define both the may and must testing preorders for processes of the bπ-
calculus, and they prove a characterisation result for each of them. The main contribution here
lies in the characterisation of the must-testing preorder; as the authors point out, in fact, broadcast
communication leads to a non-standard characterisation of the latter. In particular, the non-blocking
nature of broadcast actions does not allow acceptance sets to be used in their characterisation result.
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In the last decade, broadcast calculi have been modified in several ways by equipping processes
with a topological structure, thus modelling wireless networks; the idea is that of representing a
process as a set of locations, running different code for broadcasting and receiving messages; the
topology defined for a process establishes how communication is modelled, for example by letting
only some locations being able to detect the messages broadcast at another one.

In [26] the authors propose to model the topological structure of a network by using a connec-
tivity graph; a process is viewed as a set of locations running code, while a graph whose vertices are
locations is used to determine how communication is carried out. Intuitively, a transmission origi-
nated at a given location can only be detected by those vertices which are connected to the former.
The transition relation of processes is defined as parametric in a connectivity graph. This frame-
work has been proposed by the authors as a basis for the analysis of security protocols in wireless
networks.

In [25] an allocation environment is used to represent the topological structure of a wireless
networks. A wireless network is intended as a parallel composition of processes, each of which is
associated with a set of locations to which the process belongs and a probability distribution over
locations; intuitively, the latter describes the probability with which a message broadcast by the
process is detected at a given location.

In [12] the authors propose a restricted broadcast process theory to model wireless networks.
Here a network consists of a parallel composition of different processes; each process is associated
with a location name, and a function between locations to sets of locations is used to represent the
network topology. The authors propose the standard notion of weak bisimulation as the behavioural
equivalence to be used to relate networks and they show a case study in which they prove the
correctness of a routing protocol.

In [13] an extension of the restricted broadcast process theory, the Computed Network Theory,
is proposed; here the expressive power of a network is augmented through different operators. For
the resulting calculus, a variant of strong bisimulation is defined and proved to be a congruence.
The main result in the paper is a sound axiomatisation of the strong bisimulation, thus enabling
equational reasoning for wireless networks. The authors also show that the proposed axiomatisation
is complete in a setting where only non-recursive networks are considered. The Computed Network
Theory framework is also used in [14] to check properties of mobile networks; the authors show how
both the equational theory and model checking can be used to verify the correctness of a routing
protocol.

In [32] the authors view a network as a collection of processes, each of which is associated with
one or more groups. Processes which belong to the same group are assumed to be neighbours; as a
consequence, a broadcast performed by a process can be detected by all the processes which belong
to at least one group of the broadcaster. The authors show that in their framework state reachability is
a decidable problem; further, they introduce different notions of behavioural equivalences, based on
late bisimilarity and its weak variant, and they show that such equivalences are in fact congruences.
Finally, they apply their calculus by formalising and analysing the behaviour of a leader election
protocol and a routing protocol.

In [21] the authors describe wireless networks by using metric spaces; they assume that a net-
work consists of a set of processes, each of which has an associated location and a radius of trans-
mission; a metric distance over the set of locations is assumed to determine how communication is
modelled. The authors describe the behaviour of a wireless network in terms of both a reduction se-
mantics and a labelled transition semantics. These two semantics are proved to be equivalent up-to
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a notion of structural congruence. We remark that in their paper the authors assume that a commu-
nication between two stations consists of two phases, one for the beginning and one for termination.
This allows the authors to model collision-prone communication.

In [36] the authors present an extension of the calculus described above, in which node mo-
bility and timed communication are introduced. The authors give both a reduction semantics and a
labelled transition semantics, and they prove that they are congruent up-to structural congruence.

Another calculus for wireless networks in which collision-prone behaviour is taken into account
is described in [23]. In their work, the authors describe a network as a set of processes running in
parallel, each of which has a location name and a semantic tag associated with it; the latter consists
of a set of locations names and it corresponds to the set of locations which can detect messages
broadcast by the process. The calculus includes a notion of discrete-time, in the style of [19], and
broadcasts of messages start and end at different time slots. The authors develop a notion of barbed
congruence for wireless systems and they propose a sound, but not complete, characterisation result
in terms of weak bisimulation.

A variant of this calculus which considers only networks with flat topology is presented in
[5]. Here the authors develop a notion of reduction barbed congruence for their calculus; they
also introduce an extensional semantics whose induced weak bisimulation principle is proved to be
sound and complete with respect to the barbed congruence.

In [34] the authors propose a model in which the topological structure of a network is rep-
resented as a graph whose vertices are locations; further, they assign to each edge in the graph a
(possibly unknown) probability as a likelihood estimate of whether a message broadcast by a loca-
tion at the starting end-point of an edge will be delivered to the location at the terminal end-point
of the same. The proposed model also allows the network topology of a system to evolve according
to a probabilistic mobility function. The authors prove that, in the proposed calculus, the logical
equivalence defined over a variant of PCTL coincides with weak bisimulation.

In [33] several models for modelling probabilistic ad hoc networks are developed; the author
first defines a probabilistic process calculus where connections between nodes are probabilistic. Be-
havioural theories based on bisimulation and temporal logics are defined for analysing the properties
of networks in such a calculus. The presented calculus is then extended in order to model different
features of wireless networks, such as exponential time delays and changes in the network topology.

In [22] the authors define a language for wireless networks in which the code running at network
locations contains both non-probabilistic and non-deterministic behaviour. The topological structure
of a network is defined in the same way of [23]; the authors introduce a notion of simulation,
parametrised in a probability value, in order to capture the concept of two networks exhibiting the
same behaviour up-to such a probability. The model used to represent wireless networks and define
their formal behaviour is that of a pLTS.

In [11] the authors propose a probabilistic, energy-aware process calculus of networks. In
this calculus nodes can move probabilistically among locations of a given metric space. Nodes
can also choose the transmission radius of a broadcast in an optimal way with respect to energy
consumption. The authors propose a notion of probabilistic barbed congruence, parametrised in a
set of schedulers, for which they give a characterisation in terms of bisimulations. The authors also
introduce a preorder which compare networks which exhibit the same behaviour according to the
proposed contextual equivalence, but differ in terms of energy consumption.

In [2] a variant of the calculus above is proposed, where energy consumption is no longer
considered and the possibility of interferences in communications is introduced. The authors define
a contextual equivalence in terms of probabilistic reduction barbed congruence, for which they
develop a sound and complete proof technique based on bisimulations.
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In [15] a different approach is made to formalise a wireless network. The authors identify a
network as a set of processes associated with a location address and a queue, representing the data
at the datalink layer that a station has not yet broadcast. The calculus they use is a probabilistic
generalisation of the restricted broadcast process theory of [13]; here the sending primitive consists
of a message to be broadcast and a probability rate, representing the likelihood that such a message
will be sent. The model used to describe the behaviour of a system is that of Continuous Time
Markov Automata.

Appendix A. Properties of the Operator ‖>

Proof of Proposition 4.4(1): LetM = ΓM B M, N = ΓN B N, and suppose (M ‖> N) is defined.
Then such a network is equal to (ΓM ∪ ΓN) B (M | N), for which we have to verify two statements:

• (ΓM ∪ ΓN) B (M | N) satisfies the constraints we have placed over all, possibly non well-
formed, networks. These require M | N ∈ sSys (that is, it does not contain replicated node
names), nodes(M | N) ⊆ ΓV , and (ΓM ∪ ΓN)E being irreflexive.
(1) M | N ∈ sSys; note that if there were a node name m which appears more than once

in M | N, then we should have m ∈ nodes(M),m ∈ nodes(N). This is because M ∈

sSys,N ∈ sSys, so that m cannot appear more than once in M, nor in N. Thus the
statement follows if we can prove that nodes(M) ∩ nodes(N) = ∅; since M ‖> N is
defined, it follows that nodes(M) ∩ (ΓN)V = ∅. Since nodes(N) ⊆ (ΓN)V , we also have
nodes(M) ∩ nodes(N) = ∅, and there is nothing left to prove.

(2) nodes(M | N) ⊆ (ΓM ∪ ΓN)V ; note that nodes(M) ⊆ (ΓM)V and nodes(N) ⊆ (ΓN)V .
Therefore we have that

nodes(M | N) = nodes(M) ∪ nodes(N) ⊆ (ΓM)V ∪ (ΓN)V = (ΓM ∪ ΓN)V .

(3) (ΓM ∪ ΓN)E is irreflexive. Suppose (ΓM ∪ ΓN) ` m → n; We need to show that m , n.
Note that we have either ΓM ` m → n or ΓN ` m → n; without loss of generality,
assume ΓM ` m→ n. Since (ΓM)E is irreflexive, it follows that m , n.

• (ΓM ∪ ΓN) B (M | N) satisfies the constraints of Definition 4.2. This amounts to prove the
following:
(1) for any m, n such that ΓM ∪ ΓN ` m� n, either m ∈ nodes(M | N) or n ∈ nodes(M | N).

Let m, n be two nodes for which (ΓM ∪ ΓN) ` m� n; that is either (ΓM ∪ ΓN) ` m→ n
or (ΓM ∪ ΓN) ` m← n. Without loss of generality, assume that (ΓM ∪ ΓN) ` m→ n.
In this case either ΓM ` m → n or ΓN ` m → n. We only give details for the case
in which ΓM ` m → n, as the proof for the second case is analogous. Since M ∈

Nets, we have that either m ∈ nodes(M) or n ∈ nodes(N). If m ∈ nodes(M) then
m ∈ nodes(M | N), while if n ∈ nodes(M), then n ∈ nodes(M | N). Thus, either
m ∈ nodes(M | N) or n ∈ nodes(M | N).

(2) Let m ∈ (ΓN ∪ ΓN)V be a node such that (ΓM ∪ ΓN) ` m � n for no node n ∈ (ΓN)V .
Then m ∈ nodes(M | N).
Since m ∈ (ΓM ∪ ΓN)V then either ΓM ` m or ΓN ` m. Without loss of generality let
ΓM ` m. Also, since (ΓM ∪ ΓN) ` m� n for no n ∈ (ΓM ∪ ΓN)V , (ΓM)V ⊆ (ΓM ∪ ΓN)V
and (ΓM)E ⊆ (ΓM ∪ ΓN)E , then we also have that ΓM ` m� n for no n ∈ (ΓM)V .
Thus we have that ΓM ` m and ΓM ` m � n for no n ∈ (ΓM)V . Since (ΓM B M) is
well-formed by hypothesis, we must have m ∈ nodes(M), from which it follows that
m ∈ nodes(M | N).
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Proof of Proposition 4.4(2): It is sufficient to check that nodes(M) ∩ (N)V = ∅ and nodes(M ‖>
N)∩ (L)V = ∅ if and only if nodes(N)∩ (L)V = ∅ and nodes(M)∩ (N ‖> L)V = ∅. In fact, from this
claim it follows that (M ‖> N) ‖> L is defined if and only ifM ‖> (N ‖> L) is defined; the equality
of these two networks follows from the associativity of both set union and parallel composition of
system terms.

LetM = ΓMBM,N = ΓNBN andL = ΓLBL. We prove the two implications above separately.
Suppose that

(nodes(M) ∩ (ΓN)V ) = ∅ (A.1)
(nodes(M | N) ∩ (ΓL)V ) = ∅ (A.2)

We want to show that nodes(N)∩ (ΓL)V = ∅, and nodes(M)∩ (ΓN ∪ΓL)V = ∅. The former statement
is a straightforward consequence of Equation (A.2), since nodes(N) ⊆ nodes(M | N). The second
statement can be proved as follows: let m ∈ nodes(M). By Equation (A.1) we have that ΓN 0 m,
so that it remains to show ΓL 0 m. This is a trivial consequence of Equation (A.2); in fact, since
m ∈ nodes(M), we also have m ∈ nodes(M | N), and therefore ΓL 0 m.

Now suppose that

(nodes(N) ∩ (ΓL)V ) = ∅ (A.3)
nodes(M) ∩ (ΓN ∪ ΓL)V = ∅ (A.4)

We need to show that nodes(M) ∩ (ΓN)V = ∅, and nodes(M | N) ∩ (ΓL)V = ∅. The first statement is
an immediate consequence of Equation (A.4), by noticing that (ΓN)V ⊆ (ΓN ∪ ΓL)V . For the second
statement, let m be a node such that ΓL ` m. By Equation (A.3) we have that m < nodes(N). Also,
by Equation (A.4) it holds that m < nodes(M); in fact, since ΓL ` m, we also have ΓN ∪ ΓL ` m, and
therefore m < nodes(M). Since m < nodes(M) and m < nodes(N), it follows that m < nodes(M | N),
as we wanted to prove.

Proof of Proposition 4.6: . LetM = ΓMBM be a well-formed network, and assume that nodes(M) ,
∅. That is, there exists a node name m, a state s and a system term N such that M ≡ m~s� | N.

Let G = ΓG B m~s�, where ΓG is defined by

(ΓG)V = {m} ∪ {n ∈ (ΓM)V | ΓM ` m� n} (A.5)
(ΓG)E = {(m, n) | ΓM ` m→ n} ∪ {(n,m) | ΓM ` n→ m}. (A.6)

Let also N = ΓN B N, where ΓN is defined by letting

(ΓN)V = nodes(N) ∪ {n | n , m,ΓM ` m′ � n for some m′ ∈ nodes(N)} (A.7)
(ΓN)E = (ΓM)E \ (ΓG)E (A.8)

We need to show the following facts:
(1) G ∈ G,
(2) N ∈ Nets,
(3) nodes(G) ∩ (N)V = ∅,
(4) (M)V = (G)V ∪ (N)V ,
(5) (M)E = (GE) ∪ (N)E ,
(6) M ≡ m~s� | N.
Each of the statements above is proved separately. Note that (6) follows by the hypothesis.
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Proof of Statement 1: G ∈ G.
First note that | nodes(m~P�)| = 1, so that it suffices to show that G is well-formed. To this
end, we show that G satisfies both the constraints that we have placed over networks and
those given in Definition 4.2.
(1) m~s� ∈ sSys; this is trivial, since no node name can appear more than once in a system

term which contains only one node name
(2) nodes(m~s�) ⊆ (ΓG)V ; this statement follows from the definition of (ΓG)V , Equation

(A.5), which gives that {m} ⊆ (ΓG)V .
(3) (ΓG)E is irreflexive; note that (ΓG)E ⊆ (ΓM)E , and the latter is irreflexive. Therefore,

(ΓG)E has to be irreflexive as well.
(4) Whenever ΓG ` l � k for some nodes l, k, then either l ∈ nodes(m~s�) or k ∈

nodes(m~s�). Equivalently, we prove that whenever ΓG ` l � k for some nodes l, k,
then either l = m or k = m.
Suppose ΓG ` l � k; then either ΓG ` l → k or ΓG ` l ← k. Due to the arbitrariness of
l, k, it is sufficient to consider only the first case.
By Definition of (ΓG)E , Equation (A.6), either (l, k) = (m, n) for some n such that
ΓM ` m → n, or (l, k) = (n,m) for some n such that ΓM ` n → m. In the first case we
obtain l = m, in the second k = m, and there is nothing left to prove.

(5) If ΓG ` n and ΓG ` n � l for no l ∈ (ΓG)V , then n ∈ nodes(m~s�), or equivalently
n = m.
Note that if (ΓG ` n then by Equation (A.5) either n = m, in which case there is nothing
to prove, or ΓM ` m � n. By Equation A.6 we also have that ΓG ` m � n, which
contradicts the hypothesis.

Proof of Statement 2: N ∈ Nets.
We need to show that N satisfies the standard requirements we placed over all networks,
plus the requirements required for a network to be well-formed, that is those listed in Defi-
nition 4.2
(1) N ∈ sSys. By hypothesis we already know that M ∈ sSys, and since M ≡ m~s� | N, it

follows that no node name appears in N more than once.
(2) nodes(N) ⊆ (ΓN)V . This follows immediately from Equation (A.7).
(3) (ΓN)E is irreflexive; this follows since, by Equation (A.8), (ΓN)E ⊆ (ΓM)E; the latter is

irreflexive by hypothesis.
(4) Whenever ΓN ` n� l for some nodes n and l, then either n ∈ nodes(N) or l ∈ nodes(N).

Due to the arbitrariness of node names n, l, it is sufficient to show that the property
holds whenever ΓN ` n → l. Let n, l be two nodes such that ΓN ` n → l. Note that by
Equation (A.8) we have that (ΓN)E ⊆ (ΓM)E; sinceM is well-formed, it follows that
either n ∈ nodes(M) or l ∈ nodes(M).
However, since ΓN ` n → l, we also have that ΓN ` n and ΓN ` l, Equation (A.7) also
ensures that n, l , m.
Thus either n ∈ nodes(M) \ {m} or l ∈ nodes(M) \ {m}; but since M ≡ n~s� | N, and
M ∈ sSys, nodes(M) \ {m} is exactly nodes(N).

(5) if ΓN ` n and ΓN ` n � l for no l ∈ (ΓN)V , then n ∈ nodes(N). By Equation A.7 either
n ∈ nodes(N), in which case there is nothing to prove, or there exists m′ ∈ nodes(N)
such that ΓN ` n � m′. But this last case is not possible, since it contradicts the
hypothesis.

Proof of Statement 3: nodes(G) ∩ (ΓN)V = ∅.
Let n ∈ (ΓN)V ; we need to show that n , m. By Equation A.7 there are two possible cases:
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(1) n ∈ nodes(N), in which case m = n would contradict the hypothesis that M ≡ m~s�|N ∈
sSys, or

(2) n ∈ {l | ; l , m,ΓM ` m′ � l for some m′ ∈ nodes(N)}; again n , m.
Proof of Statement 4: (ΓM)V = (ΓG)V ∪ (ΓN)V .

Note that equations (A.7) and (A.5) ensure that (ΓN)V ⊆ (ΓM)V and (ΓG)V ⊆ (ΓM)V , respec-
tively. Therefore, it is sufficient to show that (ΓM)V ⊆ (ΓG)V ∪ (ΓN)V .

Suppose that ΓM ` n. There are two possible cases:
(1) n ∈ nodes(M); Since M ≡ m~s� |N, either n = m, in which case m ∈ (ΓG)V by Equation

(A.5), or n ∈ nodes(N), in which case n ∈ (ΓN)V by Equation (A.7),
(2) n ∈ Intf(M); since M is well-formed, there exists a node l ∈ nodes(M) such that

ΓM ` l � n. Then either l = m, in which case Equation (A.5) ensures that n ∈ (ΓG)V ,
or l ∈ nodes(N), in which case n ∈ (ΓN)V by Equation (A.7).

Proof of Statement 5: (ΓM)E = (ΓG)E ∪ (ΓN)E .
This follows immediately from Equation (A.8) and the fact that (ΓG)E ⊆ (ΓN)E .

Appendix B. Decomposition and Composition Results

To prove Propositions 5.6 and 5.7, we first need to prove the following statements for actions
which can be derived in the intensional semantics:

Proposition B.1 (Weakening). Let Γ1BM be a network, and let Γ2 be such that(Γ2)V∩nodes(M) = ∅.
Then

Γ1 B M
µ
−→ ∆ implies (Γ1 ∪ Γ2) B M

µ
−→ ∆

where µ ranges over the actions m.τ,m.c!v,m.c?v.

Proof. By structural induction on the proof of the derivation Γ1 B M
µ
−→ ∆.

Proposition B.2 (Strengthening). Let Γ1BM be a network, and let Γ2 such that (Γ2)V ∩nodes(M) =

∅. Then
(Γ1 ∪ Γ2) B M

µ
−→ ∆ implies Γ1 B M

µ
−→ ∆

where µ ranges over the actions m.τ,m.c!v,m.c?v.

Proof. By structural induction on the proof of the transition (Γ1 ∪ Γ2)
µ
−→ ∆.

Proof of Proposition 5.6. Let M = ΓM B M be a network and G = ΓN B n~s� be a generating
network such that (M ‖> G) is defined. We prove only the first statement of Proposition 5.6. The
details for the other statements are similar.

Suppose then that (M ‖> G)
τ
7−−−→ Λ. By definition of extensional actions we have two possible

cases.
(1) (M ‖> G)

m.τ
−→Λ for some m ∈ nodes(M ‖> G) = nodes(M)∪ {n}. We perform a case analysis

on whether m ∈ nodes(M) or m = n.
• If m ∈ nodes(M) then by Proposition 3.3 we have thatM ‖> G ≡ (ΓM ∪ ΓN) B m~τ.p +

t� | M′ | n~s� for some t, p,M′ such that M ≡ m~τ.p + t� | M′ and Λ ≡ (ΓM ∪ ΓN) B
(P(m~p�) |M′ | n~s�). Note that if we let ∆ = (ΓM B P(m~p�) |M′) we can rewrite
Λ as ∆ ‖> n~s�; further, Proposition 3.3 gives that M

m.τ
−→ ∆, which by definition of

extensional actions givesM
τ
7−−−→ ∆.
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• If m = n then by Proposition 3.3 we have that s ≡ τ.p+ t for some p, t, while Λ ≡ (ΓM∪

ΓN) B (M | n~P(p)�). If we let Θ = P(p) we can rewrite Λ = (ΓM B M) ‖> (ΓN B n~Θ�).
Further, by the definition of the rules in the intensional semantics we have that s

τ
−→Θ.

(2) (M ‖> G)
m.c!v
−→ Λ for some m ∈ nodes(M)∪ {n} such that {l | (ΓM ∪ ΓN ` m→ l)} ∩Out(M ‖>

G) = ∅. Again we have to consider two different cases.
• m ∈ nodes(M). By Proposition 3.5 we have that (M ‖> G) ≡ (ΓM ∪ ΓN) B (m~c!〈e〉 .p +

t� |M′ | n~s�) for some e, p, t,M′ such that ~e� = v and M ≡ m~c!〈e〉 .p + t� |M′, while

Λ = (ΓM ∪ ΓG) B P(m~p�) |Λ′ for some Λ′ such that (ΓM ∪ ΓN) B (M′ | n~s�)
m.c?v
−→ Λ′.

It follows from Proposition 3.4 that Λ′ ≡ (ΓM ∪ ΓN) B (∆′ | n~Θ�), where ∆′ and Θ

are such that (ΓM ∪ ΓN) B M
m.c?v
−→ ∆′ and (ΓM ∪ ΓN) B n~s�

m.c?v
−→ n~Θ�). Now we can

apply Proposition B.2 to the transitions (ΓM ∪ ΓN) B m~c!〈e〉 .p + t�
m.τ
−→ P(m~p�) and

(ΓM∪ΓN)BM′
m.c?v
−→ ∆′ to obtain ΓM Bm~c!〈e〉 .p+ t�

m.c!v
−→ P(m~p�) and ΓM BM′

m.c?v
−→ ∆′,

respectively. These two transitions induce, via an application of rule (b-Sync), the

transition ΓM B M
m.c!v
−→ ΓM B P(m~p�) |∆′; let ∆ = ΓM B P(m~p�) |∆′. The extensional

transition induced by the broadcast derived for ΓM BM can be either an internal action
or an extensional broadcast, depending on the topology of ΓM. First note that, since
Out(M ‖> G) ∩ {l |; (ΓM ∪ ΓN) ` m → l} = ∅, we have that Out(M) ∩ {l | ΓM ` m →
l} ⊆ nodes(G) = {n}. Therefore we have two possible cases

– If ΓM ` m 9 n then we have the transition ΓM B M
τ
7−−−→ ∆. Now note that,

since m < (ΓN)V , we also have that (ΓM ∪ ΓN) ` m 9 n. Then the transition

(ΓM ∪ ΓN) B n~s�
m.c?v
−→ n~Θ� could have been derived only via an application of

either Rule (b-deaf) or Rule (b-disc). In both cases we have Θ = s.

– If ΓM ` m→ n then we have that ΓM B M
c!vB{n}
7−−−−−−−→ ∆. In this case the transition

(ΓM ∪ ΓN) B n~s�
m.c?v
−→ n~Θ� could have been derived only via an application of

either Rule (b-rec) or Rule (b-rec). In the first case we have that s
c?v
−→Θ, while

in the second case we obtain that s 6
c?v
−−→ and Θ = s.

Finally, it is now easy to show that Λ = (ΓM ∪ ΓN) B (P(m~p�) |∆′ | n~Θ�) = (ΓM B
P(m~p�) |∆′) ‖> (ΓN B n~Θ�) = ∆ ‖> (ΓN B n~Θ�).
• m = n. In this case we have that {l | (ΓM ∪ ΓN) ` n→ l} ∩ Out(M ‖> G) = Out(G), that

is Out(G) = ∅. By Proposition 3.5 we have that s ≡ c!〈e〉 .p+ t for some e, p, t such that

~e� = v. This ensures that s
c!v
−→ Θ, where Θ = P(p). Further, (ΓM ∪ ΓN) B M

n.c?v
−→ ∆M

for some ∆M such that Λ ≡ (ΓM ∪ ΓN) B (∆M | n~Θ�). By applying Proposition B.2 to

the last transition we obtain ΓM BM
n.c?v
−→ ∆. Whether this intensional transition induces

an extensional one depends on the topology ΓM.

– if n ∈ In(M) then we have the extensional transition ΓM B M
n.c?v
−→ ∆,

– otherwise the transition above does not induce an extensional input. However, in
this case it is easy to show, using Proposition 3.4 that ∆ =M.

Finally, let ∆ = ΓM B∆M. Note that Λ ≡ (ΓM ∪ ΓN)B (∆M | n~Θ�) = ∆ ‖> (ΓN B n~Θ�).

Lemma B.3 (Strong Composition of tau-actions). LetM be a network, and G = (ΓN B n~s�) be a
generating network such thatM ‖> G is well-defined. IfM

τ
7−−−→ ∆ thenM ‖> (ΓN B n~s�)

τ
7−−−→ ∆ ‖>

(ΓN B n~s�).
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Proof. LetM = ΓMBM IfM
τ
7−−−→ ∆; then ∆ = ΓMB∆M for some ∆M. By definition of extensional

tau actions, there are two possibilities:

(1) M
m.τ
−→∆M for some m ∈ nodes(M). By Proposition B.1 we obtain that (ΓM∪ΓN)BM

m.τ
−→∆,

and finally (ΓM ∪ ΓN) B M | n~s�
m.τ
−→ (∆M B )~sn� by Rule (b-tau − prop). Note that

(ΓM ∪ ΓN) B (∆M B )~sn� = ∆ ‖> (ΓN B n~s�);

(2) M
m.c!v
−→∆M, and ΓM ` m→ l for no l ∈ Out(M); in particular ΓM ` m9 n, which also gives

(ΓM ∪ ΓN) ` m9 n. Therefore we can infer the transition (ΓM ∪ ΓN) B n~s�
m.c?v
−→ n~s�. By

Proposition B.1 we have that ΓM BM
m.c!v
−→ ∆M implies (ΓM ∪ ΓN)BM

m.c!v
−→ ∆M. Now we can

apply Rule (b-Sync) to obtain the transition (ΓM∪ΓN)B(M|n~s�)
m.c!v
−→(ΓM∪ΓN)B(∆M |n~s�).

Note that the last network can be rewritten as ∆ ‖> (ΓN B n~s�). Finally, since ΓM ` m → l
for no l ∈ Out(M) and ΓN 0 m, it follows that (ΓM ∪ ΓN) ` n 9 l for any l ∈ Out(M ‖>

(ΓNBn~s�)). Hence we have the extensional transitionM ‖> (ΓNBn~s�)
τ
7−−−→ ∆ ‖> (ΓNBn~s�.

Proof of Proposition 5.7. We only prove statements (1)(i), (2)(i) and (2)(ii); details for the other
statements are similar.

(1) Suppose that ∆
τ
|===⇒ ∆′ and let ΓN , n, s be such that ∆ ‖> (ΓN B n~s�) is well-defined. We

have to show that ∆ ‖> (ΓN B n~s�)
τ
|===⇒ ∆′ ‖> (ΓN B n~s�).

We first prove a weaker result: if ∆
τ
7−−−→ ∆′ then ∆ ‖> (ΓN B n~s�)

τ
7−−−→ ∆′ ‖> (ΓN B n~s�).

To see why this is true, rewrite ∆ as
∑

i∈I pi · Mi, where
∑

i∈I pi ≤ 1. Then there exists a
collection of distributions {∆′i}i∈I such thatMi

τ
7−−−→ ∆′i and ∆′ =

∑
i∈I pi · ∆

′
i . We can apply

Lemma B.3 to each of such transitions to obtainMi ‖> (ΓN B n~s�)
τ
7−−−→ ∆′i ‖> (ΓN B n~s�).

It follows that

∆ ‖> (ΓN B n~s�) =
∑
i∈I

pi · Mi ‖> (ΓN B n~s�)

τ
7−−−→

∑
i∈I

pi · ∆
′
i ‖> (ΓN B n~s�)

= ∆′ ‖> (ΓN B n~s�)

Now suppose that ∆
τ
|===⇒ ∆′. Then there exist two collections if sub-distributions

{∆→k }k≥0 and ∆×k such that ∆′ =
∑∞

k=0 ∆×k and

∆ = ∆→0 + ∆×0

∆→0
τ
7−−−→ ∆→1 + ∆×1

...
...

...

∆→k
τ
7−−−→ ∆→k+1 + ∆×k+1

...
...

...

For any k ≥ 0, let Θ→k = ∆→k ‖> (ΓN B n~s�, and define Θ×k analogously. Note that

Θ→0 + Θ×0 = ∆ ‖> (ΓN B n~s�). Also, from the previous statement we can infer that Θ→k
τ
7−−−→
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(∆→k+1 + ∆×k+1) ‖> (ΓN B n~s�). This last sub-distribution is exactly Θ→k+1 + Θ×k+1. Therefore

we have that ∆ ‖> (ΓN B n~s�)
τ
|===⇒

∑∞
k=0 Θ×k . It remains to note that

∞∑
k=0

Θ×k = Θ×k = ∆×k ‖> (ΓN B n~s�)

=

 ∞∑
k=0

∆×k

 ‖> (ΓN B n~s�)

= ∆′ ‖> (ΓN B n~s�)

(2) Suppose now that ∆
c!vBη
|======⇒ ∆′ for some η with n < η; we have to show that ∆ ‖> (ΓN B

n~s�)
c!vBη
|======⇒ ∆′ ‖> (ΓN B n~s�).

First note that, wheneverM
c!vBη
7−−−−−−→ ∆M, with n < η thenM ‖> (ΓN B n~s�)

c!vBη
7−−−−−−→ ∆ ‖>

(ΓN B n~s�). We leave the proof of this result to the reader. An immediate consequence of

the result above is that whenever ∆
c!vBη
7−−−−−−→ ∆′ and s

c?v
−→ Θ, then ∆ ‖> (ΓN B n~s�)

c!vBη
7−−−−−−→

∆′ ‖> (ΓN B n~s�).

Finally, suppose that ∆
c!vBη
|======⇒ ∆′, where n < η. We proceed by induction on the

definition of weak extensional outputs.

• The base case is ∆
τ
|===⇒ ∆1

c!vBη
7−−−−−−→ ∆2

τ
|===⇒ ∆′; in this case we have that ∆ ‖>

(ΓN B n~s�)
τ
|===⇒ ∆1 ‖> (ΓN B n~s�)

c!vBη
7−−−−−−→ ∆2 ‖> (ΓN B n~s�)

τ
|===⇒ ∆′ ‖> (ΓN B n~s�),

as we wanted to prove.

• Suppose now that ∆
c!vBη1

|=======⇒ ∆1
c!vBη2

|=======⇒ ∆′, where η1 ∩ η2 = ∅ and η1 ∪ η2 = η.
Note that in this case n < η1 and n < η2. By inductive hypothesis we have that ∆ ‖>

(ΓN Bn~s�)
c!vBη1

|=======⇒ ∆1 ‖> (ΓN Bn~s�)
c!vBη2

|=======⇒ ∆′ ‖> (ΓN Bn~s�), and there is nothing
left to prove.

• Suppose that ∆
c!vBη
|======⇒ ∆′ for some η such that {n} ⊂ η. Also, suppose that s

c?v
−→ Θ.

In this case we want to prove that ∆ ‖> (ΓN B n~s�)
c!vBη′

|=======⇒ ∆′ ‖> (ΓN B n~s�),
where η′ = η \ {n}. The proof of these statements relies on the following technical

result, whose proof is left to the reader: if M
c!vBη
7−−−−−−→ ∆′ and s

c?v
−→ Θ, then M ‖>

(ΓN B n~s�)
c!vBη′
7−−−−−−−→ ∆′ ‖> (ΓN B n~Θ�), where η′ = η \ {n}. Then the proof of the

main result can be performed as in the previous case, by noting that if the transition

∆
c!vBη
|======⇒ ∆′ is induced by ∆

c!vBη1

|=======⇒ ∆1
c!vBη2

|=======⇒ ∆′, where η1 ∪ η2 = η and
η1 ∩ η2 = ∅, then it cannot be n ∈ η1 and n ∈ η2. In this case it is necessary to rely on
Proposition 5.7(2)(i), which has already been proved.
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