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Abstract. We present a timed process calculus for modelling wireless networks in which individual
stations broadcast and receive messages; moreover the broadcasts are subject to collisions. Based
on a reduction semantics for the calculus we define a contextual equivalence to compare the external
behaviour of such wireless networks. Further, we construct an extensional LTS (labelled transition
system) which models the activities of stations that can be directly observed by the external environ-
ment. Standard bisimulations in this LTS provide a sound proof method for proving systems contex-
tually equivalence. We illustrate the usefulness of the proof methodology by a series of examples.
Finally we show that this proof method is also complete, for a large class of systems.

1. Introduction

Wireless networks are becoming increasingly pervasive with applications across many domains,
[42, 1]. They are also becoming increasingly complex, with their behaviour depending on ever
more sophisticated protocols. There are different levels of abstraction at which these can be defined
and implemented, from the very basic level in which the communication primitives consist of send-
ing and receiving electromagnetic signals, to the higher level where the basic primitives allow the
initiation of connections between nodes in a wireless system and the exchange of data between them
[52].

Assuring the correctness of the behaviour of a wireless network has always been difficult. Sev-
eral approaches have been proposed to address this issue for networks described at a high level
[38, 33, 17, 16, 49, 27, 7, 10]; these typically allow the formal description of protocols at the
network layer of the TCP/IP reference model [52]. However there are few frameworks in the lit-
erature which consider networks described at the MAC-Sublayer of the TCP/IP reference model
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[28, 34, 8, 54]. This is the topic of the current paper. We propose a process calculus for describing
and verifying wireless networks at the MAC-Sublayer of the TCP/IP reference model.

This calculus, called the Calculus of Collision-prone Communicating Processes (CCCP), has
been largely inspired by TCWS [34]; in particular CCCP inherits its communication features but
simplifies considerably the syntax, the reduction semantics, the notion of observation, and as we
will see the behavioural theory. In CCCP a wireless system is considered to be a collection of
wireless stations which transmit and receive messages. The transmission of messages is broadcast,
and it is time-consuming; the transmission of a message v can require several time slots (or instants).
In addition, wireless stations in our calculus are sensitive to collisions; if two different stations are
transmitting a value over a channel c at the same time slot then a collision occurs; as a result, the
content of the messages originally being transmitted is lost.

More specifically, in CCCP a state of a wireless network (or simply network, or system) will
be described by a configuration of the form Γ .W where W describes the code running at individual
wireless stations and Γ represents the communication state of channels. At any given point of time
there may be exposed communication channels, that is channels containing messages (or values) in
transmission; this information will be recorded in Γ.

Such systems evolve by the broadcast of messages between stations, the passage of time, or
some other internal activity, such as the occurrence of collisions and their consequences. One of
the topics of the paper is to capture formally these complex evolutions, by defining a reduction
semantics, whose judgements take the form Γ1 . W1 _ Γ2 . W2. We show that the reduction
semantics we propose satisfies some desirable time properties such as time determinism, maximal
progress and patience [39, 22, 56].

However the main aim of the paper is to develop a behavioural theory of wireless networks
with time-consuming communications. To this end we need a formal notion of when two such
systems are indistinguishable from the point of view of users. Having a reduction semantics it is
now straightforward to adapt a standard notion of contextual equivalence: Γ1 . W1 ' Γ2 . W2.
Intuitively this means that either system, Γ1 . W1 or Γ2 . W2, can be replaced by the other in a
larger system without changing the observable behaviour of the overall system. Formally, we use
the approach of [23, 45], often called reduction barbed congruence, rather than that of [35]1. The
only parameter in the definition of our contextual equivalence is the choice of primitive observation
or barb; our choice is natural for wireless systems: the ability to transmit on an idle (or unexposed)
channel, that is a channel with no active transmissions.

As explained in papers such as [43, 21], contextual equivalences are determined by so-called
extensional actions, that is the set of minimal observable interactions which a system can have with
its external environment. For CCCP determining these actions is non-trivial. Although values can be
transmitted and received on channels, the presence of collisions means that these are not necessarily
observable. In fact the important point is not the transmission of a value, but its successful delivery.
Also, although the basic notion of observation on systems does not involve the recording of the
passage of time, this has to be taken into account extensionally in order to gain a proper extensional
account of systems.

The extensional semantics determines an LTS (labelled transition system) over configurations,
which in turn gives rise to the standard notion of (weak) bisimulation equivalence between con-
figurations. This gives a powerful co-inductive proof technique: to show that two systems are
behaviourally equivalent it is sufficient to exhibit a witness bisimulation which contains them.

1See page 106 of [47] for a brief discussion of the difference.
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One result of this paper is that weak bisimulation in the extensional LTS is sound with respect
to the touchstone contextual equivalence: if two systems are related by some bisimulation in the
extensional LTS then they are contextually equivalent. In order to show the effectiveness of our
bisimulation proof method we prove a number of non-obvious system equalities. However, the main
contribution of the current paper is that completeness holds for a large class of networks, called well-
formed. If two such networks are contextually equivalent then there is some bisimulation, based on
our novel extensional actions, which contains them. In [34], a sound but not complete bisimulation
based proof method is developed for (a different form of) reduction barbed congruence. Here,
by simplifying the calculus and isolating novel extensional actions we obtain both soundness and
completeness.

We end this introduction with an outline of the paper. In Section 2 we present the calculus
CCCP. More precisely, Section 2.1 contains the syntax of our language; Section 2.2 introduces
the intensional semantics; Section 2.3 provides the reduction semantics; Section 2.4 defines our
touchstone contextually-defined behavioural equivalence for comparing wireless networks.

In Section 3 we address the problem of defining the minimal observable activities of systems.
These are defined as actions of an extensional semantics in Section 3.1, while in Section 3.2 we
consider the bisimulation principle induced by such actions.

In Section 4 we present the main results of the paper. First we prove that our bisimulation proof
technique is sound with respect to the contextual equivalence, Section 4.1. In Section 4.2 we prove
that, for a large class of configurations, called well-formed, our proof technique is also complete.

The usefulness of our bisimulation proof technique is shown in Section 5, where we consider
simple case studies which model common features of wireless networks at the Mac-Layer.

Section 6 concludes the paper with a comparison with the related work.

2. The calculus

As already discusses a wireless system will be represented in our calculus as a configuration of the
form Γ . W, where W describes the code running at individual wireless stations and Γ is a channel
environment containing the transmission information for channels. A possible evolution of a system
will then be given by a sequence of computation steps:

Γ1 . W1 _ Γ2 . W2 _ . . . . . . _ Γk . Wk . . . _ . . . (2.1)

where intuitively each step corresponds to either the passage of time, a broadcast from a station,
or some unspecified internal computation; the code running at stations evolves as a computation
proceeds, but so also does the state of the underlying channel environment. In the following we will
use the meta-variable C to range over configurations.

2.1. Syntax. Formally we assume a set of channels Ch, ranged over by c, d, · · · , and a set of values
Val, which contains a set of data-variables, ranged over by x, y, · · · and a special value err; this value
will be used to denote faulty transmissions. The set of closed values, that is those not containing
occurrences of variables, are ranged over by v,w, · · · . We also assume that every closed value
v ∈ Val has an associated strictly positive integer δv, which denotes the number of time slots needed
by a wireless station to transmit v. Finally, we assume a language of expressions Exp which can
be built from values in Val; we also assume a function ~·�, for evaluating expressions with no
occurrences of data-variables into closed values.

A channel environment is a mapping Γ : Ch → N × Val. In a configuration Γ . W where
Γ(c) = (n, v) for some channel c, there is a wireless station which is currently transmitting the value
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Table 1 CCCP: Syntax

W ::= P station code∣∣∣ c[x].P active receiver∣∣∣ W1 | W2 parallel composition∣∣∣ νc:(n, v).W channel restriction

P,Q ::= c !〈e〉.P broadcast∣∣∣ bc?(x).PcQ receiver with timeout∣∣∣ σ.P delay∣∣∣ τ.P internal activity∣∣∣ P + Q choice∣∣∣ [b]P,Q matching∣∣∣ X process variable∣∣∣ nil termination∣∣∣ fix X.P recursion

Channel Environment: Γ : Ch→ N × Val

v for the next n time slots. We will use some suggestive notation for channel environments: Γ `t c : n
in place of Γ(c) = (n,w) for some w, Γ `v c : w in place of Γ(c) = (n,w) for some n. If Γ `t c : 0 we
say that channel c is idle in Γ, and we denote it with Γ ` c : idle. Otherwise we say that c is exposed
in Γ, denoted by Γ ` c : exp. The channel environment Γ such that Γ ` c : idle for every channel c
is said to be stable. Often we will compare channel environments according to the amount of time
instants for which channels will be exposed; we say that Γ ≤ Γ′ if, for any channel c, Γ `t c : n
implies Γ′ `t c : m, for some m such that n ≤ m.

The syntax for system terms W is given in Table 1, where P ranges over code for programming
individual stations, which is also illustrated in Table 1. A system term W is a collection of individual
threads running in parallel, with possibly some channels restricted.

Each thread may be either an inactive piece of code P or an active code of the form c[x].P.
This latter term represents a wireless station which is receiving a value from the channel c; when
the value is eventually received the variable x will be replaced with the received value in the code
P.

The syntax for station code is based on standard process calculus constructs. The main con-
structs are time-dependent reception from a channel bc?(x).PcQ, explicit time delay σ.P, and broad-
cast along a channel c !〈e〉.P; here the value being broadcast is the one obtained by evaluating e via
the function ~·�, provided that e does not contain any occurrence of data-variables. Of the remaining
standard constructs the most notable is matching, [b]P,Q which branches to P or Q, depending on
the value of the Boolean expression b. Such boolean expressions can be either equality tests of the
form e1 = e2, or terms of the form exp(c), which will be used to check whether channel c is exposed,
that is it is being used for transmission.

In the construct fix X.P occurrences of the recursion variable X in P are bound; similarly in the
terms bc?(x).PcQ and c[x].P the data-variable x is bound in P. This gives rise to the standard notions
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of free and bound variables, α-conversion and capture-avoiding substitution; In a configuration of
the form Γ . W, we assume that W is closed, meaning that all its occurrences of both data-variables
and process variables are bound. In general, we always assume that a system term W is closed,
unless otherwise stated. Sometimes we will need to consider system terms with free occurrences of
process variables, we will explicitly say that they are open system terms. System terms, both open
and closed, are identified up to α-conversion. We assume that all occurrences of recursion variables
are guarded; they must occur within either a broadcast, input residual, timeout branch, time delay
prefix, or within an execution branch of a matching construct. This ensures that recursive calls
cannot be used to build up infinite loops within a time slot

Example 2.1. Consider the configuration

C1 = Γ . S 1 | S 2 | R1

where

S 1 = c !〈v0〉.nil

S 2 = σ.c !〈v1〉.nil

R1 = bc?(x).Pcnil

and Γ is the stable channel environment. Further, we assume that δv0 = 2 and δv1 = 1. This
configuration contains two sender stations, running the code S 1 and S 2, respectively, and a receiving
station, running the code R1. In the first time slot, the station running the code S 1 broadcasts the
value v0 along channel c. The station running the code R1 starts receiving such a value and it will
be busy in receiving it for the next two time slots. In the first time slot the station running the code
S 2 is idle. It is only in the second time slot that this station will broadcast a value along channel c.
At this point the receiving station will be exposed to two transmissions; the transmission of value
v0, which is still in progress, and the transmission of value v1. As a result, a collision happens, and
the value received by the receiver will be at the end error value err.

The formal behaviour of the configuration C1 will be explained in Example 2.17.

We use a number of notational conventions.
∏

i∈I Wi means the parallel composition of all
stations Wi, for i ∈ I. We identify

∏
i∈I Wi with nil if I = ∅. We will omit trailing occurrences of nil,

render νc :(n, v).W as νc.W when the values (n, v) are not relevant to the discussion, and use νc̃.W
as an abbreviation for a sequence c̃ of such restrictions. We write bc?(x).Pc for bc?(x).Pcnil. Finally,
we abbreviate the recursive process fix X.bc?(x).PcX with c?(x).P; as we will see this is a persistent
listener at channel c waiting for an incoming message.

2.2. Intensional semantics. Our first goal is to formally define computation steps among config-
urations of the form Γ1 . W1 _ Γ2 . W2. In order to do that, we first define the evolution of system
terms with respect to a channel environment Γ via a set of SOS rules whose judgements take the

form Γ . W1
λ
−−−→ W2, were λ is an intensional action taking one of the following forms:

(1) c!v, denoting a station starting broadcasting value v along channel c
(2) σ, denoting the passage of one time slot, or time instant
(3) τ, denoting an internal action
(4) c?v, denoting a station in the external environment starting broadcasting value v on channel c.
These actions λ will have an effect also on the channel environment, which we describe by means
of a functional updλ(·) : Env→ Env, where Env is the set of channel environments.
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Table 2 Intensional semantics: transmission

(Snd)
~e� = v

Γ . c !〈e〉.P
c!v
−−−−→ σδv .P

(Rcv)
Γ ` c : idle

Γ . bc?(x).PcQ
c?v
−−−−→ c[x].P

(RcvIgn)
¬rcv(Γ . W, c)

Γ . W
c?v
−−−−→ W

(Sync)
Γ . W1

c!v
−−−−→ W′1 Γ . W2

c?v
−−−−→ W′2

Γ . W1 | W2
c!v
−−−−→ W′1 | W

′
2

(RcvPar)
Γ . W1

c?v
−−−−→ W′1 Γ . W2

c?v
−−−−→ W′2

Γ . W1 | W2
c?v
−−−−→ W′1 | W

′
2

Definition 2.2. [Channel Environment update] Let Γ ∈ Env be an arbitrary channel environment
and c ∈ Ch an arbitrary channel. Let tc and vc be the exposure time and the value transmitted along
channel c in Γ, respectively, that is Γ `t c : tc and Γ `v c : vc. For any intensional action λ, we let
updλ(Γ) be the unique channel environment determined by the following definitions:2

(1) updσ(Γ) `t c : tc − 1 and updσ(Γ) `v c : vc;
(2) for any value v ∈ Val, let updc!v(Γ) be the channel environment such that

updc!v(Γ) `t c :

δv if Γ ` c : idle
max(δv, tc) if Γ ` c : exp

updc!v(Γ) `v c :

v if Γ ` c : idle
err if Γ ` c : exp

and for any channel d, d , c, let updc!v(Γ) `t d : td and updc!v(Γ) `v d : vd;
(3) for any value v, updc?v(Γ) = updc!v(Γ);
(4) updτ(Γ) = Γ.

Let us describe the intuitive meaning of this definition. When time passes, the time of exposure
of each channel decreases by one time unit. The predicates updc!v(Γ) and updc?v(Γ) model how
collisions are handled in our calculus. When a station begins broadcasting a value v over an idle
channel c this channel becomes exposed for the amount of time required to transmit v, that is δv.
If the channel is not idle a collision happens. As a consequence, the value that will be received by
a receiving station, when all transmissions over channel c terminate, is the error value err, and the
exposure time is adjusted accordingly. Finally the definition of updτ(Γ) reflects the intuition that
internal activities do not affect the exposure state of channels.

Let us turn our attention to the intensional semantics of system terms. For the sake of clarity,

the inference rules for the evolution of system terms, Γ . W1
λ
−−−→ W2, are split in four tables, each

one focusing on a particular form of activity.
Table 2 contains the rules governing transmission. Rule (Snd) models a non-blocking broadcast

of a message along channel c. The value v sent by process c !〈e〉.P is the one obtained by evaluating
an expression e; note that here we are assuming that e is closed, hence we can evaluate it to a
closed value via the function ~·�. A transmission can fire at any time, independently on the state
of the network; the notation σδv represents the time delay operator σ iterated δv times. So when
the process c !〈v〉.P broadcasts, it has to wait δv time units (the time required to transmit v) before
the residual P is activated. On the other hand, reception of a message by a time-guarded listener

2For convenience we assume 0 − 1 to be 0.
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bc?(x).PcQ depends on the state of the channel environment. If the channel c is free then rule (Rcv)
indicates that reception can start and the listener evolves into the active receiver c[x].P.

Rule (RcvIgn) states that if a system term W is not waiting for a message along a channel
c, or if c is already exposed, then any broadcast along c is ignored by the configuration Γ . W.
Here rcv(Γ . W, c) is a predicate which evaluates to true in the case that in Γ . W channel c is
not exposed, and W contains among its parallel components at least one non-guarded receiver of
the form bc?(x).PcQ which is actively awaiting a message. Formally, we first define a predicate
rcv(W, c) for open terms, which is then lifted to configurations. For open terms we have rcv(Γ .W, c)
is defined inductively as

rcv(P, c) = false provided P = c !〈e〉.Q, P = τ.Q or P = X
rcv(bd?(x).PcQ, c) = true if and only if d = c

rcv(P + Q, c) = true if and only if rcv(P, c) = true and rcv(Q, c) = true
rcv(fix X.P, c) = true if and only if rcv(P, c) = true

rcv(c[x].P, d) = false always
rcv(W1 | W2, c) = true if and only if rcv(W1, c) = true and rcv(W2, c) = true

rcv(νd.W, c) = true if and only if rcv(W, c) = true, where we assumed , c

Then, for any configuration Γ . W, we let rcv(Γ . W, c) = true if and only if Γ ` c : idle and
rcv(W, c) = true.

The remaining two rules in Table 2 (Sync) and (RcvPar) serve to synchronise parallel stations
on the same transmission [20, 39, 40].

Example 2.3. [Transmission] Let C0 = Γ0 . W0, where W0 = c!〈v0〉 | bd?(x).nilc(bc?(x).Qc) |
bc?(x).Pc, with δv0 = 2, and Γ0 a stable environment.

Using rule (Snd) we can infer Γ0 . c!〈v0〉
c!v0
−−−−−→ σ2; this station starts transmitting the value v0

along channel c. Rule (RcvIgn) can be used to derive the transition Γ0 . bd?(x).nilc(bc?(x).Qc)
c?v0
−−−−−→

bd?(x).nilc(bc?(x).Qc), in which the broadcast of value v0 along channel c is ignored. On the other
hand, Rule (RcvIgn) cannot be applied to the configuration Γ0 .bc?(x).Pc, since this station is waiting

to receive a value on channel c; however we can derive the transition Γ0 . bc?(x).Pc
c?v0
−−−−−→ c[x].P

using Rule (Rcv).
We can put together the three transitions above using the rule (Sync), leading to the transition

C0
c!v
−−−−→ W1, where W1 = σ2 | bd?(x).nilc(bc?(x).Qc) | c[x].P.

Example 2.4. [Ignored Receptions] Consider the configuration C = Γ . c!〈v〉 | bc?(x).PcQ, where
δv = 1 and Γ is such that Γ ` c : exp, say Γ `t c : 1. Using the rules introduced so far we can derive

C
c!v
−−−−→ Γ . σ | bc?(x).PcQ (2.2)

describing the unblocked sending of the value v along the channel c. This can be inferred using

Rule (Sync) from Γ . c!〈v〉
c!v
−−−−→ σ, which can be inferred using Rule (Snd), and the judgement

Γ.bc?(x).PcQ
c?v
−−−−→ bc?(x).PcQ. This latter can be inferred using Rule (RcvIgn), because Γ ` c : exp

means that rcv(Γ . bc?(x).PcQ, c) = false.
In the transition (2.2) above the receiver bc?(x).PcQ ignores the transmission of v along c. One

might have expected it to accept this value. However the channel is already exposed, Γ ` c : exp,
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Table 3 Intensional semantics: timed transitions

(TimeNil)
Γ . nil

σ
−−−→ nil

(Sleep)
Γ . σ.P

σ
−−−→ P

(ActRcv)
Γ `t c : n, n > 1

Γ . c[x].P
σ
−−−→ c[x].P

(EndRcv)
Γ `t c : 1, Γ `v c = w
Γ . c[x].P

σ
−−−→ {w/x}P

(Timeout)
Γ ` c : idle

Γ . bc?(x).PcQ
σ
−−−→ Q

Table 4 Intensional semantics: - internal activity

(RcvLate)
Γ ` c : exp

Γ . bc?(x).PcQ
τ
−−−→ c[x].{err/x}P

(Tau)
Γ . τ.P

τ
−−−→ P

(Then)
~b�Γ = true

Γ . [b]P,Q
τ
−−−→ σ.P

(Else)
~b�Γ = false

Γ . [b]P,Q
τ
−−−→ σ.Q

and thus the receptor can not properly synchronise properly with the sender. We will see later, in
Example 2.7, that a transmission errors actually occurs.

The transitions for modelling the passage of time, Γ . W
σ
−−−→ W′, are given in Table 3. Rules

(TimeNil) and (Sleep) are straightforward. In rules (ActRcv) and (EndRcv) we see that the active
receiver c[x].P continues to wait for the transmitted value to make its way through the network;
when the allocated transmission time elapses the value is then delivered and the receiver evolves
to {w/x}P. Finally, Rule (Timeout) implements the idea that bc?(x).PcQ is a time-guarded receptor;
when time passes it evolves into the alternative Q. However this only happens if the channel c is not
exposed. What happens if it is exposed is explained in Table 4.

Example 2.5. [Passage of Time] Let C1 = Γ1 . W1, where Γ1(c) = (2, v0), Γ1 ` d : idle and
W1 = σ2 | bd?(x).nilcbc?(x).Qc | c[x].P is the system term derived in Example 2.3. We show how
a σ-action can be derived for this configuration. First note that Γ1 . σ

2 σ
−−−→ σ; this transition

can be derived using Rule (Sleep). Since d is idle in Γ1, we can apply Rule (TimeOut) to infer the
transition Γ1 . bd?(x).nilc(bc?(x).Qc)

σ
−−−→ bc?(x).Qc; time passed before a value could be broadcast

along channel d, causing a timeout in the station waiting to receive a value along d. Finally, since
Γ1 `v c : 2, we can use Rule (ActRcv) to derive Γ1 . c[x].P

σ
−−−→ c[x].P.

At this point we can use twice Rule (TimePar) (which is given in Table 5) to infer a σ-action
performed by C1. This leads to the transition C1

σ
−−−→ W2, where W2 = σ | bc?(x).Qc | c[x].P.

Table 4 is devoted to internal transitions Γ . W
τ
−−−→ W′. Let us first explain rule (RcvLate).

Intuitively the process bc?(x).PcQ is ready to start receiving a value on channel c. However if c is ex-
posed this means that a transmission is already taking place. Since the process has therefore missed
the start of the transmission it will receive an error value. Thus the rule (RcvLate) reflects the fact
that in wireless systems a collision takes place if there is a misalignment between the transmission
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and reception of a message. The remaining rules are straightforward. Note that in the matching con-
struct we use a channel environment dependent evaluation function for Boolean expressions ~b�Γ

(note that this has not to be confused with the function ~·�, used to evaluate closed expressions),
because of the presence of the exposure predicate exp(c) in the Boolean language. Formally we
have that ~e1 = e2�Γ = true evaluates to true if and only if ~e1� = ~e2�, and ~exp(c)�Γ = true if and
only if Γ ` c : exp. We remark that checking for the exposure of a channel amounts to listening on
the channel for a value. But in wireless systems it is not possible to both listen and transmit within
the same time unit, as communication is half-duplex, [42]. As a consequence in our intensional
semantics, in the rules (Then) and (Else), the execution of both branches is delayed of one time unit.

Example 2.6. Let Γ2 be a channel environment such that Γ2(c) = (1, v), and consider the configur-
ation C2 = Γ2 . W2, where W2 = σ | bc?(x).Qc | c[x].P has been defined in Example 2.5.

Note that this configuration contains both a receiver process and an active receiver along the
exposed channel c. We can think of the receiver bc?(x).Qc as a process which missed the synchron-
isation with a broadcast which has been previously performed along channel c; as a consequence
this process is doomed to receive an error value.

This situation is modelled by Rule (RcvLate), which allows us to infer the transition Γ2 .

bc?(x).Qc
τ
−−−→ c[x].{err/x}Q. As we will see, Rule (TauPar) which we introduce in Table 5, en-

sures that τ-actions are contextual. This means that the transition derived above allows us to infer
the transition C2

τ
−−−→ W3, where W3 = σ | c[x].{err/x}Q | c[x].P.

Example 2.7. [On rules (RcvIgn) and (RcvLate)] Consider again the configuration C of Example
2.4. Recall that C = Γ . c!〈v〉 | bc?(x).PcQ, where Γ `v c : 1 and δv = 1. In Example 2.4 we have

shown that C
c!v
−−−−→ σ | bc?(x).PcQ, where the proof of the transition contains an application of Rule

(RcvIgn). This transition represents the unblocked transmission of the value v along the channel
c, which also changes the channel environment from Γ to updc!v(Γ). Now consider the resulting
configuration C′ = updc!v(Γ) . σ | bc?(x).PcQ. As updc!v(Γ) ` c : exp we can use Rule (RcvLate)3,
to infer the transition C′

τ
−−−→ σ | c[x].{err/x}P, modelling the expected error in transmission along

channel c due to a collision.
Note also that we could have applied Rule (RcvLate) directly to the initial configuration C =

Γ . c!〈v〉 | bc?(x).PcQ, leading to the transition C
τ
−−−→ c!〈v〉 | c[x].{err/x}P, again reflecting an error

in transmission along the channel c due to the fact that it is already exposed. In fact we have the
transition Γ . W | bc?(x).PcQ

τ
−−−→ W | c[x].{err/x}P, regardless of the form of W. This emphasises

the fact that the inability of the receiver to receive correctly the value being transmitted is because
the channel is already exposed and not because another station is willing to broadcast along it.

Remark 2.8. The previous example together with Example 2.4 shows that there is a delicate inter-
play between the rules (RcvIgn) and (RcvLate), particularly when modelling the effect of an external
broadcast on receivers in the presence of exposed channels. The overall goal of our intensional
semantics is to ensure that it has certain natural properties, such as input-enabledness. This ensures

that for any configuration Γ . W and any c?v there exists some transition Γ . W
c?v
−−−−→ W′. Here W′

records the effect of an external broadcast of v along c has on the configuration; if the broadcast is
actually ignored by all stations in the configuration then W′ will coincide with W. Input-enabledness
also helps us in ensuring that broadcasts are independent of their environment. For example, we re-
quire the configuration (Γ . c!〈v〉 | W) to be able to perform the broadcast of value v along channel
c, regardless of the structure of W, even if c is exposed in Γ. Such a transition can only be inferred

3An application of Rule (TauPar) from Table 5 is also required.
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Table 5 Intensional semantics: - structural rules

(TimePar)
Γ . W1

σ
−−−→ W′1 Γ . W2

σ
−−−→ W′2

Γ . W1 | W2
σ
−−−→ W′1 | W

′
2

(TauPar)
Γ . W1

τ
−−−→ W′1

Γ . W1 | W2
τ
−−−→ W′1 | W2

(Rec)
{fix X.P/X}P

λ
−−−→ W

Γ . fix X.P
λ
−−−→ W

(Sum)
Γ . P

λ
−−−→ W λ ∈ {τ, c!v}

Γ . P + Q
λ
−−−→ W

(SumTime)
Γ . P

σ
−−−→ P′ Γ . Q

σ
−−−→ Q′

Γ . P + Q
σ
−−−→ Γ′ . P′ + Q′

(SumRcv)
Γ . P

c?v
−−−−→ W rcv(Γ . P, c)

Γ . P + Q
c?v
−−−−→ W

(ResI) Γ[c 7→ (n, v)] . W
c!v
−−−−→ W′

Γ . νc:(n, v).W
τ
−−−→ νc:updc!v(Γ)(c).W′

(ResV)
Γ[c 7→ (n, v)] . W

λ
−−−→ W′, c < λ

Γ . νc:(n, v).W
λ
−−−→ νc:(n, v).W

from Rule (Sync) if we we match the output action along channel c performed by the configuration
Γ . c!〈v〉 with an input action performed by Γ .W. Input-enabledness will ensure that the latter input
action is always possible.

In Section 2.2 we will show that our intensional semantics in fact satisfies a number of natural
properties, including input-enabledness; see Lemma 2.9. This would obviously be not true if, by
omitting Rule (Rcvlgn), we were to forbid inputs over exposed channels.

The final set of rules, in Table 5, are structural. Rule (TimePar) models how σ-actions are
derived for collections of threads. Rules (TauPar), (Rec) and (Sum) are standard. Rule (SumTime)
is necessary to ensure time determinism (see Proposition 2.10). Rule (SumRcv) guaranteed that
only effective receptions can decide in a choice process. Finally Rules (ResI) and (ResV) show
how restricted channels are handled. Intuitively moves from the configuration Γ . νc :(n, v).W are
inherited from the configuration Γ[c 7→ (n, v)].W; here the channel environment Γ[c 7→ (n, v)] is the
same as Γ except that c has associated with it (temporarily) the information (n, v). However if this
move mentions the restricted channel c then the inherited move is rendered as an internal action τ,
(ResI). Moreover the information associated with the restricted channel in the residual is updated,
using the function updc!v(·) previously defined. Rules (TauPar), (Sum) and (SumRcv) have their
symmetric counterparts.

In the remainder of this section we illustrate some of the main properties enjoyed by the inten-
sional semantics illustrated in Section 2.2. The contents of this part are purely technical and needed
only for the proofs of the results illustrated later in the paper: they may be safely skipped by the
reader not interested in details.

In broadcast process calculi transmission of a value is usually modelled as a non-blocking
action [40, 34, 10], meaning that all configurations should always be able to receive an arbitrary
value along an arbitrary channel. This is a derived property of our calculus:

Lemma 2.9. [Input enabledness] Let Γ . W be a configuration. Then for any channel c and value v

we have that Γ . W
c?v
−−−−→ W′ for some W′; further

(1) ¬rcv(Γ . W, c) implies W′ = W

(2) rcv(Γ . W, c) implies W′ , W, and for every value w, Γ . W
c?w
−−−−−→ W′.
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Proof. See the Appendix, Page 47.

Our model of time also conforms to a well-established approach in the literature; see for ex-
ample [39, 56]:

Proposition 2.10. [Time Determinism] Suppose C
σ
−−−→ W1 and C

σ
−−−→ W2. Then W1 = W2.

Proof. By induction on the proof of the transition C
σ
−−−→ W1. See the Appendix, Page 49 for details.

Proposition 2.11. [Maximal Progress] Suppose C
σ
−−−→ W1. If λ ∈ {τ, c!v}, for some c and v, then

there is no W2 such that C
λ
−−−→ W2.

Proof. By induction on the proof of the derivation C
σ
−−−→ W1. See the Appendix, Page 49 for

details.

Another important property concerns the exposure state of channel environments. This property
states that non-timed transitions are identified up-to channel environments which share the same set
of idle channels.

Proposition 2.12. [Exposure Consistency] Let Γ1,Γ2 be two channel environments such that Γ1 `

c : exp if and only if Γ2 ` c : exp for every channel c. Then for any system term W and action

λ , σ, Γ1 . W
λ
−−−→ W′ implies Γ2 . W

λ
−−−→ W′.

Proof. By Induction on the proof of the derivation Γ1 . W
λ
−−−→ W′. See the Appendix, Page 50 for

details.

We end our discussion on the intensional semantics with a technical result on the interaction
between stations in systems; this will be useful in later developments.

Proposition 2.13. [Parallel components] Let Γ . W1 | W2 be a configuration.

(1) Γ . W1 | W2
τ
−−−→ W if and only if

• either there is W′1 such that Γ . W1
τ
−−−→ W′1 with W = W′1 | W2

• or there is W′2 such that Γ . W2
τ
−−−→ W′2 with W = W1 | W′2.

(2) Γ . W1 | W2
c?v
−−−−→ W if and only if there are W′1 and W′2 such that Γ . W1

c?v
−−−−→ W′1,

Γ . W2
c?v
−−−−→ W′2 and W = W′1 | W

′
2.

(3) Γ . W1 | W2
c!v
−−−−→ W if and only if there are W′1 and W′2 such that

• Γ . W1
c!v
−−−−→ W′1, Γ . W2

c?v
−−−−→ W′2 and W = W′1 | W

′
2

• or Γ . W1
c?v
−−−−→ W′1, Γ . W2

c!v
−−−−→ W′2 and W = W′1 | W

′
2.

(4) Γ .W1 | W2
σ
−−−→ W if and only if there are W′1 and W′2 such that Γ .W1

σ
−−−→ W′1, Γ .W2

σ
−−−→

W′2 and W = W′1 | W
′
2.

Proof. Details for (3) are given in the Appendix; see Page 50. The other three statements can be
proved similarly.
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2.3. Reduction semantics. We are now in a position to formally define the individual computation
steps for wireless systems, alluded to informally in (2.1) above.

Definition 2.14. [Reduction] We write Γ . W _ Γ′ . W′ if

(i) (Transmission) Γ . W
c!v
−−−−→ W′ for some channel c and value v, where Γ′ = updc!v(Γ)

(ii) (Time) Γ . W
σ
−−−→ W′ and Γ′ = updσ(Γ)

(iii) (Internal) Γ . W
τ
−−−→ W′ and Γ′ = updτ(Γ).

The intuition here should be obvious; computation proceeds either by the transmission of values
between stations, the passage of time, or internal activity; further, the exposure state of channels is
updated according to the performed transition.

Sometimes it will be useful to distinguish between instantaneous reductions and timed reduc-
tions; instantaneous reductions, Γ1 . W1 _i Γ2 . W2, are those derived via clauses (i) or (iii) above;
timed reductions are denoted with the symbol _σ and coincide with reductions derived using clause
(ii). We use the notation Γ . W _i (Γ . W _σ) if there exists Γ′ . W′ such that Γ . W _i Γ′ . W′

(Γ . W _σ Γ′ . W′), and Γ . W 6_i (Γ . W 6_σ) to stress that there is no configuration Γ′ . W′ such
that Γ . W _i Γ′ . W′ (Γ . W _i Γ′ . W′).

Example 2.15. We show how the transitions we have inferred in the Examples 2.3, 2.5 and 2.6
can be combined together to derive a computation fragment for the configuration C0 considered in
Example 2.3.

Let Ci = Γi . Wi, i ∈ 0, .., 2, be as defined in the examples mentioned above. Note that Γ1 =

updc!v0
(Γ0) and Γ2 = updσ(Γ1). We have already shown that C0

c!v0
−−−−−→ W1; this transition, together

with the equality Γ1 = updc!v0
(Γ0), can be used to infer the reduction C0 _i C1. A similar argument

shows that C1 _σ C2. Finally, if we let C3 denote Γ2 .W3 we also have C2 _i C3 since C2
τ
−−−→ W3

and Γ2 = updτ(Γ2).

Example 2.16. [Time-consuming transmission] Consider a wireless system with two stations, that
is a configuration C1 of the form Γ1 . P1 | Q1. Let us suppose

P1 is c !〈w〉.R, Q1 is bc?(x).S cT1

where Γ1 is a stable channel environment and δw = 2. Then

C1 _ C2 (2.3)

where C2 has the form Γ2 . P2 | Q2 and

P2 is σ2.R Q2 is c[x].S Γ2 `t c : 2 Γ2 `v c : w

The move from P1 to P2 is via an application of the rule (Snd), from Q1 to Q2 relies on (Rcv) and

they are combined together using (Sync) to obtain Γ1 . P1 | Q1
c!w
−−−−−→ P2 | Q2. The final step (2.3)

results from (Transmission) in Definition 2.14.
The next step C2 _ C3 = Γ3 . σ.R | Q2 is via (Time) in Definition 2.14; here the only change

to the channel environment is that Γ3 `t c : 1. The inference of the transition

Γ2 . P2 | Q2
σ
−−−→ σ.R | Q2

uses the rules (Sleep), (ActRcv) and (TimePar).
The final move we consider, C3 _ C4 = Γ . R | {w/x}S , is another instance of (Time). However

here the delay action is inferred using (Sleep), (EndRcv) and (TimePar). Thus in three reduction
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steps the value w has been transmitted from the first station to the second one along the channel c,
in two units of time.

Now suppose we change P1 to P′1 = σ.P1, obtaining thus the configuration C′1 = Γ1 . P′1 | Q1.
Then the first step, C′1 _ C′2 is a (Time) step, with C′2 = Γ1 . P1 | T1. Here an instance of the
rule (Timeout) is used in the transition from Q1 to T1. In C′2 the station P1 is now ready to transmit
on channel c, but the second station has stopped listening. The next step depends on the exact
form of T1; if for example rcv(T1, c) is false then by an application of rule (RcvIgn) we can derive
C′2 _ C′3 = Γ2 . P2 | T1. Here the transmission of w along c started but nobody was listening.

Finally, suppose T1 is a delayed listener on channel c, say σ.T2 where T2 is bc?(y).S 2cU2. Then
we have the (Time) step C′3 _ C′4 = Γ3 . σ.R | T2 and now the second station, T2, is ready to
listen. However, as Γ3 ` c : exp, station T2 is joining the transmission too late. To reflect this we
can derive we can derive the (Internal) step

C′4 _ C′5 = Γ3 . σ.R | c[y].{err/y}S 2

using the rules (RcvLate) and (TauPar), among others. At the end of the transmission, in one more
time step, the second station will therefore end up with an error in reception.

In the revised system C′1 = Γ1 . σ.P′1 | Q1 the second station missed the delayed transmission
from P′1. However we can change the code at the second station to accommodate this delay, by
replacing Q1 with the persistent listener Q′1 = c?(x).S . We leave the reader to check that starting
from the configuration Γ1 . σ.P′1 | Q′1 the value w will be successfully transmitted between the
stations in four reduction steps.

Example 2.17. [Collisions] Let us now consider again the configuration C1 = Γ . S 1 | S 2 | R1 of
Example 2.1. In this configuration the station S 1 can perform a broadcast, leading to the reduction
C1 _ C2 = Γ1 . σ

2 | S 2 | c[x].P, the derivation of which requires an instance of the rule (RcvIgn),

Γ.S 1
c?v1
−−−−−→ S 1; here the channel environment Γ1 is defined as updc!v0

(Γ), leading to Γ1(c) = (2, v0).
We can now derive the reduction C2 _ C3 = Γ2 . σ | c!〈v1〉 | c[x].P, where Γ2 = updσ(Γ1) meaning
that Γ2 `t c : 1.

In this configuration the second station is ready to broadcast value v1 along channel c. Since
there is already a value being transmitted along this channel, we expect this second broadcast to
cause a collision; further, since the amount of time required for transmitting value v1 is equal to the
time needed to end the transmission of value v0, we expect that the broadcast performed by the first
station does not affect the amount of time for which the channel c is exposed.

Formally this is reflected in the reduction C3 _ C′3 = Γ′2 . σ | σ | c[x].P. Here the reduction of

the system term uses the sub-inferences Γ2 . σ
c?v1
−−−−−→ σ, Γ2 . c!〈v1〉

c!v1
−−−−−→ σ and Γ2 . c[x].P

c?v1
−−−−−→

c[x].P; the first and the third of these transitions can be derived using Rule (RcvIgn), while the second
one can be derived using Rule (Bcast). Consequently Γ′2 = updc!v1

(Γ2), and since Γ2 ` c : exp we
obtain Γ′2(c) = (1, err); this represents the fact that a collision has occurred, and thus the special
value err will eventually be delivered on c.

At this point we can derive the reductions C′3 _σ C4 = Γ . nil | nil | {err/x}P, meaning that
the transmission along channel c terminates in one time instant, leading the receiving station to
detect a collision. The reduction above can be obtained from the transitions Γ′2 . σ

σ
−−−→ nil and

Γ′2 . c[x].P
σ
−−−→ {err/x}P, obtained via rules (TimeNil) and (EndRcv) presented in Table 3.

Now, suppose we change the amount of time required to transmit value v1 from 1 to 2, and
consider again the configuration C3 above. In this case the transmission of value v1 will also cause a
collision; however, in this case the transmission of value v1 is long enough to continue after that of
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value v0 has finished; as a consequence, we expect that the time required for channel c to be released
rises when the broadcast of v1 happens.

In fact, in this case we have the reduction C3 _ C′′3 = Γ′′2 . σ | σ2 | c[x].P, where Γ′′2 =

updc!v1
(Γ2) and specifically Γ′′2 (c) = (2, err). Now, two time instants are needed for the transmission

along channel c to end, leading to the sequence of (timed) reductions C′′3 _σ_σ C4.

2.4. Behavioural semantics. In this section we propose a notion of timed behavioural equival-
ence for our wireless networks. Our touchstone system equality is reduction barbed congruence
[23, 46, 35, 25], a standard contextually defined process equivalence. Intuitively, two terms are re-
duction barbed congruent if they have the same basic observables, in all parallel contexts, under all
possible computations. The formal definition relies on two crucial concepts, a reduction semantics
to describe how systems evolve, which we have already defined, and a notion of basic observable
which says what the environment can observe directly of a system. There is some choice as to what
to take as a basic observation, or barb, of a wireless system. In standard process calculi this is
usually taken to be the ability of the environment to receive a value along a channel. But the series
of examples we have just seen demonstrates that this is problematic, in the presence of possible col-
lisions and the passage of time. Instead we choose a more appropriate notion for wireless systems,
one which is already present in our language for station code: channel exposure.

Definition 2.18. [Barbs] We say the configuration Γ .W has a strong barb on c, written Γ .W ↓c, if
Γ ` c : exp. We write Γ .W ⇓c, a weak barb, if there exists a configuration C′ such that Γ .W _∗ C′

and C′ ↓c. Note that we allow the passage of time in the definition of weak barb.

Definition 2.19. Let R be a relation over configurations.
(1) R is said to be barb preserving if Γ1 .W1⇓c implies Γ2 .W2 ⇓c, whenever (Γ1 .W1) R (Γ2 .W2).
(2) It is reduction-closed if (Γ1 .W1) R (Γ2 .W2) and Γ1 .W1 _ Γ′1 .W′1 imply there is some Γ′2 .W′2

such that Γ2 . W2 _∗ Γ′2 . W′2 and (Γ′1 . W′1) R (Γ′2 . W′2).
(3) It is contextual if Γ1 . W1 R Γ2 . W2, implies Γ1 . (W1 | W) R Γ2 . (W2 | W) for all processes

W.

With these concepts we now have everything in place for a standard definition of contextual
equivalence between systems:

Definition 2.20. [Reduction barbed congruence], written ', is the largest symmetric relation over
configurations which is barb preserving, reduction-closed and contextual.

In the remainder of this section we explore via examples the implications of Definition 2.20.
The notion of a fresh channel will be important; we say that c is fresh for the configuration Γ . W
if it does not occur free in W and Γ ` c : idle. Note that we can always pick a fresh channel for an
arbitrary configuration.

Example 2.21. Let us assume that Γ ` c : idle. Then it is easy to see that

Γ . c !〈v0〉.P ; Γ . c !〈v1〉.P (2.4)

under the assumption that v0 and v1 are different values. For let T be the testing context

bc?(x).[x = v0]eureka!〈ok〉, nilc
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where eureka is fresh, and ok is some arbitrary value. Then Γ . c !〈v0〉.P | T has a weak barb on
eureka which is not the case for Γ . c !〈v1〉.P | T . Since ' is contextual and barb preserving, the
statement (2.4) above follows.

However such tests will not distinguish between Γ . Q1 and Γ . Q2, where

Q1 = c!〈v0〉 | c !〈v1〉.P and Q2 = c!〈v1〉 | c !〈v0〉.P

assuming that δv0 = δv1 . In both configurations Γ . Q1 and Γ . Q2 a collision will occur at channel c
and a receiving station, such as T , will receive the error value err at the end of the transmission. So
there is reason to hope that Γ . Q1 ' Γ . Q2. However we must wait for for the proof techniques of
the next section to establish this equivalence; see Example 3.5.

The above example suggests that transmitted values can be observed only at the end of a trans-
mission; so if a collision happens, there is no possibility of determining the value that was originally
broadcast. This concept is stressed even more in the following example.

Example 2.22. [Equating values] Let Γ be a stable channel environment, W0 = c!〈v0〉,W1 = c!〈v1〉

and consider the configurations Γ.W0,Γ.W1; here we assume that v0 and v1 are two different values
with possibly different transmission times.

We already argued in Example 2.21 that these two configurations can be distinguished by the
context

bc?(x).[x = v0]eureka!〈ok〉, nilc
However, the two configurations above can be made indistinguishable if we add to each of them

a parallel component that causes a collision on channel c. To this end, let

Eq(v0, v1) = σh.c!〈ok〉

for some positive integer h and value ok such that h < min (δv0 , δv1) and δok ≥ max (δv0 , δv1) − h.
Now, consider the configurations C0 = Γ . W0 | Eq(v0, v1), C1 = Γ . W1 | Eq(v0, v1).

One could hope that there exists a context which is able to distinguish these two configurations.
However, before the transmission of v0 ends in C0, a second broadcast along channel c will fire,
causing a collision; the same happens before the end of transmission of value v1 in C1. Further, the
total amount of time for which channel c will be exposed is the same for both configurations, so that
one can argue that it is impossible to provide a context which is able to distinguish C0 from C1. In
order to prove this to be formally true, we have to wait until the next section.

Collisions can also be used to merge two different transmissions on the same channel in a single
corrupted transmission.

Example 2.23. [Merging Transmissions] Let Γ be a stable channel environment, W0 = c !〈v0〉.c!〈v1〉,
W1 = c !〈v1〉.c!〈v0〉. In Γ.W0 a broadcast of value v0 along channel c can fire; when the transmission
of v0 is finished, a second broadcast of value v1 along the same channel can also fire. The behaviour
of Γ . W1 is similar, though the order of the two values to be broadcast is swapped. Note that it is
possible to distinguish the two configurations Γ . W0 and Γ . W1 using the test

bc?(x).[x = v0]eureka!〈ok〉, nilc

we have already seen in the previous example.
However suppose now that we add a parallel component to both configurations which broad-

casts another value along channel c before the transmission of value v0 (v1) has finished, and which
terminates after the broadcast of value v1 (v0) has begun. More formally, let

Mrg(v0, v1) = σh.c!〈ok〉
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where h = min(δv0 , δv1) − 1 and δok = |δv0 − δv1 | + 2.
Consider the configurations Γ . W0 | Mrg(v0, v1), Γ . W1 | Mrg(v0, v1). In both configurations

a collision occurs; further, once the transmission of value v0 has begun in the former configuration,
channel c will remain exposed until the transmission of value v1 has finished. A similar behaviour
can be observed on the second configuration. This leads to the intuition that Γ .W0 | Mrg(v0, v1) '
Γ′ .W1 | Mrg(v0, v1); we prove this in Example 3.7, for a particular instance of transmission values
for v0, v1.

A priori reductions ignore the passage of time, and therefore one might suspect that reduction
barbed congruence is impervious to the precise timing of activities. But the next example demon-
strates that this is not the case.

Example 2.24. [Observing the passage of time] Consider the two processes Q1 = c!〈v0〉 and Q2 =

σ.Q1, and again let us assume that Γ ` c : idle. There is very little difference between the behaviours
of Γ.Q1 and Γ.Q2; both will transmit (successfully) the value v0, although the latter is a little slower.
However this slight difference can be observed. Consider the test T defined by

[exp(c)]eureka!〈ok〉, nil

In fact, Γ . (Q1 | T ) can start a transmission along channel c, after which the predicate exp(c) will
be evaluated in the system term T . The resulting configuration is given by Γ′ . σδv0 | σ.eureka!〈ok〉;
at this point, it is not difficult to note that the configuration has a weak barb on eureka.

On the other hand, the unique reduction from C2 = Γ . (Q2 | T ) leads to the evaluation of the
exposure predicate exp(c); since Γ ` c : idle the only possibility for the resulting configuration is
given by C′2 = Γ .Q2 | σ. Since eureka is a fresh channel, it is now immediate to note that C′2 6⇓eureka
and hence also C2 6⇓eureka. For the test to work correctly it is essential that Γ ` c : idle. Here we
would like to point out that using the proof methodology developed in Section 3.2 we are able to
show that if Γ′ `t c : n and n > δv0 then Γ′ . Q1 ' Γ′ . Q2.

Behind this example is the general principle that reduction barbed congruence is actually sens-
itive to the passage of time; this is proved formally in Proposition 4.17 of Section 4.2.

Example 2.25. As a final example we illustrate the use of channel restriction. Assume that v1 and
v2 are some kind of values which can be compared via a (total) order relation 4. Consider the
configuration
Γ . νc : (0, ·).(c!〈v1〉 | Pe | R) where the station code is given by

Pe = σ.fix X.([exp(c)]X, c!〈v2〉)
R = c?(x).R1

R1 = c?(y).[y 4 x]d!〈x〉, d!〈y〉

Intuitively the receiver R waits indefinitely for two values along the restricted channel c and broad-
casts the largest on channel d. Intuitively the use of channel restriction here shelters c from external
interference. Assuming Γ ` d : idle we will be able to show that

Γ . νc : (0, ·).(c !〈v1〉.nil | Pe | R) ' Γ . σδv1 +δv2 +2.d !〈w〉.nil

provided w = max(v1, v2).
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Table 6 Extensional actions

(Input)
Γ . W

c?v
−−−−→ W′

Γ . W
c?v
7−→ updc?v(Γ) . W′

(Time)
Γ . W

σ
−−−→ W′

Γ . W
σ
7−→ updσ(Γ) . W′

(Shh)
Γ . W

c!v
−−−−→ W′

Γ . W
τ
7−→ updc!v(Γ) . W′

(TauExt)
Γ . W

τ
−−−→ W′

Γ . W
τ
7−→ Γ . W′

(Deliver)
Γ(c) = (1, v) Γ . W

σ
−−−→ W′

Γ . W
γ(c,v)
7−→ updσ(Γ) . W′

(Idle)
Γ ` c : idle

Γ . W
ι(c)
7−→ Γ . W

3. Extensional Semantics

Proving that two configurations C1 and C2 are barbed congruent can be difficult, due to the contex-
tuality constraint imposed in Definition 2.20. Therefore, we want to give a co-inductive character-
isation of the contextual equivalence ' between configurations, in terms of a standard bisimulation
equivalence over some extensional LTS. In this section we first present the extensional semantics,
then we recall the standard definition of (weak) bisimulation over configurations. We show, by
means of a number of examples, the usefulness of the actions introduced in the extensional se-
mantics.

3.1. Extensional actions. The extensional semantics is designed by addressing the question: what
actions can be detected by an external observer? Example 2.24 indicates that the passage of time
is observable. The effect of inputs received from the external environment also has to be taken
into account. In contrast, the discussion in Example 2.21 indicates that, due to the possibility of
collisions, the treatment of transmissions is more subtle. It turns out that the transmission itself is
not important; instead we must take into consideration the successful delivery of the transmitted
value.

In Table 6 we give the rules defining the extensional actions, C
α
7−→ C′, which can take one of

the forms:

• Input: C
c?v
7−→ C′, this is inherited directly from the intensional semantics

• Time: C
σ
7−→ C′, also inherited from the intensional semantics

• Internal: C
τ
7−→ C′, this corresponds to the combination of the Internal and Transmission

rules from the reduction semantics, in Definition 2.14

• Delivery: C
γ(c,v)
7−→ C′, this corresponds to the successful delivery of the value v which was in

transmission along the channel c

• Free: C
ι(c)
7−→ C, a predicate indicating that channel c is not exposed, and therefore ready to

start a potentially successful transmission.

Remark 3.1. The rules provided in Table 6 guarantee that τ-extensional actions coincide with
instantaneous reductions. In fact, whenever Γ . W _ Γ′ . W′ then either Γ . W

τ
−−−→ W′, and hence

Γ .W
τ
7−→ Γ′ .W′ follows by an application of Rule (ExtTau), with Γ′ = updτ(Γ), or Γ .W

c!v
−−−−→ W′
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and Γ . W
τ
7−→ Γ′ . W′ is ensured by Rule (Shh), with Γ′ = updc!v(Γ). The opposite implication can

be proved analogously.
Similarly, it is easy to check extensional σ-actions coincide with timed reductions: Γ . W _σ

Γ′ . W′ if and only if Γ . W
σ
7−→ Γ′ . W′.

3.2. Bisimulation equivalence. The extensional actions of the previous section endows systems
in CCCP with the structure of an LTS. Weak extensional actions in this LTS are defined as usual,

with C
α
�=⇒ C′ denoting C

τ
7−→∗

α
7−→

τ
7−→∗ C′. We will use C �=⇒ C′ to denote C

τ
7−→∗ C′, and the

formulation of bisimulations is facilitated by the notation C
α̂
�=⇒ C′, which is again standard: for

α = τ this denotes C �=⇒ C′ while for α , τ it is C
α
�=⇒ C′. We now have the standard definition of

weak bisimulation equivalence in the resulting LTS which for convenience we recall.

Definition 3.2. Let R be a binary relation over configurations. We say that R is a bisimulation if for
every extensional action α, whenever C1 R C2

(i) C1
α
7−→ C′1 implies C2

α̂
�=⇒ C′2, for some C′2, satisfying C′1 R C

′
2

(ii) conversely, C2
α
7−→ C′2 implies C1

α̂
�=⇒ C′1, for some C′1, such that C′1 R C

′
2.

We write C1 ≈ C2, if there is a bisimulation R such that C1 R C2.

Our goal is to demonstrate that this form of bisimulation provides a sound and useful proof
method for showing behavioural equivalence between wireless systems described in CCCP; moreover
for a large class of systems it will also turn out to be complete.

The next two examples show that the introduction of the actions ι(c) and γ(c, v) are necessary
for soundness.

Example 3.3. [On the rule (Idle)] Suppose we were to drop the rule (Idle) in the extensional se-
mantics; then consider the configurations

Γ1 . W1 = τ.nil

Γ2 . W2 = c!〈v〉

where Γ1(c) = (1, v), Γ2(c) = (0, ·) and δv = 1.
If we were to drop the actions ι(c) from the extensional semantics then the extensional LTSs

generated by these two configurations would be isomorphic; recall that a broadcast action in the
intensional semantics always corresponds to a τ action in its extensional counterpart. Thus they
would be related by the amended version of bisimulation equivalence.

However, we also have that Γ1.W1 ; Γ2.W2. This can be proved by exhibiting a distinguishing
context. To this end, consider the system T = [exp(c)]nil, eureka!〈ok〉. Then Γ2 .W2 | T has a weak
barb on the channel eureka, which obviously Γ2 . W1 | T can not match.

Example 3.4. [On the rule (Deliver)] Consider the configuration Γ2 .W2 from the previous example;
consider also the configuration Γ2 . W3, where W3 = c!〈w〉 for some value w, different from v, such
that δw = 1. Finally, let T ′ = bc?(x).[x = v]eureka!〈ok〉, nilc. Then, assuming w is different from v,
Γ2 . W3 | T ′ can not produce a barb on eureka. On the other hand, Γ2 . W2 | T ′ can produce such a
barb. It follows that Γ2 . W2 ; Γ2 . W3.

Note also that Γ2 .W3 0 Γ2 .W2, since the (weak) action Γ2 .W3
γ(c,w)
�=⇒ Γ .nil cannot be matched

by Γ2 . W2. However, if we were to drop the rule (Deliver) in the extensional semantics, thereby
eliminating the actions γ(c, v), then it would be straightforward to exhibit a bisimulation containing
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the pair (Γ2 . W3,Γ2 . W2). Thus again the amended version of bisimulation equivalence would be
unsound.

The two examples above show that both rules (Idle) and (Deliver) are necessary to achieve the
soundness of our bisimulation proof method for reduction barbed congruence.

In the remainder of this section we give a further series of examples, showing that bisimulations
in our extensional LTS offer a viable proof technique for demonstrating behavioural equivalence for
at least simple wireless systems.

Example 3.5. [Transmission] Here we revisit Example 2.21. Let Γ be a stable channel environment,
and consider the configurations C0 = Γ . W, C1 = Γ . V , where W = c !〈v0〉.P | c!〈v1〉, V =

c !〈v1〉.P | c!〈v0〉; note that these two configurations are taken from the second part of Example
2.21.

Our aim is to show that C0 ≈ C1, when δv0 = δv1 ; for convenience let us assume that δv0 = δv1 =

1. The idea here is to describe the required bisimulation by matching up system terms. To this end
we define the following system terms:

W0 = σ.P | c!〈v1〉 V1 = σ.P | c!〈v0〉

W1 = c !〈v0〉.P | σ V0 = c !〈v1〉.P | σ
E = σ.P | σ E′ = P | nil

Then for any channel environment ∆ we have the following transitions in the extensional semantics:

∆ . W
τ
7−→ updc!v0

(∆) . W0 ∆ . V
τ
7−→ updc!v0

(∆) . V0

∆ . W
τ
7−→ updc!v1

(∆) . W1 ∆ . V
τ
7−→ updc!v1

(∆) . V1

∆ . W
d?w
7−→ updd?w(∆) . W ∆ . V

d?w
7−→ updd?w(∆) . V

∆ . W
ι(d)
7−→ ∆ . W if ∆ ` d : idle ∆ . V

ι(d)
7−→ ∆ . V if ∆ ` d : idle

∆ . W0
τ
7−→ updc!v1

(∆) . E ∆ . V0
τ
7−→ updc!v1

(∆) . E

∆ . W0
d?w
7−→ updd?w(∆) . W0 ∆ . V0

d?w
7−→ updd?w(∆) . V0

∆ . W0
ι(d)
7−→ ∆ . W0 if ∆ ` d : idle ∆ . V0

ι(d)
7−→ ∆ . V0 if ∆ ` d : idle

∆ . W1
τ
7−→ updc!v0

(∆) . E ∆ . V1
τ
7−→ updc!v0

(∆) . E

∆ . W1
d?w
7−→ updd?w(∆) . W1 ∆ . V1

d?w
7−→ updd?w(∆) . V1

∆ . W1
ι(d)
7−→ ∆ . W1 if ∆ ` d : idle ∆ . V1

ι(d)
7−→ ∆ . V1 if ∆ ` d : idle

Here d ranges over arbitrary channel names, including c.
Then consider the following relation:

S = {(∆ . W,∆ . V), (∆ . W0, ∆ . V0), (∆ . W1,∆ . V1) | ∆ is a channel environment} .

Using the above tabulation of actions one can now show that S is a strong bisimulation; for CSC′

each possible action of C can be matched by C′ by performing exactly the same action, and vice-
versa.

Since (C0,C1) ∈ S, it follows that C0 ≈ C1.
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Table 7 A relation S for comparing the configurations C0,C1 of Example 3.6

∆ . W S ∆ . V
∆ . W0 S ∆ . V0

(∆[c 7→ (1, v0)]) . W0 S (∆[c 7→ (2, v1)]) . V1
(∆[c 7→ (1, err)]) . W0 S (∆[c 7→ (2, err)]) . V1

Λ . Wok S Λ . Vok
∆ . Werr S ∆ . Verr
∆ . W′ S ∆ . V ′

∆ arbitrary channel environment,
Λ arbitrary channel environment such that Λ(c) = (k,w) for some k ≥ 2

Example 3.6. [Equators] Let us consider the configurations C0,C1 of Example 2.22. Recall that
C0 = Γ . W, where W = c!〈v0〉 | σ

h.c!〈ok〉 and C1 = Γ . V , where V = c!〈v1〉 | σ
h.c!〈ok〉; further,

recall that Γ is a stable channel environment and h, ok are a positive integer and a value, respectively,
such that h < min (δv0 , δv1), δok ≥ max (δv0 , δv1) − h. Without loss of generality, for this example we
assume δv0 = 1, δv1 = 2, h = 0 and δok = 2.

For the sake of convenience we define the following system terms:

W0 = σ | c!〈ok〉 V1 = σ2 | c!〈ok〉
Wok = c!〈v0〉 | σ

2 Vok = c!〈v1〉 | σ
2

Werr = σ | σ2 Verr = σ2 | σ2

W′ = nil | σ V ′ = σ | σ
E = nil | nil

Let us consider the relation S depicted in Table 7; note that (C0,C1) ∈ S, so that in order to
prove that C0 ≈ C1 it is sufficient to show that S is a bisimulation. Note that in the relation S the
system terms Wok,Vok are always associated with a channel environment in which the channel c is
exposed. In fact, if Λ were a channel environment such that Λ ` c : idle, it would not be difficult to
prove that Λ . Werr 0 Λ . Verr; this is because the values broadcast by these two configurations are
different.
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Table 8 A relation S for comparing the configurations C0,C1 of Example 3.7

∆ . W S ∆ . V
∆[c 7→ (1,w)] . W0 S ∆[c 7→ (2,w)] . V1

∆[c 7→ (k + 2,w) . W0 S ∆[c 7→ (k + 2,w)] . V1
∆[c 7→ (k + 3,w)]Wok. S ∆[c 7→ (k + 3,w)] . Vok

∆[c 7→ (k + 3, err) . Werr S ∆[c 7→ (k + 3, err)] . Verr
∆[c 7→ (k + 2, err) . W′ S ∆[c 7→ (k + 2, err) . V ′

∆[c 7→ (k + 2, err)] . W1 S ∆[c 7→ (k + 2, err)] . V ′

∆[c 7→ (k + 1, err)] . E′ S ∆[c 7→ (k + 1, err)] . V ′′

∆ arbitrary channel environment, w arbitrary value (possibly err) and k ≥ 0.

Let us list the main the extensional actions from configurations using these system terms:

∆ . W
τ
7−→ (∆[c 7→ (1, v0)]) . W0 if ∆ ` c : idle

∆ . V
τ
7−→ (∆[c 7→ (2, v1)]) . V1 if ∆ ` c : idle

∆ . W
τ
7−→ (∆[c 7→ (2, ok)]) . Wok

∆ . V
τ
7−→ (∆[c 7→ (2, ok)]) . Vok

∆ . W
d?w
7−→ (updd?w(∆)) . W

∆ . V
d?w
7−→ (updd?w(∆)) . V

(∆[c 7→ (1, v0)]) . W0
τ
7−→ (∆[c 7→ (2, err)]) . Werr

(∆[c 7→ (2, v1)]) . V1
τ
7−→ (∆[c 7→ (2, err)]) . Werr

∆ . W0
c?w
7−→ (∆[c 7→ (1, err)]) . W0 if ∆ ` c : exp, δw = 1

∆ . V1
c?w
7−→ (∆[c 7→ (2, err)]) . V1 if ∆ ` c : exp, δw = 1

∆ . W0
c?w
7−→ (∆[c 7→ (δw, err)]) . W0 if ∆ ` c : exp, δw > 1

∆ . V1
c?w
7−→ (∆[c 7→ (δw, err)]) . V1 if ∆ ` c : exp, δw > 1

Λ . Wok
τ
7−→ (updc!v0

(Λ)) . Werr

Λ . Vok
τ
7−→ (updc!v1

(Λ)) . Verr

∆ . Werr
σ
7−→ (updσ(∆)) . W′

∆ . Verr
σ
7−→ (updσ(∆)) . V ′

∆ . W′
σ
7−→ (updσ(∆)) . E

∆ . V ′
σ
7−→ (updσ(∆)) . E

Here ∆,Λ are two arbitrary channel environments, but Λ is subject to the constraint that Λ(c) =

(k,w) for some value w and integer k ≥ 2. This last requirement ensures that (updc!v0
(Λ)) =

(updc!v1
(Λ)). With the aid of this tabulation one can now show that S is indeed a bisimulation

and therefore that C0 ≈ C1.

Example 3.7. [Merging] The last example we provide considers the merging of two transmissions
in a single transmission as suggested in the Example 2.23. Let Γ be a stable channel environment
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and v0, v1 be two values such that δv0 = 1, δv1 = 2. Also let ok be a value such that δok = 3. Consider
the configurations

C0 = Γ . W C1 = Γ . V

where W = c !〈v0〉.c!〈v1〉 | c!〈ok〉 and V = c !〈v1〉.c!〈v0〉 | c!〈ok〉.
Then C0 ≈ C1. As in previous examples, this statement can be proved formally by exhibiting a

bisimulation that contains the pair (C0,C1); to this end, define the following system terms:

W0 = σ.c!〈v1〉 | c!〈ok〉 V1 = σ2.c!〈v0〉 | c!〈ok〉
Wok = c !〈v0〉.c!〈v1〉 | σ

3 Vok = c !〈v1〉.c!〈v0〉 | σ
3

Werr = σ.c!〈v1〉 | σ
3 Werr = σ2.c!〈v0〉 | σ

3

W′ = c!〈v1〉 | σ
2

W1 = σ2 | σ2 V ′ = σ.c!〈v0〉 | σ
2

E′ = σ | σ V ′′ = c!〈v0〉 | σ
E = nil | nil

Consider now the relation S depicted in Table 8; note that C0 S C1. Also, S is a weak bisimulation.
In order to show this, we list the non-trivial transitions for both configurations C0,C1 and their
derivatives, which are needed to perform the proof.

∆[(c 7→ (0, ·)] . W
τ
7−→ ∆[c 7→ (1, v0)] . W0

∆[(c 7→ (0, ·)] . V
τ
7−→ ∆[c 7→ (2, v1)] . V1

∆[c 7→ (0, ·)] . W
τ
7−→ ∆[c 7→ (3, ok)] . Wok

∆[c 7→ (0, ·)] . V
τ
7−→ ∆[c 7→ (3, ok])] . Vok

∆[c 7→ (k, ·)] . W
τ
7−→ ∆[c 7→ (k, err)] . W0 if k > 0

∆[c 7→ (k, ·)] . V
τ
7−→ ∆[c 7→ (2, err)] . V1 if 0 < k ≤ 2

∆[c 7→ (k, ·)] . V
τ
7−→ ∆[c 7→ (k, err)] . V1 if k > 2

∆[c 7→ (k, ·)] . W
τ
7−→ ∆[c 7→ (3, err)] . Wok if 0 < k ≤ 3

∆[c 7→ (k, ·)] . W
τ
7−→ ∆[c 7→ (k, err)] . Wok if k > 3

∆[c 7→ (k, ·)] . V
τ
7−→ ∆[c 7→ (3, err)] . Vok if 0 < k ≤ 3

∆[c 7→ (k, ·)] . V
τ
7−→ ∆[c 7→ (k, err)] . Vok if k > 3

∆ . W
d?v
7−→ updd?v(∆) . W

∆ . V
d?v
7−→ updd?v(∆) . V
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∆[(c 7→ (1, v0)] . W0
τ
7−→ ∆[(c 7→ (3, err)] . Werr

∆[c 7→ (2, v1)] . V1
τ
7−→ ∆[(c 7→ (3, err)] . Verr

∆[c 7→ (k, ·)] . W0
τ
7−→ ∆[c 7→ (3, err)] . Werr if 0 < 3 ≤ k

∆[c 7→ (k, ·)] . V1
τ
7−→ ∆[c 7→ (3, err)] . Verr if 0 < 3 ≤ k

∆[c 7→ (k, ·)] . W0
τ
7−→ ∆[c 7→ (k, err)] . Werr if k > 3

∆[c 7→ (k, ·)] . V1
τ
7−→ ∆[c 7→ (k, err)] . Verr if k > 3

∆ . W0
d?w
7−→ updd?w(∆) . W0

∆ . V1
d?v
7−→ updd?w(∆) . V1

∆[c 7→ (k, ·)] . Wok
τ
7−→ ∆[c 7→ k, ·] . Werr if k > 3

∆[c 7→ (k, ·)] . Vok
τ
7−→ ∆[c 7→ k, ·] . Verr if k > 3

∆ . Wok
d?w
7−→ updd?w(∆) . Wok

∆ . Vok
d?w
7−→ updd?w(∆) . Vok

4. Full abstraction

In this section, we show that the co-inductive proof method based on the bisimulation of the previous
section is sound with respect to the contextual equivalence of Section 2.4; this is the subject of
Section 4.1. Moreover it is complete for a large class of systems. This class is isolated in Section
4.2.1, and the completeness result is then given in Section 4.2.2.

4.1. Soundness. In this section we prove that (weak) bisimulation equivalence is contained in re-
duction barbed congruence. The main difficulty is in proving the contextuality of the bisimulation
equivalence. But first some auxiliary results.

Lemma 4.1. [Update of Channel Environments] If Γ . W �=⇒ Γ′ . W′ then Γ ≤ Γ′.

Proof. See the Appendix, Page 51.

Below we report a result on channel exposure for bisimilarity; a similar result for reduction
barbed congruence will also be proved, in Proposition 4.13.

Lemma 4.2. [Channel exposure w.r.t. ≈] Whenever Γ1 .W1 ≈ Γ2 .W2 then Γ1 ` c : idle if and only
if Γ2 ` c : idle.

Proof. See the Appendix, Page 52
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In order to prove that weak bisimulation is sound with respect to reduction barbed congruence
we need to show that ≈ is preserved by parallel composition.

Theorem 4.3. [≈ is contextual] Suppose Γ1 .W1 ≈ Γ2 .W2. Then for any system term W, Γ1 . (W1 |

W) ≈ Γ2 . (W2 | W).

Proof. Let the relation S over configurations be defined as follows:

{
(
Γ1 . W1 | W , Γ2 . W2 | W) : Γ1 . W1 ≈ Γ2 . W2 }

It is sufficient to show that S is a bisimulation in the extensional semantics. To do so, by symmetry,
we need to show that an arbitrary extensional action

Γ1 . W1 | W
α
7−→ Γ̂1 . Ŵ1 (4.1)

can be matched by Γ2 . W2 | W via a corresponding weak extensional action.
The action (4.1) can be inferred by any of the six rules in Table 6. We consider only one case,

the most interesting one (Shh). So here α is τ and Γ1 . W1 | W
c!v
−−−−→ Ŵ1, for some c and v, and

Γ̂1 = updc!v(Γ). This transition in turn can always be inferred by an application of the rule (Sync), or
its symmetric counterpart, from Table 2. Here we only consider the former case; the proof for the
second case is slightly different, though it uses the same proof strategies illustrated below. For the
case we are considering, we have that

• Γ1 . W1
c!v
−−−−→ W′1

• Γ1 . W
c?v
−−−−→ W′

• Ŵ1 = W′1 | W
′

By an application of rule (Shh) it follows that Γ1 . W1
τ
7−→ Γ̂1 . W′1. Since Γ1 . W1 ≈ Γ2 . W2,

there is Γ′2 .W′2 such that Γ2 .W2 �=⇒ Γ′2 .W′2 and Γ′1 .W′1 ≈ Γ′2 .W′2. Note that Lemma 4.2 ensures
that whenever Γ1 ` d : exp then also Γ2 ` d : exp, for any channel d . Similarly, if Γ̂1 ` d : exp then
Γ̂2 ` d : exp. That is, Γ1 agrees with Γ2 on the exposure state of each channel; the same applies to
Γ̂1 and Γ̂2.

Further, recall that Γ̂1 = updc!v(Γ1). Therefore we have that, for any channel d , c, Γ1 ` d : exp
iff Γ̂1 ` d : exp; for channel c, we have that Γ̂1 ` c : exp. That is, the exposure states of Γ1 and Γ̂1
differ only in the entry at channel c, and only if such a channel was idle in Γ1.

Since Γ1 and Γ̂1 agree with Γ2, Γ̂2, respectively, on the exposure state of each channel, it has
also to be that the exposure states of Γ2 and Γ̂2 differ only at the entry at channel c, and only when
the latter is idle in Γ2; formally Γ2 ` d : exp iff Γ̂2 ` d : exp when d , c, and Γ̂2 ` c : exp.

Next we show that the action Γ1 . W1 | W
τ
7−→ Γ̂1 . W′1 | W

′ can be matched by a weak action
Γ2 . W2 | W �=⇒ Γ̂2 . W′2 | W′. Since Γ̂1 . W′1 ≈ Γ̂2 . W′2, the above statement would imply that
(Γ̂1 .W′1 | W)S (Γ̂2 .W′2 | W), which is exactly what we want to prove. There are two possible cases,
according to whether Γ1 . W is able to detect a value broadcast along channel c:

(1) ¬rcv(Γ1 .W, c). By Lemma 2.9(1), in the transition Γ1 .W
c?v
−−−−→ W′ it must be that W′ = W.

We have to show that the transition Γ2.W2 �=⇒ Γ̂2.W′2 implies that Γ2.W2 | W �=⇒ Γ̂2.W′2 |
W. To this end, we prove a stronger statement: whenever we have a sequence of transitions

Γ0 . V0 τ
7−→ Γ1 . V1 τ

7−→ · · ·
τ
7−→ Γn . Vn
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of arbitrary length n ≥ 0, and such that for any d , c, Γ0 ` d : exp if and only if Γn ` d : exp,
and ¬rcv(Γ0 . W). Then

Γ0 . V0 | W
τ
7−→ Γ1 . V1 | W

τ
7−→ · · ·

τ
7−→ Γn . Vn | W

Further, ¬rcv(Γn . W, c). By choosing Γ0 . V0 = Γ2 . W2 and Γn . Vn = Γ̂2 . W′2 we obtain
that Γ2 . W2 | W �=⇒ Γ̂2 . W′2 | W.

The proof of the aforementioned statement is by induction on n.
(a) If n = 0 then there is nothing to prove.
(b) Let n > 0. By inductive hypothesis we assume that the statement is true for n − 1.

By Lemma 4.1 we know that Γ0 ≤ Γn−1 ≤ Γn. Let d , c; if Γ0 ` d : exp, then
Γn−1 ` d : exp since Γ0 ≤ Γn−1. Conversely, if Γn−1 ` d : exp then Γn−1 ≤ Γn implies
that Γn ` d : exp, and by hypothesis we get that Γ0 ` d : exp.
Therefore we can apply the inductive hypothesis to obtain the sequence of transitions

Γ0 . V0 | W
τ
7−→ Γ1 . V1 | W

τ
7−→ · · ·

τ
7−→ Γn−1 . Vn−1 | W

and infer that ¬rcv(Γn−1 . W, c). Consider now the transition Γn−1 . Vn−1 τ
7−→ Γn . Vn.

There are different ways in which this extensional transition could have been inferred:
• if this transition has been obtained by an application of Rule (TauExt) of Table 6,

then we have that Γn−1 . Vn−1 τ
−−−→ Vn, and Γn = updτ(Γ

n−1). By Rule (TauPar)

we also have that Γn−1 .Vn−1 | W
τ
−−−→ Vn | W, which can now be translated in an

extensional τ-action Γn−1 . Vn−1 | W
τ
7−→ Γn . Vn | W via an application of Rule

(TauExt).
• if the transition has been obtained by an application of Rule (Shh) of Table 6, then

Γn−1 . Vn−1 d!w
−−−−−→ Vn, and Γn = updd!w(Γn−1). Let us perform a case analysis on

the channel d:
– If d = c, then since ¬rcv(Γn−1 . W, c), Lemma 2.9(1) ensures that we have

the transition Γn−1 . W
c?w
−−−−−→ W. Note also that now Γn ` c : exp, so that

it follows ¬rcv(Γn . W, c). Now by applying Rule (Sync) to the transitions

Γn−1 . Vn−1 c!w
−−−−−→ Vn and Γn−1 . W

c?w
−−−−−→ W we obtain Γn−1 . Vn−1 |

W
d!v
−−−−→ Vn | W. The latter can be converted into an extensional τ-transition

Γn−1 . Vn−1 | W
τ
7−→ Γn . Vn | W using Rule (Shh) and the fact that Γn =

updc!w(Γn−1).
– It remains to check the case d , c. First note that if we have Γn−1 ` c : exp

then also Γn ` c : exp (since Γn−1 ≤ Γn), so that ¬rcv(Γn . W, c). On the
other hand, if Γn−1 ` c : idle, we can still prove that ¬rcv(Γn . W, c) via an
induction on the structure of W.4

Finally, note that since Γn = updd!w(Γn−1) implies that Γn ` d : exp. By
hypothesis we get that Γ0 ` d : exp, which leads to Γn−1 ` d : exp (recalling
that Γ0 ≤ Γn−1). Therefore we have that ¬rcv(Γn−1 . W, d), and by Lemma

2.9(1) we obtain that Γn−1 .W
d?v
−−−−−→ W. Now we can proceed as in the case

d = c to infer the extensional transition Γn−1 . Vn−1 | W
τ
7−→ Γn . Vn | W.

(2) Suppose now that rcv(Γ1 . W, c). By Lemma 2.9(2) the transition Γ1 . W
c?v
−−−−→ W′ leads to

W′ , W. Also, in this case we have that Γ1 ` c : idle, which also gives Γ2 ` c : idle by

4Intuitively, we just need to check that there are no unguarded receivers along channel c appearing in W.
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Lemma 4.2. Since we have Γ̂2 ` c : exp, it has to be the case that we can unfold the weak
transition Γ2 . W2 �=⇒ Γ̂2 . W′2 as

Γ2 . W2 �=⇒ Γ
pre
2 . Wpre

2
τ
7−→ Γ

post
2 . Wpost

2 �=⇒ Γ̂2 . W′2

where Γ
pre
2 ` c : idle and Γ

post
2 ` c : exp. Note also that Lemma 4.1 ensures that, for any

channel d , c, Γ2 ` d : exp implies Γ
pre
2 ` d : exp, and Γ

pre
2 ` d : exp implies Γ̂2 ` d : exp,

which by hypothesis leads to Γ2 ` d : exp. Similarly we can show that Γ
post
2 ` d : exp if

and only if Γ̂2 ` d : exp. That is, Γ2,Γ
′
2 agree with Γ

pre
2 ,Γ

post
2 on the exposure state of each

channel, respectively. Now, in a way similar to the first case, we can prove that we have the
following transitions:
• Γ2 . W2 | W �=⇒ Γ

pre
2 . Wpre

2 | W,

• Γ
post
2 . Wpost

2 | W′ �=⇒ Γ̂2 . W′2 | W
′.

so that it remains to show that Γ
pre
2 . Wpre

2 | W
τ
7−→ Γ

post
2 . Wpost

2 | W′. Note that, since

Γ
pre
2 ` c : idle and Γ

post
2 ` c : exp, it has to be the case that the transition Γ

pre
2 . Wpre

2
τ
7−→

Γ
post
2 . Wpost

2 has been induced by the intensional one Γ
pre
2 . Wpre

2
c!w
−−−−−→ Wpost

2 , and

Γ
post
2 = updc!w(Γpre

2 ).

Now note that, since Γ1 .W
c?v
−−−−→W′ we also have that Γ1 .W

c!w
−−−−−→W′ by Lemma 2.9(2).

Finally, note that for any channel c, Γ1 ` d : exp iff Γ2 ` d : exp (as Γ1 . W1 ≈ Γ2 . W2) iff

Γ
pre
2 ` d : exp. By Proposition 2.12 it follows that Γ1 . W

c!w
−−−−−→W′ implies Γ

pre
2 . W

c?w
−−−−−→

W′. We can now apply Rule (Sync) to such a transition, and the transition Γ
pre
2 .Wpre

2
c!w
−−−−−→

Wpost
2 , to infer Γ

pre
2 . Wpre

2 | W
c!w
−−−−−→ Wpost

2 | W′. The last transitions induces the

extensional action Γ
post
2 . Wpost

2 | W′
τ
7−→ Γ

post
2 . Wpost

2 | W′, as we wanted to prove.
We have built the sequence of transitions

Γ2 . W2 | W �=⇒ Γ
pre
2 . Wpre

2 | W
τ
7−→ Γ

post
2 . Wpost

2 | W′ �=⇒ Γ̂2 . W′2 | W
′

which can be synthesised as Γ2 . W2 | W �=⇒ Γ̂2 . W′2 | W
′, which is exactly the transition

that we wanted to derive.

Theorem 4.4. [Soundness] C1 ≈ C2 implies C1 ' C2.

Proof. It suffices to prove that bisimilarity is reduction-closed, barb preserving and contextual.
Reduction Closure: Note that if C1 _ C′1, then we have two possible cases; either C1 _i C

′
1

or C1 _σ C
′
1. If C1 _i C

′
1 then it is not difficult to see that C1

τ
7−→ C′1 (see Remark 3.1).

Similarly, if C1 _σ C
′
1 then C1

σ
7−→ C′1. Since C1 ≈ C2, it follows that there exists C′2 such

that C2 �=⇒ C
′
2 (respectively, C2

σ
�=⇒ C′2) with C′1 ≈ C

′
2. By Remark 3.1 the last transition

can be rewritten as a sequence of reductions C2 _∗
i C

′
2 (respectively, C2 _∗

i _σ_∗
i C

′
2),

from which it follows C2 _∗ C′2,
Barb Preservation: Let C1 = Γ1.W1 and C2 = Γ2.W2. Suppose that C1 ↓ c for some channel

c; by definition we have that Γ − 1 ` c : exp. By Lemma 4.2 we also have that Γ2 ` c : exp.
This ensures that C2 ↓c, and more generally C2 ⇓c.
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Contextuality: contextuality has already been proved as Theorem 4.3.

4.2. Completeness. Having proved soundness, it remains to check whether our bisimulation proof
technique is also complete with respect to reduction barbed congruence; that is, whenever we have
Γ1 . W1 ' Γ2 . W2, then there exists a bisimulation that contains the pair (Γ1 . W1,Γ2 . W2). Unfor-
tunately, this is not true for arbitrary configurations, as shown by the following Example:

Example 4.5. Let Γ1 ` c : exp, Γ1 and Γ2 ` c : idle and consider the two configurations C1 =

Γ1 . νd :(0, ·).(d[x].nil) and C2 = Γ2 . c!〈v〉 | νd :(0, ·).(d[x].nil). Note that both configurations include
an active receiver placed along an idle, restricted channel. The presence of such an active receiver is
somewhat problematic, as it does not allow the passage of time in both configurations, according to
our definition of timed reductions. Indeed, the reader can check that, in the intensional semantics,
no transition

σ
−−−→ is defined for a configuration of the form Γ[d 7→ (0, ·)] . d[x].P; consequently,

σ-transitions are not allowed for the configuration Γ . νd : (0, v).(d[x].P either. Similarly, weak
σ-transitions are note enabled in C2.

Now note that, since any occurrence of channel d is restricted in both C1,C2, we cannot enable
the passage of time for them via the composition with a system term T . That is, for any system term
T , and configuration Ĉ1, Ĉ2, such that C1 | T _∗

i Ĉ1, C2 | T _∗
i Ĉ2, we have that Ĉ1 6_σ and

Ĉ2 6_ σ.
Now it is not difficult to show that C1 ' C2. At least informally, the only difference between

these two configurations lies in the exposure state of channel c, and in the fact that C2 can broadcast
along channel c. Such a broadcast ensures that the strong barb at channel c, enabled in C1, can be
matched by a weak barb enabled at C2. On the other hand, the difference in the exposure state of
channel c in C1,C2 could be detected via a test T which contains an exposure check exp(c); however,
this construct requires the passage of time in order to determine that channel c is free (exposed) in
C1 | T (respectively, C2 | T ). But, as we have already noticed, time is not allowed to pass in such
configurations. Formally, to prove C1 ' C2 it suffices to show that the relation

{ (∆ . νd :(0, ·).(d[x].nil),∆′ . νd :(0, ·).(c!〈v〉 | d[x].P) |
| ∆ ` c : exp,∆ ` d : exp iff ∆′ ` d : exp for d , c }

is barb-preserving, reduction closed and contextual.
Therefore we have shown that C1 ' C2; however, Γ1 ` c : idle, while Γ2 ` c : exp. Therefore,

by Lemma 4.2 it also has to be C1 0 C2.

4.2.1. Well-formed systems. The counterexample to completeness illustrated in Example 4.5 relies
on the existence of configurations which do not let time pass. These can be built by placing an active
receiver along an idle, restricted channel. However, such configurations are not interesting per se,
as it is counter-intuitive to allow wireless stations to receive a value along a channel, when there is
no value being transmitted.

It is interesting, in fact, to ask ourselves if our proof methodology based on bisimulations is
complete, if we were to restrict our focus to a setting where active receivers along idle channels
were explicitly forbidden. These take the name of well-formed configurations, and can be defined
as below:
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Definition 4.6. [Well-formedness] The set of well-formed configurations WNets is the least set such
that

Γ . P ∈WNets for all processes P
Γ ` c : exp implies Γ . c[x].P ∈WNets

Γ . W1,Γ . W2 ∈WNets implies Γ . W1 | W2 ∈WNets
Γ[c 7→ (n, v)] . W ∈WNets implies Γ . νc : (n, v).W ∈WNets

A configuration Γ . W is well-formed if it does not contain any receiving station along an idle
channel. Note that the configurations from Example 4.5 are not well-formed. Clearly, well-formed
configurations are preserved at runtime.

Lemma 4.7. Suppose C is well-formed and C_ C′. Then C′ is also well-formed.

Proof. See the Appendix, Page 52.

The main property of well-formed systems is that they allow the passage of time, so long as all
internal activity has ceased:

Proposition 4.8. [Patience] Let C be a well-formed configuration for which there is no C′ such that
C_i C

′; then C_σ C
′′, for some configuration C′′.

Proof. Details for the most important cases are given in the Appendix; see Page 52.

However, Patience alone does not preclude the possibility of exhibiting a configuration in which
time never passes. In fact, it only ensures the passage of time when instantaneous reduction are not
possible anymore. However, it could be the case that a configuration C enables an infinite sequence
of instantaneous reductions, and by maximal progress (Proposition 2.11) the passage of time would
be forbidden. As we will prove presently, this phenomenon does not arise for CCCP configurations;
we recall in fact that, in recursive processes of the form fix X.P, we require all free occurrences of the
process variable X in P to be guarded by a time-consuming construct. This limitation is sufficient to
prevent the existence of configurations which do not allow time to pass; further, it is also necessary,
as shown by the following example.

Example 4.9. Suppose we remove the constraint in the syntax that process variables have to be
guarded by time-consuming constructs in fixed point processes. Let W denote the code fix X.(τ.X).
Then we have an infinite sequence of internal actions

Γ . W _i C1 _i . . .Ck _i

Indeed one can show that if Γ . W _∗ C′ then C′ _i. Maximal progress then ensures that C′ 6_σ.

Example 4.10. Again, suppose we remove the constraint on guarded recursion in the syntax of
CCCP. Then our bisimulation proof principle would not be complete; to see this, it is sufficient to
consider the two configurations Γ . fix X.(τ.X) and Γ′ . fix X.(τ.X) | c!〈v〉, where Γ ` c : exp and
Γ′ ` c : idle. By Lemma 4.2 these two configurations are not bisimilar, as they differ in the exposure
state of channel c. On the other hand, none of these two configurations allow the passage of time. As
we have already argued in Example 4.5, when the passage of time is not allowed in a configuration,
it is not possible to provide a context that determines the exposure state of a channel. Then it is not
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difficult to show that Γ . fix X.(τ.X) ' Γ′ . fix X.(τ.X) | c!〈v〉. This can be done by simply showing
that the relation

S = {(∆ . fix X.τ.X,∆′ . fix X.τ.X | c!〈v〉), (∆c . fix X.τ.X,∆′c . fix X.τ.X | σδv) |
∆ ` d : exp if and only if ∆′ ` d : exp, d , c,
∆c ` d : exp if and only if ∆′c ` d : exp,with d arbitrary }

is a bisimulation.

Let us state precisely what we mean when we say that infinite sequences of instantaneous re-
ductions are not allowed in our calculus. In practice, we give a slightly stronger definition, requiring
that the amount of instantaneous reductions that can be performed in sequence by a configuration C
is bounded.

Definition 4.11. [Well-timed configurations] A configuration C is well-timed, [32], if there exists
an upper bound k ∈ N such that whenever C (_i)h C′ for some h ≥ 0, then h ≤ k.

Contrarily to well-formedness, which is a simple syntactic constraint, well-timedness means
that the designer of the network has to ensure that the code placed at the station nodes can never
lead to divergent behaviour. As we already argued, however, the constraint we have placed on
the syntax of system terms that each recursive definition is weakly guarded in P, is sufficient to
ensure well-timedness. One simple method for ensuring this is to only use recursive definitions
fix X.P where X is weakly guarded in P; that is, every occurrence of X is within an input, output
or time delay prefix, or it is included within a branch of a matching construct. These are exactly
the conditions that we placed for recursion variables when defining our calculus. Thus, we would
expect every configuration in our calculus to be well-timed.

Proposition 4.12. Any configuration Γ . W is well-timed.

Proof. See the Appendix, Page 53.

Next we prove a very useful result for well-defined configurations; the proof emphasises the
roles of well-formedness and well-timedness in the configurations being tested.

Proposition 4.13. Suppose Γ1 . W1 ' Γ2 . W2, where both are well-formed. Then Γ1 ` c : idle
implies Γ2 ` c : idle.

Proof. Let Γ1 . W1 ' Γ2 . W2 and suppose Γ1 ` c : idle for some channel c. Consider the testing
code:

T = [exp(c)]nil, eureka!〈ok〉
From the definition of ' we know that Γ1 . W1 | T ' Γ2 . W2 | T . Since Γ1 . W1 is well-timed, by
definition there is a configuration C such that Γ1 . W1 _∗

i C and C 6_i. Because Γ1 . W1 is well-
formed so is C. By Proposition 4.8 there is a configuration C′ such that C_σ C

′. Let C′ = Γ′ .W′,
for some Γ′ and W′. Now, if we define C′′ = updeureka!ok(Γ′) .W′ and T ′ = σ.eureka!〈ok〉, it is easy
to see that there exists a sequence of reductions of the following shape:

Γ1 . W1 | T _i Γ1 . W1 | T ′ _∗
i C | T

′ _σ C
′ | eureka!〈ok〉_i C

′′ | σδok

where C′′ | σδok ↓eureka. By definition this implies that Γ1 . W1 | T ⇓eureka.
Note that the existence of the sequence of reductions above relies on the fact that Γ1 . W1 is

well-timed.The timed transition C | T ′ _σ C
′ | eureka!〈ok〉 in such a sequence is derived from the

timed transitions performed by their components; if C were not able to perform a σ-transition, in
fact, we would have not been able to derive the timed reduction for the overall configuration C | T ′.
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Since Γ1 . W1 | T ' Γ2 . W2 | T we also have that Γ2 . W2 | T ⇓eureka. This is only possible if

Γ2 . W2 | T _∗
i Γ′2 . W′2 | T

′ _∗
i _σ_∗

i Γ′′2 . W′′2 | σ
δok

where Γ′2 is a channel environment such that Γ′2 ` c : idle. From Lemma 4.1 (recall that τ-
extensional actions coincide with instantaneous reductions) we get the required Γ2 ` c : idle.

We remark once again that restricting our attention to well-formed configurations is crucial in
order to ensure the validity of Proposition 4.13. In fact, in Example 4.5 we have already provided an
example of two (ill-formed) configurations which are reduction barbed congruent, but which differ
in the exposure state of a channel.

Another important property that we will need from well-formed configurations concerns the
definition of reduction barbed congruence itself; the reduction closure property which we used to
define ' can be strengthened by requiring instantaneous reductions to be matched by sequences
of instantaneous reductions, and timed reductions to be matched by timed reductions, possibly
preceded and followed by sequences of instantaneous ones. To prove this property we will need
the following technical result, which will also be used later:

Lemma 4.14. Suppose Γ1 . W1 | T ' Γ2 . W2 | T where each channel occurring free in T does not
occur free in W1, nor in W2 and is idle in both Γ1 and Γ2; then Γ1 . W1 ' Γ2 . W2.

Proof. See the Appendix, Page 55, for an outline.

Proposition 4.15. Let Γ1.W1,Γ2.W2 be two well-formed configurations such that Γ1.W1 ' Γ2.W2.
Then

(i) whenever Γ1 .W1 _i Γ′1 .W′1 there exists a configuration Γ′2 .W′2 such that Γ2 .W2 _∗
i Γ′2 .W′2,

and Γ′1 . W′1 ' Γ′2 . W′2,
(ii) whenever Γ1 .W1 _σ Γ′1 .W′1 there exists a configuration Γ′2 .W′2 such that Γ2 .W2 _∗

i _σ_∗
i

Γ′2 . W′2, and Γ′1 . W′1 ' Γ′2 . W′2.

Proof. See the Appendix, Page 56.

4.2.2. Proving Completeness. We are now in the position to prove that, for well-formed configur-
ations, our proof methodology is also complete. Given two well-formed configurations C1 ' C2,
there exists a bisimulation S such that C1 S C2.

To prove completeness, we show that reduction barbed congruence is a bisimulation. That is,
we need to show that for any extensional action α, if C1 ' C2 and C1

α
7−→ C′1, then there exists C′2

such that C2
α̂
�=⇒ C′2 and C′1 ' C

′
2. The special cases α = τ and α = σ follow as a direct consequence

of Proposition 4.15. However, we state the results for the sake of consistency.

Proposition 4.16. [Preserving extensional τs] Suppose Γ1 .W1 ' Γ2 .W2 and Γ1 .W1
τ
7−→ Γ′1 .W′1.

Then Γ2 . W2 �=⇒ Γ′2 . W′2 such that Γ′1 . W′1 ' Γ′2 . W′2.

Proposition 4.17. [Preserving extensional σs] Suppose Γ1 .W1 ' Γ2 .W2. Then Γ1 .W1
σ
7−→ Γ′1 .W′1

implies Γ2 . W2
σ
�=⇒ Γ′2 . W′2 such that Γ′1 . W′1 ' Γ′2 . W′2.



MODELLING MAC-LAYER COMMUNICATIONS IN WIRELESS SYSTEMS 31

Let us turn our attention to the remaining cases α ∈ {c?v, ι(c), γ(c, v)}. For each of them we
define a distinguishing context Tα; these are defined so that, given a well-formed configuration C,

C
α̂
�=⇒ C′ if and only if C | Tα _∗ C′ | TXα , where TXα is uniquely determined by the action

α. Intuitively, the latter corresponds to the first state reached by the testing component when it
has detected that the configuration C has performed a weak α-action; the system TXα is called the
successful state for the action α.

The tests Tα are defined below; here we assume that eureka, fail are fresh channels, while
δok = δno = 1.

Tγ(c,v)
def
= νd:(0, ·).(c[x].([x=v]d!〈ok〉, nil) + fail!〈no〉 | σ2.[exp(d)]eureka!〈ok〉, nil)

Tc?v
def
= (c !〈v〉.eureka!〈ok〉 + fail!〈no〉)

Tι(c)
def
= ([exp(c)]nil, eureka!〈ok〉) + fail!〈no〉.

We also list their respective successful states TXα :

TXγ(c,v)
def
= νd:(0, ·).(σ.d!〈ok〉nil | σ.[exp(d)]eureka!〈ok〉, nil)

TXc?v
def
= (σδv .eureka!〈ok〉)

TXι(c)
def
= σ.eureka!〈ok〉

As an example we consider in detail the behaviour of the testing context Tγ(c,v). This is de-
signed to detect whether a configuration Γ . W has performed a weak γ(c, v)-action. Let us discuss
informally how the testing context Tγ(c,v) operates. The fresh channels eureka, fail play a different
role: fail ensures that the reception along channel c has finished, while eureka guarantees that the
received values is actually v.

We provide a possible evolution of the testing contexts Tγ(c, v) when running in a channel
environment Γ such that Γ(c) = (1, v), and then we discuss how it works.

Γ . Tγ(c,v)
_σ Γ1 . T1 = Γ′1 . νd:(0, ·).(([v=v]d!〈ok〉, nil) + fail!〈no〉 |

| σ.[exp(d)]eureka!〈ok〉, nil)
_i ΓX . TX = Γ2 . νd:(0, ·).(σ.d!〈ok〉 | σ.[exp(d)]eureka!〈ok〉, nil)
_σ Γ3 . T3 = Γ3 . νd:(0, ·).(d!〈ok〉 | [exp(d)]eureka!〈ok〉, nil)
_i Γ4 . T4 = Γ4 . νd:(1, ok).(σ | [exp(d)]eureka!〈ok〉, nil)
_i Γ5 . T5 = Γ5 . νd:(1, ok).(σ | σ.eureka!〈ok〉)
_σ Γ6 . T6 = Γ6 . νd:(0, ·).(nil | eureka!〈ok〉)

Initially a configuration of the form Γ . W | Tγ(c,v) has a weak barb at channel fail. Further, the
testing component has an active receiver over channel c; note that the configuration Γ . W | Tγ(c,v)

is well-formed only if Γ ` c : exp. If Γ . W | Tγ(c,v)
γ(c,v)
�=⇒ Γ1 . W′, that is if Γ(c) = (1, v), then after

time passes the reception along channel c in the testing component Tγ(c,v) terminates. Formally, we
have the sequence of reductions Γ .W | Tγ(c,v) _∗

i _σ_∗
i Γ1 .W′ | T1. Note that the component T1

compares the received value along channel c with v; this test can only succeed, and as a consequence
we obtain a further instantaneous reduction Γ1 .W′ | T1 _i ΓX .W′ | TX; In practice here we have
ΓX = Γ1). At this point we have detected that the configuration Γ1 . W1 has performed the weak
γ(c, v)-action, ending in Γ1 . W′. The rest of the computation is already determined, at least for
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the part concerning the testing component T1, and leads ΓX . W′ | TX to output a barb on eureka;
further, in this configuration it is not possible to output a barb on fail anymore.

To see why this is true, note that in ΓX . W′ | TX the testing component TX is waiting for time
to pass, before broadcasting value ok along a restricted channel d. Formally, we have the sequence
of reductions ΓX . W′ | TX _∗

i _σ Γ3 . W3 | T3 _i Γ4 . W4 | T4, where ΓX . W′ _∗
i Γ2 . W2

and W3 = W4 (note that each instantaneous reduction performed by the tested component does not
affect the test at this point).

Finally, in Γ4 . W4 | T4 the test checks whether the restricted channel d is exposed. As this
channel is effectively restricted in T4, the test can only succeed, leading to Γ4 .W4 | T4 _i Γ5 .W5 |

T5, where Γ5 = Γ4 and W5 = W4. At this point we can let time pass, via a sequence of reductions of
the form Γ5 . W5 | T5 _∗

i _σ_∗
i Γ6 . W6 | T6. Now it is trivial to see that this configuration has a

barb on eureka.
Note that in the computation of Γ .W | Tγ(c,v) discussed above, there are two crucial checks that

lead to enabling a barb over channel eureka:
• The received value is exactly v,
• The check that a broadcast along the restricted channel d is performed after two time in-

stants. Since the broadcast along channel d is performed only one time instant after value
v has been delivered, this check ensures that such a value has been actually delivered after
one time instant.

Proposition 4.18. [Detecting Inputs] For any well-formed configuration Γ.W we have that Γ.W
c?v
�=⇒

Γ′ . W′ if and only if Γ . W | Tc?v _∗
i Γ′ . W′ | TXc?v.

Proof. See the Appendix, Page 57.

Proposition 4.19. [Detecting Exposure Checks] For any well-formed configuration Γ . W we have

that Γ . W
ι(c)
�=⇒ Γ′ . W′ if and only if Γ . W | Tι(c) _∗

i Γ′ . W′ | TXι(c).

Proof. See the Appendix, Page 58.

Proposition 4.20. [Detecting Delivery of Values] For any well-formed configuration Γ .W we have

that Γ . W
γ(c,v)
�=⇒ Γ′ . W′ if and only if Γ . W | Tγ(c,v) _∗

i _ σ _∗
i Γ′ . W′ | TXγ(c,v).

Proof. See the Appendix, Page 59.

Note that in Propositions 4.18, 4.19 and 4.20, we emphasized whether the reductions needed to
reach the successful configuration Γ . W′ | TXα from Γ . W | Tα are instantaneous or timed.

We have stated all the results needed to prove completeness.

Theorem 4.21. [Completeness] On well-defined configurations, reduction barbed congruence im-
plies bisimilarity.

Proof. It is sufficient to show that the relation

S
def
= {

(
Γ1 . W1 , Γ2 . W2

)
: Γ1 . W1 ' Γ2 . W2}

is a bisimulation. To do so, suppose that Γ1 . W1 _ Γ2 . W2, and that Γ1 . W1 ' Γ2 . W2. If α = τ
or α = σ, the result follows directly from propositions 4.16 and 4.17, respectively.

Now suppose that α = γ(c, v) for some channel c and value v. Let Γ1 . W1
γ(c,v)
7−→ Γ′1 . W′1; by

Proposition 4.20 it follows that Γ1 . W1 | Tγ(c,v) _∗
i _σ_∗

i Γ′1 . W′1 | T
X
γ(c,v). By the contextuality of

reduction barbed congruence, and by Proposition 4.15, it follows that Γ1 .W2 | Tγ(c,v) _∗
i _σ_∗

i C2



MODELLING MAC-LAYER COMMUNICATIONS IN WIRELESS SYSTEMS 33

for some C2 such that Γ′1 . W′1 | TXγ(c,v) ' C2. Let C2 = Γ′2 . Ŵ2; note that Γ′1 ` eureka : idle
(recall that we assumed that eureka is a fresh channel), so that by Proposition 4.13 it follows that
Γ′2 ` eureka : idle. Further, Γ′1.W

′
1 | T

X
γ(c,v) ⇓eureka and Γ′1.W

′
1TXγ(c,v) 6⇓fail; therefore, we also have that

Γ′2 . Ŵ2 ⇓eureka and Γ′2 . Ŵ2 6⇓fail. Now, by inspecting all the possible evolutions of the configuration
Γ2 . W2 | Tγ(c,v) it follows that the sequence of reductions Γ1 . W2 | Tγ(c,v) _∗

i _σ_∗
i Γ′2 . Ŵ2,

where Γ′2 ` eureka : idle, Γ′2 . Ŵ2 ⇓eureka and Γ′2 . Ŵ2 6⇓fail, is possible only if Ŵ2 = W′2 | TXγ(c,v).

Consequently, Proposition 4.20 ensures that Γ2 . W2
γ(c,v)
�=⇒ Γ′2 . W′2.

We also need to show that Γ′1 . W′1 ' Γ′2 . W′2; but this follows immediately from Lemma 4.14
and the fact that Γ′1 . W′1 | T

X
γ(c,v) ' Γ′2 . W′2 | T

X
γ(c,v).

It remains to check the cases α = c?v and α = ι(c); these can be proved analogously to the
previous case, using proposition 4.18 and 4.19, respectively, in lieu of Proposition 4.20.

5. Applications

In this section, we show how our calculus CCCP can be used to model different interesting beha-
viours which arise at the MAC sub-layer [26] of wireless networks. Then, we exploit our bisimu-
lation proof technique to provide examples of behaviourally equivalent networks. In particular we
give some examples comparing the behaviour of routing protocols and Time Division Multiplexing.

We start with some simple examples. The first show that stations which do not transmit on
unrestricted channels can not be detected. To this end we use fsn(W) to denote the set of unrestricted
channel names in the code W which have transmission occurrences. Formally fsn(W) is defined
inductively on (a possibly open system term) W as the least set such that

fsn(nil) = fsn(X) = ∅

fsn(!〈c〉.vP) = {c} ∪ fsn(P)
fsn(τ.P) = fsn(σ.P) = fsn(c[x].P) = fsn(fix X.P) = fsn(P)

fsn(P + Q) = fsn([b]P,Q) = fsn(bc?(x).PcQ) = fsn(P) ∪ fsn(Q)

fsn(W1 | W2) = fsn(W1) ∪ fsn(W2)
fsn(νc : (n, v).W) = fsn(W1) \ {c}

Example 5.1. [Unobservable systems] Consider a wireless system in which no station can broadcast
on any free channel. Intuitively none of its behaviour should be observable. In CCCP this means
that the system should be behaviourally equivalent to the empty system nil. f

Formally consider the configuration Γ . nil where Γ is an arbitrary channel environment. This
configuration has non-trivial extensional behaviour. For example it is input enabled, and so can
perform all extensional actions of the form c?v. It can also perform σ actions, indicating the passage
of time.

Now let W be arbitrary station code such that fsn(W) = ∅, that is it can not broadcast on any
free channel. The configuration Γ . W has similar behaviour. Indeed let S be the relation

{(Γ . W, Γ . nil) | fsn(W) = ∅}

Then it is straightforward to show that S is a strong bisimulation in the extensional LTS. Our sound-
ness result therefore ensures that

Γ . W ' Γ . nil
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whenever fsn(W) = 0.

Next we consider what happens when a channel becomes permanently exposed. This situation
can be modelled by using two stations s0, s1 which repeatedly send a value along channel c; each
broadcast performed by s1 takes place before the transmission of s0 ends, and vice versa. In this case
we say that the channel c is corrupted. Clearly, if a system transmits only on corrupted channels;
then it cannot be detected. Let us see how this scenario is reflected in our behavioural theory.

Example 5.2. [Noise obfuscates transmissions] Let v be a value such that δv = 2 and let Snd(c)
denote the code fix X.c !〈v〉.X, which continually broadcasts an arbitrary value v along c. To model
the two stations s0 and s1 discussed informally above we use the code Noise(c) = Snd(c) | σ.Snd(c).

Then, consider a configuration Γ . W such that fsn(W) ⊆ {c}; that is does not transmit on free
channels different from c. Then

Γ . W | Noise(c) ' Γ . Noise(c)

To prove this, it is sufficient to exhibit bisimulation containing the pair of configurations (Γ . W |

Noise(c), Γ . Noise(c)).
We use the following abbreviations:

Noise′(c) = σ2.Snd(c) | σ.Snd(c)

Noise′′(c) = σ.Snd(c) | Snd(c)

Noise′′′(c) = σ.Snd(c) | σ2.Snd(c)

Then let S denote the following set of pairs of configurations:

{(∆ . W | Noise(c) , ∆′ . Noise(c)),
(∆ . W | Noise′(c) , ∆′ . Noise′(c)),
(∆ . W | Noise”(c) , ∆′ . Noise′′(c)),
(∆ . W | Noise”’(c) , ∆′ . Noise′′′(c)) |

∆,∆′ ` c : exp, fsn(W) ⊆ {c} }

Then it is possible to check thatS is a weak bisimulation in the extensional LTS. At least intuitively,
this is because in the extensional LTS all outputs fired along the obfuscated channel c corresponds
to internal actions; further, in the configurations included in S, channel c is never released, so that
neither ι(c)-actions nor γ(c, v)-actions can be performed by any configuration included in S.

The Carrier Sense Multiple Access (CSMA) scheme [24] is a widely used MAC-layer protocol
in which a device senses the channel (physical carrier sense) before transmitting. More precisely,
if the channel is sensed free the sender starts transmitting immediately, that is in the next instant of
time5; if the channel is busy, that is some other station is transmitting, the device keeps listening to
the channel until it becomes idle and then starts transmitting immediately. This strategy is called
1-persistent CSMA and can be easily expressed in our calculus in terms of the following process:

c!!〈v〉.P = fix X.[exp(c)]X, c !〈v〉.P

So, by definition CSMA transmissions are delayed whenever the channel is busy.
In the next example we prove a natural property of CSMA transmissions.

Example 5.3. [Delay in CSMA broadcast] Suppose Γ `t c : n for some n > 0. Then, for any
k ≤ n + 1

Γ . c!!〈v〉.P ' Γ . σk.c!!〈v〉.P (5.1)

5Recall that in wireless systems channels are half-duplex.
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Table 9 A simple topology for a network

s r

s r

e

N0 N1

.

Intuitively, since Γ `t= n, the transmission of value v in Γ . c!!〈v〉.P can take place only after at least
n instants of time. The same happens in Γ . σk.c!!〈v〉.P.

Formally, to prove (5.1) we need to exhibit a bisimulation S which contains all pairs of the
form (Γ . c!!〈v〉.P, σk.c!!〈v〉.P), where Γ is such that Γ `t: n > 0 for some n satisfying k ≤ (n + 1).
One possible S takes the form R∪Id where Id is the identity relation over configurations and R is
given by:

R = {(∆n . c!!〈v〉.P,∆n . σ
h.c!!〈v〉.P) | ∆n `t c : n, h ≤ n}

In our calculus the network topology is assumed to be flat. However, we can exploit the pres-
ence of multiple channels to model networks with a more complicated topological structure. The
idea is to associate a particular channel with a collection of stations which are in the same neigh-
bourhood.

Example 5.4. [Network Topology] Suppose that we want to model a network with two stations s,
r with the following features:

• the range of transmission of s is too short to reach external agents,
• the station r is in the range of transmission of s,
• the range of transmission of r is long enough to also reach external agents.

A graphical representation of the network we want to model is given as N0 of Table 9. We can
model this network topology by using a specific restricted channel, say d, for the local communic-
ation between stations s and r. In CCCP a wireless system running on N0 would therefore take the
form

C0 = Γ . νd : (0, ·).(S | R)

where
• S represents the code running at station s; it can therefore only broadcast and receive along

the restricted channel d (recall that we do not want station s to be able to communicate
directly with the external environment)
• R represents the code running at station r; it can only receive values along the restricted

channel d (since in N0 station r can receive messages broadcast by station r, but not by the
external environment), while it is free to broadcast on other channels (since station r is able
to broadcast messages to the external environment)

As a specific example we could let S denote the single broadcast d!〈v〉, and R = fix X.bd?(x).c!〈x〉cX.
Then in the configuration C0 the station s broadcasts as a value and station r acts as a forwarder;
this behaviour is reminiscent of range repeaters in wireless terminology.

Suppose now that we want to add a second station e to the above network topology, so that
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• broadcasts from e can be detected by r; this can be accomplished by allowing the process
used to model station e to broadcasts along a restricted channel d.
• broadcasts from e can not reach s, nor the external environment. For this to be true, it is

sufficient to require that the process which models the behaviour of station e can broadcast
values only along the restricted channel d; further, in order for ensuring that the station e
cannot detect values broadcast by s, we require that the process used to represent station e
does not use receivers along channel d.

The network topology we wish to model is depicted as N1 in Table 9 and so a wireless system
running on this network takes the form

C1 = νd :(0, ·).(S | R | E)

where E is the code running at station e. As an example we could take E to be the faulty code
d!〈v〉 + τ.nil.

Then in C1 station r still acts as a forwarder for station s; however station e can non-
deterministically decide whether to corrupt the transmission from node s to r, causing a collision.

Let us assume that the transmission time of the value used in these networks, v, satisfies δv =

δerr. Then we can show

C0 ' Γ . σδv .c!〈v〉

C1 ' Γ . τ.σδv .c!〈v〉 + τ.σδv .c!〈err〉

Intuitively the reasons for these equivalences are obvious. The transmission along channel d is
restricted in C0, so it cannot be observed by the external environment. The only activity which can
be observed is the broadcast of value v along channel c, which takes place after δv instants of time.
For C1, a collision can happen along channel d, which is again restricted; the only activity that can
be detected by the external environment is a transmission which takes place after δv instants of time.
Such a transmission will contain either the value v or an error message of length δv.

The formal proof of these identities involves exhibiting two bisimulations, containing the rel-
evant pairs of configurations. Here we exhibit a bisimulation for showing that C1 ' Γ . τ.σδv .c!〈v〉.
For the sake of simplicity, let δerr = δv = 1 and define the system terms

W = νd : (0, ·).(S | E | R) Ws = νd : (1, v).(σ | E | c[x].c!〈x〉)
We = νd : (1, err).(S | σ | c[x].c!〈x〉) W′ = νd : (0, ·).(S | nil | R)
W′′ = νd : (1, err).(σ | σ | c[x].c!〈x〉) Wok = νd : (0, ·).(nil | nil | c!〈v〉)
Werr = νd : (0, ·).(nil | nil | c!〈err〉) Wc = νd : (0, ·).(nil | nil | σ)

Then it is easy to show that the relation

S = { (∆ . W , ∆ . τ.σ.c!〈v〉 + τ.σ.c!〈err〉) ,
(∆ . Ws , ∆ . τ.σ.c!〈v〉 + τ.σ.c!〈err〉) ,
(∆ . We , ∆ . σ.c!〈err〉) ,
(∆ . W′ , ∆ . σ.c!〈v〉) ,
(∆ . W′′ , ∆ . σ.c!〈err〉) ,
(∆ . Wok , ∆ . c!〈v〉) ,
(∆ . Werr , ∆ . c!〈err〉) ,
(∆ . Wc , ∆ . σ)

| ∆ arbitrary channel environment }

is a weak bisimulation.
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Table 10 Two transmitting stations using different time slots to broadcast values

!v0
0 σ !v1

0 σ

s0

σ !v0
1 σ !v1

1

s1

?x σ ?y σ

r0

σ ?x σ ?y

r1

d d

The next example shows how the TDMA modulation technique [52] can be described in CCCP.
Time Division Multiple Access (TDMA) is a type of Time Division Multiplexing, where instead of
having one transmitter connected to one receiver, there are multiple transmitters. TDMA is used in
the digital 2G cellular systems such as Global System for Mobile Communications (GSM). TDMA
allows several users to share the same frequency channel by dividing the signal into different time
slots. The users transmit in rapid succession, one after the other, each using his own time slot.
This allows multiple stations to share the same transmission medium (e.g. radio frequency channel)
while using only a part of its channel capacity.

As a simple example let us describe how two messages v0 and v1 can be delivered in TDMA
style; for simplicity, we assume δv0 = δv1 = 2. The main idea here is to split each of these values
into two packets of length one, transmit the packets individually, which will then be concatenated
together before being forwarded to the external environment. So let us assume values v0

0, v
1
0, v

0
1, v

1
1,

each of which requires one time instant to be transmitted, and a binary operator ◦ for composing
messages such that

v0
0 ◦ v1

0 = v0

v0
1 ◦ v1

1 = v1

v ◦ err = err ◦ v = err

where v is an arbitrary value; in this case we assume that δerr = 2.
More specifically, for this example we assume four different stations, s0, s1, r0, r1, running the

code Ŝ 0, Ŝ 1, R̂0, R̂1 respectively. The network we consider for modelling the TDMA transmission
is then given by

C0 = Γ . νd :(0, ·)
(
Ŝ 0 | Ŝ 1 | R̂0 | R̂1

)
where

Ŝ 0 = d !〈v0
0〉.σ.d!〈v1

0〉

Ŝ 1 = σ.d !〈v0
1〉.σ.d!〈v1

1〉

R̂0 = bd?(x).σ.bd?(y).σ.c!〈x ◦ y〉cc

R̂1 = σ.bd?(x).σ.bd?(y).σ2.c!〈x ◦ y〉cc
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Table 11 Forwarding two messages to the external environment

s0

s1 r

The intuitive behaviour of this network is depicted in Table 10. Station s0 wishes to broadcast value
v0, while s1 wishes to broadcast value v1. They both use the same (restricted) channel d to broadcast
their respective values; however, both stations split the value to be broadcast in two packets. Value
v0 is split in v0

0 and v1
0, while v1 is split in v0

1 and v1
1.

The two stations run a TDMA protocol with a time frame of length two. Station s0 takes control
of the first time frame, hence transmitting its two packets v0

0 and v1
0 in the first and the third time

slot, respectively. Station s1 takes control of the second time frame; hence the two packets v0
1 and

v1
1 are broadcast in the second and fourth time slot, respectively.

Stations r0 and r1 wait to collect the values broadcast along channel d. However, the former is
interested only in packets sent in the first time frame, while the latter detects only values sent in the
second time frame. At the end of their associated time frame the stations r0 and r1 have received
two packets which are concatenated together and then broadcast to the external environment along
channel c. Note that station r1 is a little slower than r0, for we have added a delay of two time units
before broadcasting the concatenated values.

As an alternative to TDMA, the two values v0, v1 can be also be delivered to the external
environment by means of a simple routing, along the lines suggested in Example 5.4. Here we
consider the configuration

C1 = Γ . νd :(0, ·).(S 0 | S 1 | R)
where

S 0 = σ4.c!〈v0〉

S 1 = σ4.d!〈v1〉

R = d?(x).c!〈x〉

Intuitively, the configuration C1 models three wireless stations s0, s1, r, running the code S 0, S 1,
R, respectively, and connected as in Table 11. Station s0 waits four instants of time, then it broad-
casts value v0 directly to the external environment via the free channel c. Similarly, after four
instants of time the station s1 broadcasts value v1 to station r via the restricted channel d. Finally, r
forwards the message to the external environment via the free channel c.

From the point of view of the external environment the configuration C1 performs the following
activities:

• it remains idle for the first four instants of time
• it transmits value v0 in the fifth and sixth time instants
• it transmits value v1 in the seventh and eighth time instants.

In this manner, at least informally the observable behaviour of C1, which uses direct routing, is the
same as that of C0, which uses TDMA.

Formally, we can prove

C0 ' C1 (5.2)
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However, instead of proving this by giving a bisimulation containing this pair of configurations, we
prove them individually bisimilar to a simpler specification. Let S1 denote the configuration Γ . S 1
where S 1 is the code

σ4.c !〈v0〉.c !〈v1〉.

Then we can show that C0 ≈ S1 and C1 ≈ S1, from which (5.2) follows by soundness. Let us show
that C0 ' S1; for the sake of simplicity, it will be convenient to define the following system terms:

Ŝ n
0 = σn.d!〈v1

0〉 Ŝ ′1 = d !〈v0
1〉.σ.d!〈v1

1〉

Ŝ n
1 = σn.d!〈v1

1〉 (R̂0)act = d[x].σ.bd?(y).σ.c!〈x ◦ y〉c
R̂′0 = bd?(y).σ.c!〈v0

0 ◦ y〉c (R̂′0)act = d[y].σ.c!〈v0
0 ◦ y〉

R̂ f
0 = c!〈v0

0 ◦ v1
0〉 R̂′1 = bd?(x).σ.bd?(y).σ2.c!〈x ◦ y〉cc

(R̂′1)act = d[x].σ.bd?(y).σ2.c!〈x ◦ y〉c R̂′′1 = bd?(y).σ2.c!〈v0
1 ◦ y〉c

(R̂′′1 )act = d[y].sigma2.c!〈v0
1 ◦ y〉 R̂ f

1 = c!〈v0
1 ◦ v1

1〉

Wn = σn.c !〈v0〉.c!〈v1〉

Then the relation
R = { (∆ . νd : (0, ·).(Ŝ 0 | Ŝ 1 | R̂0 | R̂1) , ∆ . W4) ,

(∆ . νd : (1, v0
0).(Ŝ 2

0 | Ŝ 1 | R̂act
0 | R̂1) , ∆ . W4) ,

(∆ . νd : (0, ·).(Ŝ 1
0 | Ŝ

′
1 | σ.R̂

′
0 | R̂

′
1) , ∆ . W3) ,

(∆ . νd : (1, v0
1).(Ŝ 1

0 | Ŝ
2
1 | σ.R̂

′
0 | (R̂

′
1)act) , ∆ . W3) ,

(∆ . νd : (0, ·).(d!〈v1
0〉 | Ŝ

1
1 | R̂

′
0 | σ.R̂

′′
1 ) , ∆ . W2) ,

(∆ . νd : (1, v1
0).(σ | Ŝ 1

1 | (R̂
′
0)act | σ.R̂′′1 ) , ∆ . W2) ,

(∆ . νd : (0, ·).(nil | c!〈v1
1〉 | σ.R̂

f
0 | R̂

′′
1 ) , ∆ . W1) ,

(∆ . νd : (1, v1
1).(nil | c!〈v1

1〉 | σ.R̂
f
0 | (R̂

′′
1 )act) , ∆ . W1) ,

(∆ . νd : (0, ·).(nil | nil | c!〈v0〉 | σ
2.c!〈v1〉) , ∆ . c !〈v0〉.c!〈v1〉) ,

(∆ . νd : (0, ·).(nil | nil | σ2 | σ2.c!〈v1〉) , ∆ . σ2.c!〈v1〉) ,
(∆ . νd : (0, ·).(nil | nil | σ | σ.c!〈v1〉) , ∆ . σ.c!〈v1〉) ,
(∆ . νd : (0, ·).(nil | nil | nil | c!〈v1〉) , ∆ . c!〈v1〉) ,
(∆ . νd : (0, ·).(nil | nil | nil | σ2) , ∆ . σ2) ,
(∆ . νd : (0, ·).(nil | nil | nil | σ) , ∆ . σ) ,
(∆ . νd : (0, ·).(nil | nil | nil | nil) , ∆ . nil) ,

| ∆ arbitrary channel environment }

is a bisimulation. Below we also show that C1 ' S1; for the sake of simplicity, define the
following terms:

S n
0 = σn.c!〈v0〉 S n

1 = σn.d!〈v1〉

R′ = d[x].c!〈x〉 Wn = σn.c !〈v0〉.c!〈v1〉

for any n ∈ N. Then the relation

R′ = { (∆ . νd : (0, ·).(S n
0 | S

n
1 | R) , ∆ . Wn) ,

(∆ . νd : (0, ·).(σ2 | d!〈v1〉 | R) , ∆ . σ2.c!〈v1〉) ,
(∆ . νd : (2, v1).(c!〈v0〉 | σ

2 | R′) , ∆ . c !〈v0〉.c!〈v1〉) ,
(∆ . νd : (2, v1).(σ2 | σ2 | R′) , ∆ . σ2.c!〈v1〉) ,
(∆ . νd : (1, v1).(σ | σ | R′) , ∆ . σ.c!〈v1〉) ,
(∆ . νd : (0, ·).(nil | nil | c!〈v1〉) , ∆ . c!〈v1〉) |

| ∆ arbitrary channel environment }

is a relation which contains the most relevant couples needed for showing that C1 ≈ S1.
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Example 5.5. As a final example we can modify the behaviour of the two configurations C0 and
C1 seen above by adding the possibility of getting a collision when delivering values v0, v1 to the
external environment. In the routing case, this is accomplished by requiring that both stations s0, s1
can either broadcast their value directly to the external environment or to the forwarder node r, while
in the TDMA case it is sufficient to allow both the stations s0, s1 to non-deterministically choose
the time slot to be used to broadcast packets.

To this end, let

S c
0 = τ.σ4.c!〈v0〉 + τ.σ4.d!〈v0〉

S c
1 = τ.σ4.c!〈v1〉 + τ.σ4.d!〈v1〉

Ŝ c
0 = d !〈v0

0〉.σ.d!〈v1
0〉 + τ.σ.d !〈v0

0〉.σ.d!〈v1
0〉

Ŝ c
1 = d !〈v0

1〉.σ.d!〈v1
1〉 + τ.σ.d !〈v0

1〉.σ.d!〈v1
1〉

and consider the configurations

Cc
1 = Γ . νd :(0, ·).(S c

0 | S
c
1 | R)

Cc
0 = Γ . νd :(0, ·).(Ŝ c

0 | Ŝ
c
1 | R̂0 | R̂1)

It is not difficult to see informally that the observable behaviour of these two configurations is
the same. Specifically

• either value v0 is broadcast in the fifth and sixth time slots and v1 is broadcast in the seventh
and eighth instants of time slots, or
• value v1 is broadcast in the fifth and sixth time slots, while value v0 is broadcast in the

seventh and eighth time slots, or
• a collision occur in the fifth and sixth time slots, or
• a collision occur in the seventh and eighth time slots.

This informal behaviour can be described by the term

S 2 = τ.σ4.c !〈v0〉.c!〈v1〉 +

τ.σ4.c !〈v1〉.c!〈v0〉 +

τ.σ4.c!〈err〉 +

τ.σ6.c!〈err〉

and once more we can exhibit bisimulations to establish Γ . S 2 ≈ C
c
0 and Γ . S 2 ≈ C

c
1. Then

soundness again ensures that
Cc

0 ' C
c
1

6. Conclusions and related work

In this paper we have given a behavioural theory of wireless systems at the MAC level. In our frame-
work individual wireless stations broadcast information to their neighbours along virtual channels.
These broadcasts take a certain amount of time to complete, and are subject to collisions. If a broad-
cast is successful a recipient may choose to ignore the information it contains, or may act on it, in
turn generating further broadcasts. We believe that our reduction semantics, given in Section 2,
captures much of the subtlety of intensional MAC-level behaviour of wireless systems.
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Then based on this reduction semantics we defined a natural contextual equivalence between
wireless systems which captures the intuitive idea that one system can be replaced by another in a
larger network without affecting the observable behaviour of the original network. In the main result
of the paper, we then gave a sound and complete characterisation of this behavioural equivalence
in terms of extensional actions. This characterisation is important for two reasons. Firstly it gives
an understanding of which aspects of the intensional behaviour is important from the point of view
of external users of these wireless systems. Secondly it gives a powerful sound and complete co-
inductive proof method for demonstrating that two systems are behaviourally equivalent. We have
also demonstrated the viability of this proof methodology by a series of examples.

Let us now examine some relevant related work. We start with the literature on process cal-
culi for wireless systems. Nanz and Hankin [37] have introduced the first (untimed) calculus for
Mobile Wireless Networks (CBS]), relying on a graph representation of node localities. The main
goal of that paper is to present a framework for specification and security analysis of communica-
tion protocols for mobile wireless networks. Merro [33] has proposed an untimed process calculus
for mobile ad-hoc networks with a labelled characterisation of reduction barbed congruence, while
[17] contains a calculus called CMAN, also with mobile ad-hoc networks in mind. This latter pa-
per also gives a characterisation of reduction barbed congruence, this time in terms of a contextual
bisimulation. It also contains a formalisation of an attack on the cryptographic routing protocol
ARAN. Kouzapas and Philippou [27] have developed a theory of confluence for a calculus of dy-
namic networks and they use their machinery to verify a leader-election algorithm for mobile ad
hoc networks.

Singh, Ramakrishnan and Smolka [48] have proposed the ω-calculus, a conservative extension
of the π-calculus. A key feature of the ω-calculus is the separation of a node’s communication
and computational behaviour from the description of its physical transmission range. The authors
provide a labelled transition semantics and a bisimulation in open style. The ω-calculus is then used
for modelling the AODV ad-hoc routing protocol. Another extension of the π-calculus for modelling
mobile wireless systems may be found in [7]; the calculus is used to verify reachability properties of
the ad-hoc routing protocol LUNAR. Fehnker et al. [13] have proposed a process algebra for wire-
less mesh networks that combines novel treatments of local broadcast, conditional unicast and data
structures. In this framework, they also model the AODV routing protocol and (dis)prove crucial
properties such as loop freedom and packet delivery. Vigo et al. [53] have proposed a calculus of
broadcasting processes that enables to reason about unsolicited messages and lacking of expected
communication. Moreover, standard cryptographic mechanisms can be implemented in the calculus
via term rewriting. The modelling framework is complemented by an executable specification of
the semantics of the calculus in Maude.

All the calculi, mentioned up to now, except for [37], represent topological changes of mobile
networks in the syntax. In contrast Ghassemi et al. [14] have proposed a process algebra called
RBPT where topological changes to the connectivity graph are implicitly modelled in the oper-
ational semantics rather than in the syntax. They propose a notion of bisimulation for networks
parametrised on a set of topological invariants that must be respected by equivalent networks. This
work in then refined in [15] where the authors propose an equational theory for an extension of
RBPT. Godskesen and Nanz [18] have proposed a simple timed calculus for wireless systems to
express a wide range of mobility models.

A simple notion of time is also adopted in the calculus for wireless systems by Macedonio and
Merro [31] to verify key management protocols for wireless sensor networks by applying semantics-
based techniques. In [30] this notion of time is extended with probabilities. In this paper a prob-
abilistic simulation theory is proposed to evaluate the performances gossip protocols in the context
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of wireless sensor networks. Paper [50] also presents a probabilistic broadcast calculus for wire-
less networks where, unlike [30], nodes are mobile; due to mobility the connection probabilities
may change. The authors examine the relation between a notion of weak bisimulation and a minor
variant of PCTL*. Paper [10] investigate in detail the probabilistic behaviour of wireless networks.
The paper presents a compositional theory based on a probabilistic generalisation of the well known
may-testing and must-testing pre-orders. Also, it provides an extensional semantics to define both
simulation and deadlock simulation preorders for wireless networks. Gallina et al. [8] propose a pro-
cess algebraic model targeted at the analysis of both connectivity and communication interference
in ad hoc networks. The framework includes a probabilistic process calculus and a suite of ana-
lytical techniques based on a probabilistic observational congruence and an interference-sensitive
preorder. In particular, the preorder makes it possible to evaluate the interference level of differ-
ent, behaviourally equivalent, networks. They use their framework to analyse the Alternating Bit
Protocol. Song and Godskesen [51] introduce a continuous time stochastic broadcast calculus for
mobile and wireless networks. The mobility between nodes in a network is modelled by a stochastic
mobility function which allows to change part of a network topology depending on an exponentially
distributed delay and a network topology constraint. They define a weak bisimulation congruence
and apply their theory on a leader election protocol.

All the calculi mentioned up to now abstract away from the from the possibility of interference
between broadcasts. Lanese and Sangiorgi [28] have instead proposed the CWS calculus, a lower
level untimed calculus to describe interferences in wireless systems. In their operational semantics
there is a separation between the beginning and ending of a broadcast, so there is some implicit
representation of the passage of time. A more explicit timed generalisation of CWS is given [34] to
express MAC-layer protocols such as CSMA/CA, where the authors propose a bisimilarity which is
proved to be sound but not complete with respect to a notion of reduction barbed congruence. We
view the current paper as a simplification and generalisation of [34].

The research we have mentioned so far has been focused on formalising various aspects of
ad-hoc networks. However other than [18, 34], these various calculi abstract away from time. Nev-
ertheless there is an extensive literature on timed process algebras, which we now briefly review.
From a purely syntactic point of view, the earliest proposals are extensions of the three main process
algebras, ACP, CSP and CCS. For example, [2] presents a real-time extension of ACP, [44] contains
a denotational model for a timed extension of CSP, while CCS is the starting point for [36]. In [2]
and [44] time is real-valued, and at least semantically, associated directly with actions. The other
major approach to representing time is to introduce a special action to model the passage of time,
and to assume that all other actions are instantaneous. This approach is advocated in [19, 5, 36, 39]
and [55, 56], although the basis for this approach may be found in [6]. The current paper shares
many of the assumptions of the languages presented in these papers; in particular we have been
influenced by [22] which contains a timed version of CCS enjoying time determinism, maximal
progress and patience. All the just mentioned papers assume that actions are instantaneous and only
the extension of ACP presented in [19] does not incorporate time determinism; however maximal
progress is less popular and patience is even rarer.

From this early work on timed process calculi a flourishing literature has emerged. Here we
briefly mention some highlights of this research. Prasad [41] has proposed a timed variant of
his CBS [40], called TCBS. In TCBS a timeout can force a process wishing to speak to remain
idle for a specific interval of time; this corresponds to have a priority. TCBS also assumes time
determinism and maximal progress. Corradini et al. [11] deal with durational actions proposing
a framework relying on the notions of reduction and observability to naturally incorporate timing
information in terms of process interaction. Our definition of timed reduction barbed congruence
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takes inspiration from theirs. Corradini and Pistore [12] have studied durational actions to describe
and reason about the performance of systems. Actions have lower and upper time bounds, specifying
their possible different durations. Their time equivalence refines the untimed one. Baeten and
Middelburg [3] consider a range timed process algebras within a common framework, related by
embeddings and conservative extensions relations. These process algebras, ACPsat, ACPsrt, ACPdat

and ACPdrt, allow the execution of two or more actions consecutively at the same point in time,
separate the execution of actions from the passage of time, and consider actions to have no duration.
The process algebra ACPsat is a real-time process algebra with absolute time, ACPsrt is a real-
time process algebra with relative time. Similarly, ACPdat and ACPdrt are discrete-time process
algebras with absolute time and relative time, respectively. In these process algebra the focus is on
unsuccessful termination or deadlock. In [4] Baeten and Reniers extend the framework of [3] to
model successful termination for the relative-time case. Laneve and Zavattaro [29] have proposed
a timed extension of π-calculus where time proceeds asynchronously at the network level, while it
is constrained by the local urgency at the process level. They propose a timed bisimilarity whose
discriminating is weaker when local urgency is dropped.
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[13] A. Fehnker, R.J. van Glabbeek, P. Höfner, A. McIver, M. Portmann, and W. Lum Tan. A process algebra for wireless

mesh networks. In ESOP, volume 7211 of Lecture Notes in Computer Science, pages 295–315. Springer, 2012.
[14] F. Ghassemi, W. Fokkink, and A. Movaghar. Restricted Broadcast Process Theory. In SEFM, pages 345–354. IEEE

Computer Society, 2008.
[15] F. Ghassemi, W. Fokkink, and A. Movaghar. Equational Reasoning on Ad Hoc networks. In FSEN, volume 5961 of

Lecture Notes in Computer Science, pages 113–128. Springer, 2009.
[16] F. Ghassemi, W. Fokkink, and A. Movaghar. Equational reasoning on mobile ad hoc networks. Fundamenta Inform-

aticae, 105(4):375–415, 2010.
[17] J.C. Godskesen. A Calculus for Mobile Ad Hoc Networks. In COORDINATION, volume 4467 of Lecture Notes in

Computer Science, pages 132–150. Springer Verlag, 2007.
[18] Jens Chr. Godskesen and Sebastian Nanz. Mobility Models and Behavioural Equivalence for Wireless Networks. In

COORDINATION, volume 5521 of Lecture Notes in Computer Science, pages 106–122. Springer, 2009.



44 A. CERONE, M. HENNESSY, AND M. MERRO

[19] J.F. Groote. Specification and Verification of Real Time Systems in acp. In PSTV, pages 261–274. North-Holland,
1990.

[20] Hennessy and Rathke. Bisimulations for a calculus of broadcasting systems. TCS: Theoretical Computer Science,
200(1–2):225–260, 1998.

[21] Matthew Hennessy. A distributed Pi-calculus. Cambridge University Press, 2007.
[22] Matthew Hennessy and Tim Regan. A process algebra for timed systems. Information and Computation,

117(2):221–239, March 1995.
[23] K. Honda and N. Yoshida. On reduction-based process semantics. Theoretical Computer Science, 152(2):437–486,

1995.
[24] IEEE 802.11 WG. ANSI/IEEE standard 802.11: Wireless LAN medium access control (MAC) and physical layer

(PHY) specifications. IEEE Computer Society, 2007.
[25] A. Jeffrey and J. Rathke. Contextual equivalence for higher-order pi-calculus revisited. Logical Methods in Com-

puter Science, 1(1:4), 2005.
[26] Raja Jurdak, Cristina Videira Lopes, and Pierre Baldi. A survey, classification and comparative analysis of medium

access control protocols for ad hoc networks. IEEE Communications Surveys and Tutorials, 6(1-4):2–16, 2004.
[27] Dimitrios Kouzapas and Anna Philippou. A process calculus for dynamic networks. In FMOODS/FORTE, volume

6722 of Lecture Notes in Computer Science, pages 213–227. Springer, 2011.
[28] Ivan Lanese and Davide Sangiorgi. An operational semantics for a calculus for wireless systems. Theor. Comput.

Sci, 411(19):1928–1948, 2010.
[29] C. Laneve and G. Zavattaro. Foundations of web transactions. In FoSSaCS, volume 3441 of Lecture Notes in Com-

puter Science, pages 282–298. Springer, 2005.
[30] R. Lanotte and M. Merro. Semantic analysis of gossip protocols for wireless sensor networks. In J. Katoen and

B. König, editors, CONCUR, volume 6901 of Lecture Notes in Computer Science, pages 156–170. Springer, 2011.
[31] D. Macedonio and M. Merro. A semantic analysis of wireless network security protocols. In A. Goodloe and S. Per-

son, editors, NASA Formal Methods, volume 7226 of Lecture Notes in Computer Science, pages 403–417. Springer,
2012.

[32] Damiano Macedonio and Massimo Merro. A semantic analysis of wireless network security protocols. In Alwyn
Goodloe and Suzette Person, editors, NASA Formal Methods, volume 7226 of Lecture Notes in Computer Science,
pages 403–417. Springer, 2012.

[33] M. Merro. An Observational Theory for Mobile Ad Hoc Networks (full paper). Information and Computation,
207(2):194–208, 2009.

[34] Massimo Merro, Francesco Ballardin, and Eleonora Sibilio. A timed calculus for wireless systems. Theor. Comput.
Sci., 412(47):6585–6611, 2011.

[35] Milner and Sangiorgi. Barbed bisimulation. In ICALP: Annual International Colloquium on Automata, Languages
and Programming, 1992.

[36] F. Moller and C. Tofts. A Temporal Calculus of Communicating Systems. In CONCUR, volume 458 of Lecture
Notes in Computer Science, pages 401–415. Springer Verlag, 1990.

[37] S. Nanz and C. Hankin. A Framework for Security Analysis of Mobile Wireless Networks. Theoretical Computer
Science, 367(1-2):203–227, 2006.

[38] Sebastian Nanz and Chris Hankin. Static analysis of routing protocols for ad-hoc networks, March 25 2004.
[39] Xavier Nicollin and Joseph Sifakis. The algebra of timed processes, atp: Theory and application. Inf. Comput.,

114(1):131–178, 1994.
[40] K. V. S. Prasad. A calculus of broadcasting systems. Science of Computer Programming, 25(2–3):285–327, Decem-

ber 1995. ESOP ’94 (Edinburgh, 1994).
[41] K.V.S. Prasad. Broadcasting in Time. In COORDINATION, volume 1061 of Lecture Notes in Computer Science,

pages 321–338. Springer Verlag, 1996.
[42] Theodore S. Rappaport. Wireless communications - principles and practice. Prentice Hall, 1996.
[43] Julian Rathke and Pawel Sobocinski. Deconstructing behavioural theories of mobility. In Proc. Fifth IFIP Interna-

tional Conference On Theoretical Computer Science (TCS), volume 273 of IFIP, pages 507–520. Springer, 2008.
[44] G.M. Reed. A Hierarchy of Domains for Real-Time Distributed Computing. Technical Report, Oxford, 1988.
[45] D. Sangiorgi, N. Kobayashi, and E. Sumii. Environmental bisimulations for higher-order languages. In Proceedings

of the 22nd IEEE Symposium on Logic in Computer Science, pages 293–302. IEEE Computer Society, 2007.
[46] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cambridge University Press, 2001.
[47] Davide Sangiorgi and David Walker. The Pi-Calculus — A Theory of Mobile Processes. Cambridge University

Press, 2001.



MODELLING MAC-LAYER COMMUNICATIONS IN WIRELESS SYSTEMS 45

[48] A. Singh, C.R. Ramakrishnan, and S.A. Smolka. A Process Calculus for Mobile Ad Hoc Networks. In COORDIN-
ATION, volume 5052 of Lecture Notes in Computer Science, pages 296–314, 2008.

[49] A. Singh, C.R. Ramakrishnan, and S.A. Smolka. A process calculus for mobile ad hoc networks. SCP, 75(6):440 –
469, 2010.

[50] L. Song and J.C. Godskesen. Probabilistic mobility models for mobile and wireless networks. In C.S. Calude and
V/ Sassone, editors, IFIP TCS, volume 323 of IFIP Advances in Information and Communication Technology, pages
86–100. Springer, 2010.

[51] L. Song and J.C. Godskesen. Broadcast abstraction in a stochastic calculus for mobile networks. In J.C.M. Baeten,
T. Ball, and F.S. de Boer, editors, IFIP TCS, volume 7604 of Lecture Notes in Computer Science, pages 342–356.
Springer, 2012.

[52] Andrew S. Tanenbaum. Computer Networks, 4th ed. Prentice-Hall International, Inc., 2003.
[53] R. Vigo, F. Nielson, and H.R. Nielson. Broadcast, denial-of-service, and secure communication. In E.B. Johnsen

and L. Petre, editors, IFM, volume 7940 of Lecture Notes in Computer Science, pages 412–427. Springer, 2013.
[54] Mengying Wang and Yang Lu. A timed calculus for mobile ad hoc networks. arXiv preprint arXiv:1301.0045, 2013.
[55] W. Yi. Real-Time Behaviour of Asynchronous Agents. In CONCUR, volume 458 of Lecture Notes in Computer

Science, pages 502–520. Springer Verlag, 1990.
[56] W. Yi. A Calculus of Real Time Systems. Ph.D Thesis, Chalmers University, 1991.

Appendix A. Technical Definitions and Proofs of the Propositions

Definition A.1. [Process Environments] A process environment, is a mapping from process vari-
ables to system terms. In the following we use ρ to range over process environments. Given an
open system term W and a process environment ρ, the (possibly open) system term Wρ correspond
to the system term obtained from W by replacing each free occurrence of any process variable X
with ρ(X).

Lemma A.2. Let Γ be a channel environment, and W be an (open) system term whose free occur-
rences of process variables are time guarded. Then, given a channel c and two process environments
ρ, ρ′ such that both (Wρ) and (Wρ′) are closed, rcv(Γ . Wρ, c) = rcv(Γ . Wρ′, c).

Proof. Note that if Γ ` c : exp then, for any channel environment ρ such that Wρ is closed, we have
that rcv(Γ . (Wρ), c) = false, and there is nothing else left to prove.

Suppose then that Γ ` c : idle, and let ρ, ρ′ be two process environments such that Wρ and Wρ′

are closed. We proceed by induction on the structure of W.
• W = bc?(x).PcQ. In this case we have rcv(Γ.(bc?(x).PcQ)ρ, c) = rcv(Γ.(bc?(x).PcQ)ρ′, c) =

true,
• W = X. This case is vacuous, as it contains an unguarded free occurrence of a process

variable.
• W = c !〈e〉.P. In this case rcv(Γ . (c !〈e〉.P)ρ, c) = rcv(Γ . c !〈e〉.(Pρ), c) = false, and

rcv(Γ . (c !〈e〉.P)ρ′, c) = rcv(Γ . c !〈e〉.(Pρ′), c) = false,
• W = τ.P, W = σ.P, W = [b]P,Q, W = nil or W = d[x].P where d is an arbitrary (possibly

equal to c) channel; this case is analogous to the previous one,
• W = P + Q.Then we have that

rcv(Γ . (P + Q)ρ, c) = rcv(Γ . (Pρ), c) ∨ rcv(Γ . (Qρ), c)
= rcv(Γ . (Pρ′), c) ∨ rcv(Γ . (Qρ′), c)
= rcv(Γ . (P + Q)ρ′, c)

where the equalities rcv(Γ. (Pρ), c) = rcv(Γ. (Pρ′), c) and rcv(Γ. (Qρ), c) = rcv(Γ. (Qρ′), c)
follow by induction.
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• W = fix X.P. Then we have that

rcv(Γ . (fix X.P)ρ, c) = rcv(Γ . (Pρ), c)
= rcv(Γ . (Pρ′), c)
= rcv(Γ . (fix X.P)ρ′, c)

Again, the equality rcv(Γ . (Pρ), c) = rcv(Γ . (Pρ′), c) follows by induction.
• W = W1 | W2. This case is analogous to the case W = P + Q,
• W = νc : (t, ·).W′. In this case rcv(Γ.(νc : (t, ·).W′)ρ, c) = rcv(Γ.(νc : (t, ·).W′)ρ′, c) = false,
• W = νd : (t, ·).W′, where d , c. Then we have

rcv(Γ . (νd : (t, ·).W′)ρ, c) = rcv(Γ . (W′ρ), c)
= rcv(Γ . (W′ρ′), c)
= rcv(Γ . (νd : (t, ·).W′)ρ′, c)

Lemma A.3. Let Γ be a channel environment and W be an open system term where every free
occurrence of process variables is guarded. Let also c be a channel and v be a value. There exists an
open system term W′ such that, for any process environment ρ for which (Wρ) is closed, thenW′ρ

is also closed, and Γ . Wρ
c?v
−−−−→ W′ρ.

Proof. Note that if rcv(Γ . (Wρ), c = false) for some environment ρ, it suffices to choose W′ = W.
In fact, by Lemma A.2 we have that rcv(Γ .Wρ′, c) = false for any environment ρ′ such that Wρ′ is

closed. By applying Rule (RcvIgn) we obtain the transition Γ . (Wρ′)
c?v
−−−−→ (Wρ′).

Therefore, suppose that W is such that rcv(Γ . (Wρ), c) = true for some process environment ρ
(and, as a consequence of Lemma A.2, rcv(Γ . (Wρ′), c) = true for any other process environment
ρ′). Note that in this case we have that Γ ` c : idle, and W cannot take the form !〈c〉.eP, τ.P, σ.P,
[b]P,Q, nil or d[x].P. We check the remaining cases, by performing an induction on W. In the
following ρ is an arbitrary process environment.

• Suppose that W = bc?(x).PcQ for some processes P,Q. In this case we let W′ = c[x].P.
By definition (bc?(x).PcQ)ρ = bc?(x).(Pρ′)c(Qρ), where ρ′ = ρ[x 7→ x]; by applying Rule

(Rcv) we obtain that Γ . (bc?(x).(Pρ′)c(Qρ)
c?v
−−−−→ c[x].(Pρ′). note that the latter system

term can be rewritten as (c[x].P)ρ; note in fact that the process environments ρ and ρ′ differ
only at the entry for variable x, which is bound in c[x].P. Therefore we have the transition

Γ . (bc?(x).PcQ)ρ
c?v
−−−−→ (c[x].P)ρ.

• Suppose that W = P + Q. Note that, in order to ensure that rcv(Γ . (P + Q)ρ, c) = true, it
must be either rcv(Γ . (Pρ), c) = true or rcv(Γ . (Qρ), c) = true. We consider only the first
case, as the second one can be handled similarly. If rcv(Γ . (Pρ), c) = true then by inductive

hypothesis we have that there exists a system term W′ such that Γ . (Pρ)
c?v
−−−−→ (W′ρ). By

Rule (SumRcv), we can derive the transition Γ.(Pρ)+(Qρ)
c?v
−−−−→ Wρ, which can be rewritten

as Γ.(P+Q)ρ
c?v
−−−−→ W′ρ. Note also that if rcv(Γ.(Pρ), c) = true, then rcv(Γ.(Pρ′), c) = true

for any other process environment ρ′, as a consequence of Lemma A.2, so that the choice
of W′ is independent from the process environment.
• Suppose that W = fix X.P. By inductive hypothesis, there exists a process W′′ such that,

for any process environment ρ′, Γ . Pρ′
c?v
−−−−→ W′′ρ′. In particular, let ρ′ = ρ[X 7→

(fix X.P)ρ], where ρ is an arbitrary process environment. We obtain that Γ . Pρ[X 7→
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(fix X.P)ρ]
c?v
−−−−→ W′′ρ[X 7→ (fix X.P)ρ]. Γ . Pρ[X 7→ (fix X.P)ρ] = ({fix X.P/X})Pρ, and

W′′ρ[X 7→ (fix X.P)ρ] = ({fix X.P/X}W′′)ρ. Let then W′ = {fix X.P/X}W′. It suffices to

apply Rule (Rec) to obtain the transition Γ . (fix X.P)ρ
c?v
−−−−→ W′ρ.

• Suppose that W = W1 | W2. By inductive hypothesis there exist W′1,W
′
2 such that Γ .

(W1ρ)
c?v
−−−−→ W′1ρ, and Γ . (W2ρ)

c?v
−−−−→ W′2ρ. In this case we let W′ = W′1 | W′2. In fact,

by Rule (RcvPar) it follows that Γ . (W1ρ) | (W2ρ)
c?v
−−−−→ (W′1ρ) | (W′2ρ), or equivalently

Γ . (W1 | W2)ρ
c?v
−−−−→ (W′1 | W

′
2)ρ.

• Finally, suppose W = νd : (n, v).W1, where d , c. By inductive hypothesis we have that

Γ[d 7→ (n, v)] . (W1ρ)
c?v
−−−−→ W′ρ for some W′. Now it suffices to apply Rule (ResI) to obtain

Γ . (Wρ)
c?v
−−−−→ (W′ρ).

Proof of Proposition 2.9. Let Γ . W be a configuration. First note that W is a closed system term,
hence Wρ = W for any process environment ρ. Given an arbitrary channel c and an arbitrary value

v, Lemma A.3 ensures that there exists a system term W′ such that Γ . W
c?v
−−−−→ W′.

It remains to show that whenever Γ . W
c?v
−−−−→ W′ for some W′, if rcv(Γ . W, c) = true then

W′ , W; conversely, if rcv(Γ . W, c) = false then W′ = W. This last statement can be proved by

performing an induction on the proof of the derivation Γ.W
c?v
−−−−→ W′; the proof is relatively simple,

and the details are left to the reader.
The case where rcv(Γ . W, c) = true is slightly more complicated. In practice, we define a

function #Rcv(·, c) which maps any system term into its number of active receivers along channel

c and we show that, whenever Γ . W
c?v
−−−−→ W′, then #Rcv(W′) > #Rcv(W). As an immediate

consequence, W′ , W. Formally, the function #Rcv(·, c) is defined inductively on the structure of
system terms, by letting for any process P and system terms W1,W2,
(a) #Rcv(P, c) = 0,
(b) #Rcv(d[x].P, c) = 1 if d = c, 0 otherwise,
(c) #Rcv(νd.(W1), c) = #Rcv(W1, c), when d , c,
(d) #Rcv((W1 | W2), c) = #Rcv(W1, c) + #Rcv(W2, c).

We proceed by induction on the proof of the derivation Γ . W
c?v
−−−−→ W′.

• The last rule applied in the proof of Γ . W
c?v
−−−−→ W′ is Rule (Rcv). It follows that W =

bc?(x).PcQ for some processes P,Q, hence #Rcv(W, c) = 0. Further, W′ = c[x].P, which
leads to #Rcv(W′, c) = 1;

• the last Rule applied in the proof of Γ .W
c?v
−−−−→ W′ is (SumRcv); Then W = P + Q for some

processes P,Q such that rcv(Γ . P, c) = true, and Γ . P
c?v
−−−−→ W′. By definition we have that

#Rcv(P + Q, c) = 0; also, #Rcv(P, c) = 0, hence by inductive hypothesis #Rcv(W′, c) > 0,
as we wanted to prove; the symmetric case of Rule (SumRcv) is handled similarly.

• the last rule applied in the proof of Γ . W
c?v
−−−−→ W′ is Rule (Rec); this case is analogous to

the previous one,

• the last rule applied in the proof of Γ . W
c?v
−−−−→ W′ is Rule (ResV); then W = νd.(W1) and

W′ = νd.(W′1) for some d , c, W1 and W′1 such that Γ . [d 7→ (·, ·)]W1
c?v
−−−−→ W′1. In this case
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we have that #Rcv(νd.(W1), c) = #Rcv(W1, c) > #Rcv(W′1, c) = #Rcv(νd.(W′1), c), where
the inequality #Rcv(W1, c) > #Rcv(W′1, c) follows from the inductive hypothesis,
• the last case to analyse is the one in which Rule (RcvPar) has been applied last in the proof

of Γ . W
c?v
−−−−→ W′. Then W = W1 | W2 for some W1,W2 such that Γ . W1

c?v
−−−−→ W′1 and

Γ . W2
c?v
−−−−→ W′2. Further, since we are assuming that rcv(Γ . W1 | W2, c) = true, then

either rcv(Γ . W1, c) = true or rcv(Γ . W2, c) = true. Without loss of generality, suppose
that rcv(Γ . W1, c) = true. Note that in this case, if rcv(Γ . W2, c) = false then we know
that W′2 = W2, hence #Rcv(W′2, c) = #Rcv(W2, c). Otherwise, by inductive hypothesis
it follows that #Rcv(W′2, c) > #Rcv(W2, c). In any case, we obtain that #Rcv(W′2, c) ≥
#Rcv(W2, c). Also, by inductive hypothesis we have that #Rcv(W′1, c) > #Rcv(W1, c). By
these two statements, and the definition of #Rcv(·, c), it follows that #Rcv(W1 | W2, c) =

#Rcv(W1, c) + #Rcv(W2, c) > #Rcv(W′1, c) + #Rcv(W2, c) = #Rcv(W′1 | W
′
2, c).

Lemma A.4. Suppose that Γ . W
σ
−−−→ W′;

(i) if W = P+Q for some processes P,Q then there exists two processes P′,Q′ such that Γ.P
σ
−−−→

P′, Γ . Q
σ
−−−→ Q′ and W′ = P′ + Q′,

(ii) if W = W1 | W2 for some W1,W2, then there exists two system terms W′1,W
′
2 such that

W′ = W′1 | W
′
2, Γ . W1

σ
−−−→ W′1 and γ . W2

σ
−−−→ W′2.

Proof. Both statements can be proved by induction on the structure of W. We only provide the
details for (i), since the proof for (ii) is identical in style.

• First note that if W is a basic process, that is it has either the form nil, c !〈e〉.P, [b]P,Q,
bc?(x).PcQ, τ.P, fix X.P or σ.P then there is nothing to prove, as the assumption that W =

P + Q for some processes P,Q is not valid;
• suppose then that W = P + Q for some processes P,Q, and that Γ . P + Q

σ
−−−→ W′. By

inspecting the rules of the intensional semantics, it is clear that the last Rule applied in a
proof of the transition above is (SumTime). Thus, there exist processes P1,Q1, P′1,Q

′
1 such

that P + Q = P1 + Q1, W′ = P′1 + Q′1, Γ . P1
σ
−−−→ P′1 and Γ . Q1

σ
−−−→ Q′1. We need

to show that there exist two processes P′,Q′ such that Γ . P
σ
−−−→ P′, Γ . Q

σ
−−−→ Q′ and

P′ + Q′ = P′1 + Q′1. Note that the assumption P + Q = P1 + Q1 leads to three possible cases:
(1) there exists a process R such that P1 = P+R, Q = R+ Q1; In this case we can apply the

inductive hypothesis to the system term P1 (note that P1 is a smaller term than P + Q,
as P + Q = P1 + Q1). Thus the transition Γ . P1

σ
−−−→ P′1 ensures that there exist two

system term P′,R′ such that Γ . P
σ
−−−→ P′, Γ . R

σ
−−−→ R′ and P′1 = P′ + R′. Further,

by applying Rule (SumTime) to the transitions Γ . R
σ
−−−→ R′ and Γ . Q1

σ
−−−→ Q′1, we

obtain Γ . R + Q1
σ
−−−→ Γ . R′ + Q′1. By letting Q′ = R′ + Q′1, we can rewrite this last

transition as Γ.Q
σ
−−−→ Q′. Finally notice that we have W = P′1 + Q′1 = (P′+R′)+ Q′1 =

P′ + (R′ + Q′1) = P′ + Q′, as we wanted to prove,
(2) otherwise P = P1 and Q = Q1; this case is trivial, as it suffices to choose P′ = P′1,Q

′ =

Q′1,
(3) the last case possible is that there exists a process R such that P = P1 + R, Q1 = R + Q;

the proof here is symmetrical to the first case, as now it is necessary to apply the
inductive hypothesis to Q1, rather than to P1,
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• the last remaining cases are those in which either W = νc.W1 or W = W1 | W2. Again, these
cases invalidate the hypothesis that W is a non-deterministic choice of processes, hence
there is nothing to prove.

Proof of Proposition 2.10. We proceed by induction on the proof of the derivation C
σ
−−−→ W1.

• The last rule applied in the derivation C
σ
−−−→ W1 is rule (EndRcv). Then C = Γ . c[x].P for

some channel c, process P, channel environment Γ for which Γ `t c : 1 and Γ `v c : w for
some closed value w. Also W1 = {w/x}P. Suppose now that C

σ
−−−→ W2 for some system

term W2. By inspecting the rules of the intensional semantics we have that the only rule
which could have been applied to infer this transition is again Rule (EndRcv). It follows that
W2 = W1 = {w/x}P,
• the cases where the last rule applied in the proof of C

σ
−−−→ W1 is either (TimeNil), (Sleep),

(ActRcv) or (Timeout) can be proved similarly to the previous one,
• if the last rule applied in the proof of C

σ
−−−→ W1 is (SumTime), then C = Γ . P + Q for some

processes P,Q. By Lemma A.4(i) we also know that W1 = P1 + Q1 for some P1,Q1 such
that Γ . P

σ
−−−→ P1,Γ . Q

σ
−−−→ Q1.

Suppose that C
σ
−−−→ W2 for some W2. Then again, Lemma A.4(i) leads to W2 = P2 + Q2

for some P2,Q2 such that Γ . P
σ
−−−→ P2 and Γ .Q

σ
−−−→ Q2. But by the inductive hypothesis

we have that P1 = P2, Q1 = Q2. Hence W2 = P2 + Q2 = P1 + Q1 = W1,
• if Rule (Rec) has been applied last, then W = fix X.P for some process variable X and process

P; further, Γ . {fix X.P/X}P
λ
−−−→ W1. Suppose now hat Γ .fix X.P

σ
−−−→ W2 for some W2; then

again the last rule applied has been (Rec), so that con f Γ{fix X.P/X}P
λ
−−−→ W2. Now, by the

inductive hypothesis, we get that W1 = W2,
• the case where (ResV) is the last one in the derivation C

σ
−−−→ W1 is similar in style to the

previous one, and is therefore left to the reader,
• the last case is the one in which the last rule applied for deriving C

σ
−−−→ W1 is Rule

(TimePar); the proof in this case is analogous to the one where C = Γ . P + Q, using Lemma
A.4(ii) instead of A.4(i).

Proof of Proposition 2.11. By induction on the proof of the transition. We only supply the details
for the most interesting cases.

• The last Rule applied in the proof of the derivation C
σ
−−−→ W1 is Rule (TimeOut). It follows

that C = Γ . bc?(x).PcQ for some Γ, channel c and processes P,Q such that Γ ` c : idle.
By inspecting the rules of the intensional semantics we note that no Rule can be applied

to obtain a transition of the form C
c!v
−−−−→ W2, nor a transition of the form C

τ
−−−→ W2; for

this last case, note in fact that a τ-action can be inferred for a configuration of the form
Γ . bc?(x).PcQ only via Rule (RcvLate), which however requires Γ ` c : exp. This is in
contrast with our assumption that Γ ` c : idle.
• The last Rule applied in the proof of the transition C

σ
−−−→ W1 is Rule (SumTime). Then

C = Γ . P + Q for some P,Q such that Γ . P
σ
−−−→ P′,Γ . Q

σ
−−−→ Q′ and W1 = P′ + Q′.
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We show, by contradiction, that Γ . P + Q
c!v
−−−−9 for any channel c and value v, and

Γ . P + Q
τ
−−−9. So suppose that Γ . P + Q

λ
−−−→ W2 for some system term W2 and action

λ ∈ {τ, c!v | c ∈ Ch, v closed value}. Then the last rule applied in the proof of such
a transition is either Rule (Sum) or its symmetric counterpart. In the first case we have

that Γ . P
λ
−−−→ W2, but this contradicts the inductive hypothesis; Γ . P

σ
−−−→ P′ implies

Γ . P
c!v
−−−−9. Similarly, in the second case Γ . Q

λ
−−−→ W2, which contradicts the inductive

hypothesis applied to the transition Γ . Q
σ
−−−→ Q′. Therefore Γ . P + Q

λ
−−−9.

Proof of Proposition 2.12. The proof is performed by induction on the structure of the proof of the

derivation Γ1 . W
λ
−−−→ W′. Again, we only consider the most interesting cases:

• The last rule applied in the proof of the derivation Γ1 . W
λ
−−−→ W′ is Rule (Rcv). Then

λ = c?v for some channel c and value v, Γ1 ` c : idle, W = bc?(x).PcQ for some P,Q and

W′ = c[x].P. By Hypothesis we have that Γ2 ` c : idle, so that Γ2 .bc?(x).PcQ
c?v
−−−−→ c[x].P.

• The last Rule applied in the proof of Γ1 .W
λ
−−−→ W′ is Rule (RcvLate). Then λ = τ, Γ1 ` c :

exp for some channel c, W = bc?(x).PcQ and W′ = c[x].{err/x}P. By hypothesis Γ2 ` c :

exp, so that Rule (RcvLate) can be applied leading to Γ2 . bc?(x).PcQ
λ
−−−→ c[x].{err/x}P.

• The last rule applied in the proof of Γ1 . W
λ
−−−→ W′ is Rule (Then). Then W = [b]P,Q for

some b such that ~b�Γ1 = true, λ = τ and W′ = σ.P. Here it is necessary to make a case
analysis on the form of the boolean expression b; the most interesting case, and the only one
which we analyse, is b = exp(c) for some channel c. Since ~b�Γ1 = true then Γ1 ` c : exp.
By hypothesis it follows that Γ2 ` c : exp, therefore ~b�Γ2 = true. Now we can apply Rule
(Then) to infer Γ2 . [b]P,Q

τ
−−−→ σ.P.

• The last rule applied in the proof of Γ1 . W
λ
−−−→ W′ is Rule (Sync). It follows that λ = c!v

for some channel c and value v, W = W1 | W2 and W′ = W′1 | W
′
2 for some W1,W2,W′1,W

′
2

such that Γ1 . W1
c!v
−−−−→ W′1, Γ2 . W2

c!v
−−−−→ W′2. Then by inductive hypothesis we have that

Γ2.W1
c!v
−−−−→ W′1 and Γ2.W2

c?v
−−−−→ W′2. An application of Rule (Sync) gives Γ2.W

c!v
−−−−→ W′.

Proof of Proposition 2.13 (3). Note that the proof of this statement uses Lemma, 2.13(2), which can

be proved independently. For the if implication,suppose that Γ .W1
c!v
−−−−→ W′1 and Γ .W2

c?v
−−−−→ W′2.

Then, by an application of Rule (Sync) we obtain that Γ . W1 | W2
c!v
−−−−→ W′1 | W′2. Similarly, if

Γ . W1
c?v
−−−−→ W′1 and W2

c!v
−−−−→ W′2, we can obtain the transition Γ . W1 | W2

c!v
−−−−→ W′1 | W

′
2 using

the symmetric counterpart of Rule (Sync).

For the only if implication, suppose that Γ . W1 | W2
c!v
−−−−→ W′. Note that we can rewrite

W1 | W2 as
∏k

i=1 Pk for some k ≥ 2. We proceed by induction on k.
• k = 2. Then W1 = P1, W2 = P2. The last rule applied in the derivation of Γ . P1 |

P2
c!v
−−−−→ W′ is either Rule (sync) or its symmetric counterpart. In the first case we obtain

that Γ . P1
c!v
−−−−→ P′1, Γ . P2

c?v
−−−−→ P′2 and W′ = P′1 | P′2, so that there is nothing to prove.

The second case is analogous.
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• k > 2. Suppose that the statement is true for any index i ≤ k. Again, the last rule applied

in the proof of the transition Γ . W1 | W2
c!v
−−−−→ W′ is either Rule (Sync) or its symmetric

counterpart. We consider only the first case, as the second one is treated similarly. If Rule
(Sync) has been applied last, then there exist two system terms Wa,Wb such that W1 | W2 =

Wa | Wb and Γ.Wa
c!v
−−−−→ W′a, Γ.Wb

c!v
−−−−→ W′b and W′ = W′a | W

′
b. Since Wa | Wb = W1 | W2,

we have three possible cases:
– W1 = Wa | Wx, Wb = Wx | W2 for some system term Wx. Then we can apply Propos-

ition 2.13 (2) to the transition Γ . Wx | W2
c?v
−−−−→ W′b to show that Γ . Wx

c?v
−−−−→ W′x,

Γ . W2
c?v
−−−−→ W′2 for some W′x,W

′
2 such that W′b = W′x | W′2. Now we can ap-

ply Rule (Sync) to the transitions Γ . Wa
c!v
−−−−→ W′a and Γ . Wx

c?v
−−−−→ W′x to infer

Γ . W1
c?v
−−−−→ W′a | W

′
x. Let W′1 = W′a | W

′
x. Then we have

W′ = W′a | W
′
b = W′a | W

′
x | W

′
2 = W′1 | W

′
2.

– Wa = W1,Wb = W2. In this case there is nothing to prove, as it suffices to choose
W′1 = W′a,W

′
2 = W′b to obtain the result.

– Wa = W1 | Wx, W2 = Wx | Wb for some Wx. By the inductive hypothesis we obtain that
either
∗ Γ . W1

c!v
−−−−→ W′1, Γ . Wx

c?v
−−−−→ W′x for some W′1,W

′
x such that W′a = W′1 | W

′
x, or

∗ Γ . W1
c?v
−−−−→ W′1, Γ . Wx

c!v
−−−−→ W′x for some W′1,W

′
x such that W′a = W′1 | W

′
x.

We consider only the first case. In this case we can apply Rule (rcvPar) to the transitions

Γ.Wx
c?v
−−−−→ W′x and Γ.Wb

c?v
−−−−→ W′b to obtain Γ.W2

c?v
−−−−→ W′x | W

′
b. Let W′2 = W′x | W

′
b.

Then we have proved that Γ . W1
c!v
−−−−→ W′1, Γ . W2

c?v
−−−−→ W′2; further we have that

W′ = W′a | W
′
b = W′1 | W

′
x | W

′
b = W′1 | W

′
2

as we wanted to prove.

Proof of Lemma 4.1. We first prove that if Γ.W
τ
7−→ Γ′ .W′ then Γ ≤ Γ′. Note that such a transition

could have been inferred in two different ways:
• via an application of Rule (TauExt), from which it follows that Γ′ = updτ(Γ) = Γ, or

• via an application of Rule (Shh), applied to a transition of the form Γ.W
c!v
−−−−→ W′; it follows

that Γ′ = updc!v(Γ), from which we obtain that Γ ≤ Γ′.

Now suppose that Γ . W
τ
�=⇒ Γ′ . W′. By definition, there exists an integer n ≥ 0 such that

Γ .W = Γ0 .W0
τ
7−→ Γ1 .W1

τ
7−→ · · ·

τ
7−→ Γn .Wn = Γ′ .W′. By applying the result proved above to

each step in this sequence, we obtain Γ = Γ0 ≤ Γ1 ≤ · · · ≤ Γn = Γ′, hence Γ ≤ Γ′.

Corollary A.5. For any channel c, Γ . W
ι(c)
�=⇒ implies Γ . W

ι(c)
7−→.

Proof. By Definition, Γ . W �=⇒ Γ′ . W′
ι(c)
7−→ for some Γ′,W′. Since, Γ′ . W′

ι(c)
7−→ we obtain that

Γ′ ` c : idle. Now Lemma 4.1 gives Γ ≤ Γ′, hence Γ ` c : idle. Therefore we can apply Rule (Idle)

of the extensional semantics and derive Γ . W
ι(c)
7−→ Γ . W.
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Proof of Lemma 4.2. Suppose Γ1 . W1 ≈ Γ2 . W2. If Γ1 ` c : idle then by definition of Rule (Idle)

of Table 6 it follows that Γ1 . W1
ι(c)
7−→. As Γ1 . W1 ≈ Γ2 . W2, it follows that Γ2 . W2

ι(c)
�=⇒. From

Corollary A.5 we have that Γ2 . W2
ι(c)
7−→, and by the definition of Rule (Idle) that Γ2 ` c : idle.

Proof of Lemma 4.7. We have to show that if C is well-formed and C
λ
−−−→ W′, then C′ = updλ(Γ) .

W′ is also well-formed. We provide the details of the most interesting cases of a rule induction on
the proof of the aforementioned transition.

• The last rule applied is Rule (Rcv). Then λ = c?v for some channel c and closed value v.
Further, C = Γ . bc?(x).PcQ, W′ = c[x].P and updc?v(Γ) ` c : exp. The second equation in
Definition 4.6 ensures that C′ ∈Wnets,
• the last rule applied is Rule (EndRcv); in this case λ = σ, W = c[x].P for some c such that

Γ ` c : exp, and W′ = {w/x}P, where w is the closed value such that Γ `v c : w. It follows
from the first equation in Definition 4.6 that C′ = updσ(Γ) . W′ is well formed,
• the last rule applied is Rule (ActRcv). In this case W = W′ = c[x].P for some c such that

Γ `t c : n, where n > 1. To show that C′ = updσ(Γ) . c[x].P, it suffices to prove that
updσ(Γ) ` c : exp; but this is true, since by Definition of updσ(·) we have that updσ(Γ) `t
c : n − 1, and now n − 1 > 0,
• the last rule applied is Rule (Sync). Then λ = c!v, W = W1 | W2, W′ = W′1 | W

′
2 for some

W1,W2,W′1,W
′
2 such that Γ.W1

c!v
−−−−→ W′1, Γ.W2

c?v
−−−−→ W′2 and W′ = W′1 | W

′
2. By inductive

hypothesis the configurations C1 = updc!v(Γ) .W′1 and C2 = updc?v(Γ) .W′2 are well formed,
so by the third equation in Definition 4.6 we have that C′ ∈Wnets6.

Proof of Proposition 4.8. Let Γ .W be a well-formed configuration. We give the details of the most
important cases of a structural induction performed on the structure of a system term W.

• W = c !〈v〉.P, or W = τ.P; this case is vacuous, since by definition of instantaneous reduc-
tions Γ . W _i,
• W = σ.P; this case is trivial, since by applying Rule (Sleep) we infer Γ . W

σ
−−−→ P, hence

Γ . W _σ updσ(Γ) . P,
• W = c[x].P. By definition of well-formed networks we have that Γ ` c : exp. Then there

are two possible cases:
– Γ `t c : 1 and Γ `v c : v for some value v. We can apply Rule (EndRcv) to infer the

transition Γ . c[x].P
σ
−−−→ {v/x}P, which in turns gives the reduction Γ . c[x].P _σ

updσ(Γ) . {v/x}P,
– Γ `t c : n for some n > 1; in this case we can apply Rule (ActRcv) to infer Γ.c[x].P

σ
−−−→

c[x].P, leading to Γ . c[x].P _σ updσ(Γ) . c[x].P.
• W = fix X.P. Recall that in this case every occurrence of the process variable X in P is

(time) guarded, so that we can apply the inductive hypothesis to the term {fix X.P/X}P.
Now suppose that Γ . fix X.P 6_i. Then it follows that Γ . {fix X.P/X}P 6_i, and by inductive
hypothesis Γ . {fix X.P/X}P _σ. Now it is easy to show that Γ . fix X.P _σ.
• W = P+ Q. Suppose that Γ.P+ Q 6_i. That is, Γ.P 6_i, Γ.Q 6_i, By inductive hypothesis

we have that Γ . P
σ
−−−→ P′, Γ . Q

σ
−−−→ Q′ for some P′,Q′. It follows from Rule (SumTime)

that Γ . P + Q
σ
−−−→ P′ + Q′, hence Γ . P + Q _σ updσ(Γ) . P′ + Q′.

6Recall that updc!v(Γ) = updc?v(Γ).
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Proposition A.6. For any channel environment Γ, (possibly open) process P and process environ-
ment ρ such that Pρ is closed, then Γ . Pρ is well-timed.

Proof. We give the details of the most important cases of an induction performed on the structure of
the process W. In the following we assume that ρ is a process environment such that Wρ is closed;
recall that we are assuming that free occurrences of process variables are time guarded in W.

• W = bc?(x).PcQ. Then we have that Γ . (bc?(x).PcQ)ρ 6_i; it follows that Γ . (bc?(x).PcQ)ρ
is well-timed.
• W = X for some process variable X; this case is vacuous, since it violates the assumption

that free occurrences of process variables are (time) guarded in W,
• W = fix X.P for some process P. Let ρ′ be the environment defined as ρ[X 7→ (fix X.P)ρ].

By inductive hypothesis we have that Γ . Pρ′ is well-timed. Further, by definition Pρ′ =

({fix X.P/X}P)ρ. Now note that Γ . (fix X.P)ρ _h C′ if and only if Γ . (fix X.P/X}P)ρ _h C′.
It follows that Γ . (fix X.P)ρ is well-timed.
• W = P + Q. Suppose that both (P + Q)ρ is closed; that is, both Pρ and Qρ are closed.

By inductive hypothesis they are well timed, meaning that there exists kP ≥ 0 such that
whenever Γ . Pρ _h Γ′ . P′ then h ≤ kP; similarly, there exists kQ ≥ 0 such that whenever
Γ .Qρ _h Γ′ .Q′ for some h, then h ≤ kQ. Choose k = max(kP, kQ). It is easy to show that
whenever Γ . (P + Q)ρ _h Γ′ .W′ then either Γ . Pρ _h Γ′ .W′, in which case h ≤ kP ≤ k,
or Γ . Qρ _h Γ′ . W′, in which case h ≤ kP ≤ k. It follows that Γ . (P + Q)ρ is well-timed.

Proof of Proposition 4.12. We give the proof for a fragment of the language where channel restric-
tion is omitted. This limitation is needed only to avoid technical complications in the proof of the
statement. In fact, when channel restriction is present, we need to introduce a structural congruence
≡ between system terms; the main property required by this relation is that it preserves transitions

of configurations, meaning that whenever W1 ≡ W2 and Γ . W1
λ
−−−→ W′1, then Γ . W2

λ
−−−→ W′2, with

W2 ≡ W′2. Also, the relation ≡ needs to be defined so that any system term W can be rewritten
in the form νc̃.

(∏n
i=1 Pi

)
. See [9], Definition 9.1.2 at Page 174, for the definition of the structural

congruence .
Let us focus on the case in which channel restriction is not present in our language First note

that the result holds for any well-formed configuration of the form Γ.P, where P is a closed process;
in fact we have that, Γ . P = Γ . Pρ for any process environment ρ, and the latter is well-timed by
Proposition A.6.

Otherwise, we can rewrite Γ .W as Γ .
∏n

i=1 Pi, for some processes P1, · · · , Pn. Note that each
configuration Γi . Pi is well-formed, hence well-timed; by definition there exists an index kPi ≥ 0
such that, whenever Γ . Pi _h

i Γ′ . P′i , then h ≤ kPi . Now suppose that Γ .
∏n

i=1 Pi _h
i Γ′ .

∏n
i=1 P′i ;

we show that h ≤
(∑n

i=1 kPi

)
by induction on h.

The case h = 0 is trivial; suppose then that h > 0, and the statement is valid for h−1; in this case
we can rewrite the (weak) reduction above as Γ .

∏n
i=1 Pi _i Γ′′ .

∏n
i=1 P′′i _h−1

i Γ′ .
∏n

i=1 P′i , and
by inductive hypothesis h− 1 ≤

∑
i=1n kP′′i . Let us focus on why Γ .

∏n
i=1 Pi _i Γ′′ .

∏n
i=1 P′′i _h−1

i .

(i) Γ .
∏n

i=1 Pi
τ
−−−→

∏n
i=1 P′′i , and Γ′′ = Γ; in this case it is not difficult to note that there exists an

index j : 1 ≤ j ≤ n such that Γ . P j
τ
−−−→ P′′j , and for any index i , j, 1 ≤ i ≤ n, P′′i = Pi. In

this case we have that kP′′j ≤ kP j − 1
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Without loss of generality, let j = 1. Then we have that

h − 1 ≤
n∑

i=1

kP′′i =

= kP′′1 +

n∑
i=2

kPi ≤

≤ (kP1 − 1)+
n∑

i=2

kPi =

=

 n∑
i=1

kPi

 − 1

Hence h ≤
(∑n

i=1 kPi

)
, as we wanted to prove;

(ii) Otherwise Γ .
∏n

i=1 Pi
c!v
−−−−→

∏n
i=1 P′′i , and Γ′′ = updc!v|(Γ). In this case we can partition the

set {1, · · · , n} into three sets {l}, I and J such that (a) Γ . Pl
c!v
−−−−→ Γ′′ . P′′l and P′′ = σδv .Q for

some process Q, (b) for any i ∈ I, rcv(Γ . Pi, c) = true and P′′i = c[x].Qi for some process Qi,
(c) for any j ∈ J, rcv(Γ . P j, c) = false and P′′j = P j. Note that (a) implies that kP′′l

= 0 and
1 ≤ kPl , (b) implies that kP′′i = 0 for any i ∈ I and (c) implies that kP′′j = kP j for any j ∈ J.

Without loss of generality, suppose that l = 1, I = {2, · · · ,m} for some m ≤ n, and J =

{m + 1, ·n}. In this case we have

h − 1 ≤
n∑

i=1

kP′′i =

= kP′′1 +

 m∑
i=2

kP′′i

+  n∑
i=m+1

kP′′i

 =

= 0+ 0+

n∑
i=m+1

kPi ≤

≤ (kP1 − 1)+ 0+

n∑
i=m+1

kPi ≤

≤

n∑
i=1

kPi

Again the last inequation gives h ≤
(∑n

i=1 kPi

)
.

Lemma A.7. Let us say that a system term T is behaviourally independent from W if each channel
name appearing free in T does not appear free in W, and vice versa.

If T is independent from a configuration W, then whenever Γ . W | T _i C, then either
(i) C = Γ′ . W | T ′, and Γ . T _i Γ′ . W′, or

(ii) C = Γ′ . W′ | T , and Γ . T _i Γ′ . W′.

Proof. Suppose that T is a system term independent from a configuration Γ . W, and that Γ . W |

T _i C. By the definition of instantaneous reductions, there are two possibilities:
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(1) Γ . W | T
τ
−−−→ Ŵ, and C = Γ . Ŵ. By Proposition 2.13(1) then either Ŵ = W′ | T , and

Γ . W
τ
−−−→ W′, or Ŵ = W | T ′, and Γ . T

τ
−−−→ T ′; in the first case we obtain the reduction

Γ . W | T _i Γ . W′ | T , while in the second one we get Γ . W | T _i Γ . W | T ′,

(2) the second possibility is that Γ . W | T
c!v
−−−−→ Ŵ′, and C = Γ′ . Ŵ, where Γ′ = updc!v(Γ). In

this case, by Proposition 2.133 then Ŵ = W′ | T ′ and either

(a) Γ . W
c!v
−−−−→ W′, Γ . T

c!v
−−−−→ T ′; the first transition is possible only if c appears

free in W, which by assumption gives that c does not appear free in T ; it follows
that rcv(Γ . T, c) = false, and by Lemma 2.9 we obtain that T ′ = T . By converting
the intensional transition in a reduction (recalling that Γ′ = updc!v(Γ)), we obtain that
Γ . W | T _i Γ′ . W′ | T ,

(b) or Γ . W
c?v
−−−−→ W′, Γ . T

c!v
−−−−→ T ′; this case can be handled symmetrically to the

previous one, and leads to Γ . W | T _i Γ′ . W | T ′.

Lemma A.8. Let Γ1 . W be a configuration, and let Γ2 be a channel environment such that, for any
channel c appearing free in W, Γ2(c) = Γ1(c). Then if Γ1 . W _ Γ′1 . W′, there exists a channel
environment Γ′2 such that Γ2 . W _ Γ′2 . W′2, and Γ′1(c) = Γ′2(c) for any c appearing free in W.

Outline of the proof. The reduction Γ1 . W _i Γ′1 . W′ can be converted in a transition of the form

Γ1 .W
λ
−−−→ W′, where λ takes either the form τ, c!v or σ. Note here that if λ takes the form c!v, then

c appears free in W. By performing an induction on the proof of the derivation of this transition

we can infer a transition for the configuration Γ2 . W, namely Γ2 . W
λ
−−−→ W′. Also, by letting

Γ′2 = updλ(Γ2), we obtain the reduction Γ2 . W _ Γ′2 . W′. Now it remains to note that if c appears
free then, by hypothesis, Γ1(c) = Γ2(c); hence Γ′1(c) = updλ(Γ1)(c) = updλ(Γ2)(c) = Γ′2(c).

Corollary A.9. [Independence of Computations] Let Γ . W be a configuration, and let T be a
system term which only uses fresh channels. Then whenever Γ . W | T _∗ Γ′′ . Ŵ it follows that
Ŵ = W′ | T ′ for some W′,T ′ such that Γ . W′ _∗ Γ′ . W′, where Γ′ is such that Γ′(c) = Γ′′(c) for
any c appearing free in W.

Outline. By induction on the number of derivations k in a sequence of k reductions, Γ . W | T _k

Γ′′ .Ŵ; in the inductive step it is necessary to distinguish whether the first reduction of the sequence
is instantaneous or timed. In the first case, the result follows from lemmas A.7 and A.8. In the
second case, we need to recover the timed transitions for the individual components Γ .W and Γ .T ,
then apply Lemma A.8.

Proof of Lemma 4.14 (Outline). This is a variation on analogous results already given in the liter-
ature, for a number of different process calculi. We show that the relation

S = {(Γ1 . W1,Γ2 . W2) :

Γ′1 . W1 | T1 ' Γ′2 . W2 | T2 for some T1,T2 independent from both W1,W2

and Γ1 . (c) = Γ′1(c),Γ2(c) = Γ′2(c) whenever c appears free in W}

is barb preserving, reduction closed and contextual. Note that it is necessary to employ Corollary
A.9 to prove that S is reduction closed.
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Proof of Proposition 4.15: The two statements are proved separately. Let Γ1 . W1,Γ2 . W2 be
well-formed, and suppose that Γ1 . W1 ' Γ2 . W2.

(1) Suppose that Γ1 . W1 _i Γ′1 . W′1. We have two possible cases, according to the definition
of _i:

(i) Γ1 . W1
τ
−−−→ W′1 and Γ′1 = updτ(Γ1) = Γ1, by an application of rule (TauExt)

(ii) Γ1 . W1
c!v
−−−−→ W′1 and Γ′1 = updc!v(Γ1), by an application of rule (Shh).

We consider the first case; the proof for the second case is virtually identical. Let eureka be
a fresh channel; that is it does not appear free in W1 and must satisfy Γ1 ` eureka : idle.
Let ok be a message which requires one time unit to be transmitted, i.e. δok = 1. By an
application of rules (TauPar) and (TauExt) we derive

Γ1 . W1 | eureka!〈ok〉
τ
7−→ Γ′1 . W′1 | eureka!〈ok〉

with Γ′1 . W′1 | eureka!〈ok〉 ⇓eureka and Γ′1 ` eureka : idle. By Definition 2.14 this transition
corresponds in the reduction semantics to

Γ1 . W1 | eureka!〈ok〉_ Γ′1 . W′1 | eureka!〈ok〉

As Γ1 . W1 ' Γ2 . W2 and ' is contextual, this step must be matched by a sequence of
reductions

Γ2 . W2 | eureka!〈ok〉_∗ C (A.1)

such that Γ′1 . W′1 | eureka!〈ok〉 ' C. Depending on whether the transmission at eureka is
part of the sequence of reductions or not, the configuration C must be one of the following:

C1 = Γ′2 . W′2 | eureka!〈ok〉 with Γ′2 ` eureka : idle
C2 = Γ′2 . W′2 | σ.nil with Γ′2 ` eureka : exp
C3 = Γ′2 . W′2 | nil with Γ′2 ` eureka : idle

As eureka is a fresh channel (hence not appearing free in W2, it follows that C3 6⇓eureka;
therefore C cannot be C3. Since Γ′1 . W′1 | eureka!〈ok〉 ' C and Γ′1 ` eureka : idle,
by Proposition 4.13 (which can be applied since we are assuming that C is well-formed,
hence well-timed) it follows that C cannot be C2. So, the only possibility is C = C1. By
Lemma 4.14 it follows that Γ′1 .W′1 ' Γ′2 .W′2. It remains to show that Γ2 .W2 _∗

i Γ′2 .W′2.
To this end we can extract out from the reduction sequence (A.1) above a reduction

sequence
Γ2 . W2 _∗ Γ′2 . W′2

We show that each step in this sequence, say Γ .W _ Γ′ .W′, corresponds to an instantan-
eous reduction, Γ . W _i Γ′ . W′, from which the result follows.

Recall from Definition 2.14 that there are three possible ways to infer the reduction step
Γ . W _ Γ′ . W′. If it is either (Internal), i.e. Γ . W

τ
−−−→ W′, or a (Transmission), i.e.

Γ . W
c!v
−−−−→ W′, then by definition Γ . W _i Γ′ . W′ follows. Condition (ii), (Time), is not

possible because in the original sequence (A.1) above the testing component eureka!〈ok〉
can not make a σ move, hence it cannot perform a timed reduction _σ.

(2) Suppose now that Γ1 . W1 _σ Γ′1 . W′1. In this case we will use the testing context:

T = σ.(τ.eureka!〈ok〉 + fail!〈no〉)

where eureka and fail are fresh channels. Since Γ1 .W1 _σ Γ′1 .W′1 we also have Γ1 .W1 |

T _σ_i C1, where C1. = Γ′1 . W′ | eureka!〈ok〉). Note that, since fail is a fresh channel,
we have that C1 ⇓eureka and C1 6⇓fail.
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The contextuality of ' gives that Γ1 . W1 | T ' Γ2 . W2 | T , so that we must have the
series of reduction steps

Γ2 . W2 | T _∗ C2 (A.2)

where C1 ' C2. Because C1 ⇓eureka and C1 6⇓fail, the same must be true of C2. As Γ′1 `

eureka : idle, it follows that C2 must take the form Γ′2 . W′2 | eureka!〈ok〉. By Lemma 4.14
we have that Γ′1 . W′1 ' Γ′2 . W′2. It remains to establish that Γ2 . W2 _∗

i _σ_∗
i Γ′2 . W′2.

We proceed as in the previous proposition, by extracting out of (A.2) the contributions
from Γ2 . W2; we know that because of the presence of the time delay in T , one time unit
needs to pass before the broadcast along eureka is enabled in Γ2 .W2 | T ; also, by maximal
progress (Proposition 2.11), we know that such a broadcast must be fired before time passes.
So (A.2) actually takes the form

Γ2 . W2 | T _∗
i Γ′ . W′ | . . . _σ Γ′′ . W′′ | . . . _∗

i Γ′2 . W′2 | eureka!〈ok〉

Each individual reduction step can now be projected on to the first component, giving the
required

Γ2 . W2 _∗
i Γ . W

σ
7−→ Γ′ . W′ _∗

i Γ′2 . W′2

Proof of Proposition 4.18. The two implications are proved separately; first, let Γ . W be a config-

uration such that Γ . W
c?v
�=⇒ Γ′ . W′; that is, Γ . W �=⇒ Γpre . W pre c?v

7−→ Γpost . Wpost �=⇒ Γ′ . W′.
Since Tc?v does not contain any receiver, nor does TXc?v, we have the sequences of transitions
Γ . W | Tc?v �=⇒ Γpre . Wpre | Tc?v and Γpost . Wpost | TXc?v �=⇒ Γ′ . W′ | TXc?v.

Next we show that Γpre . Wpre | Tc?v
τ
7−→ Γpost . Wpost | TXc?v. Combined with the two (weak)

transitions above, this gives the extensional transition Γ . W | Tc?v �=⇒ Γ . W′ | TXc?v, which can be
rewritten as Γ . W | Tc?v _∗

i Γ . W′ | TXc?v.

Consider then the transition Γpre . W pre c?v
7−→ Γpost . Wpost; this can only have been obtained by

the intensional transition Γpre .Wpre c?v
−−−−→ W′, and the equality Γpost = updc?v(Γpre). For the test Tc?v

we have the transition Γpre .Tc?v
c!v
−−−−→ TXc?v; Now we can combine the two transitions together, using

Rule (sync), and get Γpre . Wpre | Tc?v
c!v
−−−−→ Wpost | TXc?v; also, we know that Γpost = updc?v(Γpre) =

updc!v(Γpre), hence we can infer the required transition Γpre . Wpre | Tc?v
τ
7−→ Γpost . Wpost | TXc?v.

For the other implication, suppose that Γ . W | Tc?v _∗
i Γ′ . W′ | TXc?v. This is possible only if,

at some point in the sequence, the test component Tc?v fired the broadcast along channel c; in fact,
we have that the broadcast along channel eureka is guarded by a broadcast action in Tc?v, while it
is guarded by a delay of δv instants of time in TXc?v. Also, by Maximal Progress (Proposition 2.11)
the broadcast performed by Tc?v must happen before time elapses; formally, we have the sequence
of reductions

Γ . W | Tc?v _∗
i Γpre . Wpre | Tc?v _i Γpost . Wpost | TXc?v _∗

i Γ′ . W′ | TXc?v

Now note that the sequence of instantaneous reductions

Γ . W | Tc?v _∗
i Γpre . Wpre | Tc?v (A.3)



58 A. CERONE, M. HENNESSY, AND M. MERRO

induces the extensional transition Γ . W �=⇒ Γpre . Wpre. This can be proved using the facts that,
for any channel environment Γx and channel d, whenever Γx . Tc?v

τ
7−→ Γ′x . T ′, then T ′ = Tc?v, and

whenever Γx . Tc?v
τ
�=⇒ Γ′x . T ′ then T ′ , Tc?v.

Similarly, we can prove that the weak reduction

Γpost . Wpost | TXc?v _∗
i Γ′ . W′ | TXc?v

induces the extensional transition Γpost . Wpost �=⇒ Γ′ . W′.
It remains to show that we can infer the transition Γpre.Wpre c?v

7−→ Γpost.Wpost from the reduction
Γpre . Wpre | Tc?v _i Γpost . Wpost | TXc?v. Note that in Tc?v we have a station which is ready to
broadcast along channel c, while this is not true anymore in TXc?v. By performing a case analysis
on the intensional transition which could have led to the reduction above, we find that the only

possible case is that Γpre .Wpre | Tc?v
c!v
−−−−→ Wpost | TXc?v and, more specifically, that Γpre .Wpre c?v

−−−−→

Wpost and Γpre . Tc?v
c!v
−−−−→ TXc?v. Also, Γpost. = updc!v(Γ.pre). By an application of Rule (Input)

in the extensional semantics, we get the required transition Γpre . Wpre c?v
7−→ Γpost . Wpost, which

can be combined with the two weak transitions already derived, namely Γ . W �=⇒ Γpre . Wpre and

Γpost . Wpost �=⇒ Γ′ . W′, to obtain Γ . W
c?v
�=⇒ Γ′ . W′.

Proof of Proposition 4.19. Suppose that Γ . W
ι(c)
�=⇒ Γ′ . W′. This can be rewritten as Γ . W �=⇒

Γpre .Wpre ι(c)
7−→ Γpost .Wpost �=⇒ Γ′ .W′. Since the only rule of the extensional semantics that could

have been used to derive Γpre.Wpre ι(c)
7−→ Γpost.Wpost is (Idle), we obtain that Γpre.Wpre = Γpost.Wpost.

Thus, we have Γ . W �=⇒ Γpre . Wpre = Γpost . Wpost �=⇒ Γ′ . W′, or equivalently Γ . W
Γ′.W′
�=⇒ . In

terms of the reduction semantics, this can be rewritten as Γ . W _∗
i Γ′ . W′.

By Corollary A.5 we know that Γ .W
ι(c)
�=⇒ implies Γ .W

ι(c)
7−→ Γ .W; therefore Γ ` c : idle. Now

it is easy to see that we have the reduction Γ . W | Tι(c) _i Γ . W | TXι(c) _∗
i Γ′ . W′ | Tι(c), where

the first reduction has been obtained by letting the predicate exp(c) be evaluated in Tι(c), while the
rest of the sequence can be derived using the facts that Γ . W _∗

i Γ′ . W′, and for any channel

environment Γx we have that Γx . TXι(c) 6_i, Γx . TXι(c)
c?v
−−−−→ T ′ implies T ′ = TXι(c).

Conversely, suppose that Γ . W | Tι(c) _i
∗ Γ′ . W′ | TXι(c). In this sequence of reductions, the

evolution of the test component from Tι(c) to TXι(c) is possible only if eventually the exposure check
on channel c is evaluated to true. That is, we have the sequence of reductions

Γ . W | Tι(c) _∗
i Γpre . Wpre | Tι(c) _i Γpost . Wpost | TXι(c) _∗

i Γ′ . W′ | TXι(c)

where Γpre ` c : idle.
Since the evaluation of the exposure check in the reduction Γpre . Wpre | Tι(c) _i Γpost . Wpost |

TXι(c) corresponds to a τ-intensional transition which affects only the system term Tι(c), that is Γpre .

Tι(c)
τ
−−−→ TXι(c), Proposition 2.13(1) ensures that Wpost = Wpre, and Γpost = updτ(Γ

pre) = Γpre. Using
the facts that Γpre .Wpre = Γpost .Wpost and Γpre ` c : idle, we can apply Rule (Idle) of the extensional

semantics and infer the transition Γpre . Wpre ι(c)
7−→ Γpost . Wpost.

Next, note that for any configuration Γx, we have that Γx .Tι(c)
d?v
−−−−−→ T ′ implies T ′ = Tι(c), and

Γx . Tι(c) _i Γ′x . T ′ implies T ′ , Tι(c). Similar results hold for the system term TXι(c). Using these
facts, it is not difficult can derive the extensional transition Γ .W �=⇒ Γpre .Wpre from the sequence
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of reductions Γ . W | Tι(c) _∗
i Γpre . Wpre, and the transition Γpost . Wpost �=⇒ Γ′ . W′ from the

sequence of reductions Γpost . Wpost | TXι(c) _∗
i Γ′ . W′ | TXι(c).

Thus we have proved that Γ . W �=⇒ Γpre . Wpre ι(c)
7−→ Γpost . Wpost �=⇒ Γ′ . W′, or equivalently

Γ . W
ι(c)
�=⇒ Γ′ . W′.

Proof of Proposition 4.20. For any value w, let Tw be the system term

Tw = νd : (0, ·).(([w = v]d!〈ok〉, nil) + fail!〈no〉 | σ.[exp(d)]eureka!〈ok〉, nil)

Suppose that Γ . W
γ(c,v)
�=⇒ Γ′ . W′. In particular, we have that Γ . W �=⇒ Γpre . Wpre γ(c,v)

7−→

Γpost . Wpost �=⇒ Γ′ . W′. From the transition Γpre . Wpre γ(c,v)
7−→ Γpost . Wpost we get that Γpre = (1, v),

and Γpre . Wpre σ
−−−→ Wpost. In particular, note that Γpre ` c : exp, hence Γ .pre Wpre | Tι(c,v) is

well formed. Note also that Γx . Tγ(c,v) 6_i for any environment Γx with Γx ` c : exp, and that

Γx . Tγ(c,v)
c?v
−−−−→ T ′ implies that T ′ = Tγ(c,v). Also, since Γpre(c) = (1, v), we obtain the transition

Γpre . Tι(c)
σ
−−−→ Tv. Finally, note that, for any channel environment Γx we also have the transition

Γx . Tv
τ
−−−→ TXγ(c,v). Using these facts, we can build the sequence of transitions

Γ . W | Tγ(c,v) _∗
i Γpre . Wpre | Tγ(c,v) _σ Γpost . Wpost | Tv _∗

i Γ′ . W′ | Tv _i Γ′ . W′ | TXγ(c,v)

Now suppose that Γ.WTγ(c,v) _∗
i _σ_∗

i Γ.W′ | Tγ(c,v); we need to show that Γ.W
γ(c,v)
�=⇒ Γ′.W′.

Note that, in order for the testing component Tγ(c,v) to evolve into TXγ(c,v), then
(1) when the first time instant passes, the test evolves into Tw for some value w; this is because

in TXγ(c,v) the active receiver along channel c has vanished, and in CCCP active receivers
along a channel c can only disappear after a timed reduction has been performed, and only
if the state of channel c changes from exposed to idle,

(2) at some point, in the remaining of the computation, the matching construct [w = v] is
evaluated in Tw, leading to the test component to evolve in TXγ(c,v). Note that the matching
construct [w = v] cannot be evaluated to false, as this would cause the test component to
evolve to a system term different from TXγ(c,v). Therefore, w = v, and more specifically
Tw = Tv.

(3) The evaluation of the matching construct [v = v] to true is modelled as an τ-intensional
action, hence it does not affect the tested component W.

Formally, we have a sequence of reductions

Γ . W | Tγ(c,v) _∗
i Γpre . Wpre | Tγ(c,v) _σ

_σ Γpost . Wpost | Tv _∗
i Γ′′ . W′′ | Tv _i

_i Γ′′ . W′′ | TXγ(c,v) _∗
i Γ′ . W′ | TXγ(c,v)

where Γpre(c) = (1, v).
Let T be either Tγc,Tv or TXγc,v, and let Γx be an arbitrary channel environment; note that we

have that Γx . T
d?v
−−−−−→ T ′ implies T ′ = T , and Γx . T _i Γ′x . T ′ implies that T ′ , T . Using these

facts, it is not difficult to derive the transitions
(a) Γ . W �=⇒ Γpre . Wpre,
(b) Γpost . Wpost �=⇒ Γ′′ . W′′,
(c) Γ′′ . W′′ �=⇒ Γ′ . W′
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Thus, we only need to show that Γpre . Wpre γ(c,v)
7−→ Γpost . Wpost. The timed reduction Γpre . Wpre |

Tγ(c,v) _σ Γpost . Wpost | Tv can only be inferred if Γpre . Wpre σ
−−−→ Wpost, Γpre . Tγ(c,v)

σ
−−−→ Tv and

Γpost = updσ(Γpre). Also, note that the only possibility for inferring the transition Γpre.Tγ(c,v)
σ
−−−→ Tv

is by using an instance of Rule (EndRcv) (where the channel environment contains value v at channel
c); therefore, we obtain that Γpre(c) = (1, v).

We have proved that Γpre(c) = (1, v), Γpre . Wpre σ
−−−→ Wpost and Γpost = updσ(Γpre); therefore,

we can apply Rule (Deliver) to infer that Γpre . Wpre γ(c,v)
7−→ Γpost . Wpost, as we wanted to show.

By combining this transition with the weak transitions listed in (a), (b), (c), above, we obtain the

required Γ . W
γ(c,v)
�=⇒ Γ′ . W′.


