
Tree Distance in Answer Retrieval and Parser
Evaluation

Martin Emms

Department of Computer Science, Trinity College, Dublin, Ireland
Martin.Emms@tcd.ieSpringer.de

http://www.cs.tcd.ie/Martin.Emms

Abstract. The use of syntactic tree-distance as a surrogate for semantic distance
in an answer retrieval task is investigated. The feasibility of this is confirmed by
showing that retrieval performance increases with parse quality, and an applica-
tion of this to parser evaluation is discussed. Variant definitions of tree-distance
involving parameters such as whole vs sub-tree, node weighting, wild-card trees
and lexical emphasis are compared with each other and with sub-string distance.

1 Introduction

The concern of this paper is the use of tree-distance in an answer retrieval (AR) task.
Given a question (such as Q below) and a collection of sentences (eg. a manual), the
task is to retrieve the sentences that best answer the question, (such as A below):

Q: what does malloc return ?
A: the malloc function returns a null pointer

The paper presents results on this AR task in which questions and answers are com-
pared on their syntactic structures, using tree-distance to quantify the amount of editing
needed to derive the question structure from the answer structure. The less editing an
answer needs, the higher it is rated as an answer to the question.

Two results are presented. The work uses tree-distance as a stand-in for semantic
distance. As evidence that this can be done, the first result is that improving the syntax
structures does improve performance on the AR task. This also indicates that using
tree-distance in AR has a potential for parser evaluation. The second result compares
some variants of tree-distance with each other, and also with standard string-distance.
We show that a particular variant of tree-distance out-performs string-distance.

2 Tree Distance

The tree distance between two trees can be defined by considering all the possible 1-
to-1 partial maps, σ, between source and targets trees S and T , which preserve left
to right order and ancestry1. Nodes of S which are not in the domain (resp. range)

1 if Si1 and Si2 are mapped to Tj1 and Tj2 , then (i) Si1 precedes Si2 iff Tj1 precedes Tj2 and
(ii) Si1 is descended from Si2 iff Tj1 is descended from Tj2

of σ are considered deleted (resp. inserted) with an associated cost. Otherwise, where
Tj = σ(Si) 6= Si, there is a substitution cost. The least cost mapping between the trees
defines the tree distance. In the example below, a distance of 3 assuming unit costs is
obtained. Deleted (resp. inserted) nodes are shown with a double outline in the lefthand
(resp. righthand) tree, substituted nodes are linked with an arrow, and unaltered nodes
are displayed at the same height.

a

b

b

a

a

c

b

a

b b a

a

whole tree matching dist=3.0

In the work reported in this paper the definition of tree distance is varied along a
number of dimensions.

Sub-tree: in this variant, the sub-tree distance is the cost of the least cost mapping
from a sub-tree of the source.

Structural weights: in this version, nodes have a weight between 0 and 1, and
weights are assigned according to the syntactic structure. The procedure for assigning
structural depends on classifying the daughters as head vs. complement vs. adjunct vs.
other, with essentially adjuncts given 1/5th the weights of heads and complements, and
other daughters 1/2.

Wild cards: If a node is labeled as a wild card, it (and the sub tree it dominates) can
have zero cost matching with sub-trees in the source. In the tree structures assigned to
wh-questions, such wild card trees can be put in the position of the gap.

Lexical emphasis: the leaf-nodes of the tree are words. In a lexically emphasized
version of tree distance, the leaf nodes have weights which are scaled up relative to
tree-internal nodes.

An alignment between two trees is shown in Figure 1, using the weighted, wild-card
variant. The nodes associated with the auxiliary verb get a low weight and are cheaply
deleted. The subject position of the target is taken by a np wild tree, and matches for
0 cost with the subject np in the source tree.

The basis of the algorithm used is the ZhangShasha algorithm [3] to compute the
cost of the least cost mapping. The implementation is an adaptation of [2], allowing for
wild-cards, sub-tree matching and human-readable display of the chosen alignments
(such as seen in figure 1).

3 The Answer Retrieval Task

Queries were formulated whose answers are single sentences in the manual of the GNU
C Library 2. For example

2 www.gnu.org

process

n

np np_wild

s

vp

rhs

be rhs

call be

vp

memory

n

n

n

allocation

np

something

pro

s

vp

rhs

memory

n

n

n

allocation

np

sub tree matching dist=1.6

Fig. 1. An alignment using weights and wild cards

Q what is a page fault
A When a program attempts to access a page which is not at that moment backed by

real memory , this is known as a page fault

Q what does the free function do
A - Function : void free (void * ptr) The free function deallocates the block of

memory pointed at by ptr

In the retrieval task, each sentence in the manual is assigned a distance rating, mea-
suring the distance from it, to the question. For a given query, q, its correct cutoff –
cc(q) – is the proportion of the answers whose distance is less than or equal to the dis-
tance for the correct answer3. The lower this number is for a given query, the better the
system performs on that query.

There are 88 queries. The text from which the answers come was turned into a
part-of-speech tagged version which contains 360326 tokens, split into 31625 units.

4 Parse Quality vs Retrieval Performance

The above-defined approach to AR could be described as using syntactic distance to
serve as a stand-in for semantic distance. Can this work ? Grouping items which are se-
mantically related is one of the aims of syntactic structure, but there are rival aims, the
fulfilling of which may pull syntactic structures away from semantics. On a pessimistic

3 equivalently this is the rank of the correct answer divided by the total number of answers

view, these non-semantic aims have the upper hand to such an extent that semantic
structure is mostly very difficult to discern from syntactic structure; syntactic structure
is then more of an encryption of semantics than a useful gateway into it. This section
addresses this question, and provides some evidence that one need not be overly pes-
simistic.

What we look at is the relationship between parse-quality and AR performance.
First we establish the performance of a particular parsing system, making uses of par-
ticular linguistic knowledge bases (see full in the tables below). For this discussion the
details of this parsing system are not important, save to say that it is a chartparser whose
final step is to select a sequence of edges spanning the input. Though the parsing system
is imperfect, it could be worse. Randomly removing 50% of the linguistic knowledge
base should make for worse structures (see thin50), as should manually stripping out
parts of it (see manual), while worst of all should be the entirely flat parses which result
if the knowledge bases are empty. In each case, the AR performance was determined. To
try to get a picture of AR performance if the parse quality improved, we hand-corrected
the parses of the queries and their correct answers – see gold in the tables below.

The tables below give the results using the sub-tree distance and weighted sub-tree
distance. The numbers describe the distribution of the correct cutoff over the queries,
so lower numbers are better. Figure 2 shows the empirical cumulative density function
(ecdf) for the correct cutoff obtained with weighted sub-tree with wild cards measure:
so for each cut-off d, it plots the percentage of queries q with cc(q) ≤ d. Clearly as we
move through the different parse settings, the performance improves.

sub tree
Parsing 1st Qu. Median Mean 3rd Qu.
flat 0.1559 0.2459 0.2612 0.3920
manual 0.0349 0.2738 0.2454 0.3940
thin50 0.01936 0.1821 0.2115 0.4193
full 0.0157 0.1195 0.1882 0.2973
gold 0.00478 0.04 0.1450 0.1944

weighted sub tree
Parsing 1st Qu. Median Mean 3rd Qu.
flat 0.1559 0.2459 0.2612 0.3920
manual 0.0215 0.2103 0.2203 0.3926
thin50 0.01418 0.02627 0.157 0.2930
full 0.00389 0.04216 0.1308 0.2198
gold 0.00067 0.0278 0.1087 0.1669

The results indicate that the more successful the parser is in recovering correct syn-
tax structure, the more successfully tree-distance can be used in the AR task. By re-
versing this implication, this is also suggestive of a way in which the AR task could
be used as an evaluation metric for a parser. Such an application has some attractions,
the main one being that the raw materials for the AR task are questions and answers, as
plain text, not syntactic structures. This avoids the difficulties that arise when trying to
evaluate by comparing a parser’s native output with non-native gold-standard treebank
parses. Just so long as the parser can assign tree-structures to queries and answers, the
tree-distance measure can compare them, regardless of that parser’s native notational or
theoretical commitments.

5 Distance Measures Compared

In section 2 some parameters of variation in the definition of tree-distance were intro-
duced: sub-tree vs whole tree, weights, wild cards, and lexical emphasis. The perfor-

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
4

0.
8

gold
full
thin50
manual
flat

Fig. 2. Success vs Cut-off: x = correct cutoff, y = proportion of queries whose correct cutoff ≤ x

mance of these distance measures was compared, along with the performance of the
sub-string distance4. The table below summarises the distribution of the correct cut-off
over the queries for the different settings, whilst in Figure 3 the ecdf plots are given (we
= structural weights, wi = wild cards, lex = lexical emphasis, sub = sub-tree).

sub weights wild lex 1st Qu. Median Mean 3rd Qu.
+ + + + 0.00009 0.00152 0.04662 0.02929

sub string 0.00022 0.00361 0.05137 0.04375
+ + + - 0.00071 0.01919 0.1119 0.2058
+ + - - 0.00389 0.04216 0.1308 0.2198
+ - - - 0.01517 0.1195 0.1882 0.2973
- - - - 0.04071 0.1596 0.2846 0.5077

What the data show is that the version of tree distance which uses sub-trees, weights,
wild-cards and lexical emphasis, performs better than the sub-string distance, and that
each of the parameters make a contribution to improved performance.

Lexical emphasis makes a large contribution to the performance. Without it, what
can happen is that a structurally similar but lexically completely dissimilar false answer
can be rated about the same as a lexically more similar but structurally less similar
correct answer.

6 Conclusion and Future Work

By showing that improved parse quality leads to better AR driven by tree-distance,
we have shown that syntax structures can be used as a stand-in for semantic structures
– the syntax structures do not encode matters entirely unrelated to semantics. Also a
particular variant of tree-distance was shown to perform better than string-distance. We

4 this is the least number of insertions, deletions and substitutions needed to turn a sub-string of
the answer word sequence into the query word sequence [5]

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
4

0.
8

sub we wi lex
substring
sub we wi
sub we
sub whole

Fig. 3. Success vs Cut-off: x = correct cutoff, y = proportion of queries whose correct cutoff ≤ x

also suggested that performance on AR driven by tree-distance could be used as an
evaluator for parsers.

This paper does not argue that tree-distance be used as the sole ingredient in practi-
cal AR. In all probability, practical AR will use syntactic structure as an input to further
processing. For example [4] convert parser output to relational triples, and model the
question/answer relation as entailment. Perhaps the places where AR by tree-distance
works worst can function as hot-spots for deeper processing by such systems.

We have argued that AR using tree-distance allows for a portable assessment of
how successful, and how semantic a parser is. A direction for future work is to prove
portability by using further parsers, such as the statistical parser of [1]. A question de-
serving attention is whether the methodology can be adapted to parsers which generate
dependency structures rather than trees.

References

1. Michael Collins. Head-driven statistical models for natural language parsing. PhD thesis,
1999.

2. Walter Fontana, Ivo L Hofacker, and Peter F Stadler. Vienna rna package.
www.tbi.univie.ac.at/ĩvo/RNA.

3. K.Zhang and D.Shasha. Simple fast algorithms for the editing distance between trees and
related problems. SIAM Journal of Computing, 18:1245–1262, 1989.

4. Diego Molla and Ben Hutchison. Intrinsic vs extrinsic evaluations of parsing systems. In Pro-
ceedings European Association for Computational Linguistics (EACL), workshop on Evalua-
tion Initiatives in Natural Language Processing, pages 43–50, 2003.

5. V.I.Levenshtein. Binary codes capable of correcting insertions and reversals. Sov. Phys. Dokl,
10:707–710, 1966.

