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Abstract
Continuing a line of work initiated in Boyer et al.
(2007), the generalisation of stochastic string dis-
tance to a stochastic tree distance, specifically to
stochastic Tai distance, is considered. An issue
in modifying the Zhang/Shasha tree-distance algo-
rithm to the stochastic variants is noted, a Viterbi
EM cost-adaptation algorithm for this distance is
proposed and a counter-example noted to an all-
paths EM proposal. Experiments are reported in
which a k-NN categorisation algorithm is applied to
a semantically categorised, syntactically annotated
corpus. We show that a 67.7% base-line using stan-
dard unit-costs can be improved to 72.5% by cost
adaptation.

1 Theory and Algorithms
The classification of syntactic structures into se-
mantic categories arises in a number of settings. A
possible approach to such a classifier is to com-
pute a category for a test item based on its dis-
tances to a set ofk nearest neighbours in a pre-
categorised example set. This paper takes such
an approach, deploying variants oftree-distance,
a measure which has been used with some suc-
cess in tasks such as Question-Answering, En-
tailment Recognition and Semantic Role Labelling
(Punyakanok et al., 2004; Kouylekov and Magnini,
2005; Emms, 2006a; Emms, 2006b; Franco-Penya,
2010). An issue which will be considered is how to
adaptthe atomic costs underlying the tree-distance
measure.

Tai (1979) first proposed a tree-distance measure.
WhereS and T are ordered, labelled trees, aTai
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mapping is apartial, 1-to-1 mappingσ from the
nodes ofS to the nodes ofT , which respectsleft-
to-right orderandancestry1, such as
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A cost can be assigned to a mappingσ based on
the nodes ofS andT which are not ’touched’ by
σ, and the set of pairs(i, j) in σ. TheTai- or tree-
distance∆(S, T ) is defined as the cost of the least-
costly Tai mapping betweenS andT . Equivalently,
tree-edit operations may be specified, and the dis-
tance defined by the cost of the least costly sequence
of edit operations transformingS into T , compactly
recorded as an edit-script:

operation edit-script element
m′(~l,m(~d), ~r) → m′(~l, ~d, ~r) (m,λ)

m′(~l, ~d, ~r) → m′(~l,m(~d), ~r) (λ,m)

m(~d) → m
′(~d) (m,m′)

An edit-script can be seen as a serialization of a
mapping, and the distances via scripts and via map-
pings are equivalent (Zhang and Shasha, 1989).

If strings are treated as vertical trees, the Tai dis-
tance becomes the standard string distance (Wag-
ner and Fischer, 1974). Ristad and Yianilos (1998)
pioneered a probabilistic perspective on string dis-
tance via a model in which there is a probabil-
ity distribution p on edit-script components, and
P (e1 . . . en) =

∏

i p(ei). It is natural to consider
how this probabilistic perspective can be applied to
tree-distance, and the simplest possibility is to use

1so if (i1, j1) and (i2, j2) are in the mapping, then (T1)
left(i1, i2) iff left(j1, j2) and (T2)anc(i1, i2) iff anc(j1, j2)



exactly the same model of edit-script probability,
leading to2:

Definition 1.1 (All-paths and Viterbi stochastic Tai
distance) ∆A(S, T ) is the sum of the probabilities
of all edit-scripts which represent aTai-mapping
fromS toT ; ∆V (S, T ) is the probability of the most
probable edit-script

Computing ∆A and ∆V We have adapted the
Zhang/Shasha algorithm for Tai-distance to the
stochastic case. The algorithm operates on the left-
to-right post-order traversals of trees3. If i is (the in-
dex of) a node of the tree, letγ(i) be its label,il be
the leaf reached by following the left-branch down,
andS[i] be the sub-tree ofS rooted ati. If i′ is a
member ofS[i], the prefixil..i′ of the traversal of
S[i] can be seen as aforestof subtrees. Considering
the mappings between such forests, a case distinc-
tion can made on the possible final element of any
script serializing the mapping, giving the following
decomposition for the calculation of∆V and∆A

Lemma 1.1 where GV is the max operation,
and GA is the sum operation, forx ∈ {V,A}
∆x(il..i

′, jl..j
′) =

Gx







∆x(il..i
′ − 1, jl..j

′)× p(γ(i′), λ)
∆x(il..i

′, jl..j
′ − 1)× p(λ, γ(j′))

∆x(il..i
′
l − 1, jl..j

′
l − 1)×

∆x(i′l..i
′ − 1, j′l ..j

′ − 1)× p(γ(i′), γ(j′))
︸ ︷︷ ︸

∆x
M(i′l..i

′, j′l ..j
′)

The following picture illustrates this
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For any leafi, the highest nodek such thati = kl is
akey-root, andKR(S) is the key-roots ofS ordered
by post-order traversal. Forx ∈ {A,V }, the main
loop ofTDx is then essentially

for i ∈ KR(S), j ∈ KR(T )
for i′ : il ≤ i′ ≤ i, j′ : jl ≤ j′ ≤ j,
compute∆x(il..i

′, jl..j
′) via Lemma 1.1

computing a series of forest distance tables, whilst
reading and updating a persistent tree table. Space

2∆A was proposed by Boyer et al. (2007)
3so parent follows children

precludes further details except to note the sub-
tlety in TDA that to avoid double counting, the
tree table must store values only for mappings be-
tween trees with matched or subsituted roots (the
∆A

M (i′l..i
′, j′l ..j

′) term in Lemma 1.1), unlike the
Zhang/Shasha algorithm, where it stores the true
tree-distance4.

TDA and TDV work under a negated loga-
rithmic mapping5, with ×/max/sum mapped to
+/min/logsum6. WhereΣ is the label alphabet,
a cost tableC of dimensions(|Σ| + 1) × (|Σ| + 1)
represents (neg-logs of) atomic edit operation, with
first column and row for deletions and insertions.
For∆V and∆A, the probabilities represented inC
should sum to 1. ForTDV , the neg-log mapping is
never inverted andTDV can be run with arbitraryC
and calculates then the standard non-stochastic Tai
distance. Theunit-costtable,C01, has 0 on the diag-
onal and 1 everywhere else.
Adapting costs We are interested in putting tree-
distance measures to work in deriving a category
for an uncategorised item, using anexample-setof
categorised examples, via thek nearest-neighbour
(kNN) algorithm. The performance of the kNN
classification algorithm will vary with cost-tableC
and Expectation-Maximisation (EM) is a possible
approach to settingC. Given a corpus of training
pairs, let thebrute-force all-paths EM algorithm,
EMA

bf , consists in iterations of:(E) generate a vir-
tual corpus of scripts by treating each training pair
(S, T ) as standing for the edit-scriptsA, which can
relate S to T , weighting each by its conditional
probabilityP (A)/∆A(S, T ), under current costsC
and (M) apply maximum likelihood estimation to
the virtual corpus to derive a new cost-table.EMA

bf

is not feasible. LetEMV be a Viterbi variant of this
working with a virtual corpus ofbest-scripts only,
effectively weighting each by the proportion it rep-
resents of the all-paths sum,∆V (S, T )/∆A(S, T ).
Space precludes further details ofEMV . Such
Viterbi training variants have been found beneficial,
for example in the context of parameter training for
PCFGs (Benedí and Sánchez, 2005). The training
set forEMV is tree pairs(S, T ), where for each

4Boyer et al. (2007) present somewhat unclear algorithms
for ∆A, not explicitly as extensions of the Zhang/Shasha algo-
rithm, and do not remark this double-counting subtlety. Their
on-line implementation (SEDiL, 2008) can compute incorrect
values and this work uses our own implementation of the algo-
rithms here outlined.

5x = neg − log(p) iff p = 2−x

6logsum(x1 . . . xn) = −log(
∑

i
(2−xi))



example-settree S, T is a nearest same-category
neighbour.EMV increases the edit-script probabil-
ity for scripts linking these trees, lessening their dis-
tance. Note that without the stochastic constraints
on C, the distance viaTDV could be minimised to
zero by setting all costs to zero, but this would be
of no value in improving the categorisation perfor-
mance.

To initializeEMV , let Cu(d) stand for a stochas-
tically valid cost-table, with the additional proper-
ties that (i) all diagonal entries are equal (ii) all non-
diagonal entries are equal (iii) diagonal entries are
d times more probable than non-diagonal. As a
smoothingoption concerning a tableC derived by
EMV , let Cλ be its interpolation with the original
Cu(d) as follows

2−Cλ[x][y] = λ(2−C[x][y]) + (1− λ)(2−Cu(d)[x][y])

For stochastic string-distance Ristad and Yiani-
los (1998) provided a feasible equivalent toEMA

bf :
for each training pair(s, t), first position-dependent
expectationsE [i][j](x, y) are computed, then later
summed into position-independent expectations.
Boyer et al. (2007) contains a proposal in a similar
spirit to provide a feasible equivalent toEMA

bf but
the proposal factorizes the problem in a way which
is invalid given the ancestry-preservation aspect of
Tai mappings7. For example, using a post-fix no-
tation subscripting by post-order position, lett1 =
(·1 (·2 ·3 m4) ·5 ·6), t2 = ((·1 ·2) (·3 m

′
4) (·5 ·6) ·7)

(from fig 3 of their paper). They propose to calcu-
late a swap expectationE [4, 4](m,m′) by

[∆A((·1), (·1·2))× [∆A((·2)(·3), (·3))× p(m,m′)]
×∆A((·5·6), ((·5·6)·7))]/∆

A(t1, t2)

But∆A((·5·6), ((·5·6)·7)) will contain contributions
from scripts which mapt1’s ·6, an ancestor ofm4,
to t2’s ·6, a non-ancestor ofm′

4, and these should
not contribute toE [4, 4](m,m′).

2 Experiments
QuestionBank (QB) is a hand-corrected treebank
for questions (Judge, 2006). A substantical
percentage of the questions in QB are taken
from a corpus of semantically categorised, syn-
tactically unannotated questions (CCG, 2001).
From these two corpora we created a corpus of
2755 semantically categorised, syntactically anal-
ysed questions8, spread over the semantic cate-

7A fact which they concede p.c.
8available at www.scss.tcd.ie/Martin.Emms/quest_cat

gories as follows9: HUM(23.5%), ENTY(22.5%),
DESC(19.4%), NUM(16.7%), LOC(16.5%) and
ABBR(1.4%)

This corpus was used in a number of experiments
on kNN classication using the tree-distanceTDV

algorithm, with various cost tables. In each case 10-
fold cross-validation was used with a 9:1 example-
set/test-set split.

Figure 1 shows some results of a first set of exper-
iments, with unit-costs and then with some stochas-
tic variants. For the stochastic variants, the cost ini-
tialisation wasCu(3) in each case.
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Figure 1: Categorisation performance with unit
costs and some stochastic variants

The first thing to note is that performance with
unit-costs (▽, max. 67.7%) exceeds performance
with the non-adaptedCu(3) costs (◦, max. 63.8%).
Though not shown, this remains the case with
far higher settings of the diagonal factor. Perfor-
mance after applyingEMV to adapt costs (△, max.
53.2%) is worse than the initial performance (◦,
max. 63.8%). A Leave-One-Out evaluation, in
which example-setitems are categorised using the
method on the remainder of the example-set, gives
accuracies of 91% to 99%, indicatingEMV has
made the best-scripts connecting the training pairs
too probable,over-fittingthe cost table. The vocab-
ulary is sufficiently thinly spread over the training
pairs that its quite easy for the learning algorithm to
fix costs which make almost everything but exactly
the training pairs have zero probability. The perfor-
mance when smoothing is applied (+,max.64.8%),
interpolating the adapted costs with the initial cost,

9See (CCG, 2001) for details of the semantic category labels



with λ = 0.99, is considerably higher than without
smoothing (△), attains a slightly higher maximum
than with unadapted costs (◦), but is still worse than
with unit costs (▽).

The following is a selection from the top 1% of
adapted swap costs.

8.50 ? .
8.93 NNP NN
9.47 VBD VBZ
9.51 NNS NN
9.78 a the
11.03 was is
11.03 ’s is

12.31 The the
12.65 you I
13.60 can do
13.83 many much
13.92 city state
13.93 city country

These learned preferences are to some extent intu-
itive, exchanging punctuation marks, words differ-
ing only by capitalisation, related parts of speech,
verbs and their contractions and so on. One might
expect this discounting of these swaps relative to
others to assist the categorisation, though the results
reported so far indicate that it did not. A stochas-
tically valid cost table cannot have zero costs on
the diagonal, and even with a very high ratio be-
tween the diagonal and off-diagonal probabilities,
the diagonal costs are not negligible. Perhaps this
mitigates against success and invites consideration
of outcomes if a final step is applied in which all
the entries on the diagonal are zeroed. In work
on adapting cost-tables for a stochastic version of
string distanceused in duplicate detection, Bilenko
and Mooney (2003) used essentially this same ap-
proach. Figure 2 shows outcomes when the trained
and smoothed costs finally have the diagonal ze-
roed.
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Figure 2: Categorisation performance: adapted
costs with smoothing and zeroing

The (▽) series once again shows the outcomes
with unit-costs whilst the other series show out-
comes obtained with costs adapted byEMV ,
smoothed at varius levels of interpolation (λ ∈
{0.99, 0.9, 0.5, 0.1}) and with the diagonal ze-
roed. Now the unit costs base-line is clearly out-
performed, the best result being 72.5% (k = 20,
λ = 0.99), as compared to 67.5% for unit-costs
(k = 20)

3 Comparisons and Conclusions

Collins and Duffy (2001) proposed theSST (S, T )
tree-kernel ’similarity’: a product in an infinite vec-
tor space, the dimensions of which are countsc(t) of
tree substructurest, eachc(t) weighted by a decay
factorγsize(t), 0 < γ ≤ 1, and it has been applied to
tree classification tasks (Quarternoni et al., 2007). If
the negation ofSST (S, T ) is used as an alternative
to∆V (S, T ) in the kNN algorithm, we found worse
results are obtained10, 64% − 69.4%, with maxi-
mum atk = 10. However, deployingSST (S, T ) as
a kernel in one-vs-one SVM classification11, a con-
siderably higher value,81.3%, was obtained.

Thus, although we have shown a way to adapt
the costs used by the tree-distance measure which
improves the kNN classification performance from
67.7% to 72.5%, the performance is less than ob-
tained using tree-kernels and SVM classification.
As to the reasons for this difference and whether
it is insuperable one can only speculate. The data
set was relatively small and it remains for future
work to see whether on larger data-sets the out-
comes are less dependent on smoothing considera-
tions and whether the kNN accuracy increases. The
one-vs-one SVM approach ton-way classification
trainsn(n−1)/2 binary classifiers, whereas the ap-
proach described here has one cost adaptation for
all the categories, and a possibility would be to do
class-specific cost adaptation, in a fashion similar to
Paredes and Vidal (2006).

One topic for future work is to consider how
this proposal for cost adaptation relates to other re-
cent proposals concerning adaptive tree measures
(Takasu et al., 2007; Dalvi et al., 2009) as well as
to consider cost-adaptation outcomes in some of the
other areas in which tree-distance has been applied.

10using the SVMLIGHTTK (2003) implementation
11using the libsvm (2003) implementation, with decayγ =

0.4, slackC = 2.0
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